1
|
Yang CW, Liu HM, Chang ZY, Liu GH, Chang HH, Huang PY, Lee TY. Puerarin Modulates Hepatic Farnesoid X Receptor and Gut Microbiota in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2024; 25:5274. [PMID: 38791314 PMCID: PMC11121391 DOI: 10.3390/ijms25105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin's beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin's potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities.
Collapse
MESH Headings
- Animals
- Isoflavones/pharmacology
- Gastrointestinal Microbiome/drug effects
- Diet, High-Fat/adverse effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Mice
- Obesity/metabolism
- Obesity/drug therapy
- Liver/metabolism
- Liver/drug effects
- Male
- Dysbiosis
- Mice, Obese
- Mice, Inbred C57BL
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- Cholesterol 7-alpha-Hydroxylase/metabolism
- Cholesterol 7-alpha-Hydroxylase/genetics
- Mice, Knockout
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Organic Anion Transporters, Sodium-Dependent/genetics
- Symporters/metabolism
- Symporters/genetics
- Lipid Metabolism/drug effects
- Hepatocytes/metabolism
- Hepatocytes/drug effects
- Akkermansia
Collapse
Affiliation(s)
- Ching-Wei Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Internal and Pediatric Chinese Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou 333423, Taiwan
| | - Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Geng-Hao Liu
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
- Division of Acupuncture and Moxibustion, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Po-Yu Huang
- Department of Chinese Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10844, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
| |
Collapse
|
2
|
Fraga CG, Oteiza PI, Hid EJ, Galleano M. (Poly)phenols and the regulation of NADPH oxidases. Redox Biol 2023; 67:102927. [PMID: 37857000 PMCID: PMC10587761 DOI: 10.1016/j.redox.2023.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are enzymes that generate superoxide anion (O2•-) and hydrogen peroxide (H2O2), and that are widely distributed in mammalian tissues. Many bioactives, especially plant (poly)phenols are being studied for their capacity to regulate NOXs. The modulation of these enzymes are of central relevance to maintain redox homeostasis and regulate cell signaling. In in vitro and ex vivo assays, and in experimental animal models, different (poly)phenols are able to modulate NOX-dependent generation of O2•- and H2O2. Mechanistically, most of the known effects of (poly)phenols and of their metabolites on NOX1, NOX2, and NOX4, include the modulation of: i) the expression of the different constituent subunits, and/or ii) posttranslational modifications involved in the assembly and translocation of the protein complexes. Very limited evidence is available on a direct action of (poly)phenols on NOX active site (electron-transferring protein). Moreover, it is suggested that the regulation by (poly)phenols of systemic events, e.g. inflammation, is frequently associated with their capacity to regulate NOX activation. Although of physiological significance, more studies are needed to understand the specific targets/mechanisms of NOX regulation by (poly)phenols, and the (poly)phenol chemical structures and moieties directly involved in the observed effects. It should be kept in mind the difficulties of NOX's studies associated with the complexity of NOXs biochemistry and the methodological limitations of O2•- and H2O2 the determinations. Studies relating human ingestion of specific (poly)phenols, with NOX activity and disease conditions, are guaranteed to better understand the health importance of (poly)phenol consumption and the involvement of NOXs as biological targets.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina; Department of Nutrition University of California, Davis, USA
| | - Patricia I Oteiza
- Department of Nutrition University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ezequiel J Hid
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
4
|
Zang Y, Liu J, Zhai A, Wu K, Chuang Y, Ge Y, Wang C. Effects of highland barley β-glucan on blood glucose and gut microbiota in streptozotocin-induced, diabetic, C57BL/6 mice on a high-fat diet. Nutrition 2023; 107:111882. [PMID: 36527890 DOI: 10.1016/j.nut.2022.111882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/22/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This study aimed to investigate the hypoglycemic effect of highland barley β-glucan (HBG) on mice with type 2 diabetes (T2D), and determine whether the hypoglycemic effects are related to modulations of the gut microbiota. METHODS T2D was induced with a high-fat diet and streptozotocin in the mice. HBG was orally administered to mice with T2D for 4 wk, and biochemical indices were analyzed in the serum and liver. Fecal samples were collected and analyzed with high-throughput 16S ribosomal RNA sequencing. RESULTS Intake of HBG for 4 wk suppressed the body weight, as well as liver and heart indices, and regulated the levels of fasting blood glucose, serum insulin, blood lipid, oxidative damage, and inflammatory reaction in mice with T2D. Furthermore, HBG reversed the gut microbiota dysbiosis in mice with T2D by increasing the abundance of Lachnospiraceae_UCG-006, Streptococcaceae, and Eggerthellaceae, and by decreasing the abundance of Parasutterella. CONCLUSIONS Our findings indicate that the antidiabetic abilities of HBG might be related to the improvement of gut microbiota imbalance.
