1
|
Manfra O, Louey S, Jonker SS, Perdreau-Dahl H, Frisk M, Giraud GD, Thornburg KL, Louch WE. Augmenting workload drives T-tubule assembly in developing cardiomyocytes. J Physiol 2024; 602:4461-4486. [PMID: 37128962 PMCID: PMC10854476 DOI: 10.1113/jp284538] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
Contraction of cardiomyocytes is initiated at subcellular elements called dyads, where L-type Ca2+ channels in t-tubules are located within close proximity to ryanodine receptors in the sarcoplasmic reticulum. While evidence from small rodents indicates that dyads are assembled gradually in the developing heart, it is unclear how this process occurs in large mammals. We presently examined dyadic formation in fetal and newborn sheep (Ovis aries), and the regulation of this process by fetal cardiac workload. By employing advanced imaging methods, we demonstrated that t-tubule growth and dyadic assembly proceed gradually during fetal sheep development, from 93 days of gestational age until birth (147 days). This process parallels progressive increases in fetal systolic blood pressure, and includes step-wise colocalization of L-type Ca2+ channels and the Na+/Ca2+ exchanger with ryanodine receptors. These proteins are upregulated together with the dyadic anchor junctophilin-2 during development, alongside changes in the expression of amphiphysin-2 (BIN1) and its partner proteins myotubularin and dynamin-2. Increasing fetal systolic load by infusing plasma or occluding the post-ductal aorta accelerated t-tubule growth. Conversely, reducing fetal systolic load with infusion of enalaprilat, an angiotensin converting enzyme inhibitor, blunted t-tubule formation. Interestingly, altered t-tubule densities did not relate to changes in dyadic junctions, or marked changes in the expression of dyadic regulatory proteins, indicating that distinct signals are responsible for maturation of the sarcoplasmic reticulum. In conclusion, augmenting blood pressure and workload during normal fetal development critically promotes t-tubule growth, while additional signals contribute to dyadic assembly. KEY POINTS: T-tubule growth and dyadic assembly proceed gradually in cardiomyocytes during fetal sheep development, from 93 days of gestational age until the post-natal stage. Increasing fetal systolic load by infusing plasma or occluding the post-ductal aorta accelerated t-tubule growth and hypertrophy. In contrast, reducing fetal systolic load by enalaprilat infusion slowed t-tubule development and decreased cardiomyocyte size. Load-dependent modulation of t-tubule maturation was linked to altered expression patterns of the t-tubule regulatory proteins junctophilin-2 and amphiphysin-2 (BIN1) and its protein partners. Altered t-tubule densities did not influence dyadic formation, indicating that distinct signals are responsible for maturation of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Ornella Manfra
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Samantha Louey
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, OR, USA
| | - Sonnet S Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, OR, USA
| | - Harmonie Perdreau-Dahl
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - George D Giraud
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, OR, USA
- VA Portland Health Care System Portland, OR, USA
| | - Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, OR, USA
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Antolic A, Li M, Richards EM, Curtis CW, Wood CE, Keller-Wood M. Mechanisms of in utero cortisol effects on the newborn heart revealed by transcriptomic modeling. Am J Physiol Regul Integr Comp Physiol 2019; 316:R323-R337. [PMID: 30624972 PMCID: PMC6483213 DOI: 10.1152/ajpregu.00322.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
Abstract
We have identified effects of elevated maternal cortisol (induced by maternal infusion 1 mg·kg-1·day-1) on fetal cardiac maturation and function using an ovine model. Whereas short-term exposure (115-130-day gestation) increased myocyte proliferation and Purkinje fiber apoptosis, infusions until birth caused bradycardia with increased incidence of arrhythmias at birth and increased perinatal death, despite normal fetal cortisol concentrations from 130 days to birth. Statistical modeling of the transcriptomic changes in hearts at 130 and 140 days suggested that maternal cortisol excess disrupts cardiac metabolism. In the current study, we modeled pathways in the left ventricle (LV) and interventricular septum (IVS) of newborn lambs after maternal cortisol infusion from 115 days to birth. In both LV and IVS the transcriptomic model indicated over-representation of cell cycle genes and suggested disruption of cell cycle progression. Pathways in the LV involved in cardiac architecture, including SMAD and bone morphogenetic protein ( BMP) were altered, and collagen deposition was increased. Pathways in IVS related to metabolism, calcium signaling, and the actin cytoskeleton were altered. Comparison of the effects of maternal cortisol excess to the effects of normal maturation from day 140 to birth revealed that only 20% of the genes changed in the LV were consistent with normal maturation, indicating that chronic elevation of maternal cortisol alters normal maturation of the fetal myocardium. These effects of maternal cortisol on the cardiac transcriptome, which may be secondary to metabolic effects, are consistent with cardiac remodeling and likely contribute to the adverse impact of maternal stress on perinatal cardiac function.
