1
|
Songkoomkrong S, Nonkhwao S, Duangprom S, Saetan J, Manochantr S, Sobhon P, Kornthong N, Amonruttanapun P. Investigating the potential effect of Holothuria scabra extract on osteogenic differentiation in preosteoblast MC3T3-E1 cells. Sci Rep 2024; 14:26415. [PMID: 39488645 PMCID: PMC11531581 DOI: 10.1038/s41598-024-77850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
The present medical treatments of osteoporosis come with adverse effects. It leads to the exploration of natural products as safer alternative medical prevention and treatment. The sea cucumber, Holothuria scabra, has commercial significance in Asian countries with rising awareness of its properties as a functional food. This study aims to investigate the effects of the inner wall (IW) extract isolated from H. scabra on extracellular matrix maturation, mineralization, and osteogenic signaling pathways on MC3T3-E1 preosteoblasts. The IW showed the expression of several growth factors. Molecular docking revealed that H. scabra BMP2/4 binds specifically to mammal BMP2 type I receptor (BMPR-IA). After osteogenic induction, the viability of cells treated with IW extract was assessed and designated with treatment of 0.1, 0.5, 1, and 5 µg/ml of IW extract for 21 consecutive days. On days 14 and 21, treatments with IW extract at 1 and 5 µg/ml showed increased alkaline phosphatase (ALP) activity and calcium deposit levels in a dose-dependent manner compared to the control group. Moreover, the transcriptomic analysis of total RNA of cells treated with 5 µg/ml of IW extract exhibited upregulation of TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways at days 14. This study suggests that IW extract from H. scabra exhibits the potential to enhance osteogenic differentiation and mineralization of MC3T3-E1 preosteoblasts through TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways. Further investigation into the molecular mechanisms underlying the effect of IW extract on osteogenesis is crucial to support its application as a naturally derived supplement for prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| | - Siriporn Nonkhwao
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
- Center of Excellence in Stem Cell Research and Innovation, Thammasat University, Pathumthani, 12121, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Prateep Amonruttanapun
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand.
| |
Collapse
|
2
|
Bose D, Famurewa AC, Akash A, Othman EM. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. J Xenobiot 2024; 14:1109-1129. [PMID: 39189178 PMCID: PMC11348124 DOI: 10.3390/jox14030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Within the domain of conventional oncochemotherapeutics, anticancer chemotherapy (AC) has emerged as a potent strategy for the treatment of cancers. AC is the mainstay strategy for solid and non-solid cancer treatment. Its mechanistic action targets the blockage of DNA transcription and the dysregulation of cell cycle machinery in cancer cells, leading to the activation of death pathways. However, the attendant side effect of toxicity inflicted by AC on healthy tissues presents a formidable challenge. The crucial culprit in the AC side effect of toxicity is unknown, although oxidative stress, mitochondrial impairment, inflammatory cascades, autophagy dysregulation, apoptosis, and certain aberrant signaling have been implicated. Honey is a natural bee product with significant health benefits and pharmacological properties. Interestingly, the literature reports that honey may proffer a protection mechanism for delicate tissue/organs against the side effect of toxicity from AC. Thus, this review delves into the prospective role of honey as an alleviator of the AC side effect of toxicity; it provides an elucidation of the mechanisms of AC toxicity and honey's molecular mechanisms of mitigation. The review endeavors to unravel the specific molecular cascades by which honey orchestrates its mitigating effects, with the overarching objective of refining its application as an adjuvant natural product. Honey supplementation prevents AC toxicity via the inhibition of oxidative stress, NF-κB-mediated inflammation, and caspase-dependent apoptosis cascades. Although there is a need for increased mechanistic studies, honey is a natural product that could mitigate the various toxicities induced by AC.
