1
|
|
Sharifi-Rad J, Quispe C, Turgumbayeva A, Mertdinç Z, Tütüncü S, Aydar EF, Özçelik B, Anna SW, Mariola S, Koziróg A, Otlewska A, Antolak H, Sen S, Acharya K, Lapava N, Emamzadeh-Yazdi S, Martorell M, Kumar M, Varoni EM, Iriti M, Calina D. Santalum Genus: phytochemical constituents, biological activities and health promoting-effects. Z NATURFORSCH C 2023;78:9-25. [PMID: 36069757 DOI: 10.1515/znc-2022-0076] [Cited by in Crossref: 5] [Cited by in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text]
Abstract
Santalum genus belongs to the family of Santalaceae, widespread in India, Australia, Hawaii, Sri Lanka, and Indonesia, and valued as traditional medicine, rituals and modern bioactivities. Sandalwood is reported to possess a plethora of bioactive compounds such as essential oil and its components (α-santalol and β-santalol), phenolic compounds and fatty acids. These bioactives play important role in contributing towards biological activities and health-promoting effects in humans. Pre-clinical and clinical studies have shown the role of sandalwood extract as antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, neuroleptic, antihyperglycemic, antihyperlipidemic, and anticancer activities. Safety studies on sandalwood essential oil (EO) and its extracts have proven them as a safe ingredient to be utilized in health promotion. Phytoconstituents, bioactivities and traditional uses established sandalwood as one of the innovative materials for application in the pharma, food, and biomedical industry.
Collapse
|
2
|
|
Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2022;12:1068778. [PMID: 36698404 DOI: 10.3389/fonc.2022.1068778] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] Open
Abstract
Bromelain is a key enzyme found in pineapple (Ananas comosus (L.) Merr.); a proteolytic substance with multiple beneficial effects for human health such as anti-inflammatory, immunomodulatory, antioxidant and anticarcinogenic, traditionally used in many countries for its potential therapeutic value. The aim of this updated and comprehensive review focuses on the potential anticancer benefits of bromelain, analyzing the cytotoxic, apoptotic, necrotic, autophagic, immunomodulating, and anti-inflammatory effects in cancer cells and animal models. Detailed information about Bromelain and its anticancer effects at the cellular, molecular and signaling levels were collected from online databases such as PubMed/MedLine, TRIP database, GeenMedical, Scopus, Web of Science and Google Scholar. The results of the analyzed studies showed that Bromelain possesses corroborated pharmacological activities, such as anticancer, anti-edema, anti-inflammatory, anti-microbial, anti-coagulant, anti-osteoarthritis, anti-trauma pain, anti-diarrhea, wound repair. Nonetheless, bromelain clinical studies are scarce and still more research is needed to validate the scientific value of this enzyme in human cancer diseases.
Collapse
|
3
|
|
Lee YH, Kim M, Park HJ, Park JY, Song ES, Lee H, Ko G, Ahn S, Kwon HW, Byun Y, Kim C, Choi J, Park JT. Chemical screening identifies the anticancer properties of Polyporous parvovarius. J Cancer 2023;14:50-60. [PMID: 36605488 DOI: 10.7150/jca.78302] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] Open
Abstract
One of the biggest obstacles in cancer treatment is the development of chemoresistance. To overcome this, attempts have been made to screen novel anticancer substances derived from natural products. The purpose of this study is to find new anticancer candidates in the mycelium culture extract of mushrooms belonging to Polyporus. Here, we used a high-throughput screening to find agents capable of inhibiting cancer cell proliferation. The culture extract of Polyporus Parvovarius mycelium in DY medium (pp-DY) was effective. pp-DY inhibited cancer cell proliferation by inducing apoptosis and S-phase arrest. The anticancer property of pp-DY was not only effective against one type of cancer, but also against another type of cancer. Compound fractionation was performed, and the active ingredient exhibiting anticancer effects in pp-DY was identified as 3,4-dihydroxybenzaldehyde (Protocatechualdehyde, PCA). PCA, like pp-DY, inhibited the proliferation of cancer cells by inducing apoptosis and S-phase arrest. Furthermore, unlike conventional anticancer drugs, PCA did not increase the proportion of the side population that plays the most important role in the development of chemoresistance. Taken together, our data revealed the novel mycelium culture extract that exhibited anticancer property, and identified active ingredients that did not activate a proportion of the side population. These novel findings may have clinical applications in the treatment of cancer, particularly chemo-resistant cancer.
Collapse
|
4
|
|
Varela C, Melim C, Neves BG, Sharifi-Rad J, Calina D, Mamurova A, Cabral C. Cucurbitacins as potential anticancer agents: new insights on molecular mechanisms. Lab Invest 2022;20:630. [PMID: 36585670 DOI: 10.1186/s12967-022-03828-3] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures]
Abstract
Since ancient times, plants have been an extensive reservoir of bioactive compounds with therapeutic interest for new drug development and clinical application. Cucurbitacins are a compelling example of these drug leads, primarily present in the plant kingdom, especially in the Cucurbitaceae family. However, these natural compounds are also known in several genera within other plant families. Beyond the Cucurbitaceae family, they are also present in other plant families, as well as in some fungi and one shell-less marine mollusc. Despite the natural abundance of cucurbitacins in different natural species, their obtaining and isolation is limited, as a result, an increase in their chemical synthesis has been developed by researchers. Data on cucurbitacins and their anticancer activities were collected from databases such as PubMed/MedLine, TRIP database, Web of Science, Google Scholar, and ScienceDirect and the information was arranged sequentially for a better understanding of the antitumor potential. The results of the studies showed that cucurbitacins have significant biological activities, such as anti-inflammatory, antioxidant, antimalarial, antimicrobial, hepatoprotective and antitumor potential. In conclusion, there are several studies, both in vitro and in vivo reporting this important anticancer/chemopreventive potential; hence a comprehensive review on this topic is recommended for future clinical research.
