1
|
|
Qian X, Bi QY, Wang ZN, Han F, Liu LM, Song LB, Li CY, Zhang AQ, Ji XM. Qingyihuaji Formula promotes apoptosis and autophagy through inhibition of MAPK/ERK and PI3K/Akt/mTOR signaling pathway on pancreatic cancer in vivo and in vitro. J Ethnopharmacol 2023;:116198. [PMID: 36690307 DOI: 10.1016/j.jep.2023.116198] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingyihuaji Formula (QYHJ), a widely used traditional Chinese medicine (TCM), has been used to treat patients with cancer in China. However, the effect and mechanism of QYHJ on pancreatic ductal adenocarcinoma (PDAC) remains unclear. AIM OF THE STUDY This study aimed to explore the roles and evaluate the possible underlying molecular mechanisms of QYHJ and its core component in PDAC using label-free quantitative proteomics in conjunction with network pharmacology-based analysis. MATERIALS AND METHODS By screening differentially expressed proteins (DEPs) in proteomics and QYHJ-predicted gene sets, we identified QYHJ-related PDAC targets annotated with bioinformatic analysis. A subcutaneous tumor model was established to assess the role of QYHJ in vivo. The effects of quercetin (Que), a core component of QYHJ, on cell proliferation, migration, invasion, apoptosis, and autophagy in SW1990 and PANC-1 cells were investigated in vitro. Immunohistochemistry, western blotting, mRFP-GFP-LC3 adenovirus, and kinase analysis were used to determine the underlying mechanisms. RESULTS Bioinformatics analysis revealed that 41 QYHJ-related PDAC targets were closely related to the cellular response to nitrogen compounds, positive regulation of cell death, regulation of epithelial cell apoptotic processes, and chemokine signaling pathways. CASP3, SRC, STAT1, PTPN11, PKM, and PAK1 with high expression were identified as hub DEPs in the PPI network, and these DEPs were associated with poor overall survival and STAT 1, MAPK/ERK, and PI3K/Akt/mTOR signaling pathways in PDAC patients. QYHJ significantly promoted tumor death in nude mice. Moreover, quercetin inhibited the proliferation, migration, and invasion of PDAC cells. Additionally, Que induced apoptosis and autophagy in PDAC cells. Mechanistically, QYHJ and Que significantly activated STAT 1 and remarkably inhibited the MAPK/ERK and PI3K/Akt/mTOR signaling pathways in vivo and in vitro, respectively. Importantly, ERK1/2 inactivation contributes to que-induced apoptosis in SW1990 and PANC-1 cells. CONCLUSIONS These results suggest that QYHJ and Que are promising anti-PDAC avenues that benefit from their multiform mechanisms.
Collapse
|
2
|
|
Markowski A, Zaremba-Czogalla M, Jaromin A, Olczak E, Zygmunt A, Etezadi H, Boyd BJ, Gubernator J. Novel Liposomal Formulation of Baicalein for the Treatment of Pancreatic Ductal Adenocarcinoma: Design, Characterization, and Evaluation. Pharmaceutics 2023;15. [PMID: 36678808 DOI: 10.3390/pharmaceutics15010179] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers so there is an urgent need to develop new drugs and therapies to treat it. Liposome-based formulations of naturally-derived bioactive compounds are promising anticancer candidates due to their potential for passive accumulation in tumor tissues, protection against payload degradation, and prevention of non-specific toxicity. We chose the naturally-derived flavonoid baicalein (BAI) due to its promising effect against pancreatic ductal adenocarcinoma (PDAC) and encapsulated it into a liposomal bilayer using the passive loading method, with an almost 90% efficiency. We performed a morphological and stability analysis of the obtained BAI liposomal formulation and evaluated its activity on two-dimensional and three-dimensional pancreatic cell models. As the result, we obtained a stable BAI-encapsulated liposomal suspension with a size of 100.9 nm ± 2.7 and homogeneity PDI = 0.124 ± 0.02, suitable for intravenous administration. Furthermore, this formulation showed high cytotoxic activity towards AsPC-1 and BxPC-3 PDAC cell lines (IC50 values ranging from 21 ± 3.6 µM to 27.6 ± 4.1 µM), with limited toxicity towards normal NHDF cells and a lack of hemolytic activity. Based on these results, this new BAI liposomal formulation is an excellent candidate for potential anti-PDAC therapy.