Collapse
Affiliation(s)
- Andrew Antolic
- Department of Pharmacodynamics, University of Florida , Gainesville, Florida
| | - Mengchen Li
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Celia W Curtis
- Department of Pharmacodynamics, University of Florida , Gainesville, Florida
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida , Gainesville, Florida
| |
Collapse
|
3
|
Tibayan FA, Louey S, Jonker S, Espinoza H, Chattergoon N, You F, Thornburg KL, Giraud G. Increased systolic load causes adverse remodeling of fetal aortic and mitral valves. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1490-8. [PMID: 26354842 DOI: 10.1152/ajpregu.00040.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022]
Abstract
While abnormal hemodynamic forces alter fetal myocardial growth, little is known about whether such insults affect fetal cardiac valve development. We hypothesized that chronically elevated systolic load would detrimentally alter fetal valve growth. Chronically instrumented fetal sheep received either a continuous infusion of adult sheep plasma to increase fetal blood pressure, or a lactated Ringer's infusion as a volume control beginning on day 126 ± 4 of gestation. After 8 days, mean arterial pressure was higher in the plasma infusion group (63.0 mmHg vs. 41.8 mmHg, P < 0.05). Mitral annular septal-lateral diameter (11.9 mm vs. 9.1 mm, P < 0.05), anterior leaflet length (7.7 mm vs. 6.4 mm, P < 0.05), and posterior leaflet length (P2; 4.0 mm vs. 3.0 mm, P < 0.05) were greater in the elevated load group. mRNA levels of Notch-1, TGF-β2, Wnt-2b, BMP-1, and versican were suppressed in aortic and mitral valve leaflets; elastin and α1 type I collagen mRNA levels were suppressed in the aortic valves only. We conclude that sustained elevated arterial pressure load on the fetal heart valve leads to anatomic remodeling and, surprisingly, suppression of signaling and extracellular matrix genes that are important to valve development. These novel findings have important implications on the developmental origins of valve disease and may have long-term consequences on valve function and durability.
Collapse
Affiliation(s)
- Frederick A Tibayan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Department of Surgery, Oregon Health & Science University, Portland, Oregon; and
| | - Samantha Louey
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Sonnet Jonker
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Herbert Espinoza
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Natasha Chattergoon
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Fanglei You
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Kent L Thornburg
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - George Giraud
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; VA Portland Health Care System, Portland, Oregon
| |
Collapse
|
4
|
Roberts VHJ, Frias AE, Grove KL. Impact of maternal obesity on fetal programming of cardiovascular disease. Physiology (Bethesda) 2015; 30:224-31. [PMID: 25933822 PMCID: PMC4422977 DOI: 10.1152/physiol.00021.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The in utero environment is a key determinant of long-term health outcomes; poor maternal metabolic state and placental insufficiency are strongly associated with these long-term health risks. Human epidemiological studies link maternal obesity and offspring cardiovascular disease in later life, but mechanistic studies in animal models are limited. Here, we review the literature pertaining to maternal consequences of obesity during pregnancy and the subsequent impact on fetal cardiovascular development.