Collapse
|
5
|
|
Dong Y, Yang K, Xu Z, Li X, Wang F, Zhang Y. Effective Delivery of Paclitaxel-Loaded Ferritin via Inverso CendR Peptide for Enhanced Cancer Therapy. Mol Pharm 2022. [DOI: 10.1021/acs.molpharmaceut.2c00616] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text]
|
6
|
|
Banthia P, Gambhir L, Daga D, Sharma A, Kapoor N, Agarwal RD, Sharma G. Phytogenic synthesis of metallic nanoparticles: application for breast cancer nanomedicine. Vegetos 2022. [DOI: 10.1007/s42535-022-00542-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text]
|
7
|
|
Garzoli S, Alarcón-zapata P, Seitimova G, Alarcón-zapata B, Martorell M, Sharopov F, Fokou PVT, Dize D, Yamthe LRT, Les F, Cásedas G, López V, Iriti M, Rad JS, Gürer ES, Calina D, Pezzani R, Vitalini S. Natural essential oils as a new therapeutic tool in colorectal cancer. Cancer Cell Int 2022;22:407. [PMID: 36514100 DOI: 10.1186/s12935-022-02806-5] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] Open
Abstract
Colorectal cancer (CRC) is the third most revalent type of cancer in the world and the second most common cause of cancer death (about 1 million per year). Historically, natural compounds and their structural analogues have contributed to the development of new drugs useful in the treatment of various diseases, including cancer. Essential oils are natural odorous products made up of a complex mixture of low molecular weight compounds with recognized biological and pharmacological properties investigated also for the prevention and treatment of cancer. The aim of this paper is to highlight the possible role of essential oils in CRC, their composition and the preclinical studies involving them. It has been reviewed the preclinical pharmacological studies to determine the experimental models used and the anticancer potential mechanisms of action of natural essential oils in CRC. Searches were performed in the following databases PubMed/Medline, Web of science, TRIP database, Scopus, Google Scholar using appropriate MeSH terms. The results of analyzed studies showed that EOs exhibited a wide range of bioactive effects like cytotoxicity, antiproliferative, and antimetastatic effects on cancer cells through various mechanisms of action. This updated review provides a better quality of scientific evidence for the efficacy of EOs as chemotherapeutic/chemopreventive agents in CRC. Future translational clinical studies are needed to establish the effective dose in humans as well as the most suitable route of administration for maximum bioavailability and efficacy. Given the positive anticancer results obtained from preclinical pharmacological studies, EOs can be considered efficient complementary therapies in chemotherapy in CRC.
Collapse
|
8
|
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022;27. [PMID: 36500466 DOI: 10.3390/molecules27238367] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
|
9
|
|
Pramual S, Lirdprapamongkol K, Atjanasuppat K, Chaisuriya P, Niamsiri N, Svasti J. PLGA-Lipid Hybrid Nanoparticles for Overcoming Paclitaxel Tolerance in Anoikis-Resistant Lung Cancer Cells. Molecules 2022;27. [PMID: 36500387 DOI: 10.3390/molecules27238295] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] Open
Abstract
Drug resistance and metastasis are two major obstacles to cancer chemotherapy. During metastasis, cancer cells can survive as floating cells in the blood or lymphatic circulatory system, due to the acquisition of resistance to anoikis-a programmed cell death activated by loss of extracellular matrix attachment. The anoikis-resistant lung cancer cells also develop drug resistance. In this study, paclitaxel-encapsulated PLGA-lipid hybrid nanoparticles (PLHNPs) were formulated by nanoprecipitation combined with self-assembly. The paclitaxel-PLHNPs had an average particle size of 103.0 ± 1.6 nm and a zeta potential value of -52.9 mV with the monodisperse distribution. Cytotoxicity of the nanoparticles was evaluated in A549 human lung cancer cells cultivated as floating cells under non-adherent conditions, compared with A549 attached cells. The floating cells exhibited anoikis resistance as shown by a lack of caspase-3 activation, in contrast to floating normal epithelial cells. Paclitaxel tolerance was evident in floating cells which had an IC50 value of 418.56 nM, compared to an IC50 value of 7.88 nM for attached cells. Paclitaxel-PLHNPs significantly reduced the IC50 values in both attached cells (IC50 value of 0.11 nM, 71.6-fold decrease) and floating cells (IC50 value of 1.13 nM, 370.4-fold decrease). This report demonstrated the potential of PLHNPs to improve the efficacy of the chemotherapeutic drug paclitaxel, for eradicating anoikis-resistant lung cancer cells during metastasis.
Collapse
|
10
|
|
Coêlho ML, Islam MT, Laylson da Silva Oliveira G, Oliveira Barros de Alencar MV, Victor de Oliveira Santos J, Campinho dos Reis A, Oliveira Ferreira da Mata AM, Correia Jardim Paz MF, Docea AO, Calina D, Sharifi-rad J, Amélia de Carvalho Melo-cavalcante A. Cytotoxic and Antioxidant Properties of Natural Bioactive Monoterpenes Nerol, Estragole, and 3,7-Dimethyl-1-Octanol. Adv Pharmacol Pharm Sci 2022;2022:1-11. [DOI: 10.1155/2022/8002766] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] Open
Abstract
The therapeutic potential of medicinal plants is noted because of the presence of varieties of biochemicals. The monoterpenes, like nerol, estragole, and 3,7-dimethyl-1-octanol, have been reported for antimicrobial, antifungal, anthelmintic, and antioxidant activities. This study evaluated the toxic, cytotoxic, and oxidant/antioxidant effects of these compounds by several in vitro (DPPH and ABTS radical scavenging, and ferric reducing potential), ex vivo (hemolysis), and in vivo (Artemia Salina and Saccharomyces cerevisiae) assays. Results suggest that estragole and 3,7-dimethyl-1-octanol at 31.25–500 μg/mL did not exhibit significant cytotoxic effects in the A. Salina and hemolysis tests. Nerol showed significant cytotoxic effects on these test systems at all test concentrations. The monoterpenes showed radical (ABTS•+ and DPPH•) scavenging capacities in a concentration-dependent manner in vitro tests. However, they did not oxidize the genetic material of S. cerevisiae (SODWT, Sod1Δ, Sod2Δ, Sod1/Sod2Δ, Cat1Δ, and Cat1Δ/Sod1Δ) lines. Among the three monoterpenes, nerol may be a good candidate for antioxidant and anti-tumor therapies.
Collapse
|
11
|
|
Sharifi-rad J, Almarhoon ZM, Adetunji CO, Samuel Michael O, Chandran D, Radha R, Sharma N, Kumar M, Calina D. Neuroprotective effect of curcumin and curcumin-integrated nanocarriers in stroke: from mechanisms to therapeutic opportunities. Minerva Biotechnol Biomol Res 2022;34. [DOI: 10.23736/s2724-542x.22.02946-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text]
|
12
|
|
Shakya AK, Naik RR, Al-obaidi J. The Chemotherapeutic Potentials of Compounds Isolated from the Plant, Marine, Fungus, and Microorganism: Their Mechanism of Action and Prospects. J Trop Med 2022;2022:1-17. [PMID: 36263439 DOI: 10.1155/2022/5919453] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Research on natural products mainly focuses on developing a suitable drug to treat human disease. There has been a sharp increase in the development of drugs from natural products. Most of the drugs that are available are from the terrestrial origin. Marine natural products are less explored. Oceans are considered as a vast ecosystem with a wide variety of living organisms and natural products that are unexplored. Large numbers of antitumor drugs are from natural sources such as plants, marine, and microorganisms. 80% new chemical entities that were launched over the past 60 decades were from a natural source. In this article, the anticancer potential from the natural source such as plants, fungi, microorganisms, marine, and endophytes has been reviewed. Emphasis is given on the compound from the marine, plant, and of bacterial origin. Finally, we consider the future and how we might achieve better sustainability to alleviate human cancer suffering while having fewer side effects, more efficacies, and causing less harm than the present treatments.
