1
|
Rodsuwan U, Thumthanaruk B, Vatanyoopaisarn S, Thisayakorn K, Zhong Q, Panjawattanangkul S, Rungsardthong V. Microencapsulation of gamma oryzanol using inulin as wall material by spray drying: optimization of formulation and characterization of microcapsules. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2177-2184. [PMID: 39397847 PMCID: PMC11464926 DOI: 10.1007/s13197-024-05988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/18/2024] [Accepted: 04/10/2024] [Indexed: 10/15/2024]
Abstract
Gamma oryzanol (GO) is the rice bioactive compound which presents various therapeutic effects. However, GO is relatively unstable to environmental factors during processing and storage. The objective of this work was to produce GO microparticles encapsulated with inulin and Tween80 (GOINs) by spray-drying. Response surface analysis was used for the optimization of the encapsulation to get maximum % encapsulation efficiency (%EE) of GO. Three process variables for the concentration of 10-20% inulin (w/v), 3-5% Tween 80 (w/v), and 3-5% GO (w/v) were investigated. Quadratic polynomial regression model for the optimization with R2 at 0.92 was obtained from the study The optimum condition was 20% inulin (w/v), 3% Tween 80 (w/v), and 3% GO (w/v) which yielded a high % EE of 82.63% and particles size at 1,154.60 ± 28.85 nm Fourier transform infrared spectroscopy demonstrated that GO was encapsulated inside the inulin matrix. Our study provided potential and improved hygroscopicity ranged from 6.51 to 10.22 g H2O/100 g dry weight of GO in spray-dried microcapsules. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05988-0.
Collapse
Affiliation(s)
- Ubonphan Rodsuwan
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, 10800 Thailand
| | - Benjawan Thumthanaruk
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, 10800 Thailand
| | - Savitri Vatanyoopaisarn
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, 10800 Thailand
| | - Krittiya Thisayakorn
- Expert Center of Innovative Herbal Products (InnoHerb), Thailand Institute of Scientific and Technological Research (TISTR), Pathum Thani, 12120 Thailand
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN 37996 USA
| | | | - Vilai Rungsardthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, 10800 Thailand
| |
Collapse
|
2
|
Blejan AM, Nour V, Corbu AR, Codină GG. Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Stirred Yogurt. Gels 2024; 10:616. [PMID: 39451268 PMCID: PMC11507111 DOI: 10.3390/gels10100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Fruit processing by-products could represent a sustainable ingredient for developing innovative dairy products. The present study was conducted to develop a novel functional yogurt by adding bilberry pomace powder (BPP) at 0.5%, 1.0%, and 1.5% (w/w) levels in stirred-type yogurt production to confer color and to increase the dietary fiber and polyphenol content. Physicochemical properties of the yogurt samples, including color parameters, titratable acidity, pH, water holding capacity (WHC), and syneresis, as well as textural and rheological properties, were evaluated in yogurts on the 1, 14, and 28 days of refrigerated storage (4 °C). In addition, total phenolic content, total anthocyanin content, and radical scavenging activity were determined in yogurts, and sensory analysis was conducted. The results showed that BPP is a valuable source of polyphenols, dietary fiber, and oils rich in n-3 polyunsaturated fatty acids (n-3 PUFAs, n-6/n-3 ratio = 0.91). The incorporation of BPP imparted an attractive purple color to the yogurts, increased WHC, and reduced syneresis. Moreover, the addition of BPP improved the rheological properties, demonstrating that a more dense and stable yogurt gel network structure was obtained than the control. The yogurt enriched with 1.0% BPP received the highest scores for color, consistency, taste, and overall acceptability. Hence, bilberry pomace powder might be used as an ingredient to improve the nutritional and functional value of yogurts.
Collapse
Affiliation(s)
- Ana Maria Blejan
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Violeta Nour
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
3
|
Sarıtaş S, Portocarrero ACM, Miranda López JM, Lombardo M, Koch W, Raposo A, El-Seedi HR, de Brito Alves JL, Esatbeyoglu T, Karav S, Witkowska AM. The Impact of Fermentation on the Antioxidant Activity of Food Products. Molecules 2024; 29:3941. [PMID: 39203019 PMCID: PMC11357363 DOI: 10.3390/molecules29163941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
From ancient times to the present day, fermentation has been utilized not only for food preservation but also for enhancing the nutritional and functional properties of foods. This process is influenced by numerous factors, including the type of microorganisms used, substrate composition, pH, time, and temperature, all of which can significantly alter the characteristics of the final product. Depending on the parameters, fermentation enhances the bioactive content of the products and imparts the necessary properties, such as antioxidant characteristics, for the products to be considered functional. The enhancement of these properties, particularly antioxidant activity, enriches foods with bioactive compounds and functional attributes, contributing to improved health benefits. Through a review of recent research, this study elucidates how different fermentation processes can enhance the bioavailability and efficacy of antioxidants, thereby improving the nutritional and functional qualities of foods. This study investigated the multifaceted effects of fermentation on antioxidant properties by exploring various types and conditions of fermentation. It highlights specific examples from dairy products and other food categories as well as the valorization of food waste and byproducts. The findings underscore the potential of fermentation as a sustainable method to produce health-promoting foods with elevated antioxidant activities, offering new perspectives for food science and technology.