Collapse
Affiliation(s)
- Yanqing Zang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiaci Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Aihua Zhai
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kaiming Wu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yingying Chuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yinchen Ge
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
5
|
Li X, Geng-Ji JJ, Quan YY, Qi LM, Sun Q, Huang Q, Jiang HM, Sun ZJ, Liu HM, Xie X. Role of potential bioactive metabolites from traditional Chinese medicine for type 2 diabetes mellitus: An overview. Front Pharmacol 2022; 13:1023713. [PMID: 36479195 PMCID: PMC9719995 DOI: 10.3389/fphar.2022.1023713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR). The number of diabetic patients globally has been rising over the past decades. Although significant progress has been made in treating diabetes mellitus (DM), existing clinical drugs for diabetes can no longer fully meet patients when they face complex and huge clinical treatment needs. As a traditional and effective medical system, traditional Chinese medicine (TCM) has a unique understanding of diabetes treatment and has developed many classic and practical prescriptions targeting DM. With modern medicine and pharmacy advancements, researchers have discovered that various bioactive metabolites isolated from TCM show therapeutic on DM. Compared with existing clinical drugs, these bioactive metabolites demonstrate promising prospects for treating DM due to their excellent biocompatibility and fewer adverse reactions. Accordingly, these valuable metabolites have attracted the interest of researchers worldwide. Despite the abundance of research works and specialized-topic reviews published over the past years, there is a lack of updated and systematic reviews concerning this fast-growing field. Therefore, in this review, we summarized the bioactive metabolites derived from TCM with the potential treatment of T2DM by searching several authoritative databases such as PubMed, Web of Science, Wiley Online Library, and Springer Link. For the convenience of readers, the content is divided into four parts according to the structural characteristics of these valuable compounds (flavonoids, terpenoids, alkaloids, and others). Meanwhile, the detailed mechanism and future directions of these promising compounds curing DM are also summarized in the related sections. We hope this review inspires increasingly valuable and significant research focusing on potential bioactive metabolites from TCM to treat DM in the future.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Jia Geng-Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun-Yun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Lu-Ming Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Mei Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zi-Jian Sun
- Sichuan Ant Recommendation Biotechnology Co., Ltd., Chengdu, Sichuan, China
| | - Hong-Mei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Chen C, Yu LT, Cheng BR, Xu JL, Cai Y, Jin JL, Feng RL, Xie L, Qu XY, Li D, Liu J, Li Y, Cui XY, Lu JJ, Zhou K, Lin Q, Wan J. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front Cardiovasc Med 2022; 8:792592. [PMID: 35252368 PMCID: PMC8893235 DOI: 10.3389/fcvm.2021.792592] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is one of the most effective reperfusion strategies for acute myocardial infarction (AMI) despite myocardial ischemia/reperfusion (I/R) injury, causing one of the causes of most cardiomyocyte injuries and deaths. The pathological processes of myocardial I/R injury include apoptosis, autophagy, and irreversible cell death caused by calcium overload, oxidative stress, and inflammation. Eventually, myocardial I/R injury causes a spike of further cardiomyocyte injury that contributes to final infarct size (IS) and bound with hospitalization of heart failure as well as all-cause mortality within the following 12 months. Therefore, the addition of adjuvant intervention to improve myocardial salvage and cardiac function calls for further investigation. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in Chinese herbal medicine. Great effort has been put into phytochemicals because they are often in line with the expectations to improve myocardial I/R injury without compromising the clinical efficacy or to even produce synergy. We summarized the previous efforts, briefly outlined the mechanism of myocardial I/R injury, and focused on exploring the cardioprotective effects and potential mechanisms of all phytochemical types that have been investigated under myocardial I/R injury. Phytochemicals deserve to be utilized as promising therapeutic candidates for further development and research on combating myocardial I/R injury. Nevertheless, more studies are needed to provide a better understanding of the mechanism of myocardial I/R injury treatment using phytochemicals and possible side effects associated with this approach.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Tong Yu
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiang-Lin Xu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Cai
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lin Jin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ru-Li Feng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yan Qu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qian Lin
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
- Jie Wan
| |
Collapse
|
7
|
Bai YL, Han LL, Qian JH, Wang HZ. Molecular Mechanism of Puerarin Against Diabetes and its Complications. Front Pharmacol 2022; 12:780419. [PMID: 35058775 PMCID: PMC8764238 DOI: 10.3389/fphar.2021.780419] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/07/2021] [Indexed: 01/17/2023] Open
Abstract
Puerarin is a predominant component of Radix Puerarin. Despite its anti-tumor and anti-virus effects and efficacy in improving cardiovascular or cerebrovascular diseases and preventing osteoporosis, it has been shown to protect against diabetes and its complications. This review summarizes the current knowledge on Puerarin in diabetes and related complications, aiming to provide an overview of antidiabetic mechanisms of Puerarin and new targets for treatment.
Collapse
Affiliation(s)
- Yi-Ling Bai
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Ling Han
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Hui Qian
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Zhong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Hou BY, Zhao YR, Ma P, Xu CY, He P, Yang XY, Zhang L, Qiang GF, DU GH. Hypoglycemic activity of puerarin through modulation of oxidative stress and mitochondrial function via AMPK. Chin J Nat Med 2021; 18:818-826. [PMID: 33308602 DOI: 10.1016/s1875-5364(20)60022-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/26/2022]
Abstract
Hyperglycemia is the dominant phenotype of diabetes and the main contributor of diabetic complications. Puerarin is widely used in cardiovascular diseases and diabetic vascular complications. However, little is known about its direct effects on diabetes. The aim of our study is to investigate its antidiabetic effect in vivo and in vitro, and explore the underlying mechanism. We used type I diabetic mice induced by streptozotocin to observe the effects of puerarin on glucose metabolism. In addition, oxidative stress and hepatic mitochondrial respiratory activity were evaluated in type I diabetic mice. In vitro, glucose consumption in HepG2 cells was assayed along with the qPCR detection of glucogenesis genes expression. Moreover, ATP production was examined and phosphorylation of AMPK was determined using Western blot. Finally, the molecular docking was performed to predict the potential interaction of puerarin with AMPK utilizing program LibDock of Discovery Studio 2018 software. The results showed that puerarin improved HepG2 glucose consumption and upregulated the glucogenesis related genes expression. Also, puerarin lowered fasting and fed blood glucose with improvement of glucose tolerance in type I diabetic mice. Further mechanism investigation showed that puerarin suppressed oxidative stress and improved hepatic mitochondrial respiratory function with enhancing ATP production and activating phosphorylation of AMPK. Docking study showed that puerarin interacted with AMPK activate site and enhancing phosphorylation. Taken together, these findings indicated that puerarin exhibited the hypoglycemic effect through attenuating oxidative stress and improving mitochondrial function via AMPK regulation, which may serve as a potential therapeutic option for diabetes treatment.