Collapse
|
13
|
|
Dhyani P, Sati P, Sharma E, Attri DC, Bahukhandi A, Tynybekov B, Szopa A, Sharifi-Rad J, Calina D, Suleria HAR, Cho WC. Sesquiterpenoid lactones as potential anti-cancer agents: an update on molecular mechanisms and recent studies. Cancer Cell Int 2022;22:305. [PMID: 36207736 DOI: 10.1186/s12935-022-02721-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Plants-based natural compounds are well-identified and recognized chemoprotective agents that can be used for primary and secondary cancer prevention, as they have proven efficacy and fewer side effects. In today's scenario, when cancer cases rapidly increase in developed and developing countries, the anti-cancerous plant-based compounds become highly imperative. Among others, the Asteraceae (Compositae) family's plants are rich in sesquiterpenoid lactones, a subclass of terpenoids with wide structural diversity, and offer unique anti-cancerous effects. These plants are utilized in folk medicine against numerous diseases worldwide. However, these plants are now a part of the modern medical system, with their sesquiterpenoid lactones researched extensively to find more effective and efficient cancer drug regimens. Given the evolving importance of sesquiterpenoid lactones for cancer research, this review comprehensively covers different domains in a spectrum of sesquiterpenoid lactones viz (i) Guaianolides (ii) Pseudoguaianolide (iii) Eudesmanolide (iv) Melampodinin A and (v) Germacrene, from important plants such as Cynara scolymus (globe artichoke), Arnica montana (wolf weeds), Spilanthes acmella, Taraxacum officinale, Melampodium, Solidago spp. The review, therefore, envisages being a helpful resource for the growth of plant-based anti-cancerous drug development.
Collapse
|
14
|
|
Sun X, Zhao R, Zhao E, Wang Q, Lian W, Xiong J. Targeting CD44-positive ovarian cancers via engineered paclitaxel prodrug nanoparticles for enhanced chemotherapeutic efficacy. Biomed Pharmacother 2022;154:113655. [DOI: 10.1016/j.biopha.2022.113655] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] Open
|
15
|
|
Sharma E, Attri DC, Sati P, Dhyani P, Szopa A, Sharifi-rad J, Hano C, Calina D, Cho WC. Recent updates on anticancer mechanisms of polyphenols. Front Cell Dev Biol 2022;10:1005910. [PMID: 36247004 DOI: 10.3389/fcell.2022.1005910] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
In today’s scenario, when cancer cases are increasing rapidly, anticancer herbal compounds become imperative. Studies on the molecular mechanisms of action of polyphenols published in specialized databases such as Web of Science, Pubmed/Medline, Google Scholar, and Science Direct were used as sources of information for this review. Natural polyphenols provide established efficacy against chemically induced tumor growth with fewer side effects. They can sensitize cells to various therapies and increase the effectiveness of biotherapy. Further pharmacological translational research and clinical trials are needed to evaluate theirs in vivo efficacy, possible side effects and toxicity. Polyphenols can be used to design a potential treatment in conjunction with existing cancer drug regimens such as chemotherapy and radiotherapy.
Collapse
|
16
|
|
Cunha A, Rocha AC, Barbosa F, Baião A, Silva P, Sarmento B, Queirós O. Glycolytic Inhibitors Potentiated the Activity of Paclitaxel and Their Nanoencapsulation Increased Their Delivery in a Lung Cancer Model. Pharmaceutics 2022;14:2021. [PMID: 36297455 DOI: 10.3390/pharmaceutics14102021] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Antiglycolytic agents inhibit cell metabolism and modify the tumor’s microenvironment, affecting chemotherapy resistance mechanisms. In this work, we studied the effect of the glycolytic inhibitors 3-bromopyruvate (3BP), dichloroacetate (DCA) and 2-deoxyglucose (2DG) on cancer cell properties and on the multidrug resistance phenotype, using lung cancer cells as a model. All compounds led to the loss of cell viability, with different effects on the cell metabolism, migration and proliferation, depending on the drug and cell line assayed. DCA was the most promising compound, presenting the highest inhibitory effect on cell metabolism and proliferation. DCA treatment led to decreased glucose consumption and ATP and lactate production in both A549 and NCI-H460 cell lines. Furthermore, the DCA pretreatment sensitized the cancer cells to Paclitaxel (PTX), a conventional chemotherapeutic drug, with a 2.7-fold and a 10-fold decrease in PTX IC50 values in A549 and NCI-H460 cell lines, respectively. To increase the intracellular concentration of DCA, thereby potentiating its effect, DCA-loaded poly(lactic-co-glycolic acid) nanoparticles were produced. At higher DCA concentrations, encapsulation was found to increase its toxicity. These results may help find a new treatment strategy through combined therapy, which could open doors to new treatment approaches.
Collapse
|
17
|
|
Asgharian P, Quispe C, Herrera-bravo J, Sabernavaei M, Hosseini K, Forouhandeh H, Ebrahimi T, Sharafi-badr P, Tarhriz V, Soofiyani SR, Helon P, Rajkovic J, Durna Daştan S, Docea AO, Sharifi-rad J, Calina D, Koch W, Cho WC. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Front Pharmacol 2022;13:926607. [PMID: 36188551 DOI: 10.3389/fphar.2022.926607] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.
Collapse
|
18
|
|
Irfan M, Javed Z, Khan K, Khan N, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Apoptosis evasion via long non-coding RNAs in colorectal cancer. Cancer Cell Int 2022;22:280. [PMID: 36076273 DOI: 10.1186/s12935-022-02695-8] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Long non-coding RNA (LncRNA) is a novel and diverse class of regulatory transcripts that are frequently dysregulated in numerous tumor types. LncRNAs are involved in a complicated molecular network, regulating gene expression, and modulating diverse cellular activities in different cancers including colorectal cancer (CRC). Evidence indicates that lncRNAs can be used as a potential biomarker for the prognosis and diagnosis of CRC as they are aberrantly expressed in CRC cells. The high expression or silencing of lncRNAs is associated with cell proliferation, invasion, metastasis, chemoresistance and apoptosis in CRC. LncRNAs exert both pro-apoptotic and anti-apoptotic functions in CRC. The expression of some oncogene lncRNAs is upregulated which leads to the inhibition of apoptotic pathways, similarly, the tumor suppressor lncRNAs are downregulated in CRC. In this review, we describe the function and mechanisms of lncRNAs to regulate the expression of genes that are involved directly or indirectly in controlling cellular apoptosis in CRC. Furthermore, we also discussed the different apoptotic pathways in normal cells and the mechanisms by which CRC evade apoptosis.