Collapse
Affiliation(s)
- Debalina Bose
- P.K. Sinha Centre for Bioenergy and Renewables, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, P.M.B. 1010, Abakaliki 482131, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Aman Akash
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman M. Othman
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Cancer Therapy Research Center (CTRC), Department of Biochemistry-I, Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany
| |
Collapse
|
3
|
Faienza MF, Giardinelli S, Annicchiarico A, Chiarito M, Barile B, Corbo F, Brunetti G. Nutraceuticals and Functional Foods: A Comprehensive Review of Their Role in Bone Health. Int J Mol Sci 2024; 25:5873. [PMID: 38892062 PMCID: PMC11172758 DOI: 10.3390/ijms25115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Bone health is the result of a tightly regulated balance between bone modeling and bone remodeling, and alterations of these processes have been observed in several diseases both in adult and pediatric populations. The imbalance in bone remodeling can ultimately lead to osteoporosis, which is most often associated with aging, but contributing factors can already act during the developmental age, when over a third of bone mass is accumulated. The maintenance of an adequate bone mass is influenced by genetic and environmental factors, such as physical activity and diet, and particularly by an adequate intake of calcium and vitamin D. In addition, it has been claimed that the integration of specific nutraceuticals such as resveratrol, anthocyanins, isoflavones, lycopene, curcumin, lutein, and β-carotene and the intake of bioactive compounds from the diet such as honey, tea, dried plums, blueberry, and olive oil can be efficient strategies for bone loss prevention. Nutraceuticals and functional foods are largely used to provide medical or health benefits, but there is an urge to determine which products have adequate clinical evidence and a strong safety profile. The aim of this review is to explore the scientific and clinical evidence of the positive role of nutraceuticals and functional food in bone health, focusing both on molecular mechanisms and on real-world studies.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, 70125 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| |
Collapse
|
4
|
Mititelu M, Udeanu DI, Docea AO, Tsatsakis A, Calina D, Arsene AL, Nedelescu M, Neacsu SM, Bruno Ștefan Velescu, Ghica M. New method for risk assessment in environmental health: The paradigm of heavy metals in honey. ENVIRONMENTAL RESEARCH 2023; 236:115194. [PMID: 36587723 DOI: 10.1016/j.envres.2022.115194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The release of heavy metals into the natural environment creates problems due to their persistence. They can accumulate in the food chain presenting a dangerous sign for ecosystems and human health. The metals in honey could be of agrochemical or industrial origin. Regular consumption of honey and bee products contaminated with various pollutants in high concentrations can cause serious health problems due accumulation of toxic substances in the body. In the current study, we aimed to determine the concentrations of chromium, cadmium, zinc, copper, lead and nickel in four types of honey (linden, acacia, rapeseed and polyfloral honey) and soil collected from three regions with different degrees of pollution. For the risk characterization, we used a new methodology that calculated the corrected estimated daily intake and the source hazard quotient for each metal and the adversity-specific hazard index. There was a strong influence of the degree of environmental pollution on the level of contaminants in the honey samples. In the case of a single chemical assessment, an HQ above 10 was obtained for Cd in linden, rapeseed and polyfloral honey from area 1 and an HQ above 1 was obtained for Cd in the other honey samples from the 3 areas, for Cu in all honey samples from all the 3 areas, for Pb in linden, rapeseed and polyfloral honey from area 1 and for Cr in linden honey for area 2. HIA calculated as a sum of all HQS of heavy metals in food reveals an increase and moderate risk for nephrotoxicity, bone demineralisation, cardiotoxicity, developmental toxicity, small decrease in body weight or body weight gain after consumption of honey impurified with heavy metals. A strict monitorization of heavy metals in honey samples from farmers should be done in order to protect the consumers.
Collapse
Affiliation(s)
- Magdalena Mititelu
- Department of Clinical Laboratory and Food Hygiene Department, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Denisa Ioana Udeanu
- Department of Clinical Laboratory and Food Hygiene Department, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece.
| | - Daniela Calina
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Andreea Letitia Arsene
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania.
| | - Mirela Nedelescu
- Department of Hygiene and Environmental Health, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 020956, Bucharest, Romania; Department of Food Hygiene and Nutrition, National Institute of Public Health, National Centre for Envi-ronmental Hazards Monitoring, 1-3 Dr. Leonte Street, 020956, Bucharest, Romania.