Collapse
Affiliation(s)
- Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Yue-Rong Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chun-Yang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Ping He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Guan-Hua DU
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| |
Collapse
|
9
|
The parp-1 and bax genes as potential targets for treatment of the heart functioning impairments induced by type 1 diabetes mellitus. Endocr Regul 2021; 55:61-71. [PMID: 34020532 DOI: 10.2478/enr-2021-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives. The present study was designed to assess whether apoptosis-related genes as parp-1 and bax could be targets for treatment of diabetes mellitus and whether vitamin D may exert beneficial effects. Methods. Vitamin D3 treatment for 4 weeks, starting after 4 weeks of the diabetes duration. The expression of parp-1 and bax genes was estimated on mRNA levels using real time quantitative polymerase chain reaction. Results. After 8 weeks, diabetic rats had weight loss, while blood glucose was increased about 4.9-fold compared to control group. Vitamin D3 administration to diabetic animals had no effect on these parameters. It was found that total serum alkaline phosphatase activity was significantly elevated in diabetic rats as compared to control animals and was restored by vitamin D3. Diabetes was accompanied by reduction of nicotinamidadenindinucleotide, a substrate of poly-ADP-ribosylation, level by 31.7% as compared to control rats, which was not reversed in response to vitamin D3 treatment. In diabetic hearts, the mRNA expression level of parp-1 gene was 2.8-fold higher compared to control rats and partially decreased by vitamin D3 treatment. Less significant alterations were observed in diabetic hearts for the mRNA expression level of bax gene that was 2.0-fold higher compared to control animals and vitamin D3 normalized it. These results indicate that cardiomyocytes have a tendency to apoptosis. Conclusions. The findings suggest that investigated genes can be targets at the transcriptional level for vitamin D action that may be contributed to the improving metabolic/signaling pathways induced by diabetes mellitus.
Collapse
|
10
|
Alzahrani S, Said E, Ajwah SM, Alsharif SY, El-Bayoumi KS, Zaitone SA, Qushawy M, Elsherbiny NM. Isoliquiritigenin attenuates inflammation and modulates Nrf2/caspase-3 signalling in STZ-induced aortic injury. J Pharm Pharmacol 2021; 73:193-205. [PMID: 33793806 DOI: 10.1093/jpp/rgaa056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The current study provides evidence on the ameliorative impact of Isoliquiritigenin (ISL), a natural bioflavonoid isolated from licorice roots against diabetes mellitus (DM)-induced aortic injury in rats. METHODS DM was induced in male Sprague-Dawley rats by single I.P. injection of STZ (50 mg/kg). ISL was administrated daily (20 mg/kg, orally) for 8 wks. KEY FINDINGS Diabetic group showed a significant aortic injury with evidence of atherosclerotic lesions development. Daily ISL (20 mg/kg, orally) administration for 8 wks significantly restored aortic oxidative/antioxidative stress homeostasis via modulating NrF-2/Keap-1/HO-1. Moreover, ISL treatment restored aortic levels of IL-10 and dampened aortic levels of IL-6 and TNF-α. Caspase-3 expression significantly declined as well. Further, ISL treatment successfully suppressed aortic endothelin-1 (ET-1) expression and restored NO contents, eNOS immunostaining paralleled with retraction in atherosclerotic lesions development, and lipid deposition with histopathological architectural preservation and restoration of almost normal aortic thickness. CONCLUSION ISL can be proposed to be an effective protective therapy to prevent progression of DM-induced vascular injury and to preserve aortic integrity.
Collapse
Affiliation(s)
- Sharifa Alzahrani
- Pharmacology Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sadeem M Ajwah
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sumayyah Y Alsharif
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Khaled S El-Bayoumi
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Xu W, Tang M, Wang J, Wang L. Anti-inflammatory activities of puerarin in high-fat diet-fed rats with streptozotocin-induced gestational diabetes mellitus. Mol Biol Rep 2020; 47:7537-7546. [PMID: 32946041 PMCID: PMC7588390 DOI: 10.1007/s11033-020-05816-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
To investigate the effect of puerarin on insulin resistance and inflammation in rats with gestational diabetes mellitus (GDM). Gestational diabetic model rats were established by intraperitoneal injection of streptozotocin (25 mg/kg) combined with high-fat feeding and were randomly assigned to three groups: the control group, the GDM group, and the puerarin-treated group. Puerarin was intragastrically administered to rats daily until the offspring were born. The rats in both the GDM group and control group were administered the same volume of normal saline. Serum total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in all groups of rats were measured. Haematoxylin and eosin staining was used to evaluate morphological changes in the liver, pancreas, and adipose tissues around the reproductive organs. Western blotting was carried out to measure the protein expression of IRS-1 and inflammatory factors, including TNF-α, TLR4, MyD88 and phosphorylated NF-κB, in the adipose tissues around the reproductive organs. Puerarin had preventive effects on GDM-induced pathological changes and ameliorated glucose and lipid metabolism disorders in GDM rats. Puerarin upregulated IRS-1 expression and decreased the protein expression of TNF-α, TLR4, and MyD88 as well as the levels of phosphorylated NF-κB in adipose tissues around the reproductive organs in GDM rats. This study indicated that puerarin exerts anti-inflammatory effects by downregulating the important TLR4/MyD88/NF-κB inflammatory signalling pathway. Therefore, puerarin can decrease the expression of TNF-α and ameliorate insulin resistance in GDM rats, suggesting the potential efficacy of puerarin in GDM treatment.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhang jiagang, Suzhou, Jiangsu, China
| | - Mengyu Tang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhang jiagang, Suzhou, Jiangsu, China
| | - Jiahui Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhang jiagang, Suzhou, Jiangsu, China
| | - Lihong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhang jiagang, Suzhou, Jiangsu, China.
| |
Collapse
|
12
|
Min X, Guo Y, Zhou Y, Chen X. Protection against Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Neferine, A Natural Product from Nelumbo nucifera Gaertn. CELL JOURNAL 2020; 22:523-531. [PMID: 32347046 PMCID: PMC7211280 DOI: 10.22074/cellj.2021.6918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022]
Abstract
Objective Ulcerative colitis (UC) is a long-lasting inflammatory disease of the colon. Epidemiological studies showed that the
prevalence and incidence of UC are increasing worldwide in recent years. Neferine is a natural alkaloid isolated from Nelumbo
nucifera Gaertn that exerts a variety of biological activities. This study was designed to evaluate the protective effect of neferine
on dextran sulfate sodium (DSS)-induced experimental UC in mice.