Collapse
|
3
|
|
Abbas Z, Kumar M, Tuli HS, Janahi EM, Haque S, Harakeh S, Dhama K, Aggarwal P, Varol M, Rani A, Sharma S. Synthesis, Structural Investigations, and In Vitro/In Silico Bioactivities of Flavonoid Substituted Biguanide: A Novel Schiff Base and Its Diorganotin (IV) Complexes. Molecules 2022;27. [PMID: 36558007 DOI: 10.3390/molecules27248874] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] Open
Abstract
Quercetin is one of the most powerful bioactive dietary flavonoids. The in vivo biological study of quercetin is extremely difficult due to its very low solubility. However, diorganotin complexes of quercetin are more useful when contrasted with quercetin due to increased solubility. In the present study, quercetin, substituted biguanide synthesized in the form of Schiff base and its di-alkyl/aryl tin (IV) complexes were obtained by condensing Schiff base with respective di-alkyl/aryl tin (IV) dichloride. Advanced analytical techniques were used for structural elucidation. The results of biological screening against Gram-positive/Gram-negative bacteria and fungi showed that these diorganotin (IV) derivatives act as potent antimicrobial agents. The in silico investigation with dihydropteroate (DHPS) disclosed a large ligand-receptor interaction and revealed a strong relationship between the natural exercises and computational molecular docking results.
Collapse
|
4
|
|
Huo M, Zhou J, Wang H, Zheng Y, Tong Y, Zhou J, Liu J, Yin T. A pHe sensitive nanodrug for collaborative penetration and inhibition of metastatic tumors. J Control Release 2022;352:893-908. [PMID: 36370879 DOI: 10.1016/j.jconrel.2022.11.012] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text]
Abstract
Current chemotherapies for metastatic tumors are seriously restricted by limited drug infiltration and deficient disturbance of metastasis-associated complex pathways involving tumor cell autocrine as well as paracrine loops in the microenvironment (TME). Of note, cancer-associated fibroblasts (CAFs) play a predominant role in shaping TME favoring drug resistance and metastasis. Herein, we constructed a tumor extracellular pH (pHe) sensitive methotrexate-chitosan conjugate (MTX-GC-DEAP) and co-assembled it with quercetin (QUE) to achieve co-delivered nanodrugs (MTX-GC-DEAP/QUE). The pHe sensitive protonation and disassembly enabled MTX-GC-DEAP/QUE for stroma-specific delivery of QUE and positive-charged MTX-GC-DEAP molecular conjugates, thereby achieving deep tumor penetration via the combination of QUE-mediated CAF inactivation and adsorption-mediated transcytosis. On the basis of significantly promoted drug availability, a strengthened "omnidirectional" inhibition of pre-metastatic initiation was generated both in vitro and in vivo from the CAF inactivation-mediated reversion of metastasis-promoting environments as well as the inhibition of epithelial-mesenchymal transition, local and blood vessel invasion via QUE-mediated direct regulation on tumor cells. Our tailor-designed versatile nanodrug provides a deep insight into potentiating multi-faceted penetration of multi-mechanism-based regulating agents for intensive metastasis inhibition.