| | | | - Bruno Ștefan Velescu
- Department of Pharmacology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bu-charest, Romania.
| | - Manuela Ghica
- Department of Mathematics and Biostatistics, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
5
|
Girolametti F, Illuminati S, Annibaldi A, Ajdini B, Fanelli M, Truzzi C. Mercury in honey from the Marche region (central Italy). Risk assessment from human consumption and its use as bioindicator of environmental pollution. Heliyon 2023; 9:e20502. [PMID: 37790959 PMCID: PMC10543224 DOI: 10.1016/j.heliyon.2023.e20502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Honey is a natural product made by honeybees (Apis mellifera) from nectar or honeydew. It is a very popular and appreciated product all over the world as it represents a rapidly available energy source and exerts several beneficial properties for humans. However, it has been demonstrated that honey can be contaminated by potentially toxic elements (PTEs) of natural or anthropogenic origin. Among them, mercury (Hg) represents one of the most dangerous for its toxicity and its capacity to biomagnify along the trophic web. In the present study, 100 honey samples from the Marche Region (Central Italy) produced in the year 2021, were analyzed by thermal decomposition amalgamation atomic absorption spectrometry to determine the Hg content. The overall mean concentration was 0.2 ± 0.2 μg kg-1. The results showed that no statistically significant differences were found in Hg content among honey from different pollen origin, but honeydew had a significantly higher Hg content with respect to all other honey samples (0.6 ± 0.3 μg kg-1). The Hg content in honey depends mainly on local pollution, while geographical origin did not play a key role. Furthermore, considering the regulatory limits and provisional tolerable weekly intake (PTWIs) identified by FAO/WHO, the Hg Hazard Quotient (HQ) measurement revealed that this product is safe for human consumption.
Collapse
Affiliation(s)
- Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Behixhe Ajdini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Matteo Fanelli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
6
|
Medvecky L, Giretova M, Stulajterova R, Sopcak T, Jevinova P, Luptakova L. Novel Biocement/Honey Composites for Bone Regenerative Medicine. J Funct Biomater 2023; 14:457. [PMID: 37754871 PMCID: PMC10649667 DOI: 10.3390/jfb14090457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
New biocements based on a powdered mixture of calcium phosphate/monetite (TTCPM) modified with the addition of honey were prepared by mixing the powder and honey liquid components at a non-cytotoxic concentration of honey (up to 10% (w/v)). The setting process of the cements was not affected by the addition of honey, and the setting time of ~4 min corresponded to the fast setting calcium phosphate cements (CPCs). The cement powder mixture was completely transformed into calcium-deficient nanohydroxyapatite after 24 h of hardening in a simulated body fluid, and the columnar growth of long, needle-like nanohydroxyapatite particles around the original calcium phosphate particles was observed in the honey cements. The compressive strength of the honey cements was reduced with the content of honey in the cement. Comparable antibacterial activities were found for the cements with honey solutions on Escherichia coli, but very low antibacterial activities were found for Staphylococcus aureus for all the cements. The enhanced antioxidant inhibitory activity of the composite extracts was verified. In vitro cytotoxicity testing verified the non-cytotoxic nature of the honey cement extracts, and the addition of honey promoted alkaline phosphatase activity, calcium deposit production, and the upregulation of osteogenic genes (osteopontin, osteocalcin, and osteonectin) by mesenchymal stem cells, demonstrating the positive synergistic effect of honey and CPCs on the bioactivity of cements that could be promising therapeutic candidates for the repair of bone defects.