Materials and Methods In this experimental study, 4% DSS was used to induce a mice model of UC. Neferine (5 and
10 mg/kg) was administered by intraperitoneal injection (ip). Clinical symptoms and disease activity index (DAI) scores
were recorded and calculated. Pathological changes of colon tissues were detected by Hematoxylin and Eosin (H&E)
staining. The levels of inflammatory mediators were detected by ELISA kits. Western blotting and immunohistochemical
analysis were used for the evaluation of protein expressions.
Results Neferine treatment significantly alleviated DSS-induced UC by inhibiting weight loss, decreasing DAI scores,
and alleviating the pathological changes in colon tissues. Furthermore, neferine significantly decreased serum levels
of pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 and
increased serum levels of anti-inflammatory cytokine IL-10. The increased myeloperoxidase (MPO) activity and nitric
oxide (NO) in colon tissues were also inhibited. In addition, neferine significantly down-regulated inducible NO synthase
(iNOS), cyclooxygenase-2 (COX-2), and intercellular cell adhesion molecule-1 (ICAM-1) expression in colon tissues.
Conclusion These results provided evidence that neferine could protect against DSS-induced UC symptoms in an
experimental mice model. This effect might be mediated through inhibition of inflammation.
Collapse
Affiliation(s)
- Xiangjing Min
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yanling Guo
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Yishan Zhou
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Xiuping Chen
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China. Electronic Address:
| |
Collapse
|
13
|
Wu W, Yang S, Liu P, Yin L, Gong Q, Zhu W. Systems Pharmacology-Based Strategy to Investigate Pharmacological Mechanisms of Radix Puerariae for Treatment of Hypertension. Front Pharmacol 2020; 11:345. [PMID: 32265716 PMCID: PMC7107014 DOI: 10.3389/fphar.2020.00345] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertension is a clinical cardiovascular syndrome characterized by elevated systemic arterial pressure with or without multiple cardiovascular risk factors. Radix Pueraria (RP) has the effects of anti-myocardial ischemia, anti-arrhythmia, vasodilatation, blood pressure reduction, anti-inflammation, and attenuating insulin resistance. Although RP can be effective for the treatment of hypertension, its active compounds, drug targets, and exact molecular mechanism are still unclear. In this study, systems pharmacology was used to analyze the active compounds, drug target genes, and key pathways of RP in the treatment of hypertension. Thirteen active compounds and related information on RP were obtained from the TCMSP database, and 140 overlapping genes related to hypertension and drugs were obtained from the GeneCards and OMIM databases. A PPI network and a traditional Chinese medicine (TCM) comprehensive network (Drug-Compounds-Genes-Disease network) were constructed, and 2,246 GO terms and 157 pathways were obtained by GO enrichment analysis and KEGG pathway enrichment analysis. Some important active compounds and targets were evaluated by in vitro experiments. This study shows that RP probably acts by influencing the proliferation module, apoptosis module, inflammation module, and others when treating hypertension. This study provides novel insights for researchers to systematically explore the mechanism of action of TCM.
Collapse
Affiliation(s)
| | | | | | | | - Qianfeng Gong
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
14
|
Fathalipour M, Mahmoodzadeh A, Safa O, Mirkhani H. Puerarin as potential treatment in diabetic retinopathy. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most prevalent microvascular complications of diabetes, and the most leading cause of visual loss around the world. The lack of effective and approved treatment in DR is a major challenge for diabetic patients. Nowadays, natural compounds have got attention of the researchers for management of DR. Many evidences suggest that puerarin as a natural polyphenol exerts advantageous effects against DR. In the present review, we summarized the protective effects of puerarin against DR, and discussed the underlying mechanisms of these effects. Puerarin attenuates retinal neovascularization and neurodegeneration in diabetes mellitus, and the underlying mechanisms are related to antioxidant, anti-inflammatory, and antiapoptotic properties of the compound. In conclusion, puerarin might be a potential adjuvant agent for the prevention and treatment of DR. However, comprehensive studies are necessary to show its effectiveness and safety, particularly in human.
Collapse
Affiliation(s)
- Mohammad Fathalipour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Mahmoodzadeh
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Safa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Mirkhani
- Department of Pharmacology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Li X, Zhu Q, Zheng R, Yan J, Wei M, Fan Y, Deng Y, Zhong Y. Puerarin Attenuates Diabetic Nephropathy by Promoting Autophagy in Podocytes. Front Physiol 2020; 11:73. [PMID: 32116781 PMCID: PMC7033627 DOI: 10.3389/fphys.2020.00073] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023] Open
Abstract
Puerarin, an active compound of radix puerariae, is a major compound used in Chinese herbal medicines to treat patients with diabetic nephropathy (DN). In the previous studies, we showed that puerarin exerts renoprotective effects in Streptozocin (STZ)-induced diabetic mice through activation of Sirt1 and anti-oxidative effects. Here, we further investigated the underlying mechanism mediating the renal protective effects of puerarin in DN. We studied the effects and mechanism of puerarin in STZ-induced diabetic mice and in cultured immortalized mouse podocytes treated with high glucose. We confirmed that puerarin ameliorated urinary albumin creatinine ratio and kidney injury in STZ-induced DN mice. We found that expression of heme oxygenase 1 (HMOX-1) and Sirt1 was suppressed in diabetic glomeruli but restored by puerarin treatment at both mRNA and protein levels. Additionally, we found that puerarin induced autophagy in the kidney of DN mice. In conditionally immortalized mouse podocytes, puerarin inhibited HG-induced apoptosis and restored the mRNA and protein levels of HMOX-1 and Sirt1. Interestingly, we showed that puerarin decreased liver kinase B1 (LKB1) acetylation, thereby promoting adenosine 5′-monophosphate-activated protein kinase-dependent autophagy. Knockdown of HMOX-1 and Sirt1 expression or treatment with the autophagy inhibitor 3-methyladenine abolished the protective effects of puerarin in HG-treated podocytes. Taken together, these results suggest that puerarin protects podocytes from diabetes-induced injury through HMOX1 and Sirt1-mediated upregulation of autophagy, a novel mechanism explaining its renal protective effects in DN.