Collapse
|
5
|
|
Hu Y, Li R, Jin J, Wang Y, Ma R. Quercetin improves pancreatic cancer chemo-sensitivity by regulating oxidative-inflammatory networks. J Food Biochem 2022;46:e14453. [PMID: 36181395 DOI: 10.1111/jfbc.14453] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text]
Abstract
Chemotherapy is the main method for controlling pancreatic cancer metastasis but the prevalent chemotherapy resistance limits its utilization. The response of oxidation and inflammation often promotes pancreatic cancer progression and chemo-resistance. It is critical to explore the potential natural products with few side effects to control inflammatory responses and understand the related mechanisms. Quercetin is a flavonoid widely found in numerous vegetables, fruits, and foods and is thought to have antioxidant and anti-inflammatory properties, which may be associated with improvement of chemotherapy sensitivity during pancreatic cancer treatment. Quercetin may sensitize pancreatic cancer cells to the chemotherapeutic agents, including bromodomain and extraterminal domain inhibitors (BETI), daunorubicin, gemcitabine, sulforaphane, doxorubicin, and tumor necrosis factor-related signaling apoptosis-inducing ligand (TRAIL). Meanwhile, during the chemo-resistance therapy, many signaling molecules are involved with toll-like receptor 4 (TLR4)-mediated oxidative and inflammatory pathway. The effects of quercetin on other oxidative and inflammatory pathways were also explored. Quercetin may exert antitumor activity during the prevention of pancreatic cancer progression by regulating oxidative and inflammatory networks, which can promote immune escape of cancer cells by inducing immunosuppressive cytokines. Studying these patterns will help us to better understand the functional role of quercetin in the improvement of pancreatic cancer chemo-sensitivity. PRACTICAL APPLICATIONS: Chemotherapy is the major way for treating pancreatic cancer metastasis but the prevalent chemotherapy resistance caused by oxidative and inflammatory responses limits its utilization. It is necessary to explore the potential natural products with few side effects to prevent the oxidative and inflammatory responses. Quercetin is a flavonoid widely found in numerous vegetables, fruits, and foods and is thought to have antioxidant and anti-inflammatory properties, which may be associated with improvement of chemotherapy sensitivity of pancreatic cancer treatment by sensitizing pancreatic cancer cells to various chemotherapeutic agents via the regulation of oxidative and inflammatory networks. Studying these patterns will help us to better understand the functional role of quercetin in the improvement of pancreatic cancer chemo-sensitivity.
Collapse
|
6
|
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Sukumar A, Patil M, Renu K, Dey A, Vellingiri B, George A, Ganesan R. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sci 2022;312:121211. [PMID: 36414089 DOI: 10.1016/j.lfs.2022.121211] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text]
Abstract
This review provides a detailed study of pancreatic cancer (PC) and the implication of different types of cancers concerning diabetes. The combination of anti-diabetic drugs with other anti-cancer drugs and phytochemicals can help prevent and treat this disease. PC cancer stem cells (CSCs) and how they migrate and develop into malignant tumors are discussed. A detailed explanation of the different mechanisms of diabetes development, which can enhance the pancreatic CSCs' proliferation by increasing the IGF factor levels, epigenetic modifications, DNA damage, and the influence of lifestyle factors like obesity, and inflammation, has been discussed. It also explains how cancer due to diabetes is associated with high mortality rates. One of the well-known diabetic drugs, metformin, can be combined with other anti-cancer drugs and prevent the development of PC and has been taken as one of the prime focus in this review. Overall, this paper provides insight into the relationship between diabetes and PC and the methods that can be employed to diagnose this disease at an earlier stage successfully.
