1
|
Mossenta M, Argenziano M, Capolla S, Busato D, Durigutto P, Mangogna A, Polano M, Sblattero D, Cavalli R, Macor P, Toffoli G, Dal Bo M. Idarubicin-loaded chitosan nanobubbles to improve survival and decrease drug side effects in hepatocellular carcinoma. Nanomedicine (Lond) 2025; 20:255-270. [PMID: 39815170 PMCID: PMC11792799 DOI: 10.1080/17435889.2025.2452154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Drug delivery strategies using chitosan nanobubbles (CS-NBs) could be used to reduce drug side effects and improve outcomes in hepatocellular carcinoma (HCC) treatment. To enhance their action, a targeting agent, such as the humanized anti-GPC3 antibody GC33 (condrituzumab), could be attached to their surface. Here, we investigated the use of idarubicin-loaded CS-NBs for HCC treatment and a GC33-derived minibody (that we named 4A1) to enhance CS-NB delivery. METHODS Various CS-NB formulations were prepared with or without 4A1 conjugation and idarubicin loading. RESULTS CS-NBs had a positive charge and a diameter of about 360 nm. In in-vitro experiments using the HCC-like HUH7 cell line, CS-NBs showed a cytotoxic effect once loaded with idarubicin. In-vivo biodistribution in HUH7 tumor-bearing xenograft mice demonstrated that CS-NBs can accumulate in the tumor mass. This effect was enhanced by 4A1 conjugation (p = 0.0317). In HUH7 tumor-bearing xenograft mice, CS-NBs loaded with idarubicin and conjugated or not conjugated with 4A1 were both able to slow tumor growth, to increase mouse survival time compared to free idarubicin (p = 0.00044 and 0.0018, respectively) as well as to reduce drug side effects. CONCLUSIONS CS-NBs loaded with idarubicin can be a useful drug delivery strategy for HCC treatment.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paolo Durigutto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Institute of Pathological Anatomy, Department of Medicine, University of Udine, Udine, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | | | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| |
Collapse
|
2
|
Tehrani HA, Zangi M, Fathi M, Vakili K, Hassan M, Rismani E, Hossein-Khannazer N, Vosough M. GPC-3 in hepatocellular carcinoma; A novel biomarker and molecular target. Exp Cell Res 2025; 444:114391. [PMID: 39725192 DOI: 10.1016/j.yexcr.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is a global health issue due to its late diagnosis and high recurrence rate. The early detection and diagnosis of HCC with specific and sensitive biomarkers and using novel treatment approaches to improve patient outcomes are essential. Glypican-3 (GPC-3) is a cell surface proteoglycan that is overexpressed in many tumors, including HCC. GPC-3 could be used as a specific biomarker for HCC early detection and could be a potential target for precise therapeutic strategies. Effective identification of GPC-3 could improve both diagnosis and targeted therapy of HCC. Moreover, targeted therapy using GPC-3 could result in a better treatment outcome. Recently, GPC3-targeted therapies have been used in different investigational therapeutic approaches like bi-specific/monoclonal antibodies, peptide vaccines, and CAR T cell therapies. This study aims to highlight the theranostic potential of GPC-3 as a novel biomarker for early detection and as a potential molecular target for HCC treatment as well.