Collapse
Affiliation(s)
- Xueling Li
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingqing Zhu
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zheng
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayi Yan
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minggang Wei
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yichen Fan
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueyi Deng
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhong
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Liang T, Xu X, Ye D, Chen W, Gao B, Huang Y. Caspase/AIF/apoptosis pathway: a new target of puerarin for diabetes mellitus therapy. Mol Biol Rep 2019; 46:4787-4797. [PMID: 31228042 PMCID: PMC8782775 DOI: 10.1007/s11033-019-04925-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
Pancreatic β cell damage is one of the crucial factors responsible for the development of type 2 diabetes mellitus (T2DM). Previous studies have suggested that puerarin (PR) could regulate the activities of the mitochondrial respiratory chain complex in diabetic nephropathy (DN); however, whether PR can inhibit pancreatic β-cell apoptosis in T2DM remains to be elucidated. In the present study, T2DM mice induced by high-fat diet and streptozotocin (STZ) injection were used as a working model to investigate the mechanism of PR on pancreatic β cell apoptosis. The results showed that PR decreased the serum fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) levels but significantly increased the fasting blood insulin (FINS) and high-density lipoprotein (HDL) levels. Furthermore, decreased caspase-3, 8, 9 and apoptosis-inducing factor (AIF) proteins in the pancreas were detected by Western blot analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining demonstrated that the pancreatic β cell apoptosis was inhibited by PR. Furthermore, PR improved the histopathological changes in pancreatic tissue in T2DM mice. Collectively, the data show that PR can protect the β cells from apoptotic death in a mouse model of T2DM through regulating the expression of apoptosis-related protein-AIF and caspase family proteins.
Collapse
Affiliation(s)
- Tao Liang
- College of Stomatology of Guangxi Medical University, No. 10, Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xiaohui Xu
- Affiliated Tumor Hospital of Guangxi Medical University, Institute of Cancer Prevention and Treatment of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Dongmei Ye
- Department of Clinical Pharmacy, Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Wenxia Chen
- College of Stomatology of Guangxi Medical University, No. 10, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Biyun Gao
- College of Stomatology of Guangxi Medical University, No. 10, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Yanjun Huang
- Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
17
|
Advances in Research on the Protective Mechanisms of Traditional Chinese Medicine (TCM) in Islet β Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7526098. [PMID: 31531118 PMCID: PMC6721377 DOI: 10.1155/2019/7526098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/16/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022]
Abstract
The dysfunction and decreased number of islet β cells are central to the main pathogenesis of diabetes. Improving islet β cell function and increasing the number of β cells are effective approaches to treat diabetes and constitute the main direction of diabetes drug development. The role of Chinese medicine in the treatment of diabetes began to be recognized. In recent years, Chinese medicine monomers have been found to increase insulin synthesis and secretion, reduce β cell-apoptosis, and protect the function of β cells. The results of in vivo animal experiments and in vitro studies on insulinoma cells also suggested TCMs could promote the proliferation of pancreatic islet β cells and induce other cells differentiation or transdifferentiation to islet β cells. Thereby, they may play a role in the treatment of diabetes. In this paper, we will review islet β cell protection with TCMs and the related mechanisms found in recent studies. An in-depth explanation of the role of TCM in islet β cell protection can provide a theoretical basis and research ideas for the development of TCM-based diabetes treatment drugs.
Collapse
|
18
|
Zhao W, Yuan Y, Zhao H, Han Y, Chen X. Aqueous extract of Salvia miltiorrhiza Bunge-Radix Puerariae herb pair ameliorates diabetic vascular injury by inhibiting oxidative stress in streptozotocin-induced diabetic rats. Food Chem Toxicol 2019; 129:97-107. [DOI: 10.1016/j.fct.2019.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 12/31/2022]
|
19
|
Chen X, Yu J, Shi J. Management of Diabetes Mellitus with Puerarin, a Natural Isoflavone FromPueraria lobata. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 46:1771-1789. [DOI: 10.1142/s0192415x18500891] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus (DM) has become one of the most challenging public health problems globally. The increasing prevalence and mortality rates call for more effective therapeutic agents, especially for DM complications. Traditional herbs have a long clinical application history for DM treatment. Puerarin is a natural isoflavone from Pueraria lobata (Wild.) Ohwi which has been consumed both as a functional food and herb in Eastern Asia countries. Documented data has shown that puerarin has cardio-protective, neuroprotective, anti-oxidative, anti-inflammatory and many other effects. In this review, we will summarize the beneficial effects and underlying mechanisms of puerarin on DM and complications. Puerarin may directly benefit DM by decreasing blood glucose levels, improving insulin resistance, protecting islets, inhibiting inflammation, decreasing oxidative stress and inhibiting Maillard reaction and advanced glycation end products (AGEs) formation. Furthermore, puerarin may also benefit DM indirectly by retarding and improving a series of DM complications, such as cardiovascular complications, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, etc. However, comprehensive studies of its effect and mechanisms are needed. In addition, its efficacy is relatively low, which is partially due to its pharmacokinetics profiles. Though puerarin shows low toxicity to experimental animals, its safety on human remains to be clarified. Collectively, we suggest that puerarin might be a potential adjuvant agent for the treatment of DM and DM complications in future.
Collapse
Affiliation(s)
- Xiuping Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, P. R. China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, P. R. China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
20
|
Thymoquinone Attenuates Cardiomyopathy in Streptozotocin-Treated Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7845681. [PMID: 30510626 PMCID: PMC6232805 DOI: 10.1155/2018/7845681] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
Diabetic cardiomyopathy is a diabetic complication due to oxidative stress injuries. This study examined the protecting influence of thymoquinone (TQ) on diabetes-caused cardiac complications. The intracellular means by which TQ works against diabetes-caused cardiac myopathy in rats is not completely understood. In this study, Wistar male rats (n = 60) were assigned into four groups: control, diabetic (diabetes induced by IP infusion of streptozotocin, 65 mg/kg), diabetic + TQ (diabetic rats given TQ (50 mg/kg) administered once per day by stomach gavage), and TQ (50 mg/kg) for 12 weeks. TQ supplementation appreciably recovered the cardiac parameters alongside significant declines in plasma nitric oxide concentrations and total superoxide dismutase (T.SOD) activities. Importantly, TQ downgraded expression of cardiac-inducible nitric oxide synthase in addition to significantly upregulating vascular endothelial growth factor and erythropoietin genes and nuclear factor-erythroid-2-related factor 2 (Nrf2) protein. TQ normalized plasma triacylglycerol and low-density lipoprotein-cholesterol and significantly improved the high-density lipoprotein-cholesterol levels. Additionally, TQ administration improved the antioxidant ability of cardiac tissue via significantly increased cardiac T.SOD and decreased cardiac malondialdehyde levels. Oral supplementation with TQ prevented diabetic-induced cardiomyopathy via its inhibitory effect on the E-selectin level, C-reactive protein, and interleukin-6. The TQ protecting effect on the heart tissue was shown by normalization of the plasma cardiac markers troponin I and creatine kinase. This experiment shows the aptitude of TQ to protect cardiac muscles against diabetic oxidative stress, mainly through upregulation of Nrf2, which defeated oxidative damage by improvement of the antioxidant power of cardiac muscle that consequently protected the cardiac muscles and alleviated the inflammatory process.
