1
|
Kurt A, Çıkman AŞ, Balaban E, Gümrükçü Z, Mercantepe T, Tümkaya L, Karabağ M. The effects of mineral trioxide aggregate and second-generation autologous growth factor on pulpotomy via TNF-α and NF-kβ/p65 pathways. BMC Oral Health 2024; 24:890. [PMID: 39097700 PMCID: PMC11297787 DOI: 10.1186/s12903-024-04577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 08/05/2024] Open
Abstract
This study aims to investigate the effect of Mineral Trioxide Aggregate (MTA), a bioactive endodontic cement, and Concentrated Growth Factor (CGF), a second-generation autologous growth factor, on pulpotomy-induced pulp inflammation. The study utilized the maxillary anterior central teeth of thirty-six young male Sprague Dawley rats. Forty-eight teeth were randomly assigned to two groups (12 rats/group; 24 teeth/group) based on the capping material (MTA or CGF). Subsequently, two subgroups (MTAG and CGFG) were formed per group (12 teeth/group) based on the time following pulpotomy (2-weeks and 4-weeks). The central teeth of the 12 animals assigned to the control group (CG) were not manipulated in any way, both in the 2-week group and in the 4-week group. Tissue samples extracted from rats at the end of the experiment were stained with H&E for histopathological analysis. For immunohistochemical analysis, primary antibodies for TNF-α and NF-kβ/65 were incubated. Data obtained from semi-quantitative analysis were assessed for normal distribution using Skewness-Kurtosis values, Q-Q plot, Levene's test, and the Shapiro-Wilk test on statistical software. A P value < 0.05 was considered significant. When compared with the control group, both MTAG and CGFG showed increased edematous and inflammatory areas. In MTAG, edematous and inflammatory areas decreased significantly from the 2nd week (2(2-2), 2(1-2)) to the 4th week (1(1-1), 1(0-1)), while in CGFG, edematous areas decreased (2(2-3), 1.5(1-2)), and inflammatory areas increased significantly (2(2-3), 3(2-2.5)). When compared with the control group, TNF-α and NF-kβ/p65 positivity were higher in both MTAG and CGFG. In MTAG, TNF-α [2(1.5-2)] and NF-kβ/p65 [1.5(1-2)] positivity decreased significantly from the 2nd week to the 4th week [TNF-α: 1(1-1), NF-kβ/p65: 1(1-2)], while no significant change was observed in CGFG. In conclusion, this study revealed a reduction in cells showing TNF-α and NF-kβ/p65 positivity in the MTA treatment group compared to the CGF group. Although MTA demonstrated more favorable results than CGF in mitigating pulpal inflammation within the scope of this study, further experimental and clinical investigations are warranted to obtain comprehensive data regarding CGF.
Collapse
Affiliation(s)
- Ayça Kurt
- Department of Pediatric Dentistry, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey.
| | - Ahter Şanal Çıkman
- Department of Endodontics, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Emre Balaban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Zeynep Gümrükçü
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Tolga Mercantepe
- Departments of Histology and Embryology, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Levent Tümkaya
- Departments of Histology and Embryology, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Mert Karabağ
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| |
Collapse
|
2
|
Huang X, Ge X, Fu W, Zhang Z, Xiao K, Lv H. Effects of Novel Nanoparticulate Bioceramic Endodontic Material on Human Dental Pulp Stem Cells In Vitro. Int Dent J 2024; 74:482-491. [PMID: 38431469 PMCID: PMC11123531 DOI: 10.1016/j.identj.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the in vitro effects of root canal filling and repair paste (nRoot BP) on human dental pulp stem cells (hDPSCs). METHODS The effects of nRoot BP and iRoot BP Plus on the adhesion, proliferation, migration, and differentiation of hDPSCs were examined in vitro for 72 hours. The adhesion of cells was observed using immunofluorescence rhodamine ghost pen cyclic peptide staining and scanning electron microscopy (SEM). Cell density and changes in migration area were measured under a fluorescence inverted microscope. Fluorescent quantitative PCR was performed to detect genes related to odontogenesis and osteogenesis. RESULTS Cells adhering to the surfaces of nRoot BP and iRoot BP Plus exhibited similar irregular polygonal morphologies, with cells extending irregular pseudopods to adhere to the materials. CCK-8 results indicated that the density of living cells for nRoot BP and iRoot BP Plus was lower than that of the blank control group at 3 and 5 days of culture. There was no significant difference in cell migration between the groups (P > .05). The migration ability of iRoot BP Plus and nRoot BP was similar to that of the control group. Both nRoot BP and iRoot BP Plus increased the expression of the RUNX2 gene, but there was no significant difference between the groups (P < .05). Furthermore, both nRoot BP and iRoot BP Plus downregulated the expression of the DSPP gene, with no significant difference between them (P > .05). CONCLUSIONS nRoot BP exhibited a slight inhibition of hDPSC proliferation but did not affect the adhesion and migration of hDPSCs. The impact of nRoot BP on the osteogenic and odontogenic differentiation of hDPSCs was similar to that of iRoot BP Plus.
