1
|
Dadhich A, Jain R, Sharma MM. Bacopa monnieri (L.) Wettst. plant extract mediated synthesis of metallic nanoparticles and regulation of bacoside-A- memory enhancer compound and their application: A comprehensive review. PLANT NANO BIOLOGY 2025; 11:100133. [DOI: 10.1016/j.plana.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Palollathil A, Najar MA, Amrutha S, Pervaje R, Modi PK, Prasad TSK. Bacopa monnieri confers neuroprotection by influencing signaling pathways associated with interleukin 4, 13 and extracellular matrix organization in Alzheimer's disease: A proteomics-based perspective. Neurochem Int 2024; 180:105864. [PMID: 39349220 DOI: 10.1016/j.neuint.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
Alzheimer's disease, a prevalent neurodegenerative disorder in the elderly, is characterized by the accumulation of senile plaques and neurofibrillary tangles, triggering oxidative stress, neuroinflammation, and neuronal apoptosis. Current therapies focus on symptomatic treatment rather than targeting the underlying disease-modifying molecular mechanisms and are often associated with significant side effects. Bacopa monnieri, a traditional Indian herb with nootropic properties, has shown promise in neurological disorder treatment from ancient times. However, its mechanisms of action in Alzheimer's disease remain elusive. In this study, a cellular model for Alzheimer's disease was created by treating differentiated IMR-32 cells with beta-amyloid, 1-42 peptide (Aβ42). Additionally, a recovery model was established through co-treatment with Bacopa monnieri to explore its protective mechanism. Co-treatment with Bacopa monnieri extract recovered Aβ42 induced damage as evidenced by the decreased apoptosis and reduced reactive oxygen species production. Mass spectrometry-based quantitative proteomic analysis identified 21,674 peptides, corresponding to 3626 proteins from the Alzheimer's disease model. The proteins dysregulated by Aβ42 were implicated in cellular functions, such as negative regulation of cell proliferation and microtubule cytoskeleton organization. The enriched pathways include extracellular matrix organization and interleukin-4 and interleukin-13 signaling. Bacopa monnieri co-treatment showed remarkable restoration of Aβ42 altered proteins, including FOSL1, and TDO2. The protein-protein interaction network analysis of Bacopa monnieri restored proteins identified the hub gene involved in Alzheimer's disease. The findings from this study may open up new avenues for creating innovative therapeutic approaches for Alzheimer's disease.
Collapse
Affiliation(s)
- Akhina Palollathil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | - S Amrutha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | | | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| | | |
Collapse
|
3
|
Ko CY, Meng RT, Wu CH, Nguyen TKN, Chen YE, Wu JSB, Huang WC, Shen SC. Daphnetin Protects Schwann Cells Against High-Glucose-Induced Oxidative Injury by Modulating the Nuclear Factor Erythroid 2-Related Factor 2/Glutamate-Cysteine Ligase Catalytic Subunit Signaling Pathway. PLANTS (BASEL, SWITZERLAND) 2024; 13:3066. [PMID: 39519981 PMCID: PMC11548291 DOI: 10.3390/plants13213066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus, is primarily characterized by damage to Schwann cells caused by oxidative stress under hyperglycemic conditions. Recently, we demonstrated the ability of coumarin-rich Ficus formosana Maxim. to alleviate DPN in ovariectomized diabetic mice. However, the underlying mechanisms remain unclear. In this study, we established an in vitro DPN model using RSC96 Schwann cells exposed to high glucose levels. Daphnetin, a natural coumarin found abundantly in Ficus formosana Maxim., was co-incubated with Schwann cells in a high-glucose medium to investigate its protective effects against DPN. The free radical scavenging capacity of daphnetin was evaluated, along with assessments of cell viability, apoptosis, H2O2 levels, and the expression of proteins by the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutamate-cysteine ligase catalytic subunit (GCLC) pathway in RSC96 Schwann cells. The results showed that daphnetin was non-toxic within the tested concentration range of 6.25 μM to 50 μM in RSC96 Schwann cells. Moreover, daphnetin significantly improved cell viability, exhibited strong antioxidant activity, reduced H2O2 levels, and regulated the Nrf2/GCLC pathway protein expressions in RSC96 cells cultured in high-glucose medium. Additionally, daphnetin influenced apoptosis-related proteins by decreasing the expression levels of Bax and Caspase 3, while increasing the Bcl-2 expression level in high-glucose-treated RSC96 cells. These findings suggest that daphnetin may alleviate oxidative stress induced by high glucose levels through activation of the Nrf2/GCLC pathway and inhibition of Schwann cell apoptosis, underscoring its potential as a therapeutic agent for DPN.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
- School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Run-Tian Meng
- School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Chung-Hsin Wu
- School of Life Science, National Taiwan Normal University, Taipei 10617, Taiwan
| | - Thi Kim Ngan Nguyen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-En Chen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - James Swi-Bea Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
4
|
Mallick D, Acharjee A, Acharjee P, Trigun SK. Restoration of hippocampal adult neurogenesis by CDRI-08 (Bacopa monnieri extract) relates with the recovery of BDNF-TrkB levels in male rats with moderate grade hepatic encephalopathy. Int J Dev Neurosci 2024; 84:510-519. [PMID: 38795011 DOI: 10.1002/jdn.10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024] Open
Abstract
Modulation of in vivo adult neurogenesis (AN) is an evolving concept in managing neurodegenerative diseases. CDRI-08, a bacoside-enriched fraction of Bacopa monnieri, has been demonstrated for its neuroprotective actions, but its effect on AN remains unexplored. This article describes the status of AN by monitoring neuronal stem cells (NSCs) proliferation, differentiation/maturation markers and BDNF-TrkB levels (NSCs signalling players) vs. the level of neurodegeneration and their modulations by CDRI-08 in the hippocampal dentate gyrus (DG) of male rats with moderate grade hepatic encephalopathy (MoHE). For NSC proliferation, 10 mg/kg b.w. 5-bromo-2'-deoxyuridine (BrdU) was administered i.p. during the last 3 days, and for the NSC differentiation study, it was given during the first 3 days to the control, the MoHE (developed by 100 mg/kg b.w. of thioacetamide i.p. up to 10 days) and to the MoHE male rats co-treated with 350 mg/kg b.w. CDRI-08. Compared with the control rats, the hippocampus DG region of MoHE rats showed significant decreases in the number of Nestin+/BrdU+ and SOX2+/BrdU+ (proliferating) and DCX+/BrdU+ and NeuN+/BrdU+ (differentiating) NSCs. This was consistent with a similar decline in BDNF+/TrkB+ NSCs. However, all these NSC marker positive cells were observed to be recovered to their control levels, with a concordant restoration of total cell numbers in the DG of the CDRI-08-treated MoHE rats. The findings suggest that the restoration of hippocampal AN by CDRI-08 is consistent with the recovery of BDNF-TrkB-expressing NSCs in the MoHE rat model of neurodegeneration.
Collapse
Affiliation(s)
- Debasmit Mallick
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arup Acharjee
- Department of Zoology, University of Allahabad, Prayagraj, India
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
6
|
Sushma, Sahu MR, Murugan NA, Mondal AC. Amelioration of Amyloid-β Induced Alzheimer's Disease by Bacopa monnieri through Modulation of Mitochondrial Dysfunction and GSK-3β/Wnt/β-Catenin Signaling. Mol Nutr Food Res 2024; 68:e2300245. [PMID: 38143280 DOI: 10.1002/mnfr.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/21/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent dementia, affecting a large number of populations. Despite being under scrutiny for decades, an effective therapeutic option is still not available. METHODS AND RESULTS This study explores the therapeutic role of a nootropic herb Bacopa monnieri (BM) in AD-like pathological conditions produced by injecting preformed amyloid-β42 (Aβ42) fibril bilaterally into hippocampus of Wistar rats, and ethanolic extract of BM is orally administered for 4 weeks. Assessment of behavioral changes reveals that BM treatment ameliorates Aβ42-induced cognitive impairment and compromised explorative behavior. Supplementation of BM also reduces oxidative stress biomarkers, proinflammatory cytokines, and cholinesterase activity in the AD rats. Additionally, BM treatment restores Bcl-2-associated X protein (Bax)/ B-cell lymphoma 2 (Bcl-2) imbalance, increases neurotrophic factors expression, and prevents neurodegeneration validated by quantifying Nissl-positive hippocampal neurons. Interestingly, BM administration eliminates amyloid plaques in the hippocampal region and normalizes the Aβ42-induced increase in phospho-tau and total tau expression. Mechanistic investigations reveal that BM interacts with glycogen synthase kinase (GSK-3β) and restores Wnt/β-catenin signaling. CONCLUSION BM has been used in diet as a nootropic herb for several centuries. This study highlights the anti-Alzheimer activity of BM from the behavioral to the molecular level by modulating mitochondrial dysfunction, and GSK-3β mediates the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Sushma
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Natarajan Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
7
|
Nopparat J, Sujipuli K, Ratanasut K, Weerawatanakorn M, Prasarnpun S, Thongbai B, Laothaworn W, Inthima P. Exploring the excellence of commercial Brahmi products from Thai online markets: Unraveling phytochemical contents, antioxidant properties and DNA damage protection. Heliyon 2024; 10:e24509. [PMID: 38304802 PMCID: PMC10831600 DOI: 10.1016/j.heliyon.2024.e24509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Brahmi (Bacopa monnieri (L.) Wettst.) is extensively used as a nutritional supplement in various commercial products as the plant contains abundant phytochemicals and has antioxidant properties. This study assessed the phytochemical contents, antioxidant properties, and DNA damage protection among seven Brahmi products sold through Thai online markets. Results showed that the P6 sample exhibited 3.5-7.5 fold higher bacoside contents than values observed in the other six product samples. The P6 sample also demonstrated the highest TTC, TFC, and TPC compared to the other brands. For antioxidant activity, the samples (P1-P7) displayed high capacity to scavenge DPPH free radicals with slightly significant differences ranging from 78.37 ± 0.25 to 87.21 ± 0.05 at p-value ≤0.01. The P6 sample showed strong protection against H2O2-induced oxidation of DNA strand breakage, indicating highly potent phytochemical compounds with effective free radical scavenging activity, and the ability to prevent DNA damage. The P6 sample showed promise as a valuable ingredient for the development of functional food products. However, further in vivo animal and clinical studies are required to explore the neuroprotective enhancement effects of Brahmi extracts.