Collapse
Affiliation(s)
- Victoria H J Roberts
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Beaverton, Oregon; and
| | - Antonio E Frias
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Beaverton, Oregon; and Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Kevin L Grove
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Beaverton, Oregon; and
| |
Collapse
|
5
|
Tate KB, Kohl ZF, Eme J, Rhen T, Crossley DA. Critical Windows of Cardiovascular Susceptibility to Developmental Hypoxia in Common Snapping Turtle (Chelydra serpentina) Embryos. Physiol Biochem Zool 2015; 88:103-15. [DOI: 10.1086/677683] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Regulation of the cardiomyocyte population in the developing heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 106:289-99. [PMID: 21147149 DOI: 10.1016/j.pbiomolbio.2010.11.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/16/2010] [Accepted: 11/26/2010] [Indexed: 11/21/2022]
Abstract
During fetal life the myocardium expands through replication of cardiomyocytes. In sheep, cardiomyocytes begin the process of becoming terminally differentiated at about 100 gestation days out of 145 days term. In this final step of development, cardiomyocytes become binucleated and stop dividing. The number of cells at birth is important in determining the number of cardiomyocytes for life. Therefore, the regulation of cardiomyocyte growth in the womb is critical to long term disease outcome. Growth factors that stimulate proliferation of fetal cardiomyocytes include angiotensin II, cortisol and insulin-like growth factor-1. Increased ventricular wall stress leads to short term increases in proliferation but longer-term loss of cardiomyocyte generative capacity. Two normally circulating hormones have been identified that suppress proliferation: atrial natriuretic peptide (ANP) and tri-iodo-L-thyronine (T₃). Atrial natriuretic peptide signals through the NPRA receptor that serves as a guanylate cyclase and signals through cGMP. ANP powerfully suppresses mitotic activity in cardiomyocytes in the presence of angiotensin II in culture. Addition of a cGMP analog has the same effect as ANP. ANP suppresses both the extracellular receptor kinases and the phosphoinositol-3 kinase pathways. T₃ also suppresses increased mitotic activity of stimulated cardiomyocytes but does so by increasing the cell cycle suppressant, p21, and decreasing the cell cycle activator, cyclin D1.
Collapse
|
7
|
O'Tierney PF, Chattergoon NN, Louey S, Giraud GD, Thornburg KL. Atrial natriuretic peptide inhibits angiotensin II-stimulated proliferation in fetal cardiomyocytes. J Physiol 2010; 588:2879-89. [PMID: 20519318 DOI: 10.1113/jphysiol.2010.191098] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The role of atrial natriuretic peptide (ANP) in regulating fetal cardiac growth is poorly understood. Angiotensin II (Ang II) stimulates proliferation in fetal sheep cardiomyocytes when growth is dependent on the activity of the mitogen-activated protein kinase (MAPK) and phosphoinositol-3-kinase (PI3K) pathways. We hypothesized that ANP would suppress near-term fetal cardiomyocyte proliferation in vitro and inhibit both the MAPK and PI3K pathways. Forty-eight hour 5-bromodeoxyuridine (BrdU) uptake (used as an index of proliferation) was measured in cardiomyocytes isolated from fetal sheep (135 day gestational age) in response to 100 nm Ang II with or without ANP (0.003-100 nm) or 1 microm 8-bromo-cGMP. The effects of these compounds on the MAPK and PI3K pathways were assessed by measuring extracellular signal-regulated kinase (ERK) and AKT phosphorylation following 10 min of treatment with Ang II, ANP or 8-bromo-cGMP. In right ventricular myocytes (RV), the lowest dose of ANP (0.003 nm) inhibited Ang II-stimulated BrdU uptake by 68%. Similarly, 8-bromo-cGMP suppressed Ang II-stimulated proliferation by 62%. The same effects were observed in left ventricular (LV) cardiomyocytes but the RV was more sensitive to the inhibitory effects of ANP than the LV (P < 0.0001). Intracellular cGMP was increased by 4-fold in the presence of 100 nm ANP. Ang II-stimulated ERK and Akt phosphorylation was inhibited by 100 nm ANP. The activity of ANP may in part be cGMP dependent, as 8-bromo-cGMP had similar effects on the cardiomyocytes.