Collapse
Affiliation(s)
- Hamed Azhdari Tehrani
- Department of Hematology-Medical Oncology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masood Zangi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Massoud Vosough
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
3
|
Petit LM, Saber Cherif L, Devilliers MA, Hatoum S, Ancel J, Delepine G, Durlach A, Dubernard X, Mérol JC, Ruaux C, Polette M, Deslée G, Perotin JM, Dormoy V. Glypican-3 is a key tuner of the Hedgehog pathway in COPD. Heliyon 2025; 11:e41564. [PMID: 39844999 PMCID: PMC11751517 DOI: 10.1016/j.heliyon.2024.e41564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Hedgehog (HH) pathway is involved in pulmonary development and lung homeostasis. It orchestrates airway epithelial cell (AEC) differentiation and contributes to respiratory pathogenesis. The core elements Gli2, Smo, and Shh were found altered in the bronchial epithelium of patients with chronic obstructive pulmonary disease (COPD). Here, we investigated the co-receptors to fully decipher the complex machinery of airway HH pathway activation in health and COPD. The core elements and co-receptors of HH signalling were investigated in lung cell populations using single-cell RNAseq analysis. The transcript levels of the principal co-receptor GPC3 were investigated on public RNAseq datasets and by RT-qPCR. The localisation of GPC3 was evaluated through immunofluorescent stainings on isolated bronchial AEC and tissues from non-COPD and COPD patients. GPC3 pharmacological modulation was achieved with Codrituzumab during AEC differentiation. We demonstrated that the core elements were not abundant in pulmonary cell populations. Focusing on co-receptors, GPC3 was the most expressed transcript in tracheobronchial epithelial cells. The decrease in GPC3 transcript levels correlated with the severity of airway obstrution in COPD patients. Finally, interfering with GPC3 signalling during AEC differentiation induced downregulation of the HH pathway attested by a decrease of Gli2 leading to reduced ciliogenesis and altered mucin production. GPC3 appears as a crucial co-receptor for the HH pathway in the respiratory context. The modulation of GPC3 may represent a novel experimental strategy to tune HH signalling in therapeutic perspectives.
Collapse
Affiliation(s)
- Laure M.G. Petit
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Lynda Saber Cherif
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Maëva A. Devilliers
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Sarah Hatoum
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Gonzague Delepine
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Anne Durlach
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Xavier Dubernard
- Université de Reims Champagne-Ardenne, CHU de Reims, Reims, France
| | - Jean-Claude Mérol
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Christophe Ruaux
- Clinique Mutualiste La Sagesse, Département d’Otorhinolaryngologie, Rennes, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| |
Collapse
|
4
|
Steffin D, Ghatwai N, Montalbano A, Rathi P, Courtney AN, Arnett AB, Fleurence J, Sweidan R, Wang T, Zhang H, Masand P, Maris JM, Martinez D, Pogoriler J, Varadarajan N, Thakkar SG, Lyon D, Lapteva N, Zhuyong M, Patel K, Lopez-Terrada D, Ramos CA, Lulla P, Armaghany T, Grilley BJ, Gottschalk S, Dotti G, Metelitsa LS, Heslop HE, Brenner MK, Sumazin P, Heczey A. Interleukin-15-armoured GPC3 CAR T cells for patients with solid cancers. Nature 2025; 637:940-946. [PMID: 39604730 DOI: 10.1038/s41586-024-08261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Interleukin-15 (IL-15) promotes the survival of T lymphocytes and enhances the antitumour properties of chimeric antigen receptor (CAR) T cells in preclinical models of solid neoplasms in which CAR T cells have limited efficacy1-4. Glypican-3 (GPC3) is expressed in a group of solid cancers5-10, and here we report the evaluation in humans of the effects of IL-15 co-expression on GPC3-expressing CAR T cells (hereafter GPC3 CAR T cells). Cohort 1 patients ( NCT02905188 and NCT02932956 ) received GPC3 CAR T cells, which were safe but produced no objective antitumour responses and reached peak expansion at 2 weeks. Cohort 2 patients ( NCT05103631 and NCT04377932 ) received GPC3 CAR T cells that co-expressed IL-15 (15.CAR), which mediated significantly increased cell expansion and induced a disease control rate of 66% and antitumour response rate of 33%. Infusion of 15.CAR T cells was associated with increased incidence of cytokine release syndrome, which was controlled with IL-1/IL-6 blockade or rapidly ameliorated by activation of the inducible caspase 9 safety switch. Compared with non-responders, tumour-infiltrating 15.CAR T cells from responders showed repression of SWI/SNF epigenetic regulators and upregulation of FOS and JUN family members, as well as of genes related to type I interferon signalling. Collectively, these results demonstrate that IL-15 increases the expansion, intratumoural survival and antitumour activity of GPC3 CAR T cells in patients.