Collapse
|
7
|
|
Cao C, Zhao W, Chen X, Shen B, Wang T, Wu C, Rong X. Deciphering the action mechanism of paeoniflorin in suppressing pancreatic cancer: A network pharmacology study and experimental validation. Front Pharmacol 2022;13:1032282. [PMID: 36339551 DOI: 10.3389/fphar.2022.1032282] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Background: Paeoniflorin (PF) is the main active component of Chinese herbaceous peony that has been shown to have an anti-tumor effect. However, there are few studies on the prevention and treatment of pancreatic cancer with PF. Methods: We gathered Microarray data pertaining to paeoniflorin intervention in pancreatic cancer by utilizing the GEO database (GSE97124). Then, the DEGs were filtered by the 33R program. RNA-seq data of pancreatic cancer and normal tissue samples were taken from the TCGA and GTEx databases, respectively, and the WGCNA technique was utilized to examine the pancreatic cancer-specific genes. Paeoniflorin target genes for the treatment of pancreatic cancer were determined based on the overlap between DEGs and WGCNA. GO and KEGG enrichment analyses were then performed on paeoniflorin target genes to discover which biological processes were impacted. Using the 3 hierarchical methods included in the Cytohubba plugin, we re-screened the hub genes in the target genes to find the genes most relevant to paeoniflorin treatment. The overall survival effects of hub genes were confirmed using the TCGA database. Finally, the paeoniflorin targets identified by the network pharmacology analysis were validated using PANC-1 and Capan-2 cells. Results: We identified 148 main potential PF targets, and gene enrichment analysis suggested that the aforementioned targets play a crucial role in the regulation of MAPK, PI3K-AKT, and other pathways. The further screening of the prospective targets resulted in the identification of 39 hub genes. Using the TCGA database, it was determined that around 33.33% of the hub gene’s high expression was linked with a bad prognosis. Finally, we demonstrated that PF inhibits IL-6 and IL-10 expression and p38 phosphorylation in pancreatic cancer cells, thereby reducing inflammation. Conclusion: PF may regulate inflammatory factors mainly through the p38 MAPK signal pathway. These findings provide theoretical and experimental evidence suggesting the PF as a promising natural source of anti-tumor compounds for pancreatic cancer.
Collapse
|
8
|
|
Liu K, Sun Q, Liu Q, Li H, Zhang W, Sun C. Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy. Biomed Pharmacother 2022;154:113618. [DOI: 10.1016/j.biopha.2022.113618] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] Open
|
9
|
|
Xia C, Chen D, Wang G, Sun H, Lin J, Chen C, Shen T, Cheng H, Pan C, Xu D, Yang H, Zhu Y, Zhu H, Tang M. Identification of Molecular Targets and Underlying Mechanisms of Xiaoji Recipe against Pancreatic Cancer Based on Network Pharmacology. Comput Math Methods Med 2022;2022:1-17. [PMID: 36118824 DOI: 10.1155/2022/4640849] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Traditional Chinese medicine (TCM) is applied in the anticancer adjuvant therapy of various malignancies and pancreatic cancer included. Xiaoji recipe consists several TCM materials with anticancer activities. In our work, we intended to analyze the molecular targets as well as the underlying mechanisms of Xiaoji recipe against pancreatic cancer. A total of 32 active components and 522 potential targets of Xiaoji recipe were selected using the TCMSP and SwissTargetPrediction databases. The potential target gene prediction in pancreatic cancer was performed using OMIM, Disgenet, and Genecards databases, and totally, 998 target genes were obtained. The component-disease network was constructed using the Cytoscape software, and 116 shared targets of pancreatic cancer and Xiaoji recipe were screened out. As shown in the protein–protein interaction (PPI) network, the top 20 hub genes such as TP53, HRAS, AKT1, VEGFA, STAT3, EGFR, and SRC were further selected by degree. GO and KEGG functional enrichment analysis revealed that Xiaoji recipe may affect pancreatic cancer progression by targeting the PI3K/AKT and MAPK signaling pathways. Moreover, we performed in vitro assays to explore the effect of Xiaoji recipe on pancreatic cancer cells. The results revealed that Xiaoji recipe suppressed the viability and migration and promoted the apoptosis of pancreatic cancer cells via the inactivation of PI3K/AKT, MAPK, and STAT3 pathways. The findings of our study suggested the potential of Xiaoji recipe in the targeting therapy of pancreatic cancer.