Collapse
|
21
|
Zhou BG, Zhao HM, Lu XY, Zhou W, Liu FC, Liu XK, Liu DY. Effect of Puerarin Regulated mTOR Signaling Pathway in Experimental Liver Injury. Front Pharmacol 2018; 9:1165. [PMID: 30405406 PMCID: PMC6206176 DOI: 10.3389/fphar.2018.01165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 12/29/2022] Open
Abstract
It is known that excessive hepatocellular apoptosis is a typical characteristic of hepatic disease, and is regulated by the mammalian target of rapamycin (mTOR) signaling pathway. As the main active component of Kudzu (Pueraria lobata) roots, which is frequently used to treat hepatic diseases, Puerarin (Pue) has been reported to alleviate and protect against hepatic injury. However, it is unclear whether Pue can inhibit mTOR signaling to prevent excessive apoptosis in the treatment of hepatic diseases. In the present study, Pue effectively ameliorated pathological injury of the liver, decreased serum enzyme (ALT, AST, γ-GT, AKP, DBIL, and TBIL) levels, regulated the balance between pro-inflammatory (TNF-α, IL-1β, IL-4, IL-6, and TGF-β1) and anti-inflammatory cytokines (IL-10), restored the cell cycle and inhibited hepatocellular apoptosis and caspase-3 expression in rats with liver injury induced by 2-AAF/PH. Pue inhibited p-mTOR, p-AKT and Raptor activity, and increased Rictor expression in the liver tissues of rats with experimental liver injury. These results indicated that Pue effectively regulated the activation of mTOR signaling pathway in the therapeutic and prophylactic process of Pue on experimental liver injury.
Collapse
Affiliation(s)
- Bu-Gao Zhou
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Mei Zhao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiu-Yun Lu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wen Zhou
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Fu-Chun Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang, China
| |
Collapse
|
22
|
Puerarin Mitigates Diabetic Hepatic Steatosis and Fibrosis by Inhibiting TGF- β Signaling Pathway Activation in Type 2 Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4545321. [PMID: 30057680 PMCID: PMC6051041 DOI: 10.1155/2018/4545321] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/04/2018] [Accepted: 04/01/2018] [Indexed: 02/06/2023]
Abstract
Lipid metabolism disorder and inflammation are essential promoters in pathogenesis of liver injury in type 2 diabetes. Puerarin (PUR) has been reported to exert beneficial effects on many diabetic cardiovascular diseases and chemical-induced liver injuries, but its effects on diabetic liver injury and its mechanism are still unclear. The current study was designed to explore the therapeutic effect and mechanism of PUR on liver injury in a type 2 diabetic rat model induced by a high-fat diet combined with low-dose streptozotocin. The diabetic rats were treated with or without PUR (100 mg/kg/day) by gavaging for 8 weeks, and biochemical and histological changes in liver were examined. Results showed that treatment with PUR significantly attenuated hepatic steatosis by regulating blood glucose and ameliorating lipid metabolism disorder. Liver fibrosis was relieved by PUR treatment. PUR inhibited oxidative stress and inflammation which was associated with inactivation of NF-κB signaling, thereby blocking the upregulation of proinflammatory cytokines (IL-1β, TNF-α) and chemokine (MCP-1). This protection of PUR on diabetic liver injury is possibly related with inhibition on TGF-β/Smad signaling. In conclusion, the present study provides evidence that PUR attenuated type 2 diabetic liver injury by inhibiting NF-κB-driven liver inflammation and the TGF-β/Smad signaling pathway.
Collapse
|
23
|
Li L, Yin H, Zhao Y, Zhang X, Duan C, Liu J, Huang C, Liu S, Yang S, Li X. Protective role of puerarin on LPS/D-Gal induced acute liver injury via restoring autophagy. Am J Transl Res 2018; 10:957-965. [PMID: 29636885 PMCID: PMC5883136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Acute liver injury is a destructive liver disorder resulting from overwhelming liver inflammation, oxidative stress and hepatocyte death. Puerarin is a natural flavonoid compound isolated from the traditional Chinese herb radix puerariae. This study investigated the protective effects of puerarin against lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced liver injury and the potential mechanisms in mice. Mice were given an intraperitoneal administration of puerarin 200 mg/kg 2 h prior to LPS (50 μg/kg)/D-Gal (400 mg/kg) injection and were sacrificed 6 h post LPS/D-Gal treatment. The results showed that administration of puerarin substantially alleviated LPS/D-Gal-induced acute liver injury in mice by increased survival rates, improved liver histopathology, reduced plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, alleviated production of pro-inflammatory cytokines, and suppressed hepatocyte apoptosis. Moreover, puerarin pretreatment activated autophagy by increased the ratio of LC3B-II/I and the protein levels of Beclin-1, decreased the levels of p62 protein expression. Taken together, these findings demonstrated that puerarin could prevent the LPS/D-Gal-induced liver injury in mice, and its mechanisms might be associated with the increments of autophagy and suppression of apoptosis.