Collapse
Affiliation(s)
- Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Alicia C. Mondragon Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.C.M.P.); (J.M.M.L.)
| | - Jose M. Miranda López
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (A.C.M.P.); (J.M.M.L.)
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di 11 Val Cannuta 247, 00166 Rome, Italy;
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Hesham R. El-Seedi
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia;
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil;
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfired Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
4
|
Cano-Gómez CI, Alonso-Castro AJ, Carranza-Alvarez C, Wong-Paz JE. Advancements in Litchi chinensis Peel Processing: A Scientific Review of Drying, Extraction, and Isolation of Its Bioactive Compounds. Foods 2024; 13:1461. [PMID: 38790761 PMCID: PMC11119950 DOI: 10.3390/foods13101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This article systematically reviews the advancements in processing litchi peel (Litchi chinensis), emphasizing drying, extraction, purification methods, and the potential of bioactive compounds obtained from litchi peel. This work also highlights the impact of various drying techniques on phytochemical profiles, focusing on how methods such as hot air and freeze-drying affect the preservation of bioactive compounds. The study delves into extraction methods, detailing how different solvents and techniques influence the efficiency of extracting bioactive compounds from litchi peel. Furthermore, the purification and characterization of active compounds, showcasing the role of chromatographic techniques in isolating specific bioactive molecules, is discussed. Biological properties and mechanisms of action, such as antioxidant, antihyperglycemic, cardioprotective, hepatoprotective, anti-atherosclerotic, and anticancer activities, are reviewed, providing insight into the potential health benefits of litchi peel compounds. This review highlights the importance of optimizing and selecting accurate drying and extraction methods to maximize the therapeutic effects of litchi peel and its bioactive compounds. This review also reveals the broad pharmacological potential of the isolated compounds, underscoring the need for further research to discover their specific actions and health benefits.
Collapse
Affiliation(s)
- Christian Iván Cano-Gómez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Cd. Valles, San Luis Potosi 79080, Mexico; (C.I.C.-G.); (C.C.-A.)
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36250, Mexico;
| | - Candy Carranza-Alvarez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Cd. Valles, San Luis Potosi 79080, Mexico; (C.I.C.-G.); (C.C.-A.)
| | - Jorge E. Wong-Paz
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Cd. Valles, San Luis Potosi 79080, Mexico; (C.I.C.-G.); (C.C.-A.)
| |
Collapse
|
5
|
Singh J, Kaur HP, Verma A, Chahal AS, Jajoria K, Rasane P, Kaur S, Kaur J, Gunjal M, Ercisli S, Choudhary R, Bozhuyuk MR, Sakar E, Karatas N, Durul MS. Pomegranate Peel Phytochemistry, Pharmacological Properties, Methods of Extraction, and Its Application: A Comprehensive Review. ACS OMEGA 2023; 8:35452-35469. [PMID: 37810640 PMCID: PMC10551920 DOI: 10.1021/acsomega.3c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 10/10/2023]
Abstract
Pomegranate peel, derived from the processing of Punica granatum L. (pomegranate), has traditionally been considered agricultural waste. However, recent studies have revealed its potential as a rich source of bioactive compounds with diverse pharmacological effects. Pomegranate peel is a rich reservoir of antioxidants, polyphenols, dietary fiber, and vitamins, which contribute to its remarkable bioactivity. Studies have demonstrated the anti-inflammatory, cardioprotective, wound healing, anticancer, and antimicrobial properties of pomegranate peel owing to the presence of phytochemicals, such as gallic acid, ellagic acid, and punicalagin. The extraction of bioactive compounds from pomegranate peel requires a careful selection of techniques to maximize the yield and quality. Green extraction methods, including pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzyme-assisted extraction (EAE), offer efficient and sustainable alternatives to traditional methods. Furthermore, pomegranate peel has been utilized in the food industry, where it can significantly enhance the nutritional value, organoleptic characteristics, and shelf life of food products. Pomegranate peel has the potential to be used to develop innovative functional foods, nutraceuticals, and other value-added products, providing new opportunities for the pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
- Jyoti Singh
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Hamita Preet Kaur
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Anjali Verma
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Arshminder Singh Chahal