Collapse
Affiliation(s)
- Junya Nopparat
- Office of the Dean, Faculty of Science and Health Technology, Navamindradhiraj University, 3, White Road, Vajira Hospital, Dusit, Bangkok, 10300, Thailand
| | - Kawee Sujipuli
- Center of Agricultural Biotechnology, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok, 65000, Thailand
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok, 65000, Thailand
| | - Kumrop Ratanasut
- Center of Agricultural Biotechnology, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok, 65000, Thailand
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok, 65000, Thailand
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok, 65000, Thailand
| | - Surisak Prasarnpun
- School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Bussagon Thongbai
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Walailak Laothaworn
- Department of Biology, Faculty of Science, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok, 65000, Thailand
| | - Phithak Inthima
- Center of Agricultural Biotechnology, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok, 65000, Thailand
- Department of Biology, Faculty of Science, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok, 65000, Thailand
| |
Collapse
|
8
|
Singh A, Sarwat M, Gupta S. Pharmacological Mechanism of Herbal Interventions for Bipolar Disorder. Curr Pharm Des 2024; 30:1867-1879. [PMID: 38847247 DOI: 10.2174/0113816128312442240519184440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/17/2024] [Indexed: 09/21/2024]
Abstract
Bipolar disorder is a neuropsychiatric disease characterized by an abundance of undesired ideas and thoughts associated with recurrent episodes of mania or hypomania and depression. Alterations in the circuits, including the prefrontal cortex, striatum, and limbic system, regulate mood and cause variation in several crucial neurotransmitters, including serotonin, dopamine, GABA, and glutamate. Imbalances in dopamine levels have been implicated in the manic phase, while variance in serotonin is linked to depressive episodes. The precise pathophysiology of bipolar disorder is still unknown. Though different treatments are available, like lithium, risperidone, valproic acid, etc., which are widely used, they come with certain limitations, including narrow therapeutic index, hypothyroidism, weight gain, extrapyramidal symptoms, etc. The interest in herbal- based treatments for bipolar disorder arises from the desire for alternative, potentially more natural, and holistic approaches with fewer side effects. The current review focuses on the potential effects of herbal drugs and their derivatives to alleviate the symptoms of bipolar disorder.
Collapse
Affiliation(s)
- Abhinav Singh
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| | - Sangeetha Gupta
- Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
9
|
Shoukat S, Zia MA, Uzair M, Alsubki RA, Sajid K, Shoukat S, Attia KA, Fiaz S, Ali S, Kimiko I, Ali GM. Synergistic neuroprotection by phytocompounds of Bacopa monnieri in scopolamine-induced Alzheimer's disease mice model. Mol Biol Rep 2023; 50:7967-7979. [PMID: 37535247 DOI: 10.1007/s11033-023-08674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Millions of people around the globe are affected by Alzheimer's disease (AD). This crippling condition has no treatment despite intensive studies. Some phytocompounds have been shown to protect against Alzheimer's in recent studies. METHODS Thus, this work aimed to examine Bacopa monnieri phytocompounds' synergistic effects on neurodegeneration, antioxidant activity, and cognition in the scopolamine-induced AD mice model. The toxicity study of two phytocompounds: quercetin and bacopaside X revealed an LD50 of more than 2000 mg/kg since no deaths occurred. RESULTS The neuroprotection experiment consists of 6 groups i.e., control (saline), scopolamine (1 mg/kg), donepezil (5 mg/kg), Q (25 mg/kg), BX (20 mg/kg), and Q + BX (25 mg/kg + 20 mg/kg). Visual behavioral assessment using the Morris water maze showed that animals in the diseased model group (scopolamine) moved more slowly toward the platform and exhibited greater thigmotaxis behavior than the treatment and control groups. Likewise, the concentration of biochemical NO, GSH, and MDA improved in treatment groups concerning the diseased group. mRNA levels of different marker genes including ChAT, IL-1α, IL-1 β, TNF α, tau, and β secretase (BACE1) improved in treatment groups with respect to the disease group. CONCLUSION Both bacopaside X and quercetin synergistically have shown promising results in neuroprotection. Therefore, it is suggested that Q and BX may work synergistically due to their antioxidant and neuroprotective property.
Collapse
Affiliation(s)
- Shehla Shoukat
- Department of Plant Genomics and Biotechnology, PARC Institute of Advanced Studies in Agriculture, Affiliated with Quaid-e-Azam University, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kaynat Sajid
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sana Shoukat
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
| | - Shaukat Ali
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Itoh Kimiko
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | | |
Collapse
|
10
|
Sivasangari K, Sivamaruthi BS, Chaiyasut C, Rajan KE. Maternal stress-induced changes in adolescent and adult offspring: Neurobehavioural improvement and telomere maintenance. Heliyon 2023; 9:e20385. [PMID: 37767490 PMCID: PMC10520813 DOI: 10.1016/j.heliyon.2023.e20385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Maternal stress (MS) during gestation is known to increase the risk for the development of behavioural and physiological disorders and advances cellular aging. In this study, we investigated whether the supplementation of standardized Bacopa monnieri extract (CDRI-08/BME) or l-Carnosine (L-C) to the mother exposed to social stress during gestation modify the effect on their offspring's neurobehaviour, antioxidant defence gene expression, telomere length, and telomere biology. To test this, timed pregnant rats were subjected to social stress during the gestational day (GD) 16-18. A subset of stressed pregnant rats received either BME [80 mg/kg in 0.5% gum acacia (per-orally; p.o)] or L-C [1 mg/kg (p.o)] every day from GD-10 to until their pup's attained postnatal day (PND)-23. We observed that MS induced anxiety-like behaviour, altered inter-limb coordination, antioxidant defence genes [Superoxide dismutase (SOD1,2), Catalase (CAT), Glutathione peroxidase-3 (GPX3)], telomerase reverse transcriptase (TERT), shelterin complex subunits (TRF1, RAP1B, POT1) protein level and shorten telomere length. Notably, supplementation of BME/L-C dampens the MS, thus the effect on neurobehaviour, antioxidant defence gene expression, and telomere biology is minimized in their offspring. Together, our results suggest that supplementation of BME/L-C during gestation dampens the MS and reduced oxidative stress-mediated changes in telomere shortening/biology and associated neurobehaviour in offspring born following MS.
Collapse
Affiliation(s)
- Karunanithi Sivasangari
- Behavioural Neuroscience Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
11
|
Moremane MM, Abrahams B, Tiloke C. Moringa oleifera: A Review on the Antiproliferative Potential in Breast Cancer Cells. Curr Issues Mol Biol 2023; 45:6880-6902. [PMID: 37623253 PMCID: PMC10453312 DOI: 10.3390/cimb45080434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The global burden of female breast cancer and associated deaths has become a major concern. Many chemotherapeutic agents, such as doxorubicin, have been shown to have adverse side effects. The development of multi-drug resistance is a common occurrence, contributing to chemotherapeutic failure. The resistance of breast cancer cells to drug treatment leads to a decline in the treatment efficacy and an increase in cancer recurrence. Therefore, action is required to produce alternative drug therapies, such as herbal drugs. Herbal drugs have been proven to be beneficial in treating illnesses, including cancer. This review aims to highlight the antiproliferative potential of Moringa oleifera (MO), a medicinal tree native to India and indigenous to Africa, in breast cancer cells. Although MO is not yet considered a commercial chemopreventive drug, previous studies have indicated that it could become a chemotherapeutic agent. The possible antiproliferative potential of MO aqueous leaf extract has been previously proven through its antioxidant potential as well as its ability to induce apoptosis. This review will provide an increased understanding of the effect that MO aqueous leaf extract could potentially have against breast cancer.
Collapse
Affiliation(s)
| | | | - Charlette Tiloke
- Department of Basic Medical Sciences, School of Biomedical Sciences, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa; (M.M.M.); (B.A.)
| |
Collapse
|
12
|
Papaefthimiou M, Kontou PI, Bagos PG, Braliou GG. Antioxidant Activity of Leaf Extracts from Stevia rebaudiana Bertoni Exerts Attenuating Effect on Diseased Experimental Rats: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3325. [PMID: 37571265 PMCID: PMC10420666 DOI: 10.3390/nu15153325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Stevia (Stevia rebaudiana Bertoni) is an aromatic plant known for its high sweetening power ascribed to its glycosides. Stevia also contains several bioactive compounds showing antioxidant, antiproliferative, antimicrobial, and anti-inflammatory activities. Since inflammation and oxidative stress play critical roles in the pathogenesis of many diseases, stevia emerges as a promising natural product that could support human health. In this study we set out to investigate the way stevia affects oxidative stress markers (e.g., SOD, CAT, GPx, GSH, MDA) in diseased rats administered stevia leaf extracts or glycosides. To this end, we performed an inclusive literature search, following PRISMA guidelines, and recruited multivariate meta-analysis and meta-regression to synthesize all available data on experimental animal models encountering (a) healthy, (b) diseased, and (c) stevia-treated diseased rats. From the 184 articles initially retrieved, 24 satisfied the eligibility criteria, containing 104 studies. Our results demonstrate that regardless of the assay employed, stevia leaf extracts restored all oxidative stress markers to a higher extent compared to pure glycosides. Meta-regression analysis revealed that results from SOD, CAT, GSH, and TAC assays are not statistically significantly different (p = 0.184) and can be combined in meta-analysis. Organic extracts from stevia leaves showed more robust antioxidant properties compared to aqueous or hydroalcoholic ones. The restoration of oxidative markers ranged from 65% to 85% and was exhibited in all tested tissues. Rats with diabetes mellitus were found to have the highest restorative response to stevia leaf extract administration. Our results suggest that stevia leaf extract can act protectively against various diseases through its antioxidant properties. However, which of each of the multitude of stevia compounds contribute to this effect, and to what extent, awaits further investigation.