Collapse
Affiliation(s)
- David Steffin
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Nisha Ghatwai
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Antonino Montalbano
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Purva Rathi
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Amy N Courtney
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Azlann B Arnett
- Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Julien Fleurence
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ramy Sweidan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Tao Wang
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Huimin Zhang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Prakash Masand
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - John M Maris
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Martinez
- Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Pogoriler
- Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Sachin G Thakkar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Deborah Lyon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Natalia Lapteva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
- Pathology and Immunology Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Mei Zhuyong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Kalyani Patel
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | | | - Carlos A Ramos
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Premal Lulla
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Tannaz Armaghany
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Bambi J Grilley
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Leonid S Metelitsa
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Helen E Heslop
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Malcolm K Brenner
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Pavel Sumazin
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Andras Heczey
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA.
- Texas Children's Hospital Liver Tumor Program, Houston, TX, USA.
| |
Collapse
|
5
|
Couzinet A, Suzuki T, Nakatsura T. Progress and challenges in glypican-3 targeting for hepatocellular carcinoma therapy. Expert Opin Ther Targets 2024; 28:895-909. [PMID: 39428649 DOI: 10.1080/14728222.2024.2416975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Glypican-3 (GPC3) is a cell membrane-anchored heparan sulfate proteoglycan that has recently garnered attention as a cancer antigen owing to its high expression in numerous cancers, particularly hepatocellular carcinoma (HCC), and to limited expression in adult normal tissue. AREAS COVERED Here, we propose the potential of GPC3 as a cancer antigen based on our experience with the GPC3 peptide vaccine against HCC, having developed a vaccine that progressed from preclinical studies to first-in-human clinical trials. In this review, we present a summary of the current status and future prospects of immunotherapies targeting GPC3 by focusing on clinical trials; peptide vaccines, mRNA vaccines, antibody therapy, and chimeric antigen receptor/T-cell receptor - T-cell therapy and discuss additional strategies for effectively eliminating HCC through immunotherapy. EXPERT OPINION GPC3 is an ideal cancer antigen for HCC immunotherapy. In resectable HCC, immunotherapies that leverage physiological immune surveillance, immune checkpoint inhibitors, and GPC3-target cancer vaccines appear promising in preventing recurrence and could be considered as a prophylactic adjuvant therapy. However, in advanced HCC, clinical trials have not demonstrated sufficient anti-tumor efficacy, in contrast with preclinical studies. Reverse translation, bedside-to-bench research, is crucial to identify the factors that have hindered GPC3 target immunotherapies.
Collapse
Affiliation(s)
- Arnaud Couzinet
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
6
|
Lu LL, Xiao SX, Lin ZY, Bai JJ, Li W, Song ZQ, Zhou YH, Lu B, Wu WZ. GPC3-IL7-CCL19-CAR-T primes immune microenvironment reconstitution for hepatocellular carcinoma therapy. Cell Biol Toxicol 2023; 39:3101-3119. [PMID: 37853185 DOI: 10.1007/s10565-023-09821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2023] [Accepted: 07/13/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T-cell therapy is a revolutionary treatment that has become a mainstay of advanced cancer treatment. Conventional glypican-3 (GPC3)-CAR-T cells have not produced ideal clinical outcomes in advanced hepatocellular carcinoma (HCC), and the mechanism is unclear. This study aims to investigate the clinical utility of novel GPC3-7-19-CAR-T cells constructed by our team and to explore the mechanisms underlying their antitumor effects. METHODS We engineered a novel GPC3-targeting CAR including an anti-GPC3 