Collapse
|
19
|
|
Sharifi-rad J, Herrera-bravo J, Semwal P, Painuli S, Badoni H, Ezzat SM, Farid MM, Merghany RM, Aborehab NM, Salem MA, Sen S, Acharya K, Lapava N, Martorell M, Tynybekov B, Calina D, Cho WC, Kalhoro MS. Artemisia spp.: An Update on Its Chemical Composition, Pharmacological and Toxicological Profiles. Oxid Med Cell Longev 2022;2022:1-23. [PMID: 36105486 DOI: 10.1155/2022/5628601] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Artemisia plants are traditional and ethnopharmacologically used to treat several diseases and in addition in food, spices, and beverages. The genus is widely distributed in all continents except the Antarctica, and traditional medicine has been used as antimalarial, antioxidant, anticancer, antinociceptive, anti-inflammatory, and antiviral agents. This review is aimed at systematizing scientific data on the geographical distribution, chemical composition, and pharmacological and toxicological profiles of the Artemisia genus. Data from the literature on Artemisia plants were taken using electronic databases such as PubMed/MEDLINE, Scopus, and Web of Science. Selected papers for this updated study included data about phytochemicals, preclinical pharmacological experimental studies with molecular mechanisms included, clinical studies, and toxicological and safety data. In addition, ancient texts and books were consulted. The essential oils and phytochemicals of the Artemisia genus have reported important biological activities, among them the artemisinin, a sesquiterpene lactone, with antimalarial activity. Artemisia absinthium L. is one of the most famous Artemisia spp. due to its use in the production of the absinthe drink which is restricted in most countries because of neurotoxicity. The analyzed studies confirmed that Artemisia plants have many traditional and pharmacological applications. However, scientific data are limited to clinical and toxicological research. Therefore, further research is needed on these aspects to understand the full therapeutic potential and molecular pharmacological mechanisms of this medicinal species.
Collapse
|
20
|
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. Phytochemistry 2022;:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
|
21
|
|
Sharifi-Rad J, Herrera-Bravo J, Kamiloglu S, Petroni K, Mishra AP, Monserrat-Mesquida M, Sureda A, Martorell M, Aidarbekovna DS, Yessimsiitova Z, Ydyrys A, Hano C, Calina D, Cho WC. Recent advances in the therapeutic potential of emodin for human health. Biomed Pharmacother 2022;154:113555. [PMID: 36027610 DOI: 10.1016/j.biopha.2022.113555] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier molecules to the target, thus opening up new therapeutic perspectives.
Collapse
|
22
|
|
Asgharian P, Tazekand AP, Hosseini K, Forouhandeh H, Ghasemnejad T, Ranjbar M, Hasan M, Kumar M, Beirami SM, Tarhriz V, Soofiyani SR, Kozhamzharova L, Sharifi-Rad J, Calina D, Cho WC. Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell Int 2022;22:257. [PMID: 35971151 DOI: 10.1186/s12935-022-02677-w] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Over the past few years, the cancer-related disease has had a high mortality rate and incidence worldwide, despite clinical advances in cancer treatment. The drugs used for cancer therapy, have high side effects in addition to the high cost. Subsequently, to reduce these side effects, many studies have suggested the use of natural bioactive compounds. Among these, which have recently attracted the attention of many researchers, quercetin has such properties. Quercetin, a plant flavonoid found in fresh fruits, vegetables and citrus fruits, has anti-cancer properties by inhibiting tumor proliferation, invasion, and tumor metastasis. Several studies have demonstrated the anti-cancer mechanism of quercetin, and these mechanisms are controlled through several signalling pathways within the cancer cell. Pathways involved in this process include apoptotic, p53, NF-κB, MAPK, JAK/STAT, PI3K/AKT, and Wnt/β-catenin pathways. In addition to regulating these pathways, quercetin controls the activity of oncogenic and tumor suppressor ncRNAs. Therefore, in this comprehensive review, we summarized the regulation of these signalling pathways by quercetin. The modulatory role of quercetin in the expression of various miRNAs has also been discussed. Understanding the basic anti-cancer mechanisms of these herbal compounds can help prevent and manage many types of cancer.
Collapse
|
23
|
|
Ali ES, Akter S, Ramproshad S, Mondal B, Riaz TA, Islam MT, Khan IN, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Targeting Ras-ERK cascade by bioactive natural products for potential treatment of cancer: an updated overview. Cancer Cell Int 2022;22:246. [PMID: 35941592 DOI: 10.1186/s12935-022-02666-z] [Cited by in Crossref: 2] [Cited by in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
MAPK (mitogen-activated protein kinase) or ERK (extracellular-signal-regulated kinase) pathway is an important link in the transition from extracellular signals to intracellular responses. Because of genetic and epigenetic changes, signaling cascades are altered in a variety of diseases, including cancer. Extant studies on the homeostatic and pathologic behavior of MAPK signaling have been conducted; however, much remains to be explored in preclinical and clinical research in terms of regulation and action models. MAPK has implications for cancer therapy response, more specifically in response to experimental MAPK suppression, compensatory mechanisms are activated. The current study investigates MAPK as a very complex cell signaling pathway that plays roles in cancer treatment response, cellular normal conduit maintenance, and compensatory pathway activation. Most MAPK inhibitors, unfortunately, cause resistance by activating compensatory feedback loops in tumor cells and tumor microenvironment components. As a result, innovative combinatorial treatments for cancer management must be applied to limit the likelihood of alternate pathway initiation as a possibility for generating novel therapeutics based on incorporation in translational research. We summarize current knowledge about the implications of ERK (MAPK) in cancer, as well as bioactive products from plants, microbial organisms or marine organisms, as well as the correlation with their chemical structures, which modulate this pathway for the treatment of different types of cancer.
Collapse
|
24
|
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Raza Q, Sadia H, Raza S, Bhinder M, Calina D, Sharifi-Rad J, Cho WC. Myricetin: targeting signaling networks in cancer and its implication in chemotherapy. Cancer Cell Int 2022;22:239. [PMID: 35902860 DOI: 10.1186/s12935-022-02663-2] [Cited by in Crossref: 5] [Cited by in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
The gaps between the complex nature of cancer and therapeutics have been narrowed down due to extensive research in molecular oncology. Despite gathering massive insight into the mysteries of tumor heterogeneity and the molecular framework of tumor cells, therapy resistance and adverse side effects of current therapeutic remain the major challenge. This has shifted the attention towards therapeutics with less toxicity and high efficacy. Myricetin a natural flavonoid has been under the spotlight for its anti-cancer, anti-oxidant, and anti-inflammatory properties. The cutting-edge molecular techniques have shed light on the interplay between myricetin and dysregulated signaling cascades in cancer progression, invasion, and metastasis. However, there are limited data available regarding the nano-delivery platforms composed of myricetin in cancer. In this review, we have provided a comprehensive detail of myricetin-mediated regulation of different cellular pathways, its implications in cancer prevention, preclinical and clinical trials, and its current available nano-formulations for the treatment of various cancers.