Collapse
Affiliation(s)
- Long Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen UniversityXiamen 361003, China
- Institute of Drug Discovery Technology, Ningbo UniversityNingbo 315211, China
- Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| | - Hongyan Yin
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen UniversityXiamen 361003, China
| | - Yan Zhao
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen UniversityXiamen 361003, China
| | - Xiaofang Zhang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen UniversityXiamen 361003, China
| | - Chaoli Duan
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen UniversityXiamen 361003, China
| | - Jing Liu
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen UniversityXiamen 361003, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen UniversityXiamen 361003, China
| | - Suhuan Liu
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen UniversityXiamen 361003, China
| | - Shuyu Yang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen UniversityXiamen 361003, China
| | - Xuejun Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen UniversityXiamen 361003, China
| |
Collapse
|
24
|
Guo BQ, Xu JB, Xiao M, Ding M, Duan LJ. Puerarin reduces ischemia/reperfusion-induced myocardial injury in diabetic rats via upregulation of vascular endothelial growth factor A/angiotensin-1 and suppression of apoptosis. Mol Med Rep 2018; 17:7421-7427. [PMID: 29568939 DOI: 10.3892/mmr.2018.8754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/16/2017] [Indexed: 11/05/2022] Open
Abstract
Puerarin is an active ingredient of pueraria, which has been developed for puerarin injections, used in the treatment of cardiovascular diseases including arrhythmia, myocardial ischemia and hypertension. However, the molecular mechanisms of puerarin on ischemia/reperfusion (I/R)‑induced myocardial apoptosis in diabetic rats are not fully understood. The present study aimed to investigate whether puerarin can attenuate I/R‑induced myocardial apoptosis in diabetic rats, and to investigate the underlying mechanism. A hemodynamic analyzing system was employed to analyze the left ventricular developed pressure (LVDP), the left ventricular end‑systolic interior dimension (LVIDs) and the left ventricular end diastolic interior dimension (LVIDd). ELISA kits were used to analyze malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor‑α (TNF‑α) and interleukin (IL)‑6 levels, NO production and caspase‑3 activity. Nuclear factor (NF)‑κB, ascular endothelial growth factor A (VEGFA), angiotensin (Ang)‑I, phosphorylated (p)‑endothelial nitric oxide synthase protein expression was analyzed using western blot analysis. Puerarin significantly reduced the myocardial infarct area, and increased left ventricular developed pressure in diabetic rats with myocardial I/R. Oxidative stress, inflammation and nuclear factor‑κB protein expression were significantly reduced by puerarin. Furthermore, puerarin activated the protein expression levels of VEGFA and Ang‑I, and increased nitric oxide production, phosphorylated‑endothelial nitric oxide synthase protein expression and caspase‑3 activity. These results demonstrated that the myocardial protective effect of puerarin serves to reduce myocardial I/R injury, via upregulation of VEGFA/Ang‑1 and suppression of apoptosis, in diabetic rats with myocardial I/R.
Collapse
Affiliation(s)
- Bao-Qiang Guo
- Department of Endocrinology, The Second People's Hospital of Liaocheng, Linqing, Shandong 252601, P.R. China
| | - Jing-Bo Xu
- Department of Endocrinology, Jiamusi Central Hospital, Jiamusi, Heilongjiang 154002, P.R. China
| | - Ming Xiao
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Min Ding
- Department of Podiatry, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, Hebei 300070, P.R. China
| | - Li-Jun Duan
- Department of Endocrinology, Tianjin First Central Hospital, Tianjin, Hebei 300192, P.R. China
| |
Collapse
|
25
|
Liu B, Zhao C, Li H, Chen X, Ding Y, Xu S. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun 2018; 497:233-240. [PMID: 29427658 DOI: 10.1016/j.bbrc.2018.02.061] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 01/18/2023]
Abstract
Heart failure (HF) is the end stage of cardiovascular disease and is characterized by the loss of myocytes caused by cell death. Puerarin has been found to improve HF clinically, and animal study findings have confirmed its anti-cell-death properties. However, the underlying mechanisms remain unclear, especially with respect to the impact on ferroptosis, a newly defined mechanism of iron-dependent non-apoptotic cell death in HF. Here, ferroptosis-like cell death was observed in erastin- or isoprenaline (ISO)-treated H9c2 myocytes in vitro and in rats with aortic banding inducing HF, characterized by reduced cell viability with increased lipid peroxidation and labile iron pool. Interestingly, the increased iron overload and lipid peroxidation observed in either rats with HF or H9c2 cells incubated with ISO were significantly blocked by puerarin administration. These results provide compelling evidence that puerarin plays a role in inhibiting myocyte loss during HF, partly through ferroptosis mitigation, suggesting a new mechanism of puerarin as a potential therapy for HF.
Collapse
Affiliation(s)
- Bei Liu
- Department of Cardiology, Shanghai General Hospital, China
| | - Chunxia Zhao
- Department of Cardiology, Shanghai General Hospital, China
| | - Hongkun Li
- Department of Cardiology, Heji Hospital of Changzhi Medical College, China
| | - Xiaoqian Chen
- Department of Cardiology, Shanghai General Hospital, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, China
| | - Sudan Xu
- Department of Cardiology, Shanghai General Hospital, China.
| |
Collapse
|
26
|
Liao Y, Gou L, Chen L, Zhong X, Zhang D, Zhu H, Lu X, Zeng T, Deng X, Li Y. NADPH oxidase 4 and endothelial nitric oxide synthase contribute to endothelial dysfunction mediated by histone methylations in metabolic memory. Free Radic Biol Med 2018; 115:383-394. [PMID: 29269309 DOI: 10.1016/j.freeradbiomed.2017.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/17/2023]
Abstract
"Metabolic memory" is identified as a phenomenon that transient hyperglycemia can be remembered by vasculature for quite a long term even after reestablishment of normoglycemia. NADPH oxidases (Noxs) and endothelial nitric oxide synthase (eNOS) are important enzymatic sources of reactive oxygen species (ROS) in diabetic vasculature. The aim of this study is to explore the roles of epigenetics and ROS derived from Noxs and eNOS in the metabolic memory. In this study, we demonstrated that vascular ROS was continuously activated in endothelium induced by transient high glucose, as well as sustained vascular endothelial dysfunction. The Nox4 and uncoupled eNOS are the major sources of ROS, while inhibition of Nox4 and eNOS significantly attenuated oxidative stress and almost recovered the endothelial function in metabolic memory. Furthermore, the aberrant histone methylation (H3K4me1, H3K9me2, and H3K9me3) at promoters of Nox4 and eNOS are the main causes for the persistent up-regulation of these two genes. Modifying the histone methylation could reduce the expression levels of Nox4 and eNOS, thus obviously attenuating endothelial dysfunction. These results indicate that histone methylation of Nox4 and eNOS play a key role in metabolic memory and may be the potential intervention targets for metabolic memory.