scFv, CD3ζ, CD28 and 4-1BB that induces co-expression of IL-7 at a moderate level (500 pg/mL) and CCL19 at a high level (15000 pg /mL) and transduced it into human T cells. In vitro, cell killing efficacy was validated by the xCELLigence RTCA system, LDH nonradioactive cytotoxicity assay and was confirmed in primary HCC organoid models employing a 3D microfluid chip. In vivo, the antitumor capacity was assessed in a humanized NSG mouse xenograft model. Finally, we initiated a phase I clinical trial to evaluate the safety and effect of GPC3-7-19-CAR-T cells in the clinic. RESULTS GPC3-7-19-CAR-T cells had 1.5-2 times higher killing efficiency than GPC3-CAR-T cells. The tumor formation rates in GPC3-7-19-CAR-T cells treated model were reduced (3/5vs.5/5), and the average tumor volumes were 0.74 cm3 ± 1.17 vs. 0.34 cm3 ± 0.25. Of note, increased proportion of CD4+ TEM and CD8+ TCM cells was infiltrated in GPC3-7-19-CAR-T cells group. GPC3-7-19-CAR-T cells obviously reversed the immunosuppressive tumor microenvironment (TME) by reducing polymorphonuclear (PMN)-myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells infiltration and recruiting more dendritic cells (DCs) to HCC xenograft tumor tissues. In one patient with advanced HCC, GPC3-7-19-CAR-T-cell treatment resulted in tumor reduction 56 days after intravenous infusion. CONCLUSIONS In conclusion, GPC3-7-19-CAR-T cells achieved antitumor effects superior to those of conventional GPC3-CAR-T cells by reconstructing the TME induced by the dominant CD4+ TEM and CD8+ TCM cell subsets. Most importantly, GPC3-7-19-CAR-T cells exhibited good safety and antitumor efficacy in HCC patients in the clinic. ► Novel GPC3-7-19-CAR-T cells designed with mediate level of IL-7 secretion and high level of CCL19 secretion, which could recruit more mature DCs to assist killing on GPC3+HCCs. ►DC cells recruited by CCL19 could interact with CD4+ T cells and promote the differentiation of CD4+TEFF cells into CD4+TEM and CD8+TCM subsets, leading a better anti-tumor effect on GPC3+HCCs. ►Compared with conventional GPC3-CAR-T, GPC3-7-CCL19-CAR-T cells could reverse tumor immunosuppressive microenvironment by reducing PMN-MDSC and Treg cell infiltration.
Collapse
Affiliation(s)
- Li-Li Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Shanghai, 200032, China
| | - Shu-Xiu Xiao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Shanghai, 200032, China
| | - Zhi-Yuan Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jin-Jin Bai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Shanghai, 200032, China
| | - Wei Li
- Department of Medical Oncology, Fudan University, Shanghai, 200032, China
| | - Zheng-Qing Song
- Department of Medical Oncology, Fudan University, Shanghai, 200032, China
| | - Yu-Hong Zhou
- Department of Medical Oncology, Fudan University, Shanghai, 200032, China
| | - Bin Lu
- Department of Biochemical Pharmacy School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
7
|
Zhang J, Liu X, Xia Y, Xu S, Liu X, Xiao H, Wang X, Liu C, Liu G. Genetically engineered nano-melittin vesicles for multimodal synergetic cancer therapy. Bioeng Transl Med 2023; 8:e10482. [PMID: 38023709 PMCID: PMC10658496 DOI: 10.1002/btm2.10482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 11/30/2023] Open
Abstract
Melittin, the principal constituent in bee venom, is an attractive candidate for cancer therapy. However, its clinical applications are limited by hemolysis, nonspecific cytotoxicity, and rapid metabolism. Herein, a novel genetically engineered vesicular antibody-melittin (VAM) drug delivery platform was proposed and validated for targeted cancer combination therapy. VAM generated from the cellular plasma membrane was bio-synthetically fabricated, with the recombinant protein (hGC33 scFv-melittin) being harbored and displayed on the cell membrane. The bioactive and targetable nanomelittin conjugated by hGC33 scFv could be released in an MMP14-responsive manner at tumor sites, which reduced off-target toxicity, especially the hemolytic activity of melittin. Importantly, VAM could be loaded with small-molecule drugs or nanoparticles for combination therapy. Nanomelittin formed pores in membranes and disturbed phospholipid bilayers, which allowed the anticancer agents (i.e., chemotherapeutic drug doxorubicin and sonosensitizer purpurin 18 nanoparticles) co-delivered by VAM to penetrate deeper tumor sites, leading to synergistic therapeutic effects. In particular, the punching effect generated by sonodynamic therapy further improved the immunomodulatory effect of nanomelittin to activate the immune response. Taken together, our findings indicate that clinically translatable VAM-based strategies represent a universal, promising approach to multimodal synergetic cancer therapy.