Collapse
Affiliation(s)
- P F O'Tierney
- Heart Research Center, Oregon Health and Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
8
|
Maturation of the angiotensin II cardiovascular response in the embryonic White Leghorn chicken (Gallus gallus). J Comp Physiol B 2010; 180:1057-65. [PMID: 20495810 PMCID: PMC2940048 DOI: 10.1007/s00360-010-0473-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/19/2010] [Accepted: 04/23/2010] [Indexed: 10/25/2022]
Abstract
Angiotensin II (Ang II) is an important regulator of cardiovascular function in adult vertebrates. Although its role in regulating the adult system has been extensively investigated, the cardiovascular response to Ang II in embryonic vertebrates is relatively unknown. We investigated the potential of Ang II as a regulator of cardiovascular function in embryonic chickens, which lack central nervous system control of cardiovascular function throughout the majority of incubation. The cardiovascular response to Ang II in embryonic chickens was investigated over the final 50% of their development. Ang II produced a dose-dependent increase in arterial pressure on each day of development studied, and the response increased in intensity as development progressed. The Ang II type-1 receptor nonspecific competitive peptide antagonist [Sar(1) ile(8)] Ang II blocked the cardiovascular response to subsequent injections of Ang II on day 21 only. The embryonic pressure response to Ang II (hypertension only) differed from that of adult chickens, in which initial hypotension is followed by hypertension. The constant level of gene expression for the Ang II receptor, in conjunction with an increasing pressure response to the peptide, suggests that two Ang II receptor subtypes are present during chicken development. Collectively, the data indicate that Ang II plays an important role in the cardiovascular development of chickens; however, its role in maintaining basal function requires further study.
Collapse
|
9
|
O'Tierney PF, Anderson DF, Faber JJ, Louey S, Thornburg KL, Giraud GD. Reduced systolic pressure load decreases cell-cycle activity in the fetal sheep heart. Am J Physiol Regul Integr Comp Physiol 2010; 299:R573-8. [PMID: 20484695 DOI: 10.1152/ajpregu.00754.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fetal heart is highly sensitive to changes in mechanical load. We have previously demonstrated that increased cardiac load can stimulate cell cycle activity and maturation of immature cardiomyocytes, but the effects of reduced load are not known. Sixteen fetal sheep were given either continuous intravenous infusion of lactated Ringer solution (LR) or enalaprilat, an angiotensin-converting enzyme inhibitor beginning at 127 days gestational age. After 8 days, fetal arterial pressure in the enalaprilat-infused fetuses (23.8 +/- 2.8 mmHg) was lower than that of control fetuses (47.5 +/- 4.7 mmHg) (P < 0.0001). Although the body weights of the two groups of fetuses were similar, the heart weight-to-body weight ratios of the enalaprilat-infused fetuses were less than those of the LR-infused fetuses (5.6 +/- 0.5 g/kg vs. 7.0 +/- 0.6 g/kg, P < 0.0001). Dimensions of ventricular myocytes were not different between control and enalaprilat-infused fetuses. However, there was a significant decrease in cell cycle activity in both the right ventricle (P < 0.005) and the left ventricle (P < 0.002) of the enalaprilat-infused fetuses. Thus, we conclude a sustained reduction in systolic pressure load decreases hyperplastic growth in the fetal heart.
Collapse
Affiliation(s)
- P F O'Tierney
- Heart Research Center, Oregon Health and Sciences Univ., Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
10
|
Jonker SS, Anderson DF, Davis LE, Yang Q, Faber JJ, Giraud GD. Persistent changes in arterial blood gases in fetal sheep. Lab Anim 2008; 42:326-30. [PMID: 18625587 DOI: 10.1258/la.2007.06005e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two anaesthetic protocols were compared using pregnant sheep. In both groups of animals, anaesthesia was induced using an intravenous (i.v.) injection of diazepam and ketamine. The ewes were then intubated for positive pressure ventilation using 0.8 L/min of nitrous oxide and 2 L/min oxygen with 1.1-1.8% halothane. If the ewe showed any signs of awakening, one of two protocols was followed. First, the halothane concentration was increased to 2-3% until the ewe was completely anaesthetized. Second, the halothane concentration was not altered, but the ewe was given doses of i.v. diazepam (0.1 mg/kg) and ketamine (1 mg/kg) until again completely anaesthetized. At the completion of surgery, maternal recovery was rapid and similar between the two groups. However, five days after surgery, the fetal arterial Po(2) and oxygen content of the fetuses receiving additional halothane (1.9 +/- 0.2 kPa and 4.4 +/- 1.0 mL/100 mL) were statistically significantly depressed when compared with the fetuses receiving additional diazepam and ketamine (2.9 +/- 0.1 kPa and 7.0 +/- 0.5 mL/100 mL). These results led us to conclude that certain anaesthetic protocols, in spite of good maternal recovery, can lead to deleterious effects upon the fetus that persist for at least five days after surgery.