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kaushal Jajoria
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Prasad Rasane
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sawinder Kaur
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jaspreet Kaur
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mahendra Gunjal
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Türkiye
- HGF
Agro, ATA Teknokent, 25240 Erzurum, Türkiye
| | - Ravish Choudhary
- Division
of Seed Science and Technology, ICAR-Indian
Agricultural Research Institute, New Delhi 110012, India
| | | | - Ebru Sakar
- Department
of Horticulture, Faculty of Agriculture, Harran University, 63290 Sanliurfa, Türkiye
| | - Neva Karatas
- Department
of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, 25240 Erzurum, Türkiye
| | | |
Collapse
|
6
|
Ali A, Javaid MT, Tazeddinova D, Khan A, Mehany T, Djabarovich TA, Siddique R, Khalid W, Tariq T, Lai WF. Optimization of spray dried yogurt and its application to prepare functional cookies. Front Nutr 2023; 10:1186469. [PMID: 37229469 PMCID: PMC10204867 DOI: 10.3389/fnut.2023.1186469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Spray-dried yogurt powder (SDYP) has shelf stability and other functional properties that improve solubility and facilitate the use, processing, packaging, and transportation of other food derivatives, such as bread and pastries on a large scale. The present research was conducted to develop SDYP and further its utilization to prepare functional cookies. Methods Yogurt was spray-dried by employing different outlet air temperatures (OAT) (65°C, 70°C & 75°C) and inlet air temperature (IAT) (150°C, 155°C & 160°C). Spray drying shows that increasing the temperature increases nutritional loss, whereas S. thermophilus culture shows resistance to the intensive heat approaches. On the other hand L. delbrueckii subsp. Bulgaricus culture was found to be significantly affected. A total of 4 treatments, including one control for the functional cookies development. Results and discussion A directly proportional relation was investigated between the increasing concentration of SDYP and baking characteristics and cookie's mineral and protein profile. Bioactive parameters like antioxidant activity of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and total phenolic content (TPC) were also affected significantly. The sensory profile shows an incline towards T0 (0% SDYP) to T3 (10% SDYP) in all attributes but starts to decline when the concentration of SDYP reaches 15%. This study suggests that by employing a certain combination of temperatures (OAT: 60°C IAT: 150°C); maximum survival of inoculated culture can be achieved, and this powder can be utilized in the development of functional cookies with enhanced sensory as well as biochemical characteristics significantly (P< 0.05).
Collapse
Affiliation(s)
- Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Food and Nutrition Society, Gilgit Baltistan, Pakistan
| | | | | | - Ahmal Khan
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | | | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waseem Khalid
- University Institute of Food Science and Technology, The University of Lahore, Lahore, Pakistan
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Kim J, Kim M, Choi I. Physicochemical Characteristics, Antioxidant Properties and Consumer Acceptance of Greek Yogurt Fortified with Apple Pomace Syrup. Foods 2023; 12:foods12091856. [PMID: 37174394 PMCID: PMC10178675 DOI: 10.3390/foods12091856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Despite having high polyphenolic phytochemicals and functional components, apple pomace (AP) is often discarded in landfills, leading to pollution. The study aimed to find a sustainable application for AP in Greek yogurt fortified with AP syrup (APS). Physicochemical characteristics and antioxidant properties were analyzed for APS (APS0.00, APS1.25, APS2.50, APS3.75, APS5.00). As the AP content in the syrup increased, moisture content, titratable acidity, and viscosity significantly increased (p < 0.05). The total polyphenols and flavonoid content of APS increased with increasing AP content. In Greek yogurt fortified with APS (APY), reducing sugar content (0.55 mg/mL to 0.71 mg/mL) significantly increased with fermentation time and AP content, whereas pH level (6.85 to 4.28) decreased. The antioxidant activities by DPPH radical scavenging activity, ABTS radical scavenging activity, ferric reducing antioxidant power, and reducing power were also significantly increased with the AP content and fermentation time. In the consumer acceptance test of APY, APY1.25 had significantly high scores in overall acceptance, taste acceptance, and aftertaste acceptance with purchase intent (p < 0.05). The Greek yogurt fortified with APS as functional food had improved antioxidant properties and consumer acceptance, suggesting the possibility of developing sustainable AP products.