Collapse
Affiliation(s)
- Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| |
Collapse
|
13
|
Abuelezz SA, Hendawy N. Spotlight on Coenzyme Q10 in scopolamine-induced Alzheimer's disease: oxidative stress/PI3K/AKT/GSK 3ß/CREB/BDNF/TrKB. J Pharm Pharmacol 2023:rgad048. [PMID: 37315215 DOI: 10.1093/jpp/rgad048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Excess amyloid beta (Aβ) and oxidative stress (OS) are inextricable hallmarks of the neuronal damage associated Alzheimer's disease. Aβ-induced cognitive and memory dysfunctions are mediated through different signalling pathways as phosphatidylinositol-3-kinase (PI3K) and their downstream intermediates including protein-kinase-B, known as Akt, glycogen-synthase-kinase-3β (GSK-3β), cAMP-response-element-binding-protein (CREB), brain-derived-neurotrophic factor (BDNF) and tropomyosin-related-kinase receptor-B (TrKB). The current work aims to investigate the protective potentials of CoQ10 against scopolamine (Scop)-induced cognitive disability and the contribution of PI3K/Akt/GSK-3β/CREB/BDNF/TrKB in the neuroprotection effects. METHODS The chronic co-administration of CQ10 (50, 100 and 200 mg/kg/day i.p.) with Scop in Wistar rats for 6 weeks were assayed both behaviourally and biochemically. KEY FINDINGS CoQ10 ameliorated the Scop-induced cognitive and memory defects by restoring alterations in novel object recognition and Morris water maze behavioural tests. CoQ10 favourably changed the Scop-induced deleterious effects in hippocampal malondialdehyde, 8-hydroxy-2' deoxyguanosine, antioxidants and PI3K/Akt/GSK-3β/CREB/BDNF/TrKB levels. CONCLUSIONS These results exhibited the neuroprotective effects of CoQ10 on Scop-induced AD and revealed its ability to inhibit oxidative stress, amyloid deposition and to modulate PI3K/Akt/GSK-3β/CREB/BDNF/TrKB pathway.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Clinical Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Nevien Hendawy
- Clinical Pharmacology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
- Basic Medical Sciences Department, Faculty of Medicine, Faculty of Medicine, Galala University, Suez, Egypt
| |
Collapse
|
14
|
Kumar P, Singh A, Kumar A, Kumar R, Pal R, Sachan AK, Dixit RK, Nath R. Effect of Curcumin and Coenzyme Q10 Alone and in Combination on Learning and Memory in an Animal Model of Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051422. [PMID: 37239093 DOI: 10.3390/biomedicines11051422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The most frequent neurodegenerative illness among senior people and the main cause of dementia is Alzheimer's disease. The present dementia medications available only help with the symptoms of cognitive deficits and have several negative effects. The current study's goal is to assess the effects of curcumin and coenzyme Q10, two herbal medicines, both separately and in combination, on learning and memory before comparing them to the industry standard drug. A total of 42 adult healthy Wistar rats were used in our study. In this experiment, rats were given daily doses of 2.5 mg/kg of body weight of scopolamine hydrobromide for 7 days to induce Alzheimer's disease. On the eighth day, behavioural testing was conducted. Following testing, scopolamine and the test medications were given daily for the following 21 days. On days 29 and 30, behavioural testing was conducted once more, and then animals were slaughtered. Brain homogenate was produced for the estimation of molecular and biochemical markers. Curcumin has demonstrated a dose-response relationship, with a higher dose (200 mg/kg b.w. p.o.) being more effective than a lower dose (100 mg/kg b.w. p.o.). Similar to the greater dose of curcumin, coenzyme Q10 (200 mg/kg b.w. p.o.) has also been found to improve memory and learning. Higher doses of curcumin and coenzyme Q10 had more pronounced and meaningful effects. Acetylcholinesterase and TNF levels increased in scopolamine-induced memory impairment, but these effects were restored by the test medications, and improved by the combined therapy. These outcomes are comparable to those of the common medication memantine. As a result, we may infer from our results that curcumin at higher doses and its combination with coenzyme Q10 (200 mg/kg b.w. p.o.) have a significant impact on cognitive impairment in animal models of Alzheimer's disease and can be utilised alone or as an add-on therapy for the condition.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Aarti Singh
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Anurag Kumar
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Rahul Kumar
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Rishi Pal
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Amod Kumar Sachan
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Rakesh Kumar Dixit
- Department of Pharmacology &Therapeutics King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Rajendra Nath
- Department of Pharmacology, King George Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
15
|
Keegan AP, Stough C, Paris D, Luis CA, Abdullah L, Ait-ghezala G, Crawford F, Mullan M. Bacopa monnieri supplementation has no effect on serum brain-derived neurotrophic factor levels but beneficially modulates nuclear factor kappa B and cyclic AMP response element-binding protein levels in healthy elderly subjects. J Clin Transl Res 2023; 9:50-58. [PMID: 37032999 PMCID: PMC10075090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 04/11/2023] Open
Abstract
Background and Aim Bacopa monnieri is an Ayurvedic herb that has been used for multiple conditions, most notably to augment cognition, particularly memory and attention. Multiple mechanisms, including raising brain-derived neurotrophic factor (BDNF), have been proposed and investigated in animal models that require translational studies in humans. Methods Bacopa was administered in an open-labeled study to cognitively healthy controls over a 3-month period. Cognition and mood were assessed using the Montreal Cognitive Assessment (MoCA) and geriatric depression scale (GDS) at the baseline and 3-month visit. Laboratories were assessed for safety and serum levels of mature (mBDNF) and proBDNF were quantified. In a subset of subjects, intracellular signaling processes were assessed using western blot analysis. Results Bacopa was provided to 35 subjects and was well-tolerated except for 4 (11%) subjects who early terminated due to known, reversible, and gastrointestinal side effects (i.e., nausea, diarrhea). Over the 3 months, the GDS and the total MoCA did not significantly change; however, the delayed-recall subscale significantly improved (baseline: 3.8 ± 1.2, 3-months: 4.3 ± 0.9; P = 0.032). Serum mBDNF and proBDNF levels did not significantly change. Cyclic AMP response element-binding protein (CREB) phosphorylation significantly increased (P = 0.028) and p65 nuclear factor kappa B (NF-κB) phosphorylation significantly decreased (P = 0.030). Conclusion These results suggest that Bacopa may exert an anti-inflammatory effect through NF-κB and improve intracellular signaling processes associated with synaptogenesis (CREB). The future placebo-controlled studies are recommended. Relevance for Patients B. monnieri will require larger, blinded trials to better understand potential mechanisms, interactions, and utilization.
Collapse
Affiliation(s)
- Andrew P. Keegan
- The Roskamp Institute, Sarasota, Florida, United States of America
- Corresponding author: Andrew P. Keegan The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, United States of America. Tel: +1 941-752-2949. Fax: +1 941-752-2948.
| | - Con Stough
- Swinburne Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia
| | - Daniel Paris
- The Roskamp Institute, Sarasota, Florida, United States of America
| | - Cheryl A. Luis
- The Roskamp Institute, Sarasota, Florida, United States of America
| | - Laila Abdullah
- The Roskamp Institute, Sarasota, Florida, United States of America
| | | | - Fiona Crawford
- The Roskamp Institute, Sarasota, Florida, United States of America
| | - Michael Mullan
- The Roskamp Institute, Sarasota, Florida, United States of America
| |
Collapse
|
16
|
Online Microextraction Coupled with HPLC-ABTS for Rapid Analysis of Antioxidants from the Root of Polygonum bistorta. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:7496848. [PMID: 36704212 PMCID: PMC9873428 DOI: 10.1155/2023/7496848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
The root of Polygonum bistorta (PB) is a traditional Chinese medicinal plant material widely used in China. It has been commonly used for the treatment of hemostasis, detumescence, diarrhea, snake bite, and acute gastroenteritis. However, the research on the antioxidant properties and bioactive compounds from PB is inadequate. In the current research, an online microextraction (OLME) coupled with a high-performance liquid chromatography coupled with the 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay (HPLC-ABTS) system for rapid analysis of antioxidants from PB was proposed. The PB sample (0.17 mg) was online extracted by mobile phase (acetonitrile and 0.2% acetic acid); a Poroshell 120 SB-Aq column was used for separation; then, an online ABTS assay system was used for screening the antioxidants. Finally, ten components were found in PB, and among them, eight components possessed antioxidant activities. Furthermore, five components (gallic acid, neochlorogenic acid, caffeic acid, chlorogenic acid, and an unknown compound) were proved as major antioxidants when compared with rutin as an antioxidant marker. The results showed that the developed OLME-HPLC-ABTS system was a simple, rapid, green, and efficient instrument for the screening of antioxidants from PB, which provides a powerful tool for the discovery of natural antioxidants in Chinese medicines.
Collapse
|
17
|
Narayanan VA, Sharma A, S. RK, R. AT, P. GM, S. P, John A. Bilosomes as a Potential Carrier to Enhance Cognitive Effects of Bacopa monnieri Extract on Oral Administration. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0042-1757969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe Indian system of medicine, Ayurveda employs Bacopa monnieri extract (BME) for memory enhancement. This study attempts to prepare and test a more potent formulation by incorporating BME in nanovesicles. BME-loaded liposomes and bilosomes (bile salt-stabilized liposomes) were formulated using soy phosphatidylcholine. Liposomes and bilosomes had homogeneous size distribution and an average size of 285.7 nm and 84 nm, respectively, with satisfactory zeta potential. Spherical multilamellar bilosomes and unilamellar liposomes were observed under transmission electron microscope (TEM), with BME entrapment efficiency of 85% and 45%, respectively. During a 72 h interval, bilosomes and liposomes released 78% and 65% of the loaded BME, exhibiting a biphasic release, following the Higuchi model diffusion. Both liposomes and bilosomes were stable in simulated gastric and intestinal fluids. When tested on dementia-induced Swiss albino mouse models using the Y-maze apparatus, the bilosome-treated group showed significant cognition enhancement activity than those treated with liposomal vesicles. The better pharmacological effect shown by bilosomes may be attributed to better bioavailability, possibly augmented by higher entrapment efficiency, and improved vesicle integrity afforded by bile salts. Likewise, bilosomes were more stable than liposomes in simulated gastric and intestinal fluids. Taken together, innovative formulation techniques hold substantial promise for enhancing the ethnopharmacological claims of BME.
Collapse
Affiliation(s)
- V. Anoop Narayanan
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| | - Ankitha Sharma
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| | - Rajesh K. S.
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| | - Arunraj T. R.
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| | - Gururaj M. P.
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| | - Parasuraman S.