Collapse
Affiliation(s)
- Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Luoning Gou
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xueyu Zhong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dongxue Zhang
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Hangang Zhu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodan Lu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiuling Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuming Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
27
|
Tan C, Wang A, Liu C, Li Y, Shi Y, Zhou MS. Puerarin Improves Vascular Insulin Resistance and Cardiovascular Remodeling in Salt-Sensitive Hypertension. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1169-1184. [PMID: 28830209 DOI: 10.1142/s0192415x17500641] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Puerarin is an isoflavonoid isolated from the Chinese herb, Kudzu roots (also known as Gegen), which has been widely used for the treatment of hypertensive diseases and diabetic mellitus in traditional Chinese medicine. Dahl salt-sensitive (DS) rat is a genetic model of salt-sensitive hypertension with cardiovascular injury and vascular insulin resistance. Here, we investigated whether puerarin improved vascular insulin resistance and attenuated cardiac and aortic remodeling in salt-sensitive hypertension. DS rats were given a normal (NS) or high salt diet (HS) for five weeks. An additional group of DS rats was pretreated with puerarin and NS for 10 days, then switched to HS plus puerarin for five weeks. HS for five weeks increased systolic blood pressure (SBP), cardiac hypertrophy and fibrosis, and aortic hypertrophy with increased the expression of phosphor-ERK1/2 in the aorta and heart; puerarin attenuated cardiac and aortic hypertrophy, cardiac fibrosis and phosphor-ERK1/2 with a mild reduction in SBP. Hypertensive rats also manifested impairment of acetylcholine- and insulin-mediated vasorelaxation and insulin-mediated Akt and eNOS phosphorylation associated with the activation of NF[Formula: see text]B/TNF[Formula: see text]/JNK pathway. Puerarin improved acetylcholine- and insulin-mediated vasorelaxation and insulin-stimulated Akt/NO signaling with the inhibition of the NF[Formula: see text]B inflammatory pathway. Our results demonstrated that in salt-sensitive hypertension, puerarin improved vascular insulin action with cardiovascular beneficial effects. Our results found that the underlying mechanisms may involve its inhibition of NF[Formula: see text]B/JNK and ERK1/2 pathway. These results suggest that puerarin could be used as a new antihypertensive agent to expand our armamentarium for the prevention and treatment of end-organ damage in individuals with hypertension and metabolic diseases.
Collapse
Affiliation(s)
- Chunxiang Tan
- Department of Physiology, Jinzhou Medical University, Jinzhou 121001, P. R. China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou 121001, P. R. China
| | - Chan Liu
- Department of Endocrinology, 1st Affiliated Hospital, Jinzhou Medical University, Jinzhou 121001, P. R. China
| | - Yao Li
- Department of Physiology, Jinzhou Medical University, Jinzhou 121001, P. R. China
| | - Yuepin Shi
- Department of Chinese Medicine, 1st Affiliated Hospital, Jinzhou Medical University, Jinzhou 121001, P. R. China
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical University, Shenyang 110034, P. R. China
| |
Collapse
|
28
|
Puerarin Protects against Cardiac Fibrosis Associated with the Inhibition of TGF- β1/Smad2-Mediated Endothelial-to-Mesenchymal Transition. PPAR Res 2017. [PMID: 28638404 PMCID: PMC5468594 DOI: 10.1155/2017/2647129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Puerarin is a kind of flavonoids and is extracted from Chinese herb Kudzu root. Puerarin is widely used as an adjuvant therapy in Chinese clinics. But little is known about its effects on regulating cardiac fibrosis. Methods Mice were subjected to transverse aorta constriction (TAC) for 8 weeks; meanwhile puerarin was given 1 week after TAC. Cardiac fibrosis was assessed by pathological staining. The mRNA and protein changes of CD31 and vimentin in both animal and human umbilical vein endothelial cells (HUVECs) models were detected. Immunofluorescence colocalization of CD31 and vimentin and scratch test were carried out to examine TGF-β1-induced changes in HUVECs. The agonist and antagonist of peroxisome proliferator-activated receptor-γ (PPAR-γ) were used to explore the underlying mechanism. Results Puerarin mitigated TAC-induced cardiac fibrosis, accompanied with suppressed endothelial-to-mesenchymal transition (EndMT). The consistent results were achieved in HUVECs model. TGF-β1/Smad2 signaling pathway was blunted and PPAR-γ expression was upregulated in puerarin-treated mice and HUVECs. Pioglitazone could reproduce the protective effect in HUVECs, while GW9662 reversed this effect imposed by puerarin. Conclusion Puerarin protected against TAC-induced cardiac fibrosis, and this protective effect may be attributed to the upregulation of PPAR-γ and the inhibition of TGF-β1/Smad2-mediated EndMT.
Collapse
|
29
|
Xie Q, Zhong J, Li J. Comment on "Puerarin Improves Diabetic Aorta Injury by Inhibiting NADPH Oxidase-Derived Oxidative Stress in STZ-Induced Diabetic Rats". J Diabetes Res 2016; 2016:7302620. [PMID: 27641696 PMCID: PMC5011519 DOI: 10.1155/2016/7302620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/23/2016] [Indexed: 11/18/2022] Open
Affiliation(s)
- Qiang Xie
- PET/CT Center, Anhui Provincial Hospital, Hefei 230001, China
| | - Jian Zhong
- Anhui Joyfar Pharmaceutical Co., Ltd., Kexuedadao Road, Hefei 230000, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China
- Institute for Liver Diseases, Anhui Medical University, Hefei 230032, China
- Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
- *Jun Li:
| |
Collapse
|