Collapse
Affiliation(s)
- Lubomir Medvecky
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (T.S.)
| | - Maria Giretova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (T.S.)
| | - Radoslava Stulajterova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (T.S.)
| | - Tibor Sopcak
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (T.S.)
| | - Pavlina Jevinova
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| |
Collapse
|
7
|
Martiniakova M, Kovacova V, Mondockova V, Zemanova N, Babikova M, Biro R, Ciernikova S, Omelka R. Honey: A Promising Therapeutic Supplement for the Prevention and Management of Osteoporosis and Breast Cancer. Antioxidants (Basel) 2023; 12:567. [PMID: 36978815 PMCID: PMC10045300 DOI: 10.3390/antiox12030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Osteoporosis and breast cancer are serious diseases that have become a significant socioeconomic burden. There are biochemical associations between the two disorders in terms of the amended function of estrogen, receptor activator of nuclear factor kappa beta ligand, oxidative stress, inflammation, and lipid accumulation. Honey as a functional food with high antioxidant and anti-inflammatory properties can contribute to the prevention of various diseases. Its health benefits are mainly related to the content of polyphenols. This review aims to summarize the current knowledge from in vitro, animal, and human studies on the use of honey as a potential therapeutic agent for osteoporosis and breast cancer. Preclinical studies have revealed a beneficial impact of honey on both bone health (microstructure, strength, oxidative stress) and breast tissue health (breast cancer cell proliferation and apoptosis, tumor growth rate, and volume). The limited number of clinical trials, especially in osteoporosis, indicates the need for further research to evaluate the potential benefits of honey in the treatment. Clinical studies related to breast cancer have revealed that honey is effective in increasing blood cell counts, interleukin-3 levels, and quality of life. In summary, honey may serve as a prospective therapeutic supplement for bone and breast tissue health.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| |
Collapse
|
8
|
Zulkifli NA, Hassan Z, Mustafa MZ, Azman WNW, Hadie SNH, Ghani N, Mat Zin AA. The potential neuroprotective effects of stingless bee honey. Front Aging Neurosci 2023; 14:1048028. [PMID: 36846103 PMCID: PMC9945235 DOI: 10.3389/fnagi.2022.1048028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2022] [Accepted: 12/29/2022] [Indexed: 02/11/2023] Open
Abstract
Tropical Meliponini bees produce stingless bee honey (SBH). Studies have shown beneficial properties, including antibacterial, bacteriostatic, anti-inflammatory, neurotherapeutic, neuroprotective, wound, and sunburn healing capabilities. High phenolic acid and flavonoid concentrations offer SBH its benefits. SBH can include flavonoids, phenolic acids, ascorbic acid, tocopherol, organic acids, amino acids, and protein, depending on its botanical and geographic origins. Ursolic acid, p-coumaric acid, and gallic acid may diminish apoptotic signals in neuronal cells, such as nuclear morphological alterations and DNA fragmentation. Antioxidant activity minimizes reactive oxygen species (ROS) formation and lowers oxidative stress, inhibiting inflammation by decreasing enzymes generated during inflammation. Flavonoids in honey reduce neuroinflammation by decreasing proinflammatory cytokine and free radical production. Phytochemical components in honey, such as luteolin and phenylalanine, may aid neurological problems. A dietary amino acid, phenylalanine, may improve memory by functioning on brain-derived neurotrophic factor (BDNF) pathways. Neurotrophin BDNF binds to its major receptor, TrkB, and stimulates downstream signaling cascades, which are crucial for neurogenesis and synaptic plasticity. Through BDNF, SBH can stimulate synaptic plasticity and synaptogenesis, promoting learning and memory. Moreover, BDNF contributes to the adult brain's lasting structural and functional changes during limbic epileptogenesis by acting through the cognate receptor tyrosine receptor kinase B (TrkB). Given the higher antioxidants activity of SBH than the Apis sp. honey, it may be more therapeutically helpful. There is minimal research on SBH's neuroprotective effects, and the related pathways contribute to it is unclear. More research is needed to elucidate the underlying molecular process of SBH on BDNF/TrkB pathways in producing neuroprotective effects.