- Unit Head, Unit of Pharmacology, Faculty of Pharmacy, AIMST University, Bedong, Malaysia
| | - Anish John
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Derlakatte, Mangalore, Karnataka, India
| |
Collapse
|
18
|
Jeyasri R, Muthuramalingam P, Adarshan S, Shin H, Ramesh M. Assessing the Anti-inflammatory Effects of Bacopa-Derived Bioactive Compounds Using Network Pharmacology and In Vitro Studies. ACS OMEGA 2022; 7:40344-40354. [PMID: 36385888 PMCID: PMC9647831 DOI: 10.1021/acsomega.2c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Bacopa monnieri is reported as a potent Indian medicinal plant that possesses numerous pharmacological activities due to the presence of various bioactive compounds. These pharmacological activities were used in the ancient medicine system to cure inflammatory conditions. Bacopa has the ability to reduce acute pain and inflammation by inhibiting the enzyme cyclo-oxygenase-2 (COX-2) and reducing COX-2-arbitrated prostanoid mediators. Moreover, the anti-inflammatory property may also be associated with the neuroprotective activity of Bacopa. Considering this importance, the current pilot study focused on the anti-inflammatory potential of various phytocompounds of bacopa and their interaction with inflammation responsible genes such as COX2, iNOS, LOX, STAT3, CCR1, and MMP9 through pharmacology analysis of its systems. Docking results revealed that, quercetin (QR) showed significant binding energies with inflammatory genes. Hence, we selected QR as a potential phytocompound for further in vitro experiments. This existing study aimed to evaluate the efficacy of QR as a potent anti-inflammatory compound against lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The in vitro analysis concludes that QR effectively reduces the production of nitric oxide (NO) in LPS-induced RAW264.7 cells and downregulates the expression of COX-2 and iNOS genes due to the inhibitory potential of QR on LPS-stimulated NO production.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
- Division
of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, Korea
- Agri-Food
Bio Convergence Institute, Gyeongsang National
University, Jinju, 52725, Korea
| | - Sivakumar Adarshan
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
| | - Hyunsuk Shin
- Division
of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, Korea
- Agri-Food
Bio Convergence Institute, Gyeongsang National
University, Jinju, 52725, Korea
| | - Manikandan Ramesh
- Department
of Biotechnology, Science Campus, Alagappa
University, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
19
|
NAUREEN ZAKIRA, DHULI KRISTJANA, MEDORI MARIACHIARA, CARUSO PAOLA, MANGANOTTI PAOLO, CHIURAZZI PIETRO, BERTELLI MATTEO. Dietary supplements in neurological diseases and brain aging. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E174-E188. [PMID: 36479494 PMCID: PMC9710403 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A healthy diet shapes a healthy mind. Diet quality has a strong association with brain health. Diet influences the onset and consequences of neurological diseases, and dietary factors may influence mental health at individual and population level. The link between unhealthy diet, impaired cognitive function and neurodegenerative diseases indicates that adopting a healthy diet would ultimately afford prevention and management of neurological diseases and brain aging. Neurodegenerative diseases are of multifactorial origin and result in progressive loss of neuronal function in the brain, leading to cognitive impairment and motoneuron disorders. The so-called Mediterranean diet (MedDiet) with its healthy ingredients rich in antioxidant, anti-inflammatory, immune, neuroprotective, antidepressant, antistress and senolytic activity plays an essential role in the prevention and management of neurological diseases and inhibits cognitive decline in neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. The MedDiet also modulates the gut-brain axis by promoting a diversity of gut microbiota. In view of the importance of diet in neurological diseases management, this review focuses on the dietary components, natural compounds and medicinal plants that have proven beneficial in neurological diseases and for brain health. Among them, polyphenols, omega-3 fatty acids, B vitamins and several ayurvedic herbs have promising beneficial effects.
Collapse
Affiliation(s)
| | - KRISTJANA DHULI
- MAGI’S LAB, Rovereto, Italy
- Correspondence: Kristjana Dhuli, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | - PAOLA CARUSO
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - PAOLO MANGANOTTI
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - PIETRO CHIURAZZI
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto, Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
20
|
Srivastava V, Mathur D, Rout S, Mishra BK, Pannu V, Anand A, Anand A. Ayurvedic Herbal Therapies: A Review of Treatment and Management of Dementia. Curr Alzheimer Res 2022; 19:568-584. [PMID: 35929620 DOI: 10.2174/1567205019666220805100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
Dementia has been characterized by atypical neurological syndromes and several cognitive deficits, such as extended memory loss, strange behavior, unusual thinking, impaired judgment, impotence, and difficulty with daily living activities. Dementia is not a disease, but it is caused by several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Lewy's bodies. Several drugs and remedies are indicated for alleviating unusual cognitive decline, but no effective pharmacological treatment regimens are available without side effects. Herbal drugs or traditional medicines like Ayurveda have been known for facilitating and corroborating the balance between mind, brain, body, and environment. Ayurvedic therapy comprises 600 herbal formulas, 250 single plant remedies, and natural and holistic health-giving treatments that relieve dementia in patients and increase vitality. Ayurvedic Rasayana herbs [rejuvenating elements] strengthen the brain cells, enhance memory, and decrease stress. The current medicine scenario in the treatment of dementia has prompted the shift in exploring the efficacy of ayurvedic medicine, its safety, and its efficiency. This review presents the literature on several herbal treatments for improving dementia symptomatology and patients' quality of life.
Collapse
Affiliation(s)
- Vinod Srivastava
- College of Health and Behavioral Sciences, Fort Hays State University, Hays, Kansas 67601, USA
| | - Deepali Mathur
- Department of Neurology, Apollo Hospitals, Bhubaneswar, Odisha, India
| | - Soumyashree Rout
- Department of Neurology, Apollo Hospitals, Bhubaneswar, Odisha, India
| | | | - Viraaj Pannu
- Department of Internal Medicine, Jersey Shore University Medical Center, Neptune, New Jersey, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh, India
| |
Collapse
|
21
|
Mohan Manu T, Anand T, Sharath Babu GR, Patil MM, Khanum F. Bacopa monniera extract mitigates isoproterenol-induced cardiac stress via Nrf2/Keap1/NQO1 mediated pathway. Arch Physiol Biochem 2022; 128:341-351. [PMID: 31755309 DOI: 10.1080/13813455.2019.1683583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study was aimed to investigate the effect of standardised hydroalcoholic extract of Bacopa monniera (BME) against isoproterenol (ISO) induced cardiac stress. Isoproterenol (85 mg/kg body weight) was administered intraperitoneally to induce cardiac stress in rats. Bacopa monniera extract (BME75 and 150 mg/kg) was orally administered for 21 days followed by ISO on 22nd and 23rd experimental days. ISO caused significant cardiac damage, which was concomitant with increased apoptosis and attenuated expressions of Nrf2, HO-1, and regulating apoptotic protein expressions of Bax, Bcl2 and NOS2. Treatment with BME in rats significantly improved cardiac dysfunction by maintaining cardiac rhythm, myocardial integrity. Decreased oxidative stress by restored expressions of Nrf2, NQO1 and HO-1 followed by elevating antioxidant enzymes and total glutathione levels. Our present results suggest that the BME treatment strengthening the endogenous defence system through Nrf2 modulation and played a key role against cardiac oxidative stress induced by ISO in rats.
Collapse
Affiliation(s)
- T Mohan Manu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, India
| | - T Anand
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, India
| | - G R Sharath Babu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, India
| | - Mahantesh M Patil
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, India
| | - Farhath Khanum
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, India
| |
Collapse
|
22
|
Mani V. Piracetam-induced neuroprotection in lipopolysaccharides-challenged EOC-20 cells and mouse brain via attenuating oxidative stress. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
23
|
Omidifar N, Nili-Ahmadabadi A, Nakhostin-Ansari A, Lankarani KB, Moghadami M, Mousavi SM, Hashemi SA, Gholami A, Shokripour M, Ebrahimi Z. The modulatory potential of herbal antioxidants against oxidative stress and heavy metal pollution: plants against environmental oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61908-61918. [PMID: 34550520 DOI: 10.1007/s11356-021-16530-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
Free radicals, principally reactive oxygen species (ROS), contribute to oxidative stress in human beings. Free radicals have different mechanisms of action and affect lipids, proteins, and DNA. Heavy metals including cadmium (Cd), lead (Pb), and arsenic are environmental pollutants that may induce oxidative stress and produce ROS, leading to harmful effects on different body systems such as the liver and brain. On the other side, antioxidants can have protective effects against oxidative stress and decrease their toxicity. Herbal antioxidants have potential antioxidative effects. These antioxidants positively affect neurodegenerative diseases, atherosclerotic diseases, lung fibrosis, kidney injuries, and liver toxicities induced by oxidative agents, including heavy metals. In this manuscript, we explained the mechanisms of oxidative stress, and also discussed heavy metals which contribute to human oxidative stress. We further discussed different herbal antioxidants, their mechanisms of action, and their clinical use for various diseases.
Collapse
Affiliation(s)
- Navid Omidifar
- Clinical Education Research Center, and Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghadami
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Shokripour
- Depatment of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
24
|
Dorman G, Flores I, Gutiérrez C, Castaño RF, Aldecoa M, Kim L. Medicinal herbs and nutritional supplements for dementia therapy: potential therapeutic targets and clinical evidence. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:26-51. [PMID: 34370647 DOI: 10.2174/1871527320666210809121230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/20/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Spices and herbs have been used for medicinal purposes for centuries. Also, in the last decades, the use of different nutritional supplements has been implemented to treat all kinds of diseases, including those that present an alteration in cognitive functioning. Dementia is a clinical syndrome in which a person's mental and cognitive capacities gradually decline. As the disease progresses, the person's autonomy diminishes. As there is not an effective treatment to prevent progressive deterioration in many of these pathologies, nutritional interventions have been, and still are, one of the most widely explored therapeutic possibilities. In this review, we have discussed a great number of potentially interesting plants, nutritional derivatives and probiotics for the treatment of dementia around the world. Their action mechanisms generally involve neuroprotective effects via anti-inflammatory, antioxidant, anti-apoptotic, b-amyloid and tau anti-aggregate actions; brain blood flow improvement, and effects on synaptic cholinergic and dopaminergic neurotransmission, which may optimize cognitive performance in patients with cognitive impairment. As for their efficacy in patients with cognitive impairment and/or dementias, evidence is still scarce and/or their outcomes are controversial. We consider that many of these substances have promising therapeutic properties. Therefore, the scientific community has to continue with a more complete research focused on both identifying possible action mechanisms and carrying out clinical trials, preferably randomized double-blind ones, with a greater number of patients, a long-term follow-up, dose standardization and the use of current diagnosis criteria.