Collapse
|
25
|
|
Kitic D, Miladinovic B, Randjelovic M, Szopa A, Sharifi-Rad J, Calina D, Seidel V. Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. Plants (Basel) 2022;11:1885. [PMID: 35890519 DOI: 10.3390/plants11141885] [Cited by in Crossref: 5] [Cited by in RCA: 6] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures]
Abstract
Prunus armeniaca L. (Rosaceae)-syn. Amygdalus armeniaca (L.) Dumort., Armeniaca armeniaca (L.) Huth, Armeniaca vulgaris Lam is commonly known as the apricot tree. The plant is thought to originate from the northern, north-western, and north-eastern provinces of China, although some data show that it may also come from Korea or Japan. The apricot fruit is used medicinally to treat a variety of ailments, including use as an antipyretic, antiseptic, anti-inflammatory, emetic, and ophthalmic remedy. The Chinese and Korean pharmacopeias describe the apricot seed as an herbal medicinal product. Various parts of the apricot plant are used worldwide for their anticancer properties, either as a primary remedy in traditional medicine or as a complementary or alternative medicine. The purpose of this review was to provide comprehensive and up-to-date information on ethnobotanical data, bioactive phytochemicals, anticancer potential, pharmacological applications, and toxicology of the genus Prunus armeniaca, thus providing new perspectives on future research directions. Included data were obtained from online databases such as PubMed/Medline, Google Scholar, Science direct, and Wiley Online Library. Multiple anticancer mechanisms have been identified in in vitro and in vivo studies, the most important mechanisms being apoptosis, antiproliferation, and cytotoxicity. The anticancer properties are probably mediated by the contained bioactive compounds, which can activate various anticancer mechanisms and signaling pathways such as tumor suppressor proteins that reduce the proliferation of tumor cells. Other pharmacological properties resulting from the analysis of experimental studies include neuroprotective, cardioprotective, antioxidant, immunostimulatory, antihyperlipidemic, antibacterial, and antifungal effects. In addition, data were provided on the toxicity of amygdalin, a compound found in apricot kernel seeds, which limits the long-term use of complementary/alternative products derived from P. armeniaca. This updated review showed that bioactive compounds derived from P. armeniaca are promising compounds for future research due to their important pharmacological properties, especially anticancer. A detailed analysis of the chemical structure of these compounds and their cytotoxicity should be carried out in future research. In addition, translational pharmacological studies are required for the correct determination of pharmacologically active doses in humans.
Collapse
|
26
|
|
Muhammad N, Usmani D, Tarique M, Naz H, Ashraf M, Raliya R, Tabrez S, Zughaibi TA, Alsaieedi A, Hakeem IJ, Suhail M. The Role of Natural Products and Their Multitargeted Approach to Treat Solid Cancer. Cells 2022;11:2209. [PMID: 35883653 DOI: 10.3390/cells11142209] [Cited by in Crossref: 3] [Cited by in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Natural products play a critical role in the discovery and development of numerous drugs for the treatment of various types of cancer. These phytochemicals have demonstrated anti-carcinogenic properties by interfering with the initiation, development, and progression of cancer through altering various mechanisms such as cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. Treating multifactorial diseases, such as cancer with agents targeting a single target, might lead to limited success and, in many cases, unsatisfactory outcomes. Various epidemiological studies have shown that the steady consumption of fruits and vegetables is intensely associated with a reduced risk of cancer. Since ancient period, plants, herbs, and other natural products have been used as healing agents. Likewise, most of the medicinal ingredients accessible today are originated from the natural resources. Regardless of achievements, developing bioactive compounds and drugs from natural products has remained challenging, in part because of the problem associated with large-scale sequestration and mechanistic understanding. With significant progress in the landscape of cancer therapy and the rising use of cutting-edge technologies, we may have come to a crossroads to review approaches to identify the potential natural products and investigate their therapeutic efficacy. In the present review, we summarize the recent developments in natural products-based cancer research and its application in generating novel systemic strategies with a focus on underlying molecular mechanisms in solid cancer.
Collapse
|
27
|
|
Zhai Y, Sun J, Sun C, Zhao H, Li X, Yao J, Su J, Xu X, Xu X, Hu J, Daglia M, Han B, Kai G. Total flavonoids from the dried root of Tetrastigma hemsleyanum Diels et Gilg inhibit colorectal cancer growth through PI3K/AKT/mTOR signaling pathway. Phytother Res 2022. [PMID: 35831026 DOI: 10.1002/ptr.7561] [Cited by in Crossref: 0] [Cited by in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text]
Abstract
The dried root of Tetrastigma hemsleyanum Diels et Gilg is used as a traditional Chinese medicine in southern China, as a folk remedy for carcinomas and gastrointestinal diseases. The total flavonoids of T. hemsleyanum (THTF) provide its main bioactive constituents. However, the mechanisms underlying its potential activity on colorectal cancer are still unknown. Here, we investigated the antitumor effect of THTF on colorectal cancer in vitro and in vivo. It was found that THTF inhibited HCT-116 and HT-29 cell growth, with an IC50 of 105.60 and 140.80 μg/mL, respectively. THTF suppressed clonogenicity and promoted apoptosis in HCT-116. In vivo, THTF (120 mg/kg) delayed tumor growth in HCT-116 xenografts without influencing on body weight, organ pathology and indexes, and blood routine level. Mechanistically, THTF inhibited the expression of PI3K, AKT, and mTOR at the protein level and transcriptional levels. Molecular docking indicated eight compounds in THTF (kaempferol 3-rutinoside, rutinum, isoquercitrin, L-epicatechin, quercetin, astragalin, kaempferol 3-sambubioside, and catechin) strongly bound with amino acid sites of PI3K and mTOR proteins, indicating a high affinity. The results suggest that THTF delayed colorectal tumor growth by inhibiting the PI3K/AKT/mTOR pathway and might be a potential candidate for colorectal cancer prevention.