Collapse
Affiliation(s)
- Nurdarina Ausi Zulkifli
- Department of Pathology, School of Medical Sciences Universiti Sains Malaysia and Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Wan Norlina Wan Azman
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia and Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Siti Nurma Hanim Hadie
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nurhafizah Ghani
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Anani Aila Mat Zin
- Department of Pathology, School of Medical Sciences Universiti Sains Malaysia and Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
9
|
Abd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals (Basel) 2022; 15:1419. [PMID: 36422549 PMCID: PMC9696375 DOI: 10.3390/ph15111419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/01/2023] Open
Abstract
Honey and propolis have recently become the key target of attention for treating certain diseases and promoting overall health and well-being. A high content of flavonoids and phenolic acids found in both honey and propolis contributes to the antioxidant properties to scavenge free radicals. Honey and propolis also exhibited antibacterial effects where they act in two ways, namely the production of hydrogen peroxide (H2O2) and gluconic acids following the enzymatic activities of glucose oxidase, which exerts oxidative damage on the bacteria. Additionally, the anti-inflammatory effects of honey and propolis are mainly by reducing proinflammatory factors such as interleukins and tumor necrosis factor alpha (TNF-α). Their effects on pain were discovered through modulation at a peripheral nociceptive neuron or binding to an opioid receptor in the higher center. The aforementioned properties of honey have been reported to possess potential therapeutic topical application on the exterior parts of the eyes, particularly in treating conjunctivitis, keratitis, blepharitis, and corneal injury. In contrast, most of the medicinal values of propolis are beneficial in the internal ocular area, such as the retina, optic nerve, and uvea. This review aims to update the current discoveries of honey and propolis in treating various ocular diseases, including their antioxidant, anti-inflammatory, antibacterial, and anti-nociceptive properties. In conclusion, research has shown that propolis and honey have considerable therapeutic promise for treating various eye illnesses, although the present study designs are primarily animal and in vitro studies. Therefore, there is an urgent need to translate this finding into a clinical setting.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Siti Nur Farhana Mohammed
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Study on Masking the Bitterness of Chinese Medicine Decoction-Mate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3701288. [PMID: 36118083 PMCID: PMC9481366 DOI: 10.1155/2022/3701288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Background Traditional Chinese medicine decoction (TCMD) is an oral liquid made by decocting crude medicinal compounds with water. It has complex compositions and diverse odor and taste, most of which have an unacceptable level of bitterness which seriously affects patients' medication compliance. To solve this problem, a variety of taste-masking pathways and different types of taste-masking excipients were combined, using the application of coffee-mate to mask the bitterness of coffee as an existing example. Three composite taste-masking adjuvants were developed to improve the taste of TCMD, referred to as the Chinese Medicine Decoction-Mate (CMD-M). However, whether CMD-M has a good taste-masking effect and whether it affects the chemical compositions and pharmacological effects of the medicine remain unclear. Method The commonly used pediatric medicine Qingre Huazhi Decoction (QRHZD) and the personalized decoctions used in clinical practices were used as the masking research carriers. The taste-masking effect of CMD-M on QRHZD was evaluated by both healthy volunteers and an electronic tongue, and the personalized decoctions were evaluated by clinical subjects. The changes of chemical components of QRHZD before and after taste-masking were evaluated by HPLC. The changes in anti-inflammatory effects were evaluated by establishing mice as an acute inflammatory model. Results The taste-masking effect evaluation results showed that the bitterness of QRHZD was significantly reduced after adding CMD-M. There was no significant difference in the relative peak areas change rate and total peak areas ratio of common peaks of QRHZD before and after taste-masking (P > 0.05), shown by HPLC analysis. The inhibitory rates of QRHZD on ear swelling in mice before and after taste-masking also showed no significant difference (P > 0.05). Conclusions CMD-M can effectively mask the bitterness of decoctions while bringing no significant difference overall in chemical compositions and pharmacological effects before and after QRHZD masking.