Collapse
Affiliation(s)
- Guido Dorman
- Division of Neurology, Ramos Mejia Hospital. Argentina
| | - Ignacio Flores
- Neuroscience Institute, Favaloro Foundation Hospital. Argentina
| | | | | | - Mayra Aldecoa
- Division of Neurology, Ramos Mejia Hospital. Argentina
| | - Leandro Kim
- Division of Neurology, Ramos Mejia Hospital. Argentina
| |
Collapse
|
25
|
Zandona A, Maraković N, Mišetić P, Madunić J, Miš K, Padovan J, Pirkmajer S, Katalinić M. Activation of (un)regulated cell death as a new perspective for bispyridinium and imidazolium oximes. Arch Toxicol 2021; 95:2737-2754. [PMID: 34173857 DOI: 10.1007/s00204-021-03098-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Oximes, investigated as antidotes against organophosphates (OP) poisoning, are known to display toxic effects on a cellular level, which could be explained beyond action on acetylcholinesterase as their main target. To investigate this further, we performed an in vitro cell-based evaluation of effects of two structurally diverse oxime groups at concentrations of up to 800 μM, on several cell models: skeletal muscle, kidney, liver, and neural cells. As indicated by our results, compounds with an imidazolium core induced necrosis, unregulated cell death characterized by a cell burst, increased formation of reactive oxygen species, and activation of antioxidant scavenging. On the other hand, oximes with a pyridinium core activated apoptosis through specific caspases 3, 8, and/or 9. Interestingly, some of the compounds exhibited a synergistic effect. Moreover, we generated a pharmacophore model for each oxime series and identified ligands from public databases that map to generated pharmacophores. Several interesting hits were obtained including chemotherapeutics and specific inhibitors. We were able to define the possible structural features of tested oximes triggering toxic effects: chlorine atoms in combination with but-2(E)-en-1,4-diyl linker and adding a second benzene ring with substituents such as chlorine and/or methyl on the imidazolium core. Such oximes could not be used in further OP antidote development research, but could be introduced in other research studies on new specific targets. This could undoubtedly result in an overall improved wider use of unexplored oxime database created so far in OP antidotes field of research in a completely new perspective.
Collapse
Affiliation(s)
- Antonio Zandona
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia
| | | | - Josip Madunić
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia
| | - Katarina Miš
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | | | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia.
| |
Collapse
|
26
|
Singh B, Pandey S, Rumman M, Kumar S, Kushwaha PP, Verma R, Mahdi AA. Neuroprotective and Neurorescue Mode of Action of Bacopa monnieri (L.) Wettst in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson's Disease: An In Silico and In Vivo Study. Front Pharmacol 2021; 12:616413. [PMID: 33796021 PMCID: PMC8007855 DOI: 10.3389/fphar.2021.616413] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
Ethnopharmacological Relevance: Parkinson's disease (PD) is characterized by progressive death of dopaminergic neurons. The presently used medicines only tackle the symptoms of PD, but none makes a dent on the processes that underpin the disease's development. Herbal medicines have attracted considerable attention in recent years. Bacopa monnieri (L.) Wettst (Brahmi) has been used in Indian Ayurvedic medicine to enhance memory and intelligence. Herein, we assessed the neuroprotective role of Bacopa monnieri (L.) Wettst on Parkinson's disease. Aim of the Study: Bacopa monnieri (L.) Wettst, a medicinal herb, is widely used as a brain tonic. We investigated the neuroprotective and neurorescue properties of Bacopa monnieri (L.) Wettst extract (BME) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of PD. Materials and Methods: The mice model of MPTP-induced PD is used in the study. In the neuroprotective (BME + MPTP) and neurorescue (MPTP + BME) experiments, the animals were administered 40 mg/kg body weight BME orally before and after MPTP administration, respectively. Effect of BME treatment was evaluated by accessing neurobehavioral parameters and levels of dopamine, glutathione, lipid peroxide, and nitrites. An in silico study was performed using AutoDock Tools 1.5.6 (ADT). Results: A significant recovery in behavioral parameters, dopamine level, glutathione level, lipid peroxides, and nitrite level was observed in BME-treated mice. Treatment with BME before or after MPTP administration has a protective effect on dopaminergic neurons, as evidenced by a significant decrease in GFAP immunostaining and expression of inducible nitric oxide synthase (iNOS) in the substantia nigra region; however, the degree of improvement was more prominent in mice receiving BME treatment before MPTP administration. Moreover, the in silico study revealed that the constituents of BM, including bacosides, bacopasides, and bacosaponins, can inactivate the enzyme monoamine oxidase B, thus preventing the breakdown of MPTP to MPP+. Conclusion: Our results showed that BME exerts both neuroprotective and neurorescue effects against MPTP-induced degeneration of the nigrostriatal dopaminergic neurons. Moreover, BME may slow down the disease progression and delay the onset of neurodegeneration in PD.
Collapse
Affiliation(s)
- Babita Singh
- Department of Biochemistry, KGMU, Lucknow, India
| | | | | | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Punjab, India
| | - Prem Prakash Kushwaha
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Punjab, India
| | | | | |
Collapse
|
27
|
The Effect of Herbal Medicinal Products on Psoriasis-Like Keratinocytes. Biomolecules 2021; 11:biom11030371. [PMID: 33801280 PMCID: PMC8000521 DOI: 10.3390/biom11030371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of keratinocytes and expression of pro-inflammatory cytokines in the epidermis. New biological drugs were developed for the systemic treatment of moderate to severe psoriasis. However, products for the topical treatment of mild psoriasis are still required. Here, we examined the effect of natural compounds on psoriasis-like keratinocytes in vitro and ex vivo. Psoriasis-like keratinocytes were generated by treating human primary keratinocytes with the psoriasis-associated cytokines IL-17A, TNF-α and IL-22. Initially, 10 botanical extracts from Ayurvedic Medicine, Traditional Chinese Medicine, Northern American traditional medicine and Occidental Monastic Medicine were investigated using BrdU assays and IL-6 and IL-8 ELISAs. Curcuma amada, Humulus lupulus and Hypericum perforatum turned out to be the most effective plant extracts. In vitro, the plant extracts inhibited the expression of anti-microbial peptides (β-defensin 2), the hyperproliferation marker keratin 17, the glucose transporter 1 and downregulated the nuclear translocation of NF-κB and pSTAT3. In an ex vivo psoriasis model, Humulus lupulus displayed the most prominent anti-proliferative and anti-inflammatory effect. In conclusion, among the plant extracts investigated, Humulus lupulus showed the most promising anti-psoriatic effect. It is an interesting candidate for topical psoriasis treatment that should be further studied in clinical trials.
Collapse
|
28
|
Alausa A, Ogundepo S, Olaleke B, Adeyemi R, Olatinwo M, Ismail A. Chinese nutraceuticals and physical activity; their role in neurodegenerative tauopathies. Chin Med 2021; 16:1. [PMID: 33407732 PMCID: PMC7789572 DOI: 10.1186/s13020-020-00418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The onset of neurodegenerative disease has not only been a major cause of scientific worry, but of economic burden to the health system. This condition has been further attributed to mis-stability, deletion or mutation of tau protein, causing the onset of Corticobasal degeneration, Pick's diseases, Progressive supranuclear palsy, Argyrophilic grains disease, Alzheimer's diseases etc. as scientifically renowned. This is mainly related to dysregulation of translational machinery, upregulation of proinflammatory cytokines and inhibition of several essential cascades such as ERK signaling cascade, GSK3β, CREB, and PKA/PKB (Akt) signaling cascades that enhances protein processing, normal protein folding, cognitive function, and microtubule associated tau stability. Administration of some nutrients and/or bioactive compounds has a high tendency to impede tau mediated inflammation at neuronal level. Furthermore, prevention and neutralization of protein misfolding through modulation of microtubule tau stability and prevention of protein misfolding is by virtue few of the numerous beneficial effects of physical activity. Of utmost important in this study is the exploration of promising bioactivities of nutraceuticals found in china and the ameliorating potential of physical activity on tauopathies, while highlighting animal and in vitro studies that have been investigated for comprehensive understanding of its potential and an insight into the effects on human highly probable to tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Abdullahi Alausa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Sunday Ogundepo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Barakat Olaleke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Rofiat Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
| | - Mercy Olatinwo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Aminat Ismail
- Department of Science Laboratory Technology, Faculty of Pure & Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
29
|
Castelli V, Melani F, Ferri C, d'Angelo M, Catanesi M, Grassi D, Benedetti E, Giordano A, Cimini A, Desideri G. Neuroprotective activities of bacopa, lycopene, astaxanthin, and vitamin B12 combination on oxidative stress-dependent neuronal death. J Cell Biochem 2020; 121:4862-4869. [PMID: 32449987 DOI: 10.1002/jcb.29722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/28/2022]
Abstract
Oxidative stress is considered the common effector of the cascade of degenerative events in many neurological conditions. Thus, in this paper we tested different nutraceuticals in H2 O2 in vitro model to understand if could represent an adjuvant treatment for neurological diseases. In this study, nutraceuticals bacopa, lycopene, astaxanthin, and vitamin B12 were used alone or in combination in human neuronal differentiated SH-SY5Y cells upon hydrogen peroxide-induced injury and neuroprotective, neuronal death pathways were analyzed. The nutraceuticals analyzed were able to protect H2 O2 cytotoxic effects, through increasing cell viability and proteins involved in neuroprotection pathways and restoring proteins involved in cell death pathways. On this basis, it is possible to propose the use of these compounds as dietary supplement for the prevention or as adjuvant to the only symptomatic treatments so far available for neurodegenerative diseases.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Davide Grassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Giovambattista Desideri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
30
|
Moriasi G, Ireri A, Ngugi M. Cognitive-Enhancing, Ex Vivo Antilipid Peroxidation and Qualitative Phytochemical Evaluation of the Aqueous and Methanolic Stem Bark Extracts of Lonchocarpus eriocalyx (Harms.). Biochem Res Int 2020; 2020:8819045. [PMID: 33354371 PMCID: PMC7734602 DOI: 10.1155/2020/8819045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
Over 50 million persons are living with cognitive deficits worldwide, with over 80% of these individuals living in the developing world. The number of affected persons is projected to go over 152 million by the year 2050. Current drugs used for cognitive impairment are debatably ineffective, costly, inaccessible, and associated with undesirable events that call for the search for alternative and complementary approaches. Plants are arguably affordable, accessible, and efficacious. However, despite the reported healing claims, scientific data validating these claims are lacking. L. eriocalyx is traditionally used for the management of various conditions, including cognitive impairment but has not been scientifically explored. In this study, the Morris Water Maze (MWM) method was used to evaluate in vivo cognitive-enhancing effects of studied extracts of L. eriocalyx. Furthermore, following MWM experiments, brains were dissected and processed, and malondialdehyde profiles were determined. Qualitative phytochemical profiles of the studied plant extracts were also determined. The results showed that mice that were treated with the studied plant extracts took significantly shorter transfer latencies, navigation distances, and significantly longer latencies in the target quadrant (NW) (p < 0.05) compared with the negative control mice, indicating cognitive-enhancing activities. Furthermore, cognitively impaired mice that received the studied plant extracts had significantly lower MDA profiles compared with the MDA profile of the negative control group mice (p < 0.05). The cognitive-enhancing and MDA profile lowering effects were attributed to the presence of antioxidant phytoconstituents that ought to have modulated the redox state, thereby attenuating brain damage. These extracts can be, therefore, used for the management of cognitive deficits. Further studies leading to isolation and characterization of active molecules for cognitive impairment are recommended. Furthermore, the precise mechanism(s) through which these extracts exert their pharmacologic activity should be established.