Collapse
|
10
|
|
Guo B, Chou F, Huang L, Yin F, Fang J, Wang JB, Jia Z. Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Crit Rev Food Sci Nutr 2022;:1-28. [PMID: 36037033 DOI: 10.1080/10408398.2022.2115456] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text]
Abstract
Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects ("polypharmacology") largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.
Collapse
|
11
|
|
Zalpoor H, Nabi-Afjadi M, Forghaniesfidvajani R, Tavakol C, Farahighasreaboonasr F, Pakizeh F, Dana VG, Seif F. Quercetin as a JAK-STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases. Cell Mol Biol Lett 2022;27:60. [PMID: 35883021 DOI: 10.1186/s11658-022-00355-3] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
The Janus kinase–signal transducer and activator of transcription (JAK–STAT) pathway is involved in many immunological processes, including cell growth, proliferation, differentiation, apoptosis, and inflammatory responses. Some of these processes can contribute to cancer progression and neurodegeneration. Owing to the complexity of this pathway and its potential crosstalk with alternative pathways, monotherapy as targeted therapy has usually limited long-term efficacy. Currently, the majority of JAK–STAT-targeting drugs are still at preclinical stages. Meanwhile, a variety of plant polyphenols, especially quercetin, exert their inhibitory effects on the JAK–STAT pathway through known and unknown mechanisms. Quercetin has shown prominent inhibitory effects on the JAK–STAT pathway in terms of anti-inflammatory and antitumor activity, as well as control of neurodegenerative diseases. This review discusses the pharmacological effects of quercetin on the JAK–STAT signaling pathway in solid tumors and neurodegenerative diseases.
Collapse
|
12
|
|
Qu M, Han T, Chen X, Sun Q, Li Q, Zhao M. Exploring potential targets of Actinidia chinensis Planch root against hepatocellular carcinoma based on network pharmacology and molecular docking and development and verification of immune-associated prognosis features for hepatocellular carcinoma. J Gastrointest Oncol 2022;13:1289-307. [PMID: 35837167 DOI: 10.21037/jgo-22-398] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the malignant tumors with the highest morbidity and mortality worldwide, and its prognosis remains a challenge. Actinidia chinensis Planch (ACP) root has good efficacy against HCC. This study aimed to explore the link between ACP and potential targets of HCC, and to develop a novel immune-based gene signature to predict HCC patient survival. Methods Transcriptome data and clinical information on HCC were obtained from The Cancer Genome Atlas (TCGA; HCC: 374, normal: 50) and International Cancer Genome Consortium (ICGC) database (HCC: 243, normal: 202). Combined with the 2,483 immune-related genes from the Immport database, we used the least absolute shrinkage and selection operator (LASSO) to construct a prognostic model. Patients were divided into high-risk and low-risk groups by the median of the risk scores of the TCGA cohort. Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves were used to estimate the predictability of the model in HCC prognosis, and carried out external validation based on ICGC cohort. We analyzed the correlation of this model with immune cells and immune checkpoint genes. Finally, molecular docking of these genes and the corresponding ACP components. Results We constructed a prognostic model composed of 3 immune-related genes [epidermal growth factor (EGF), baculoviral inhibitor of apoptosis repeat-containing protein 5 (BIRC5), and secreted phosphoprotein 1 (SPP1)]. And the high-risk group had a lower overall survival (OS) rate compared to the low-risk group (TCGA cohort: P=1.761e-05, ICGC cohort: P=8.716e-04). The outcomes of the AUC of ROC of prognostic risk model to predict for 1-, 2-, and 3-year OS: TCGA cohort: 0.749, 0.710, and 0.653 and ICGC cohort: 0.698, 0.736, and 0.753. Molecular docking results showed that quercetin had good binding activities with SPP1, BIRC5, and EGF, and ursolic acid (UA) and BIRC5 also had this feature. Conclusions Our study speculates that ACP root anti-HCC may be involved in the immune regulation of the body by targeting EGF, BIRC5 and SPP1, which possess great potential and value as early warning molecules for HCC. This model may provide a reference for individualized diagnosis and treatment for HCC patients.