Collapse
|
11
|
Kasiotis KM, Baira E, Iosifidou S, Bergele K, Manea-Karga E, Theologidis I, Barmpouni T, Tsipi D, Machera K. Characterization of Ikaria Heather Honey by Untargeted Ultrahigh-Performance Liquid Chromatography-High Resolution Mass Spectrometry Metabolomics and Melissopalynological Analysis. Front Chem 2022; 10:924881. [PMID: 35936100 PMCID: PMC9353074 DOI: 10.3389/fchem.2022.924881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Honey represents a valuable food commodity, known since ancient times for its delicate taste and health benefits due to its specific compositional characteristics, mainly the phenolic compound content. "Anama" honey is a monofloral honey produced from the nectar of Erica manipuliflora plant, a heather bush of the Greek island of Ikaria, one of the Mediterranean's longevity regions. "Anama" is characterized by a unique aroma and taste, with a growing demand for consumption and the potential to be included in the list of products with a protected designation of origin. The aim of this study was to determine the chemical and botanical profile of authentic Anama honey samples and find similarities and differences with honey samples of a different botanical origin from the same geographical area. Untargeted Ultrahigh-Performance Liquid Chromatography-Hybrid Quadrupole-Orbitrap High-Resolution Mass Spectrometry (UHPLC-HRMS) metabolomics study was conducted on authentic heather, pine, and thyme honey samples from Ikaria and neighboring islands. The Principal Component Analysis (PCA), Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA), and differential analysis were performed using the entire metabolic profile of the samples and allowed the identification of chemical markers for sample discrimination. Thirty-two characteristic secondary metabolites (cinnamic acids, phenolic acids, flavonoids, terpenes) and other bioactive phenolic compounds, some of them not previously reported in a heather honey (aucubin, catalpol, domesticoside, leonuriside A, picein among others), emerged as potential chemical indicators of Anama honey. Melissopalynological analysis was also carried out to decipher the botanical and geographical origin of Anama honey. The relative frequency of the pollen of dominant plants of the Ericaceae family and a multitude of nectariferous and nectarless plants contributing to the botanical profile of Anama was evaluated. The identification of the pollen sources enabled a potential correlation of differentially increased secondary metabolites and chemicals with their botanical origin. The physicochemical profile of Anama was also determined, including the parameters of pH, color, electrical conductivity, diastase, moisture, as well as sugars, supporting the high quality of this heather honey.
Collapse
Affiliation(s)
| | - Eirini Baira
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Styliani Iosifidou
- General Chemical State Laboratory, Independent Public Revenue Authority (A.A.D.E), Athens, Greece
| | - Kyriaki Bergele
- General Chemical State Laboratory, Independent Public Revenue Authority (A.A.D.E), Athens, Greece
| | - Electra Manea-Karga
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Ioannis Theologidis
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Theodora Barmpouni
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Despina Tsipi
- General Chemical State Laboratory, Independent Public Revenue Authority (A.A.D.E), Athens, Greece
| | - Kyriaki Machera
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| |
Collapse
|
12
|
A Review on the Enhancement of Calcium Phosphate Cement with Biological Materials in Bone Defect Healing. Polymers (Basel) 2021; 13:polym13183075. [PMID: 34577976 PMCID: PMC8472520 DOI: 10.3390/polym13183075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/28/2023] Open
Abstract
Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.
Collapse
|
13
|
Kim TK, Atigadda VR, Brzeminski P, Fabisiak A, Tang EKY, Tuckey RC, Reiter RJ, Slominski AT. Detection of Serotonin, Melatonin, and Their Metabolites in Honey. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1228-1235. [PMID: 35449872 PMCID: PMC9017714 DOI: 10.1021/acsfoodscitech.1c00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/03/2023]
Abstract
Melatonin and serotonin, products of tryptophan metabolism, are endogenous neurotransmitters and hormones. We have identified and quantified these metabolites in natural honey from Australia, USA, and Poland using a Xevo G2 XS qTof LC-MS. To help ensure correct product identification, some samples were prepurified by RP-HPLC based on the retention times of standards, prior to LC-MS. The concentrations of the metabolites of interest depended on the source of the honey. For Australian honey, levels for melatonin and 2-hydroxymelatonin were 0.91 and 0.68 ng/g, respectively. Melatonin was detected in one brand of US commercial honey at 0.48 ng/g, while a second brand contained serotonin at 88.2 ng/g. In Polish natural honey, 20.6 ng/g of serotonin and 40.8 ng/g of N-acetylserotonin (NAS) were detected, while in Polish commercial honey 25.9 ng/g of serotonin and 7.30 ng/g of NAS were present. We suggest that addictive and health-related properties of honey may be in part dependent on the presence of serotonin, melatonin, and their metabolites, and that these compounds may play a role in the colony activities of bees.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; VA Medical Center, Birmingham, Alabama 35294, United States