Collapse
Affiliation(s)
- Jisoo Kim
- Department of Food and Nutrition, Wonkwang University, Iksandae-ro, Iksan 54538, Republic of Korea
| | - Moonsook Kim
- Department of Food and Nutrition, Wonkwang Health Science University, 514, Iksandae-ro, Iksan 54538, Republic of Korea
| | - Ilsook Choi
- Department of Food and Nutrition, Wonkwang University, Iksandae-ro, Iksan 54538, Republic of Korea
| |
Collapse
|
8
|
Saleem M, Tahir A, Ahmed M, Khan A, Burak LC, Hussain S, Song L. Development of functional yogurt by using freeze-drying on soybean and mung bean peel powders. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1083389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
IntroductionPlant-based yogurt has earned much interest in current times due to the rising demand for milk substitutes, which is tied to ethical and health needs.MethodsFreeze-drying impact on soybean peel powder (SPP) and mung bean peel powder (MPP) and their use in creating functional yogurt at various concentrations was checked. In functional yogurt, total flavonoid content (TFC), total phenolic content (TPC), antioxidant activity and chemical profile are checked.ResultsThe maximum concentration of TPC was 4.65±0.05 (mg GAE/g), TFC was 1.74±0.05 (CE mg/g) and 82.99 ± 0.02 % antioxidant activity was calculated in sample T6, having the highest concentration of SPP, which was substantially more significant than the treatment samples containing MPP. Sensory attributes of the yogurt samples were analyzed, which indicated a decrease when SPP and MPP values increased when introduced at 3 or 6 % of an optimum level. There was no notable loss of the sensory profile compared to the control group. The results were found to be significant at p < 0.05. The freeze-dried SPP had the complete chemical composition compared to MPP except for ash and fiber content.DiscussionThe physicochemical profile of the treatments of functional yogurt had a linear proportional connection in the percentage of both powders in the meantime. When both the dry level of powders increased, the protein and fat levels decreased. In the food industry, the freeze-dried soybean peel and the peel of mung bean can be utilized in functional yogurt as a source of bioactive components.
Collapse
|
9
|
Szabo K, Mitrea L, Călinoiu LF, Teleky BE, Martău GA, Plamada D, Pascuta MS, Nemeş SA, Varvara RA, Vodnar DC. Natural Polyphenol Recovery from Apple-, Cereal-, and Tomato-Processing By-Products and Related Health-Promoting Properties. Molecules 2022; 27:7977. [PMID: 36432076 PMCID: PMC9697562 DOI: 10.3390/molecules27227977] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Polyphenols of plant origin are a broad family of secondary metabolites that range from basic phenolic acids to more complex compounds such as stilbenes, flavonoids, and tannins, all of which have several phenol units in their structure. Considerable health benefits, such as having prebiotic potential and cardio-protective and weight control effects, have been linked to diets based on polyphenol-enriched foods and plant-based products, indicating the potential role of these substances in the prevention or treatment of numerous pathologies. The most representative phenolic compounds in apple pomace are phloridzin, chlorogenic acid, and epicatechin, with major health implications in diabetes, cancer, and cardiovascular and neurocognitive diseases. The cereal byproducts are rich in flavonoids (cyanidin 3-glucoside) and phenolic acids (ferulic acid), all with significant results in reducing the incidence of noncommunicable diseases. Quercetin, naringenin, and rutin are the predominant phenolic molecules in tomato by-products, having important antioxidant and antimicrobial activities. The present understanding of the functionality of polyphenols in health outcomes, specifically, noncommunicable illnesses, is summarized in this review, focusing on the applicability of this evidence in three extensive agrifood industries (apple, cereal, and tomato processing). Moreover, the reintegration of by-products into the food chain via functional food products and personalized nutrition (e.g., 3D food printing) is detailed, supporting a novel direction to be explored within the circular economy concept.