Collapse
Affiliation(s)
- Xinhui Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Xinting Ge
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Weihao Fu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Zonghao Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Kuancheng Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Hongbing Lv
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; School and Hospital of Stomatology, Fujian Medical University, China.
| |
Collapse
|
3
|
Rodas-Junco BA, Hernández-Solís SE, Serralta-Interian AA, Rueda-Gordillo F. Dental Stem Cells and Lipopolysaccharides: A Concise Review. Int J Mol Sci 2024; 25:4338. [PMID: 38673923 PMCID: PMC11049850 DOI: 10.3390/ijms25084338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Dental tissue stem cells (DTSCs) are well known for their multipotent capacity and regenerative potential. They also play an important role in the immune response of inflammatory processes derived from caries lesions, periodontitis, and gingivitis. These oral diseases are triggered by toxins known as lipopolysaccharides (LPS) produced by gram-negative bacteria. LPS present molecular patterns associated with pathogens and are recognized by Toll-like receptors (TLRs) in dental stem cells. In this review, we describe the effect of LPS on the biological behavior of DTSCs. We also focus on the molecular sensors, signaling pathways, and emerging players participating in the interaction of DTSCs with lipopolysaccharides. Although the scientific advances generated provide an understanding of the immunomodulatory potential of DTSCs, there are still new reflections to explore with regard to their clinical application in the treatment of oral inflammatory diseases.
Collapse
Affiliation(s)
- Beatriz A. Rodas-Junco
- CONAHCYT–Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, Mérida CP 97203, Yucatán, Mexico
- Laboratorio Traslacional de Células Troncales de la Cavidad Bucal, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico;
| | - Sandra E. Hernández-Solís
- Departamento de Microbiología Oral y Biología Molecular, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico; (S.E.H.-S.); (F.R.-G.)
| | - Angelica A. Serralta-Interian
- Laboratorio Traslacional de Células Troncales de la Cavidad Bucal, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico;
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, Mérida CP 97203, Yucatán, Mexico
| | - Florencio Rueda-Gordillo
- Departamento de Microbiología Oral y Biología Molecular, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico; (S.E.H.-S.); (F.R.-G.)
| |
Collapse
|
4
|
Lampiasi N. The Migration and the Fate of Dental Pulp Stem Cells. BIOLOGY 2023; 12:biology12050742. [PMID: 37237554 DOI: 10.3390/biology12050742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) obtained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts, osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and regeneration. In fact, DPSCs, depending on the microenvironmental signals, can differentiate into odontoblasts and regenerate dentin or, when transplanted, replace/repair damaged neurons. Cell homing depends on recruitment and migration, and it is more effective and safer than cell transplantation. However, the main limitations of cell homing are the poor cell migration of MSCs and the limited information we have on the regulatory mechanism of the direct differentiation of MSCs. Different isolation methods used to recover DPSCs can yield different cell types. To date, most studies on DPSCs use the enzymatic isolation method, which prevents direct observation of cell migration. Instead, the explant method allows for the observation of single cells that can migrate at two different times and, therefore, could have different fates, for example, differentiation and self-renewal. DPSCs use mesenchymal and amoeboid migration modes with the formation of lamellipodia, filopodia and blebs, depending on the biochemical and biophysical signals of the microenvironment. Here, we present current knowledge on the possible intriguing role of cell migration, with particular attention to microenvironmental cues and mechanosensing properties, in the fate of DPSCs.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
5
|
Kamano Y, Terajima N, Chiba Y, Suresh VV, Saito M. Japanese Laws and the Current Status of Regenerative Medicine in the Tohoku Region. J Contemp Dent Pract 2023; 24:120-128. [PMID: 37272144 DOI: 10.5005/jp-journals-10024-3487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
AIM The aim of this study was to review Japanese laws regarding regenerative medicine and the current status of clinical application of regenerative medicine, to learn about the advantages and problems, and to thereby serve as a reference for measures necessary for the development of regenerative medicine. BACKGROUND Regenerative medicine started in 1957 with the transplantation of hematopoietic stem cells, followed by the establishment of embryonic stem cells in 1981 and induced pluripotent stem cells in 2006, and continues to evolve progressively. At the same time, however, problems have emerged due to lax legal regulations, such as the use of treatments that lack scientific evidence. REVIEW RESULTS The Japanese government enacted two laws to regulate regenerative medicine: the Law to Ensure the Safety of Regenerative Medicine and the Amend the Pharmaceutical Affairs Law in 2013. These laws were enacted with the aim of providing safe regenerative medicine promptly and smoothly and developing many regenerative medicine products. In these laws, regenerative medicine is defined as medical treatment that restores lost functions of damaged organs and tissues with the help of cellular and tissue-based products. Nowadays, there are two major methods of regenerative medicine. One representative method involves the transplantation of devices that activates self-regenerative ability by introducing living cells into patients' body. The other method is the activation and differentiation of endogenous stem cells with cell growth and differentiation factors. CONCLUSION The current status of regenerative medicine in the Tohoku region after the enactment of these laws is described in detail. This clarified the advantages and disadvantages associated with regenerative medicine as it is currently practiced in Japan. CLINICAL SIGNIFICANCE Development of regenerative medicine in dentistry will be advanced by learning about its clinical application in medicine.
Collapse
Affiliation(s)
- Yuya Kamano
- Tohoku Health and Welfare Bureau, Ministry of Health, Labour and Welfare, 1-1-20 Kakyoin, Aoba-ku, Sendai, Miyagi, 981-0952, Japan, Phone: +81 227269263, e-mail:
| | - Noboru Terajima
- Tohoku Health and Welfare Bureau, Ministry of Health, Labour and Welfare, 1-1-20 Kakyoin, Aoba-ku, Sendai, Miyagi, 981-0952, Japan
| | - Yuta Chiba
- Tohoku Health and Welfare Bureau, Ministry of Health, Labour and Welfare, 1-1-20 Kakyoin, Aoba-ku, Sendai, Miyagi, 981-0952, Japan
| | - Venkata V Suresh
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masahiro Saito
- Division of Operative Dentistry, Department of Ecological Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|