Collapse
|
13
|
|
Lyu Y, Duan B, Liu Z, Yang F, Chen C, Jiang X, Liu X. Sparstolonin B inhibits pancreatic adenocarcinoma through the NF-κB signaling pathway. Exp Cell Res 2022;:113214. [PMID: 35594953 DOI: 10.1016/j.yexcr.2022.113214] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text]
Abstract
Pancreatic adenocarcinoma is a highly lethal malignant gastrointestinal tumor. Sparstolonin B is an isocoumarin whose anticancer activity has recently received increasing attention. This study aimed to investigate Sparstolonin B's potential antitumor effect on pancreatic adenocarcinoma. The effect of Sparstolonin B on pancreatic cancer target genes and molecular mechanism was predicted via network pharmacology; Sparstolonin B significantly decreased Panc-1 and SW1990 cell viability and effectively suppressed the proliferation, migration, and invasion of pancreatic cancer cells as shown by CCK-8, colony formation, and Transwell assays. Flow cytometry showed that it induced cell cycle arrest and apoptosis. Sparstolonin B also upregulated Bax levels but decreased those of MMP2 and Bcl-2, downregulated IκBα expression, and upregulated p65 and IκBα phosphorylation; however, it had no effect on total NF-κB p65 levels. The NF-κB pathway inhibitor QNZ reversed these effects. The treatment group (26 μmol/L) had reduced graft volume and weight and fewer Ki-67-positive cells than the control group. Therefore, Sparstolonin B can inhibit the growth and induce the apoptosis of pancreatic cancer cells via the NF-κB signaling pathway and may be a potential novel drug for pancreatic cancer treatment.
Collapse
|
14
|
|
Wang J, Zhang Y, Wang Q, Wang L, Zhang P. Study on the Potential Molecular Mechanism of Xihuang Pill in the Treatment of Pancreatic Cancer Based on Network Pharmacology and Bioinformatics. Evid Based Complement Alternat Med 2022;2022:4651432. [PMID: 35449823 DOI: 10.1155/2022/4651432] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Objective We aimed to analyze the possible molecular mechanism of Xihuang pill (XHP) in the treatment of pancreatic cancer based on methods of network pharmacology, molecular docking, and bioinformatics. Methods The main active components and targets were obtained through the TCMSP database, the BATMAN-TCM database, and the Chemistry database. The active ingredients were screened according to the “Absorption, Distribution, Metabolism, Excretion” (ADME) principle and supplemented with literature. We searched GeneCards, OMIM, TTD, and DrugBank databases for pancreatic cancer targets. The targets of disease and ingredients were intersected to obtain candidate key targets. Then, we constructed a protein-protein interaction (PPI) network for protein interaction analysis and a composition-key target map to obtain essential effective ingredients. Metascape was used to perform functional enrichment analysis to screen critical targets and pathways. The expression and prognosis of key targets were examined and analyzed, and molecular docking was carried out. Results A total of 52 active ingredients of XHP, 121 candidate targets, and 52 intersecting targets were obtained. The core active ingredients of XHP for the treatment of pancreatic cancer were quercetin, 17-β-estradiol, ursolic acid, and daidzein. The core targets were EGFR, ESR1, MAPK1, MAPK8, MAPK14, TP53, and JUN, which were highly expressed genes of pancreatic cancer. Among them, EGFR and MAPK1 were significantly correlated with the survival of pancreatic cancer patients. The key pathway was the EGFR/MAPK pathway. The molecular docking results indicated that four active compositions had good binding ability to key targets. Conclusion The molecular mechanism of XHP for the treatment of pancreatic cancer involved multiple components, multiple targets, and multiple pathways. This research theoretically elucidated the ameliorative effect of XHP against pancreatic cancer and might provide new ideas for further research on the treatment of pancreatic cancer.