Collapse
Affiliation(s)
- Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Diana Plamada
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mihaela Stefana Pascuta
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Ahmad I, Hao M, Li Y, Jianyou Z, Yuting D, Lyu F. Fortification of yogurt with bioactive functional foods and ingredients and associated challenges - A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Manzoor MF, Arif Z, Kabir A, Mehmood I, Munir D, Razzaq A, Ali A, Goksen G, Coşier V, Ahmad N, Ali M, Rusu A. Oxidative stress and metabolic diseases: Relevance and therapeutic strategies. Front Nutr 2022; 9:994309. [PMID: 36324618 PMCID: PMC9621294 DOI: 10.3389/fnut.2022.994309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic syndrome (MS) is a prominent cause of death worldwide, posing a threat to the global economy and public health. A mechanism that causes the oxidation of low-density lipoproteins (LDL) is associated with metabolic abnormalities. Various processes are involved in oxidative stress (OS) of lipoprotein. Although the concept of the syndrome has been fiercely debated, this confluence of risk factors is associated with a higher chance of acquiring type 2 diabetes mellitus (T2DM) and atherosclerosis. Insulin resistance has been found to play a significant role in the progression of these metabolism-associated conditions. It causes lipid profile abnormalities, including greater sensitivity to lipid peroxidation, contributing to the increased prevalence of T2DM and atherosclerosis. This review aims to cover the most recent scientific developments in dietary OS, the consequence of metabolic disorders, and their most significant clinical manifestations (T2DM and atherosclerosis). It will also emphasize the effects of dietary approaches in alleviating OS in MS.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zaira Arif
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Asifa Kabir
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra Mehmood
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Danial Munir
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Aqsa Razzaq
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Viorica Coşier
- Genetics and Genetic Engineering Department, Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Nazir Ahmad
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
- *Correspondence: Nazir Ahmad
| | - Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Murtaza Ali
| | - Alexandru Rusu
- Genetics and Genetic Engineering Department, Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Rusu
| |
Collapse
|
12
|
The Disposition of Bioactive Compounds from Fruit Waste, Their Extraction, and Analysis Using Novel Technologies: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fruit waste contains several bioactive components such as polyphenols, polysaccharides, and numerous other phytochemicals, including pigments. Furthermore, new financial opportunities are created by using fruit ‘leftovers’ as a basis for bioactivities that may serve as new foods or food ingredients, strengthening the circular economy’s properties. From a technical standpoint, organic phenolic substances have become more appealing to industry, in addition to their application as nutritional supplements or functional meals. Several extraction methods for recovering phenolic compounds from fruit waste have already been published, most of which involve using different organic solvents. However, there is a growing demand for eco-friendly and sustainable techniques that result in phenolic-rich extracts with little ecological impact. Utilizing these new and advanced green extraction techniques will reduce the global crisis caused by fruit waste management. Using modern techniques, fruit residue is degraded to sub-zero scales, yielding bio-based commodities such as bioactive elements. This review highlights the most favorable and creative methods of separating bioactive materials from fruit residue. Extraction techniques based on environmentally friendly technologies such as bioreactors, enzyme-assisted extraction, ultrasound-assisted extraction, and their combination are specifically covered.
Collapse
|
13
|
Teleky BE, Mitrea L, Plamada D, Nemes SA, Călinoiu LF, Pascuta MS, Varvara RA, Szabo K, Vajda P, Szekely C, Martău GA, Elemer S, Ranga F, Vodnar DC. Development of Pectin and Poly(vinyl alcohol)-Based Active Packaging Enriched with Itaconic Acid and Apple Pomace-Derived Antioxidants. Antioxidants (Basel) 2022; 11:antiox11091729. [PMID: 36139803 PMCID: PMC9495313 DOI: 10.3390/antiox11091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The production of active and biodegradable packaging materials is an emerging and efficient alternative to plastic packaging materials. By combining poly(vinyl alcohol) (PVA), pectin, and itaconic acid (IA), biodegradable and water-soluble packaging materials can be obtained that can also increase the shelf-life and quality of foodstuff. In the present study, the generated film-forming solutions were enriched with organic or phenolic extracts from apple by-products (apple pomace). These extracts possess an efficient antioxidant activity of 9.70 ± 0.08, and 78.61 ± 0.24 μM Trolox/100 g fresh weight, respectively. Furthermore, the lyophilization of these by-products increased the extract’s organic and phenolic content and the antioxidant activity to 67.45 ± 0.28 and 166.69 ± 0.47 μM Trolox/100 g fresh weight, respectively. These extracts influence the physical-chemical properties of the biofilm solutions by facilitating the polymerization process and thus positively influencing their viscosity. The resulting biofilms presented low water vapor permeability and reduced solubility in water. Adding IA and organic/phenolic compounds facilitates the resistance against intrinsic and extrinsic factors; therefore, they might be applicable in the food industry.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Diana Plamada
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Lavinia-Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Mihaela Stefana Pascuta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Patricia Vajda
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Cristian Szekely
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Gheorghe-Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Simon Elemer
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-747341881
| |
Collapse
|