| | - Venkatram R Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Pawel Brzeminski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Adrian Fabisiak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas 77030, United States
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; VA Medical Center, Birmingham, Alabama 35294, United States
| |
Collapse
|
14
|
Martinez-Armenta C, Camacho-Rea MC, Martínez-Nava GA, Espinosa-Velázquez R, Pineda C, Gomez-Quiroz LE, López-Reyes A. Therapeutic Potential of Bioactive Compounds in Honey for Treating Osteoarthritis. Front Pharmacol 2021; 12:642836. [PMID: 33967778 PMCID: PMC8097136 DOI: 10.3389/fphar.2021.642836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of joint tissue homeostasis induces articular degenerative changes and musculoskeletal diseases such as osteoarthritis. This pathology represents the first cause of motor disability in individuals over 60 years of age, impacting their quality of life and the costs of health systems. Nowadays, pharmacological treatments for cartilage disease have failed to achieve full tissue regeneration, resulting in a functional loss of the joint; therefore, joint arthroplasty is the gold standard procedure to cure this pathology in severe cases of Osteoarthritis. A different treatment is the use of anti-inflammatory drugs which mitigate pain and inflammation in some degree, but without significant inhibition of disease progression. In this sense, new therapeutic alternatives based on natural compounds have been proposed to delay osteoarthritis progression, particularly those agents that regulate articular homeostasis. Preclinical studies have shown a therapeutic application of honey and its bioactive compounds, ranging from treating wounds, coughs, skin infections, and are also used as a biological stimulant by exerting antioxidant and anti-inflammatory properties. In this article, we reviewed the current medicinal applications of honey with particular emphasis on its use regulating articular homeostasis by inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Carlos Martinez-Armenta
- Posgrado en Biología Experimental, Dirección de Ciencias Biológicas y de La Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, Mexico
| | - María Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | | | - Carlos Pineda
- División de Enfermedades Musculo-esqueléticas y Reumáticas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alberto López-Reyes
- Facultad de Ciencias de La Salud, Universidad Anáhuac México Sur, Ciudad de México, Mexico.,Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| |
Collapse
|
15
|
Mohd Ramli ES, Sukalingam K, Kamaruzzaman MA, Soelaiman IN, Pang KL, Chin KY. Direct and Indirect Effect of Honey as a Functional Food Against Metabolic Syndrome and Its Skeletal Complications. Diabetes Metab Syndr Obes 2021; 14:241-256. [PMID: 33500644 PMCID: PMC7822078 DOI: 10.2147/dmso.s291828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) refers to the simultaneous presence of hypertension, hyperglycemia, dyslipidemia and/or visceral obesity, which predisposes a person to cardiovascular diseases and diabetes. Evidence suggesting the presence of direct and indirect associations between MetS and osteoporosis is growing. Many studies have reported the beneficial effects of polyphenols in alleviating MetS in in vivo and in vitro models through their antioxidant and anti-inflammation actions. This review aims to summarize the effects of honey (based on unifloral and multi-floral nectar sources) on bone metabolism and each component of MetS. A literature search was performed using the PubMed and Scopus databases using specific search strings. Original studies related to components of MetS and bone, and the effects of honey on components of MetS and bone were included. Honey polyphenols could act synergistically in alleviating MetS by preventing oxidative damage and inflammation. Honey intake is shown to reduce blood glucose levels and prevent excessive weight gain. It also improves lipid metabolism by reducing total cholesterol, triglycerides and low-density lipoprotein, as well as increasing high-density lipoprotein. Honey can prevent bone loss by reducing the adverse effects of MetS on bone homeostasis, apart from its direct action on the skeletal system. In conclusion, honey supplementation could be integrated into the management of MetS and MetS-induced bone loss as a preventive and adjunct therapeutic agent.
Collapse
Affiliation(s)
- Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kumeshini Sukalingam
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|