Collapse
Affiliation(s)
- Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public HealthXiamen UniversityXiamenChina
| | - Yutian Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Shuyu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Haiqing Xiao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
- Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
| |
Collapse
|
8
|
An anti-CD98 antibody displaying pH-dependent Fc-mediated tumour-specific activity against multiple cancers in CD98-humanized mice. Nat Biomed Eng 2023; 7:8-23. [PMID: 36424464 DOI: 10.1038/s41551-022-00956-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2021] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
The cell-surface glycoprotein CD98-a subunit of the LAT1/CD98 amino acid transporter-is an attractive target for cancer immunotherapies, but its widespread expression has hampered the development of CD98-targeting antibody therapeutics. Here we report that an anti-CD98 antibody, identified via the screening of phage-display libraries of CD98 single-chain variable fragments with mutated complementarity-determining regions, preserves the physiological function of CD98 and elicits broad-spectrum crystallizable-fragment (Fc)-mediated anti-tumour activity (requiring Fcγ receptors for immunoglobulins, macrophages, dendritic cells and CD8+ T cells, as well as other components of the innate and adaptive immune systems) in multiple xenograft and syngeneic tumour models established in CD98-humanized mice. We also show that a variant of the anti-CD98 antibody with pH-dependent binding, generated by solving the structure of the antibody-CD98 complex, displayed enhanced tumour-specific activity and pharmacokinetics. pH-dependent antibody variants targeting widely expressed antigens may lead to superior therapeutic outcomes.
Collapse
|
9
|
Wu T, Song Z, Huang H, Jakos T, Jiang H, Xie Y, Zhu J. Construction and evaluation of GPC3-targeted immunotoxins as a novel therapeutic modality for hepatocellular carcinoma. Int Immunopharmacol 2022; 113:109393. [DOI: 10.1016/j.intimp.2022.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022]
|
10
|
Combination of T cell-redirecting bispecific antibody ERY974 and chemotherapy reciprocally enhances efficacy against non-inflamed tumours. Nat Commun 2022; 13:5265. [PMID: 36071036 PMCID: PMC9452528 DOI: 10.1038/s41467-022-32952-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2021] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
Identifying a strategy with strong efficacy against non-inflamed tumours is vital in cancer immune therapy. ERY974 is a humanized IgG4 bispecific T cell-redirecting antibody that recognizes glypican-3 and CD3. Here we examine the combination effect of ERY974 and chemotherapy (paclitaxel, cisplatin, and capecitabine) in the treatment of non-inflamed tumours in a xenograft model. ERY974 monotherapy shows a minor antitumour effect on non-inflamed NCI-H446 xenografted tumours, as infiltration of ERY974-redirected T cells is limited to the tumour-stromal boundary. However, combination therapy improves efficacy by promoting T cell infiltration into the tumour centre, and increasing ERY974 distribution in the tumour. ERY974 increases capecitabine-induced cytotoxicity by promoting capecitabine conversion to its active form by inducing thymidine phosphorylase expression in non-inflamed MKN45 tumour through ERY974-induced IFNγ and TNFα in T cells. We show that ERY974 with chemotherapy synergistically and reciprocally increases antitumour efficacy, eradicating non-inflamed tumours.