Collapse
|
28
|
|
Hossain R, Ray P, Sarkar C, Islam MS, Khan RA, Khalipha ABR, Islam MT, Cho WC, Martorell M, Sharifi-rad J, Butnariu M, Umbetova A, Calina D, Nazim M. Natural Compounds or Their Derivatives against Breast Cancer: A Computational Study. Biomed Res Int 2022;2022:1-10. [PMID: 35837379 DOI: 10.1155/2022/5886269] [Cited by in Crossref: 3] [Cited by in RCA: 5] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Background Breast cancer is one of the most common types of cancer diagnosed and the second leading cause of death among women. Breast cancer susceptibility proteins of type 1 and 2 are human tumor suppressor genes. Genetic variations/mutations in these two genes lead to overexpression of human breast tumor suppressor genes (e.g., BRCA1, BRCA2), which triggers uncontrolled duplication of cells in humans. In addition, multidrug resistance protein 1 (MDR1), an important cell membrane protein that pumps many foreign substances from cells, is also responsible for developing resistance to cancer chemotherapy. Aim of the Study. The aim of this study was to analyze some natural compounds or their derivatives as part of the development of strong inhibitors for breast cancer. Methodology. Molecular docking studies were performed using compounds known in the literature to be effective against BRCA1 and BRCA2 and MDR1, with positive control being 5-fluorouracil, an antineoplastic drug as a positive control. Results The binding affinity of the compounds was analyzed, and it was observed that they had a better binding affinity for the target proteins than the standard drug 5-fluorouracil. Among the compounds analyzed, α-hederin, andrographolide, apigenin, asiatic acid, auricular acid, sinularin, curcumin, citrinin, hispolon, nerol, phytol, retinol palmitate, and sclareol showed the best binding affinity energy to the BRCA1, BRCA2, and MDR1 proteins, respectively. Conclusions α-Hederin, andrographolide, apigenin, asiatic acid, auricular acid, hispolon, sclareol, curcumin, citrinin, and sinularin or their derivatives can be a good source of anticancer agents in breast cancer.
Collapse
|
29
|
|
Semwal P, Painuli S, Abu-izneid T, Rauf A, Sharma A, Daştan SD, Kumar M, Alshehri MM, Taheri Y, Das R, Mitra S, Emran TB, Sharifi-rad J, Calina D, Cho WC, Ciobica A. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. Oxid Med Cell Longev 2022;2022:1-17. [PMID: 35677108 DOI: 10.1155/2022/1035441] [Cited by in Crossref: 10] [Cited by in RCA: 11] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Plants including Rhizoma polgonati, Smilax china, and Trigonella foenum-graecum contain a lot of diosgenin, a steroidal sapogenin. This bioactive phytochemical has shown high potential and interest in the treatment of various disorders such as cancer, diabetes, arthritis, asthma, and cardiovascular disease, in addition to being an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry. This review aims to provide an overview of the in vitro, in vivo, and clinical studies reporting the diosgenin's pharmacological effects and to discuss the safety issues. Preclinical studies have shown promising effects on cancer, neuroprotection, atherosclerosis, asthma, bone health, and other pathologies. Clinical investigations have demonstrated diosgenin's nontoxic nature and promising benefits on cognitive function and menopause. However, further well-designed clinical trials are needed to address the other effects seen in preclinical studies, as well as a better knowledge of the diosgenin's safety profile.
Collapse
|
30
|
|
Wawruszak A, Luszczki J, Czerwonka A, Okon E, Stepulak A. Assessment of Pharmacological Interactions between SIRT2 Inhibitor AGK2 and Paclitaxel in Different Molecular Subtypes of Breast Cancer Cells. Cells 2022;11:1211. [PMID: 35406775 DOI: 10.3390/cells11071211] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Breast carcinoma (BC) is the most commonly diagnosed type of cancer in women in the world. Although the advances in the treatment of BC patients are significant, numerous side effects, severe toxicity towards normal cells as well as the multidrug resistance (MDR) phenomenon restrict the effectiveness of the therapies used. Therefore, new active compounds which decrease the MDR, extend disease-free survival, thereby ameliorating the effectiveness of the current treatment regimens, are greatly needed. Histone deacetylase inhibitors (HDIs), including sirtuin inhibitors (SIRTi), are the epigenetic antitumor agents which induce a cytotoxic effect in different types of cancer cells, including BC cells. Currently, combined forms of therapy with two or even more chemotherapeutics are promising antineoplastic tools to obtain a better response to therapy and limit adverse effects. Thus, on the one hand, much more effective chemotherapeutics, e.g., sirtuin inhibitors (SIRTi), are in demand; on the other hand, combinations of accepted cytostatics are trialed. Thus, the aim of our research was to examine the combination effects of a renowned cytotoxic drug paclitaxel (PAX) and SIRT2 inhibitor AGK2 on the proliferation and viability of the T47D, MCF7, MDA-MB-231, MDA-MB-468, BT-549 and HCC1937 BC cells. Moreover, cell cycle arrest and apoptosis induction were explored. The type of pharmacological interactions between AGK2 and PAX in different molecular subtypes of BC cells was assessed using the advanced isobolographic method. Our findings demonstrated that the tested active agents singly inhibited viability and proliferation of BC cells as well as induced cell cycle arrest and apoptosis in the cell-dependent context. Additionally, AGK2 increased the antitumor effect of PAX in most BC cell lines. We observed that, depending on the BC cell lines, the combinations of tested drugs showed synergistic, additive or antagonistic pharmacological interaction. In conclusion, our studies demonstrated that the consolidated therapy with the use of AGK2 and PAX can be considered as a potential therapeutic regimen in the personalized cure of BC patients in the future.
Collapse
|
31
|
|
Taheri Y, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Ezzat SM, Merghany RM, Shaheen S, Azmi L, Prakash Mishra A, Sener B, Kılıç M, Sen S, Acharya K, Nasiri A, Cruz-Martins N, Tsouh Fokou PV, Ydyrys A, Bassygarayev Z, Daştan SD, Alshehri MM, Calina D, Cho WC. Urtica dioica-Derived Phytochemicals for Pharmacological and Therapeutic Applications. Evid Based Complement Alternat Med 2022;2022:4024331. [PMID: 35251206 DOI: 10.1155/2022/4024331] [Cited by in Crossref: 15] [Cited by in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Urtica dioica belongs to the Urticaceae family and is found in many countries around the world. This plant contains a broad range of phytochemicals, such as phenolic compounds, sterols, fatty acids, alkaloids, terpenoids, flavonoids, and lignans, that have been widely reported for their excellent pharmacological activities, including antiviral, antimicrobial, antihelmintic, anticancer, nephroprotective, hepatoprotective, cardioprotective, antiarthritis, antidiabetic, antiendometriosis, antioxidant, anti-inflammatory, and antiaging effects. In this regard, this review highlights fresh insight into the medicinal use, chemical composition, pharmacological properties, and safety profile of U. dioica to guide future works to thoroughly estimate their clinical value.
Collapse
|
32
|
|
Hossain R, Quispe C, Saikat ASM, Jain D, Habib A, Janmeda P, Islam MT, Radha, Daştan SD, Kumar M, Butnariu M, Cho WC, Sharifi-rad J, Kipchakbayeva A, Calina D, Chevalot I. Biosynthesis of Secondary Metabolites Based on the Regulation of MicroRNAs. Biomed Res Int 2022;2022:1-20. [PMID: 35281611 DOI: 10.1155/2022/9349897] [Cited by in Crossref: 6] [Cited by in RCA: 7] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
MicroRNA (miRNA), a noncoding ribonucleic acid, is considered to be important for the progression of gene expression in plants and animals by rupture or translational repression of targeted mRNAs. Many types of miRNA regulate plant metabolism, growth, and response to biotic and abiotic factors. miRNA characterization helps to expose its function in regulating the process of post-transcriptional genetic regulation. There are a lot of factors associated with miRNA function, but the function of miRNA in the organic synthesis of by-products by natural products is not yet fully elucidated. The current review is aimed at observing and characterizing miRNAs and identifying those involved in the functioning of the biosynthesis of secondary metabolites in plants, with their use in controlled manipulation.