Collapse
Affiliation(s)
- Gervason Moriasi
- Kenyatta University, Department of Biochemistry Microbiology and Biotechnology, P.O. Box 43844-00100, Nairobi, Kenya
- Mount Kenya University, Department of Medical Biochemistry, P.O. Box 342-01000, Thika, Kenya
| | - Anthony Ireri
- Kenyatta University, Department of Educational Psychology, P.O. Box 43844-00100, Nairobi, Kenya
| | - Mathew Ngugi
- Kenyatta University, Department of Biochemistry Microbiology and Biotechnology, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
31
|
Dhanjal DS, Bhardwaj S, Sharma R, Bhardwaj K, Kumar D, Chopra C, Nepovimova E, Singh R, Kuca K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients 2020; 12:E3008. [PMID: 33007945 PMCID: PMC7601865 DOI: 10.3390/nu12103008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
32
|
Moriasi GA, Ireri AM, Ngugi MP. In Vivo Cognitive-Enhancing, Ex Vivo Malondialdehyde-Lowering Activities and Phytochemical Profiles of Aqueous and Methanolic Stem Bark Extracts of Piliostigma thonningii (Schum.). Int J Alzheimers Dis 2020; 2020:1367075. [PMID: 32308992 PMCID: PMC7128055 DOI: 10.1155/2020/1367075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cognitive impairment (CI) is among the leading causes of disability in humans. It is estimated that over 35.6 million people are suffering from Alzheimer's disease- (AD-) associated cognitive deficits globally with these statistics projected to rise over 115.4 million by the year 2050. There is no specific etiology for this cognitive impairment; however, various contributing factors including advancing age (>60 years old), oxidative stress, cerebral injuries, infections, neurologic disorders, and cancer have been implicated. Despite various attempts to manage CI, no curative medicines are yet available. The current drugs used to manage symptoms of AD-associated CI including Donepezil and Rivastigmine among others are only palliative rather than therapeutic. Furthermore, these agents have been associated with undesirable side effects. This calls for alternative and complementary approaches aimed at either preventing or reverting AD-related CI in a curative way without causing adverse events. It is estimated that over 80% of the world's population utilize herbal medicines for basic healthcare as it is considered safe, affordable, and easily accessible as opposed to conventional healthcare. Various parts of P. thonningii are used in traditional medicine to manage various conditions including CI. However, empirical and scientific data to validate these uses is lacking. In this study, the Morris water maze (MWM) experiment was adopted to evaluate the cognitive-enhancing effects of the studied plant extracts. The malondialdehyde (MDA) profiles in the brains of experimental mice were determined using the thiobarbituric acid reactive substances (TBARS) test. Moreover, qualitative phytochemical profiling of the studied plant extracts was performed using standard procedures. The results showed remarkable cognitive-enhancing activities which were reflected in significantly shorter transfer latencies, navigation distances, longer time spent in platform quadrant, and lower MDA levels compared with those recorded for the negative control mice (p < 0.05). Phytochemical screening of the studied plant extracts revealed the presence of antioxidant phytocompounds, which may have played key roles in the extracts' potency. Based on the findings herein, P. thonningii extracts, especially the aqueous ones have a promising potential for the management of AD-associated CI. Further studies aimed at isolating and characterizing specific active compounds for CI from P. thonningii are recommended. Additionally, specific mode(s) of action of active principles should be elucidated. Moreover, toxicity studies should be done on the studied plant extracts to ascertain their safety.
Collapse
Affiliation(s)
- Gervason Apiri Moriasi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O BOX 43844-00100 Nairobi, Kenya
| | - Anthony Muriithi Ireri
- Department of Educational Psychology, Kenyatta University, P.O BOX 43844-00100 Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O BOX 43844-00100 Nairobi, Kenya
| |
Collapse
|
33
|
Ozlu H, Cakir Gundogdu A, Elmazoglu Z, Take Kaplanoglu G, Oktar L, Karasu C. Bacopa Monnieri Protects the Directly Affected Organ as Well as Distant Organs Against I/R Injury by Modulating Anti-Inflammatory and Anti-Nitrosative Pathways in A Rat Model for Infra-Renal Aortic Occlusion. J INVEST SURG 2020; 34:935-946. [PMID: 32003261 DOI: 10.1080/08941939.2020.1716118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the protective effect and underlying mechanisms of B. monnieri, a medicinal plant, on kidney and skeletal muscle injury induced by infra-renal abdominal aorta clamping for 2-hours (ischemia) and following removal of the clamp (reperfusion, 2-hours). METHODS Rats were divided into four groups (n = 6): (I) animals given only saline (sham-control); (II) animals given B. monnieri extract for 10-days (300 mg/kg/day) (Bacopa-treated sham); (III) animals subjected to ischemia/reperfusion (I/R); (IV) animals given B. monnieri extract and then subjected to I/R. Kidneys and lower extremity muscles were examined for GPx, CAT, iNOS, 3-NT, IL-1β and TNF-α. Apoptosis and injury were evaluated by TUNEL and H&E staining, respectively. RESULTS I/R resulted in TUNEL positive cells, periarterial edema and glomerular capillary dilatation, decreased GPx activity, unchanged CAT, iNOS, 3-NT, IL-1β and TNF-α in kidney. B. monnieri minimized renal remote reperfusion injury, and Group IV showed a lower degree of renal histopathology score when compared to the others. B. monnieri mitigated muscle I/R injury, decreased muscle hypertrophy, myofibril abnormalities and apoptosis. Muscle 3-NT and cytokine levels were increased by I/R, and B. monnieri inhibited iNOS and 3-NT both in sham-control and I/R groups. Muscle GPx unaffected by I/R or B. monnieri, but CAT was inhibited only in B. monnieri-treated I/R group. Muscle iNOS, 3-NT, IL-1β, TNF-α levels and CAT activity of B. monnieri-treated I/R rats were lower than those in sham-control or Bacopa-treated sham. CONCLUSIONS B. monnieri can protect the directly affected organ as well as distant organs against I/R injury by modulating anti-inflammatory and anti-nitrosative pathways.
Collapse
Affiliation(s)
- Hilal Ozlu
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Cakir Gundogdu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Zubeyir Elmazoglu
- Department of Medical Pharmacology, Cellular Stress Response & Signal Transduction Research Laboratory, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gulnur Take Kaplanoglu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Levent Oktar
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Cimen Karasu
- Department of Medical Pharmacology, Cellular Stress Response & Signal Transduction Research Laboratory, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
34
|
Gadhavi H, Patel M, Mangukia N, Shah K, Bhadresha K, Patel SK, Rawal RM, Pandya HA. Transcriptome-wide miRNA identification of Bacopa monnieri: a cross-kingdom approach. PLANT SIGNALING & BEHAVIOR 2020; 15:1699265. [PMID: 31797719 PMCID: PMC7012157 DOI: 10.1080/15592324.2019.1699265] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bacopa monnieri known as 'Brahmi' is a well-known medicinal plant belonging to Scrophulariaceae family for its nootropic properties. To the best of our knowledge, no characterization data is available on the potential role of micro RNAs (miRNAs) from this plant till date. We present here the first report of computational characterizations of miRNAs from B. monnieri. Owing to the high conservation of miRNAs in nature, new and potential miRNAs can be identified in plants using in silico techniques. Using the plant miRNA sequences present in the miRBase repository, a total of 12 miRNAs were identified from B. monnieri which pertained to 11 miRNA families from the shoot and root transcriptome data. Furthermore, gene ontology analysis of the identified 68 human target genes exhibited significance in various biological processes. These human target genes were associated with signaling pathways like NF-kB and MAPK with TRAF2, CBX1, IL1B, ITGA4 and ITGB1BP1 as the top five hub nodes. This cross-kingdom study provides initial insights about the potential of miRNA-mediated cross-kingdom regulation and unravels the essential target genes of human with implications in numerous human diseases including cancer.