Collapse
|
11
|
Mossenta M, Busato D, Dal Bo M, Macor P, Toffoli G. Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. Int J Mol Sci 2022; 23:10038. [PMID: 36077433 PMCID: PMC9456072 DOI: 10.3390/ijms231710038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal tumor, with a 5-year survival rate of 18%. Early stage HCC is potentially treatable by therapies with curative intent, whereas chemoembolization/radioembolization and systemic therapies are the only therapeutic options for intermediate or advanced HCC. Drug resistance is a critical obstacle in the treatment of HCC that could be overcome by the use of targeted nanoparticle-based therapies directed towards specific tumor-associated antigens (TAAs) to improve drug delivery. Glypican 3 (GPC3) is a member of the glypican family, heparan sulfate proteoglycans bound to the cell surface via a glycosylphosphatidylinositol anchor. The high levels of GPC3 detected in HCC and the absence or very low levels in normal and non-malignant liver make GPC3 a promising TAA candidate for targeted nanoparticle-based therapies. The use of nanoparticles conjugated with anti-GPC3 agents may improve drug delivery, leading to a reduction in severe side effects caused by chemotherapy and increased drug release at the tumor site. In this review, we describe the main clinical features of HCC and the common treatment approaches. We propose the proteoglycan GPC3 as a useful TAA for targeted therapies. Finally, we describe nanotechnology approaches for anti-GPC3 drug delivery systems based on NPs for HCC treatment.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
12
|
Caraballo Galva LD, Jiang X, Hussein MS, Zhang H, Mao R, Brody P, Peng Y, He AR, Kehinde-Ige M, Sadek R, Qiu X, Shi H, He Y. Novel low-avidity glypican-3 specific CARTs resist exhaustion and mediate durable antitumor effects against HCC. Hepatology 2022; 76:330-344. [PMID: 34897774 PMCID: PMC10568540 DOI: 10.1002/hep.32279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/08/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Chimeric antigen receptor engineered T cells (CARTs) for HCC and other solid tumors are not as effective as they are for blood cancers. CARTs may lose function inside tumors due to persistent antigen engagement. The aims of this study are to develop low-affinity monoclonal antibodies (mAbs) and low-avidity CARTs for HCC and to test the hypothesis that low-avidity CARTs can resist exhaustion and maintain functions in solid tumors, generating durable antitumor effects. METHODS AND RESULTS New human glypican-3 (hGPC3) mAbs were developed from immunized mice. We obtained three hGPC3-specific mAbs that stained HCC tumors, but not the adjacent normal liver tissues. One of them, 8F8, bound an epitope close to that of GC33, the frequently used high-affinity mAb, but with approximately 17-fold lower affinity. We then compared the 8F8 CARTs to GC33 CARTs for their in vitro function and in vivo antitumor effects. In vitro, low-avidity 8F8 CARTs killed both hGPC3high and hGPC3low HCC tumor cells to the same extent as high-avidity GC33 CARTs. 8F8 CARTs expanded and persisted to a greater extent than GC33 CARTs, resulting in durable responses against HCC xenografts. Importantly, compared with GC33 CARTs, there were 5-fold more of 8F8-BBz CARTs in the tumor mass for a longer period of time. Remarkably, the tumor-infiltrating 8F8 CARTs were less exhausted and apoptotic, and more functional than GC33 CARTs. CONCLUSION The low-avidity 8F8-BBz CART resists exhaustion and apoptosis inside tumor lesions, demonstrating a greater therapeutic potential than high-avidity CARTs.
Collapse
Affiliation(s)
| | - Xiaotao Jiang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Mohamed S. Hussein
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Huajun Zhang
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rui Mao
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Pierce Brody
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yibing Peng
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Aiwu Ruth He
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Mercy Kehinde-Ige
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ramses Sadek
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xiangguo Qiu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
13
|
Kadassery KJ, King AP, Fayn S, Baidoo KE, MacMillan SN, Escorcia FE, Wilson JJ. H 2BZmacropa-NCS: A Bifunctional Chelator for Actinium-225 Targeted Alpha Therapy. Bioconjug Chem 2022; 33:1222-1231. [PMID: 35670495 PMCID: PMC9362842 DOI: 10.1021/acs.bioconjchem.2c00190] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Actinium-225 (225Ac) is one of the most promising radionuclides for targeted alpha therapy (TAT). With a half-life of 9.92 days and a decay chain that emits four high-energy α particles, 225Ac is well-suited for TAT when conjugated to macromolecular targeting vectors that exhibit extended in vivo circulation times. The implementation of 225Ac in these targeted constructs, however, requires a suitable chelator that can bind and retain this radionuclide in vivo. Previous work has demonstrated the suitability of a