Collapse
|
33
|
|
You B, Xia T, Gu M, Zhang Z, Zhang Q, Shen J, Fan Y, Yao H, Pan S, Lu Y, Cheng T, Yang Z, He X, Zhang H, Shi M, Liu D, You Y. AMPK-mTOR-Mediated Activation of Autophagy Promotes Formation of Dormant Polyploid Giant Cancer Cells. Cancer Res 2022;82:846-58. [PMID: 34965934 DOI: 10.1158/0008-5472.CAN-21-2342] [Cited by in Crossref: 4] [Cited by in RCA: 3] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures]
Abstract
Dormant cancer cells that survive anticancer therapy can lead to cancer recurrence and disseminated metastases that prove fatal in most cases. Recently, specific dormant polyploid giant cancer cells (PGCC) have drawn our attention because of their association with the clinical risk of nasopharyngeal carcinoma (NPC) recurrence, as demonstrated by previous clinical data. In this study, we report the biological properties of PGCC, including mitochondrial alterations, and reveal that autophagy is a critical mechanism of PGCC induction. Moreover, pharmacologic or genetic inhibition of autophagy greatly impaired PGCC formation, significantly suppressing metastasis and improving survival in a mouse model. Mechanistically, chemotherapeutic drugs partly damaged mitochondria, which then produced low ATP levels and activated autophagy via the AMPK-mTOR pathway to promote PGCC formation. Analysis of the transcriptional and epigenetic landscape of PGCC revealed overexpression of RIPK1, and the scaffolding function of RIPK1 was required for AMPK-mTOR pathway-induced PGCC survival. High numbers of PGCCs correlated with shorter recurrence time and worse survival outcomes in patients with NPC. Collectively, these findings suggest a therapeutic approach of targeting dormant PGCCs in cancer. SIGNIFICANCE Pretreatment with an autophagy inhibitor before chemotherapy could prevent formation of therapy-induced dormant polyploid giant cancer cells, thereby reducing recurrence and metastasis of nasopharyngeal carcinoma.
Collapse
|
34
|
|
de Clauser L, Kappert C, Sondermann JR, Gomez-varela D, Flatters SJL, Schmidt M. Proteome and Network Analysis Provides Novel Insights Into Developing and Established Chemotherapy-Induced Peripheral Neuropathy. Front Pharmacol 2022;13:818690. [PMID: 35250568 DOI: 10.3389/fphar.2022.818690] [Cited by in Crossref: 3] [Cited by in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side-effect of cancer therapies. So far, the development of CIPN cannot be prevented, neither can established CIPN be reverted, often leading to the cessation of necessary chemotherapy. Thus, there is an urgent need to explore the mechanistic basis of CIPN to facilitate its treatment. Here we used an integrated approach of quantitative proteome profiling and network analysis in a clinically relevant rat model of paclitaxel-induced peripheral neuropathy. We analysed lumbar rat DRG at two critical time points: (1) day 7, right after cessation of paclitaxel treatment, but prior to neuropathy development (pre-CIPN); (2) 4 weeks after paclitaxel initiation, when neuropathy has developed (peak-CIPN). In this way we identified a differential protein signature, which shows how changes in the proteome correlate with the development and maintenance of CIPN, respectively. Extensive biological pathway and network analysis reveals that, at pre-CIPN, regulated proteins are prominently implicated in mitochondrial (dys)function, immune signalling, neuronal damage/regeneration, and neuronal transcription. Orthogonal validation in an independent rat cohort confirmed the increase of β-catenin (CTNNB1) at pre-CIPN. More importantly, detailed analysis of protein networks associated with β-catenin highlights translationally relevant and potentially druggable targets. Overall, this study demonstrates the enormous value of combining animal behaviour with proteome and network analysis to provide unprecedented insights into the molecular basis of CIPN. In line with emerging approaches of network medicine our results highlight new avenues for developing improved therapeutic options aimed at preventing and treating CIPN.
Collapse
|
35
|
|
Butnariu M, Quispe C, Herrera-bravo J, Sharifi-rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, Bashiry M, Ezzat SM, Setzer WN, Martorell M, Mileski KS, Bagiu I, Docea AO, Calina D, Cho WC, Nayak AK. The Pharmacological Activities of Crocus sativus L.: A Review Based on the Mechanisms and Therapeutic Opportunities of its Phytoconstituents. Oxid Med Cell Longev 2022;2022:1-29. [PMID: 35198096 DOI: 10.1155/2022/8214821] [Cited by in Crossref: 8] [Cited by in RCA: 11] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.
Collapse
|
36
|
|
Quispe C, Herrera-bravo J, Javed Z, Khan K, Raza S, Gulsunoglu-konuskan Z, Daştan SD, Sytar O, Martorell M, Sharifi-rad J, Calina D, Ahmad A. Therapeutic Applications of Curcumin in Diabetes: A Review and Perspective. Biomed Res Int 2022;2022:1-14. [PMID: 35155670 DOI: 10.1155/2022/1375892] [Cited by in Crossref: 13] [Cited by in RCA: 12] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Diabetes is a metabolic disease with multifactorial causes which requires lifelong drug therapy as well as lifestyle changes. There is now growing scientific evidence to support the effectiveness of the use of herbal supplements in the prevention and control of diabetes. Curcumin is one of the most studied bioactive components of traditional medicine, but its physicochemical characteristics are represented by low solubility, poor absorption, and low efficacy. Nanotechnology-based pharmaceutical formulations can help overcome the problems of reduced bioavailability of curcumin and increase its antidiabetic effects. The objectives of this review were to review the effects of nanocurcumin on DM and to search for databases such as PubMed/MEDLINE and ScienceDirect. The results showed that the antidiabetic activity of nanocurcumin is due to complex pharmacological mechanisms by reducing the characteristic hyperglycemia of DM. In light of these results, nanocurcumin may be considered as potential agent in the pharmacotherapeutic management of patients with diabetes.