Collapse
|
15
|
|
Hu J, Jiang J, Liu R, Cheng M, Zhu G, He S, Shi B, Zhao Y, He Z, Yu H, Zhang X, Zheng H, Hua B. Clinical Efficacy and Safety of Traditional Medicine Preparations Combined With Chemotherapy for Advanced Pancreatic Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022;12:828450. [PMID: 35280766 DOI: 10.3389/fonc.2022.828450] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Background Traditional medicine preparations (TMPs) combined with chemotherapy is widely used for patients with advanced pancreatic cancer (APC); however, its efficacy and safety are still unclear. The purpose of this meta-analysis was to evaluate the clinical efficacy and safety of TMPs combined with chemotherapy for the treatment of APC. Methods A systematic search of eight electronic databases for randomized controlled trials (RCTs) was conducted from inception to October 15, 2021. Tumor response was identified as primary outcome, whereas quality of life (QoL), cancer biomarkers, and adverse drug reactions (ADRs) were identified as secondary outcomes. Quality of the evidence for each outcome was evaluated by GRADE profiler. Results In total, 31 RCTs involving 1,989 individuals were included. This meta-analysis showed that TMPs combined with chemotherapy significantly improved the objective response rate (ORR) (RR=1.64, 95% CI [1.43 to 1.88], p <0.00001), disease control rate (DCR) (RR=1.29, 95% CI [1.21 to 1.38], p <0.00001), and QoL (continuous data: SMD=0.81, 95% CI [0.44 to 1.18], p <0.0001, dichotomous data: RR=1.44, 95% CI [1.22 to 1.70], p<0.0001), compared to those with chemotherapy alone. In addition, the combined treatment group also had lower levels of CA19-9 (SMD=-0.46, 95% CI [-0.90 to -0.02], p=0.04) and CEA (SMD=-0.55, 95% CI [-0.93 to -0.17], p=0.004). Moreover, TMPs reduced the ADRs during chemotherapy. Conclusion This systematic review suggests that TMPs combined with chemotherapy might be a potential option to enhance therapeutic effects and reduce ADRs during the treatment of APC. However, more high-quality randomized controlled trials with more participants are needed. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=209825, identifier PROSPERO Number: CRD42021264938.
Collapse
|
16
|
|
Triantafillidis JK, Triantafyllidi E, Sideris M, Pittaras T, Papalois AE. Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients 2022;14:619. [PMID: 35276978 DOI: 10.3390/nu14030619] [Cited by in Crossref: 4] [Cited by in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] Open
Abstract
Background: Pancreatic cancer represents the most lethal malignancy among all digestive cancers. Despite the therapeutic advances achieved during recent years, the prognosis of this neoplasm remains disappointing. An enormous amount of experimental (mainly) and clinical research has recently emerged referring to the effectiveness of various plants administered either alone or in combination with chemotherapeutic agents. Apart from Asian countries, the use of these plants and herbals in the treatment of digestive cancer is also increasing in a number of Western countries as well. The aim of this study is to review the available literature regarding the efficacy of plants and herbals in pancreatic cancer. Methods: The authors have reviewed all the experimental and clinical studies published in Medline and Embase, up to June 2021. Results: More than 100 plants and herbals were thoroughly investigated. Favorable effects concerning the inhibition of cancer cell lines in the experimental studies and a favorable clinical outcome after combining various plants with established chemotherapeutic agents were observed. These herbals and plants exerted their activity against pancreatic cancer via a number of mechanisms. The number and severity of side-effects are generally of a mild degree. Conclusion: A quite high number of clinical and experimental studies confirmed the beneficial effect of many plants and herbals in pancreatic cancer. More large, double-blind clinical studies assessing these natural products, either alone or in combination with chemotherapeutic agents should be conducted.
Collapse
|