diaza-18-crown-6 macrocyclic chelator H2macropa for this application. Building upon these prior efforts, in this study, two rigid variants of H2macropa, which contain either one (H2BZmacropa) or two (H2BZ2macropa) benzene rings within the macrocyclic core, were synthesized and investigated for their potential use for 225Ac TAT. The coordination chemistry of these ligands with La3+, used as a nonradioactive model for Ac3+, was carried out. Both NMR spectroscopic and X-ray crystallographic studies of the La3+ complexes of these ligands revealed similar structural features to those found for the related complex of H2macropa. Thermodynamic stability constants of the La3+ complexes, however, were found to be 1 and 2 orders of magnitude lower than those of H2macropa for H2BZmacropa and H2BZ2macropa, respectively. The decrease in thermodynamic stability was rationalized via the use of density functional theory calculations. 225Ac radiolabeling and serum stability studies with H2BZmacropa showed that this chelator compares favorably with H2macropa. Based on these promising results, a bifunctional version of this chelator, H2BZmacropa-NCS, was synthesized and conjugated to the antibody codrituzumab (GC33), which targets the liver cancer biomarker glypican-3 (GPC3). The resulting GC33-BZmacropa conjugate and an analogous GC33-macropa conjugate were evaluated for their 225Ac radiolabeling efficiencies, antigen-binding affinities, and in vivo biodistribution in HepG2 liver cancer tumor-bearing mice. Although both conjugates were comparably effective in their radiolabeling efficiencies, [225Ac]Ac-GC33-BZmacropa showed slightly poorer serum stability and biodistribution than [225Ac]Ac-GC33-macropa. Together, these results establish H2BZmacropa-NCS as a new bifunctional chelator for the preparation of 225Ac radiopharmaceuticals.
Collapse
Affiliation(s)
- Karthika J. Kadassery
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stanley Fayn
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kwamena E. Baidoo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Freddy E. Escorcia
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Shin HG, Yang HR, Yoon A, Lee S. Bispecific Antibody-Based Immune-Cell Engagers and Their Emerging Therapeutic Targets in Cancer Immunotherapy. Int J Mol Sci 2022; 23:5686. [PMID: 35628495 PMCID: PMC9146966 DOI: 10.3390/ijms23105686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide after cardiovascular diseases. Harnessing the power of immune cells is a promising strategy to improve the antitumor effect of cancer immunotherapy. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers. Since the first approval of blinatumomab by the United States Food and Drug Administration (US FDA), various bsAb-based ICEs have been developed for the effective treatment of patients with cancer. Simultaneously, several potential therapeutic targets of bsAb-based ICEs have been identified in various cancers. Therefore, this review focused on not only highlighting the action mechanism, design and structure, and status of bsAb-based ICEs in clinical development and their approval by the US FDA for human malignancy treatment, but also on summarizing the currently known and emerging therapeutic targets in cancer. This review provides insights into practical considerations for developing next-generation ICEs.
Collapse
Affiliation(s)
- Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Aerin Yoon
- R&D Division, GC Biopharma, Yongin 16924, Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
15
|
Dituri F, Gigante G, Scialpi R, Mancarella S, Fabregat I, Giannelli G. Proteoglycans in Cancer: Friends or Enemies? A Special Focus on Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14081902. [PMID: 35454809 PMCID: PMC9024587 DOI: 10.3390/cancers14081902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Proteoglycans affect multiple molecular and cellular processes during the progression of solid tumors with a highly desmoplastic stroma, such as HCC. Due to their role in enhancing or limiting the traits of cancer cells underlying their aggressiveness, such as proliferation, angiogenesis, epithelial to mesenchymal transition (EMT), and stemness, these macromolecules could be exploited as molecular targets or therapeutic agents. Proteoglycans, such as biglycan, versican, syndecan-1, glypican-3, and agrin, promote HCC cell proliferation, EMT, and angiogenesis, while endostatin and proteoglycan 4 were shown to impair cancer neovascularization or to enhance the sensitivity of HCC cells to drugs, such as sorafenib and regorafenib. Based on this evidence, interventional strategies involving the use of humanized monoclonal antibodies, T cells engineered with chimeric antigen receptors, or recombinant proteins mimicking potentially curative proteoglycans, are being employed or may be adopted in the near future for the treatment of HCC. Abstract Proteoglycans are a class of highly glycosylated proteins expressed in virtually all tissues, which are localized within membranes, but more often in the pericellular space and extracellular matrix (ECM), and are involved in tissue homeostasis and remodeling of the