Collapse
Affiliation(s)
- S S Jonker
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Giraud GD, Faber JJ, Jonker SS, Davis L, Anderson DF. Effects of intravascular infusions of plasma on placental and systemic blood flow in fetal sheep. Am J Physiol Heart Circ Physiol 2006; 291:H2884-8. [PMID: 16905601 DOI: 10.1152/ajpheart.00428.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Six singleton fetal sheep of 118–122 days gestational age were instrumented with flow sensors on the brachiocephalic artery, the postductal aorta, and the common umbilical artery and with arterial and venous intravascular catheters. At 125–131 days of gestation, we started week-long continuous recordings of flows and pressures. After control measures had been obtained, the fetuses were given continuous intravenous infusions of adult sheep plasma at an initial rate of 229 ml/day. After 1 wk of infusion, fetal plasma protein concentrations had increased from 34 to 78 g/l, arterial and venous pressures had increased from 42 to 64 and from 2.7 to 3.7 mmHg, and systemic resistance (exclusive of the coronary bed) had increased from 0.047 to 0.075 mmHg·min−1·ml−1, whereas placental resistance had increased from 0.065 to 0.111 mmHg·min−1·ml−1. Fetal plasma renin activities fell as early as 1 day after the start of infusion and remained below control (all changes P < 0.05). All flows decreased slightly although these decreases were not statistically significant. Thus the increase in arterial pressure was entirely due to an increase in systemic and placental resistances.
Collapse
Affiliation(s)
- George D Giraud
- Dept. of Physiology & Pharmacology, Oregon Health and Sciences University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
12
|
Jonker SS, Faber JJ, Anderson DF, Thornburg KL, Louey S, Giraud GD. Sequential growth of fetal sheep cardiac myocytes in response to simultaneous arterial and venous hypertension. Am J Physiol Regul Integr Comp Physiol 2006; 292:R913-9. [PMID: 17023664 DOI: 10.1152/ajpregu.00484.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While the fetal heart grows by myocyte enlargement and proliferation, myocytes lose their capacity for proliferation in the perinatal period after terminal differentiation. The relationship between myocyte enlargement, proliferation, and terminal differentiation has not been studied under conditions of combined arterial and venous hypertension, as occurs in some clinical conditions. We hypothesize that fetal arterial and venous hypertension initially leads to cardiomyocyte proliferation, followed by myocyte enlargement. Two groups of fetal sheep received intravascular plasma infusions for 4 or 8 days (from 130 days gestation) to increase vascular pressures. Fetal hearts were arrested in diastole and dissociated. Myocyte size, terminal differentiation (%binucleation), and cell cycle activity (Ki-67[+] cells as a % of mononucleated myocytes) were measured. We found that chronic plasma infusion greatly increased venous and arterial pressures. Heart (but not body) weights were approximately 30% greater in hypertensive fetuses than controls. The incidence of cell cycle activity doubled in hypertensive fetuses compared with controls. After 4 days of hypertension, myocytes were (approximately 11%) longer, but only after 8 days were they wider (approximately 12%). After 8 days, %binucleation was approximately 50% greater in hypertensive fetuses. We observed two phases of cardiomyocyte growth and maturation in response to fetal arterial and venous hypertension. In the early phase, the incidence of cell cycle activity increased and myocytes elongated. In the later phase, the incidence of cell cycle activity remained elevated, %binucleation increased, and cross sections were greater. This study highlights unique fetal adaptations of the myocardium and the importance of experimental duration when interpreting fetal cardiac growth data.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Heart Research Center, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | | | | | | | |
Collapse
|