Collapse
Affiliation(s)
- Harshida Gadhavi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
| | - Maulikkumar Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
| | - Naman Mangukia
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kanisha Shah
- Department of Life Sciences, Food Science and Nutrition, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kinjal Bhadresha
- Department of Life Sciences, Food Science and Nutrition, School of Sciences, Gujarat University, Ahmedabad, India
| | - Saumya K. Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M. Rawal
- Department of Life Sciences, Food Science and Nutrition, School of Sciences, Gujarat University, Ahmedabad, India
| | - Himanshu A. Pandya
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, India
- CONTACT Himanshu A. Pandya Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
35
|
Pham HTN, Phan SV, Tran HN, Phi XT, Le XT, Nguyen KM, Fujiwara H, Yoneyama M, Ogita K, Yamaguchi T, Matsumoto K. Bacopa monnieri (L.) Ameliorates Cognitive Deficits Caused in a Trimethyltin-Induced Neurotoxicity Model Mice. Biol Pharm Bull 2019; 42:1384-1393. [DOI: 10.1248/bpb.b19-00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | - Hironori Fujiwara
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama
| | - Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
36
|
Simpson T, Kure C, Stough C. Assessing the Efficacy and Mechanisms of Pycnogenol ® on Cognitive Aging From In Vitro Animal and Human Studies. Front Pharmacol 2019; 10:694. [PMID: 31333448 PMCID: PMC6619435 DOI: 10.3389/fphar.2019.00694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Brain aging is a complex and multifactorial process broadly involving changes in the brain's structure, neuronal activity, and biochemical profile. These changes in brain function have also been linked to age-associated variations in cognitive function. Recent research has suggested a role of increased oxidative stress and reduced cognition in older people. Therefore, studies that examine the effects of antioxidants on cognitive performance are important, particularly in the context of an increase in elderly populations in most Western countries. One such antioxidant, Pycnogenol, is a standardized plant-based extract obtained from the bark of the French maritime pine and has a long historical use to treat inflammation and improve health. More recently, Pycnogenol has been subjected to more than 100 research trials. In vitro and animal studies using the standardized extract have indicated a multimodal action of Pycnogenol, and several human studies have shown improvements in cognitive function after chronic administration. In this paper, we review these studies in the context of understanding both biological and cognitive changes due to Pycnogenol and evaluate possibilities of Pycnogenol to improve neurocognitive function.
Collapse
Affiliation(s)
- Tamara Simpson
- Swinburne Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | | | | |
Collapse
|
37
|
Stough C, Nankivell M, Camfield DA, Perry NL, Pipingas A, Macpherson H, Wesnes K, Ou R, Hare D, de Haan J, Head G, Lansjoen P, Langsjoen A, Tan B, Pase MP, King R, Rowsell R, Zwalf O, Rathner Y, Cooke M, Rosenfeldt F. CoQ 10 and Cognition a Review and Study Protocol for a 90-Day Randomized Controlled Trial Investigating the Cognitive Effects of Ubiquinol in the Healthy Elderly. Front Aging Neurosci 2019; 11:103. [PMID: 31191293 PMCID: PMC6549544 DOI: 10.3389/fnagi.2019.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/17/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction: With an aging population there is an important need for the development of effective treatments for the amelioration of cognitive decline. Multiple mechanisms underlie age-related cognitive decline including cerebrovascular disease, oxidative stress, reduced antioxidant capacity and mitochondrial dysfunction. CoQ10 is a novel treatment which has the potential to improve brain function in healthy elderly populations due to established beneficial effects on mitochondrial function, vascular function and oxidative stress. Methods and Analysis: We describe the protocol for a 90-day randomized controlled trial which examines the efficacy of Ubiquinol (200 mg/day) vs. placebo for the amelioration of cognitive decline in a healthy (non-demented) elderly sample, aged 60 years and over. The primary outcome is the effect of Ubiquinol at 90 days compared to baseline on CogTrack composite measures of cognition. Additional cognitive measures, as well as measures of cardiovascular function, oxidative stress, liver function and mood will also be monitored across 30-, 60- and 90- day time points. Data analyses will involve repeated measures analysis of variance (ANOVA). Discussion: This study will be the first of its kind to provide important clinical and mechanistic data regarding the efficacy of Ubiquinol as a treatment for age-related cognitive decline in the healthy elderly with important implications for productivity and quality of life within this age group. Clinical Trial Registration: The trial has been registered with the Australian and New Zealand Clinical Trials Registry (ANZCTRN12618001841268).
Collapse
Affiliation(s)
- Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Madeleine Nankivell
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David A Camfield
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Naomi L Perry
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Helen Macpherson
- Faculty of Health, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Keith Wesnes
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Wesnes Cognition Limited, Streatley on Thames, United Kingdom.,Department of Psychology, Northumbria University, Newcastle, United Kingdom
| | - Ruchong Ou
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David Hare
- Austin Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Judy de Haan
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter Lansjoen
- East Texas Medical Center and Trinity Mother Francis Hospital, Tyler, TX, United States
| | - Alena Langsjoen
- East Texas Medical Center and Trinity Mother Francis Hospital, Tyler, TX, United States
| | - Brendan Tan
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Matthew P Pase
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca King
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Renee Rowsell
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Oliver Zwalf
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Yossi Rathner
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Matthew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Franklin Rosenfeldt
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Sajjad N, Wani A, Sharma A, Ali R, Hassan S, Hamid R, Habib H, Ganai BA. Artemisia amygdalina Upregulates Nrf2 and Protects Neurons Against Oxidative Stress in Alzheimer Disease. Cell Mol Neurobiol 2019; 39:387-399. [PMID: 30725250 DOI: 10.1007/s10571-019-00656-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer disease is a complex neurodegenerative disorder. It is the common form of dementia in elderly people. The etiology of this disease is multifactorial, pathologically it is accompanied with accumulation of amyloid beta and neurofibrillary tangles. Accumulation of amyloid beta and mitochondrial dysfunction leads to oxidative stress. In this study, neuroprotective effect of Artemisiaamygdalina against H2O2-induced death was studied in differentiated N2a and SH-SY5Ycells. Cells were treated with H2O2 to induce toxicity which was attenuated by Artemisia amygdalina. The nuclear factor erythroid 2-related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants. It controls the basal and induced expression of antioxidant response element-dependent genes. Further, we demonstrated that Artemisia amygdalina protects neurons through upregulation of Nrf2 pathway. Moreover, reactive oxygen species and mitochondrial membrane potential loss formed by H2O2 was attenuated by Artemisia amygdalina. Thus, Artemisia amygdalina may have the possibility to be a therapeutic agent for Alzheimer disease.
Collapse
Affiliation(s)
- Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Abubakar Wani
- PK-PD- Toxicology and Formulation, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Ankita Sharma
- PK-PD- Toxicology and Formulation, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Rohaya Ali
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Sumaya Hassan
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Rabia Hamid
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Huma Habib
- Department of Biochemistry, Islamia College of Science and Commerce, Srinagar, 190002, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
39
|
Saini N, Singh D, Sandhir R. Bacopa monnieri prevents colchicine-induced dementia by anti-inflammatory action. Metab Brain Dis 2019; 34:505-518. [PMID: 30604025 DOI: 10.1007/s11011-018-0332-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023]
Abstract
Inflammation is considered as an early event in the development of Alzheimer's disease (AD) that precedes the formation of Aβ plaques and neurofibrillary tangles. Therefore, strategies aimed at attenuating inflammation by phytochemicals may be a potential therapeutic intervention against AD. The present study was designed to evaluate if colchicine-induced inflammation and Aβ production could be prevented by Bacopa monnieri (BM) supplementation. Dementia was induced by a single intracerebroventicular injection of colchicine (15 μg/5 μl), whereas, BM extract was administered orally (50 mg/kg body weight, daily) for 15 days. Assessment of cognitive functions using Morris water maze revealed deficits in colchicine administered animals. This was accompanied by significant increase in oxidative stress in terms of accentuated ROS and NO production. Expression of pro-inflammatory cytokines (IL-6, TNF-α) and chemokine (MCP-1) increased in the brain regions. Furthermore, COX-2 and iNOS expression also increased significantly in the brain regions of colchicine-administered animals. In addition, BACE-1 activity increased in the colchicine treated animals, which was accompanied by enhanced Aβ production. On the other hand, BM supplementation was able to improve cognitive functions, suppress Aβ formation by reducing BACE-1 activity. Inflammatory and oxidative stress markers were attenuated in the brain regions of BM supplemented animals. Taken together, the findings reveal that BM reverses colchicine-induced dementia by its anti-inflammatory and anti-oxidant action suggesting that it may be an effective therapeutic intervention to ameliorate progression of AD.
Collapse
Affiliation(s)
- Neetu Saini
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
- Department of Zoology, Punjabi University, Patiala, 147002, India
| | - Devinder Singh
- Department of Zoology, Punjabi University, Patiala, 147002, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
40
|
Bacopa monnieri abrogates alcohol abstinence-induced anxiety-like behavior by regulating biochemical and Gabra1, Gabra4, Gabra5 gene expression of GABAA receptor signaling pathway in rats. Biomed Pharmacother 2019; 111:1417-1428. [DOI: 10.1016/j.biopha.2019.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
|
41
|
Aithal MGS, Rajeswari N. Bacoside A Induced Sub-G0 Arrest and Early Apoptosis in Human Glioblastoma Cell Line U-87 MG through Notch Signaling Pathway. Brain Tumor Res Treat 2019; 7:25-32. [PMID: 31062528 PMCID: PMC6504756 DOI: 10.14791/btrt.2019.7.e21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 10/20/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a highly malignant brain tumor with a worst prognosis of less than one year despite advance treatment facilities. Among various signaling pathway genes displaying genetic modifications, aberrant expression of Notch pathway genes is frequent in GBM offering novel therapeutic targets. Herbal extracts having anticancer properties are used in adjuvant therapy that is safe and affordable as compared to chemotherapeutics. Bacopa monnieri has been used for the development of brain cells because of its neuroprotective properties. Its anticancer properties have shown to be promising in cancer treatment. Methods The anticancer properties of Bacoside A, an active and abundant component of Bacopa monnieri was assessed on U-87 MG cell line and its effects on expression of Notch pathway genes were studied. Cell cycle arrest and apoptosis were studied using flow cytometry. Expression of Notch pathway genes comprising of Notch receptors (notch1, notch2, notch3 and notch4), ligands (jagged1 and jagged2), a component of gamma-secretase complex (APH1A) and downstream target (HES1) were evaluated by quantitative real-time PCR. Results Bacoside A exhibited considerable cytotoxicity on U-87 MG cells inducing cell cycle arrest and apoptosis. Cell cycle analysis revealed a significant arrest of 39.21% cells in sub-G0 phase at 80 µg/mL concentration, increasing to 53.21% at a higher concentration of 100 µg/mL. The fraction of early apoptotic cells in control was low (3.48%) that increased substantially to 31.36% and 41.11% after 80 µg/mL and 100 µg/mL of Bacoside A treatment respectively. Additionally, the expression of notch1 gene decreased after exposure to Bacoside A with a fold change of 0.05, whereas HES1 gene expression was increased by 25 fold. Conclusion These data indicate that Bacoside A has a possible anticancer activity that could be inducing cell cycle arrest and apoptosis through Notch pathway in GBM in vitro.