Collapse
|
37
|
|
Hossain R, Quispe C, Herrera-bravo J, Beltrán JF, Islam MT, Shaheen S, Cruz-martins N, Martorell M, Kumar M, Sharifi-rad J, Ozdemir FA, Setzer WN, Alshehri MM, Calina D, Cho WC, Teodoro AJ. Neurobiological Promises of the Bitter Diterpene Lactone Andrographolide. Oxid Med Cell Longev 2022;2022:1-9. [PMID: 35154564 DOI: 10.1155/2022/3079577] [Cited by in Crossref: 8] [Cited by in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Andrographolide (ANDRO), a bitter diterpene lactone found in Andrographis paniculata (Burm.f.) Nees, possesses several biological effects such as antioxidant, anti-inflammatory, and organo-protective effects. Scientific reports suggest that it also has neuroprotective capacity in various test systems. The purpose of this review was to synthesize the neuropharmacological properties of ANDRO and highlight the molecular mechanisms of action that highlight these activities. A careful search was done in PubMed and Google Scholar databases using specific keywords. Findings suggest that ANDRO possess neuroprotective, analgesic, and antifatigue effects. Prominent effects were stated on neuro-inflammation, cerebral ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis, and brain cancer in mice and rats. Furthermore, ANDRO and its derivatives can enhance memory and learning capacity in experimental animals (rats) without causing any toxicity in the brain. Thus, ANDRO may be one of the most promising plant-based psychopharmacological lead compounds for new drug development.
Collapse
|
38
|
|
Sharifi-rad J, Quispe C, Kumar M, Akram M, Amin M, Iqbal M, Koirala N, Sytar O, Kregiel D, Nicola S, Ertani A, Victoriano M, Khosravi-dehaghi N, Martorell M, Alshehri MM, Butnariu M, Pentea M, Rotariu LS, Calina D, Cruz-martins N, Cho WC, Milkovic L. Hyssopus Essential Oil: An Update of Its Phytochemistry, Biological Activities, and Safety Profile. Oxid Med Cell Longev 2022;2022:1-10. [PMID: 35069979 DOI: 10.1155/2022/8442734] [Cited by in Crossref: 7] [Cited by in RCA: 10] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
The genus Hyssopus is widespread in central Asia, East Mediterranean, and Mongolian areas. It has six main species which are used as herbal remedies, such as Hyssopus officinalis which is used as a condiment and flavoring agent in food industry. The other five species are H. ambiguus, H. cuspidatus, H. latilabiatus, H. macranthus, and H. seravschanicus. Its species are used in the treatment of various ailments such as cold, cough, loss of appetite, fungal infection, and spasmodic condition. Its constituents especially essential oils are popularly used as an additive in beverages, foods, and cosmetics. The volatile constituents are used for aroma in the food industry, cosmetic industry, and household products. The important active constituents in its essential oils are β-pinene, pinocamphone, isopinocamphone, and other terpenoids. Hyssopus genus is also bundled with other secondary metabolites including flavonoids luteolin, quercetin, apigenin, and their glucosides, as well as phenolic compounds including ferulic, p-hydroxy-benzoic acid, protocatechuic acid, chlorogenic, and caffeic acid. Combinedly, the extracts of Hyssopus are reported to have potential antiviral and antifungal activities proven using in vitro studies, whereas in vivo investigations have reported the crucial role of Hyssopus extracts in plasma membrane relaxation, cytotoxic, and sedative effects. This plant is believed to be relatively safe at levels commonly used in foods; nevertheless, more studies are needed to determine the safety profile.
Collapse
|
39
|
|
Hossain R, Quispe C, Herrera-Bravo J, Islam MS, Sarkar C, Islam MT, Martorell M, Cruz-Martins N, Al-Harrasi A, Al-Rawahi A, Sharifi-Rad J, Ibrayeva M, Daştan SD, Alshehri MM, Calina D, Cho WC. Lasia spinosa Chemical Composition and Therapeutic Potential: A Literature-Based Review. Oxid Med Cell Longev 2021;2021:1602437. [PMID: 34992714 DOI: 10.1155/2021/1602437] [Cited by in Crossref: 6] [Cited by in RCA: 7] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Lasia spinosa (L.) is used ethnobotanically for the treatment of various diseases, including rheumatoid arthritis, inflammation of the lungs, bleeding cough, hemorrhoids, intestinal diseases, stomach pain, and uterine cancer. This review is aimed at summarizing phytochemistry and pharmacological data with their molecular mechanisms of action. A search was performed in databases such as PubMed, Science Direct, and Google Scholar using the keywords: “Lasia spinosa,” then combined with “ethnopharmacological use,” “phytochemistry,” and “pharmacological activity.” This updated review included studies with in vitro, ex vivo, and in vivo experiments with compounds of known concentration and highlighted pharmacological mechanisms. The research results showed that L. spinosa contains many important nutritional and phytochemical components such as alkanes, aldehydes, alkaloids, carotenoids, flavonoids, fatty acids, ketones, lignans, phenolics, terpenoids, steroids, and volatile oil with excellent bioactivity. The importance of this review lies in the fact that scientific pharmacological evidence supports the fact that the plant has antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antidiarrheal, antihelminthic, antidiabetic, antihyperlipidemic, and antinociceptive effects, while protecting the gastrointestinal system and reproductive. Regarding future toxicological and safety data, more research is needed, including studies on human subjects. In light of these data, L. spinosa can be considered a medicinal plant with effective bioactives for the adjuvant treatment of various diseases in humans.
Collapse
|
40
|
|
da Silva GC, de Oliveira AM, Costa WK, da Silva Filho AF, Pitta MGDR, Rêgo MJBDM, Antônia de Souza I, Paiva PMG, Napoleão TH. Antibacterial and antitumor activities of a lectin-rich preparation from Microgramma vacciniifolia rhizome. Current Research in Pharmacology and Drug Discovery 2022;3:100093. [PMID: 35243335 DOI: 10.1016/j.crphar.2022.100093] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
The rhizome of Microgramma vacciniifolia contains a lectin (carbohydrate-binding protein) called MvRL. Studies demonstrated that a MvRL-rich fraction did not show in vivo genotoxicity and acute toxicity in mice. This study aimed to evaluate the MvRL-rich fraction from M. vacciniifolia rhizome for antibacterial activity in vitro and in vivo as well as antitumor effect in vivo using the Ehrlich carcinoma model in mice. The fraction showed antibacterial activity against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus with minimal inhibitory concentrations ranging from 31.2 to 125.0 μg/mL and minimal bactericidal concentrations from 62.5 to 200 μg/mL. The fraction was also effective in vivo against infection caused by these bacteria on Tenebrio molitor larvae considering the parameters evaluated. In regard to the antitumor activity, the treatments of Ehrlich carcinoma-bearing mice with the fraction at 100 and 200 mg/kg per os resulted in 62.58% and 75.43% of tumor inhibition, respectively. In conclusion, the MvRL-rich fraction showed in vivo antibacterial and antitumor activities and thus can be considered as an alternative of natural origin for the development of candidates for therapy. The rhizome of Microgramma vacciniifolia contains a lectin called MvRL. MvRL-rich fraction showed antibacterial activity. The fraction was also effective in vivo against bacterial infection. MvRL-rich fraction causedn 62.58–75.43% inhibition of Erlich carcinoma.
Collapse
|