Collapse
Affiliation(s)
- Madhuri G S Aithal
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India
| | - Narayanappa Rajeswari
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India.
| |
Collapse
|
42
|
Nikray N, Karimi I, Siavashhaghighi Z, Becker LA, Mofatteh MM. An effort toward molecular biology of food deprivation induced food hoarding in gonadectomized NMRI mouse model: focus on neural oxidative status. BMC Neurosci 2018; 19:59. [PMID: 30249177 PMCID: PMC6154416 DOI: 10.1186/s12868-018-0461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/20/2018] [Indexed: 12/03/2022] Open
Abstract
Background Environmental uncertainty, such as food deprivation, may alter internal milieu of nervous system through various mechanisms. In combination with circumstances of stress or aging, high consumption of unsaturated fatty acids and oxygen can make neural tissues sensitive to oxidative stress (OS). For adult rats, diminished level of gonadal steroid hormones accelerates OS and may result in special behavioral manifestations. This study was aimed to partially answer the question whether OS mediates trade-off between food hoarding and food intake (fat hoarding) in environmental uncertainty (e.g., fluctuations in food resource) within gonadectomized mouse model in the presence of food deprivation-induced food hoarding behavior. Results Hoarding behavior was not uniformly expressed in all male mice that exposed to food deprivation. Extended phenotypes including hoarder and non-hoarder mice stored higher and lower amounts of food respectively as compared to that of low-hoarder mice (normal phenotype) after food deprivation. Results showed that neural oxidative status was not changed in the presence of hoarding behavior in gonadectomized mice regardless of tissue type, however, glutathione levels of brain tissues were increased in the presence of hoarding behavior. Decreased superoxide dismutase activity in brain and spinal cord tissues and increased malondialdehyde in brain tissues of gonadectomized mice were also seen. Conclusions Although, food deprivation-induced hoarding behavior is a strategic response to food shortage in mice, it did not induce the same amount of hoarding across all colony mates. Hoarding behavior, in this case, is a response to the environmental uncertainty of food shortage, therefore is not an abnormal behavior. Hoarding behavior induced neural OS with regard to an increase in brain glutathione levels but failed to show other markers of neural OS. Decreased superoxide dismutase activity in brain and spinal cord tissues and increased malondialdehyde levels in brain tissues of gonadectomized mice could be a hallmark of debilitated antioxidative defense and more lipid peroxidation due to reduced amount of gonadal steroid hormones during aging.
Collapse
Affiliation(s)
- Noushin Nikray
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Isaac Karimi
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Iran. .,Department of Biology, Faculty of Science, Razi University, Kermanshah, 67149-67346, Iran.
| | | | - Lora A Becker
- Department of Psychology, University of Evansville, Evansville, IN, 47722, USA
| | - Mohammad Mehdi Mofatteh
- Department of Accounting, School of Economics and Accounting, Islamic Azad University South Tehran Branch, Tehran, Iran
| |
Collapse
|
43
|
Standardized extract of Bacopa monnieri (CDRI-08): Effect on germ cell dynamics and possible mechanisms of its beneficial action on spermatogenesis and sperm quality in male mice. Biochem Biophys Res Commun 2017; 494:34-41. [PMID: 29054405 DOI: 10.1016/j.bbrc.2017.10.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 01/31/2023]
Abstract
Bacopa monnieri (BM) is used in traditional medicine as nerve tonic. We have recently shown that CDRI-08, a standardized extract of BM, improves testicular functions and epididymal sperm quality in Parkes (P) mice. The aim of the present study was to investigate the effect of CDRI-08 on germ cell dynamics and mechanisms of its action on spermatogenesis and sperm quality in P mice, and to determine the chemical profile of the extract. CDRI-08 (40 and 80 mg/kg body weight) was orally administered to male mice for 28 days. Germ cell dynamics, oxidative stress parameters in testis and sperm, and expressions of nuclear factor-erythroid-2-related factor-2 (Nrf2), phosphorylated protein kinase B (p-Akt) and upstream kinases in mitogen-activated protein kinase (MAPK) pathway namely MAP2K1, MAP2K2 and MKK4 in the testis were evaluated. The treatment potentiated germ cell dynamics and improved sperm quality by enhancing antioxidant enzymes activities. The beneficial effects of CDRI-08 in the testis involve p-Akt-mediated activation of Nrf2, thereby enhancing antioxidant enzymes activities; upregulation of MAP2K1 and MAP2K2 and suppression of MKK4 are also implicated in this action. A total of 26 phytocomponents were identified in CDRI-08 by GC-MS. The results suggest that CDRI-08 also may prove useful in improving reproductive health in males.
Collapse
|
44
|
Zhou C, Zhao L, Zheng J, Wang K, Deng H, Liu P, Chen L, Mu H. MicroRNA-144 modulates oxidative stress tolerance in SH-SY5Y cells by regulating nuclear factor erythroid 2-related factor 2-glutathione axis. Neurosci Lett 2017; 655:21-27. [PMID: 28663050 DOI: 10.1016/j.neulet.2017.06.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 06/06/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022]
Abstract
Genome-wide analysis of miRNA expression has revealed increased levels of miR-144 in the brains of Alzheimer's disease (AD) patients. Nuclear factor erythroid 2-related factor 2 (NRF2), a potential target of miR-144, is a central regulator of antioxidant response, and plays an important role in glutathione (GSH) biosynthesis and recycling. In this study, miR-144 mimic was used to over express miR-144. Aβ (1-42) was used to induce oxidative stress in SH-SY5Y cells. Cell viability and intracellular reactive oxygen species (ROS) were assessed to identify the effects of miR-144 on oxidative stress status. GSH and glutathion peroxidase (GPX) activities were detected to reveal the effect of miR-144 on GSH accumulation. To understand the effects of miR-144 on GSH biosynthesis and recycling, intracellular GPX1, glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GR), and NRF2 expression were detected by western blot and Real-time PCR. In oxidative stress conditions, miR-144 increased the intracellular accumulation of ROS, reduced cell viability, reduced the activities of GSH and antioxidant enzymes, GPX1, and decreased the expression of GCLC, GCLM, GR and NRF2. In conclusion, miR-144 modulates oxidative stress tolerance by regulating NRF2 expression and GSH generation, which may contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Chunlei Zhou
- Medical Laboratory of Tianjin First Center Hospital, Tianjin 300192, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300193, China
| | - Jian Zheng
- Medical Laboratory of Tianjin First Center Hospital, Tianjin 300192, China
| | - Kai Wang
- Medical Laboratory of Tianjin First Center Hospital, Tianjin 300192, China
| | - Haixia Deng
- Medical Laboratory of Tianjin First Center Hospital, Tianjin 300192, China
| | - Ping Liu
- Medical Laboratory of Tianjin First Center Hospital, Tianjin 300192, China
| | - Li Chen
- Medical Laboratory of Tianjin First Center Hospital, Tianjin 300192, China
| | - Hong Mu
- Medical Laboratory of Tianjin First Center Hospital, Tianjin 300192, China.
| |
Collapse
|
45
|
Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive Effect of Nootropic Drug Brahmi ( Bacopa monnieri) in Alzheimer's Disease. Ann Neurosci 2017; 24:111-122. [PMID: 28588366 DOI: 10.1159/000475900] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease of the elderly. The rapid increase in its incidence has necessitated development of newer drugs. Ayurvedic herbal medications are increasingly researched due to their biosafety profile and usefulness in cognitive impairment. In this article, we critically reviewed one such Medhya Rasayana (nootropic drug) Brahmi-derived from extract of Bacopa monnieri (EBm). Studies have shown that EBm promotes free radical scavenger mechanisms and protects cells in prefrontal cortex, hippocampus, and striatum against cytotoxicity and DNA damage implicated in AD. It also reduces lipoxygenase activity reducing lipid peroxidation, increases glutathione peroxidase and chelates iron. Administration of EBm was seen to protect the cholinergic neurons and reduce anticholinesterase activity comparable to donepezil, rivastigmine, and galantamine. It also reduces hippocampal β-amyloid deposition and stress-induced hippocampal damage. The neuroprotective effect of EBm is also due to nitric oxide-mediated cerebral vasodilation. EBm improved the total memory score and maximum improvement was seen in logical memory and paired associate learning in humans and reversed phenytoin-induced memory impairment in experimental model. EBm has not shown any serious clinical, neurological, hematological complications, or vital organs damage in experimental studies. Rats showed marked reduction in fertility; however, libido was unaffected. There is no experimental evidence of genotoxicity or teratogenesis by use of EBm. Mild nausea and gastrointestinal upset are seen in humans. Brahmi promises to be a novel agent in AD; however, further human trials are recommended to verify the efficacy and rule out any side effects as evidenced by the experimental models.
Collapse
Affiliation(s)
- Kaustubh S Chaudhari
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Samhita Siddhanta (Ayurveda), Kamaladevi Gauridutt Mittal Ayurvedic Hospital and College, Mumbai, India
| | - Nishant R Tiwari
- Department of Internal Medicine, Byramjee Jeejeebhoy Medical College, Pune, India
| | - Rakesh R Tiwari
- Department of Samhita Siddhanta (Ayurveda), Kamaladevi Gauridutt Mittal Ayurvedic Hospital and College, Mumbai, India
| | - Rohan S Sharma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
46
|
Barzilai A, Schumacher B, Shiloh Y. Genome instability: Linking ageing and brain degeneration. Mech Ageing Dev 2017; 161:4-18. [DOI: 10.1016/j.mad.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 02/06/2023]
|
47
|
Ferdousy S, Rahman MA, Al-Amin MM, Aklima J, Chowdhury JMKH. Antioxidative and neuroprotective effects of Leea macrophylla methanol root extracts on diazepam-induced memory impairment in amnesic Wistar albino rat. CLINICAL PHYTOSCIENCE 2016. [DOI: 10.1186/s40816-016-0031-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|