stromal microenvironment during physiological and pathological processes, such as tissue regeneration, angiogenesis, and cancer. In general, proteoglycans can perform signaling activities and influence a range of physical, chemical, and biological tissue properties, including the diffusivity of small electrolytes and nutrients and the bioavailability of growth factors. While the dysregulated expression of some proteoglycans is observed in many cancers, whether they act as supporters or limiters of neoplastic progression is still a matter of controversy, as the tumor promoting or suppressive function of some proteoglycans is context dependent. The participation of multiple proteoglycans in organ regeneration (as demonstrated for the liver in hepatectomy mouse models) and in cancer suggests that these molecules actively influence cell growth and motility, thus contributing to key events that characterize neoplastic progression. In this review, we outline the main roles of proteoglycans in the physiology and pathology of cancers, with a special mention to hepatocellular carcinoma (HCC), highlighting the translational potential of proteoglycans as targets or therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
- Correspondence:
| | - Gianluigi Gigante
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Rosanna Scialpi
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Serena Mancarella
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBEREHD and University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Gianluigi Giannelli
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| |
Collapse
|
16
|
Abstract
Nuclear medicine leverages radioisotopes of a wide range of elements, a significant portion of which are metals, for the diagnosis and treatment of disease. To optimally use radioisotopes of the metal ions, or radiometals, for these applications, a chelator that efficiently forms thermodynamically and kinetically stable complexes with them is required. The chelator also needs to attach to a biological targeting vector that locates pathological tissues. Numerous chelators suitable for small radiometals have been established to date, but chelators that work well for large radiometals are significantly less common. In this Account, we describe recent progress by us and others in the advancement of ligands for large radiometal chelation with emerging applications in nuclear medicine.First, we discuss and analyze the coordination chemistry of the chelator macropa, a macrocyclic ligand that contains the 18-crown-6 backbone and two picolinate pendent arms, with large metal ions in the context of nuclear medicine. This ligand is known for its unusual reverse size selectivity, the preference for binding large over small metal ions. The radiolabeling properties of macropa with large radiometals 225Ac3+, 132/135La3+, 131Ba2+, 223Ra2+, 213Bi3+, and related in vivo investigations are described. The development of macropa derivatives containing different pendent donors or rigidifying groups in the macrocyclic core is also briefly reviewed.Next, efforts to transform macropa into a radiopharmaceutical agent via covalent conjugation to biological targeting vectors are summarized. In this discussion, two types of bifunctional analogues of macropa reported in the literature, macropa-NCS and mcp-click, are presented. Their implementation in different radiopharmaceutical agents is discussed. Bioconjugates containing macropa attached to small-molecule targeting vectors or macromolecular antibodies are presented. The in vitro and in vivo evaluations of these constructs are also discussed.Lastly, chelators with dual size selectivity are described. This class of ligands exhibits good affinities for both large and small metal ions. This property is valuable for nuclear medicine applications that require the simultaneous chelation of both large and small radiometals with complementary therapeutic and diagnostic properties. Recently, we reported an 18-membered macrocyclic ligand called macrodipa that attains this selectivity pattern. This chelator, its second-generation analogue py-macrodipa, and their applications for chelating the medicinally relevant large 135La3+, 225Ac3+, 213Bi3+, and small 44Sc3+ ions are also presented. Studies with these radiometals show that py-macrodipa can effectively radiolabel and stably retain both large and small radiometals. Overall, this Account makes the case for innovative ligand design approaches for novel emerging radiometal ions with unusual coordination chemistry properties.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Zheng X, Liu X, Lei Y, Wang G, Liu M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front Oncol 2022; 12:824208. [PMID: 35251989 PMCID: PMC8889910 DOI: 10.3389/fonc.2022.824208] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Glypican-3 (GPC3) is a membrane-associated proteoglycan that is specifically up-regulated in hepatocellular carcinoma (HCC) although rarely or not expressed in normal liver tissues, making it a perfect diagnostic and treatment target for HCC. Several GPC3-based clinical trials are ongoing and recently several innovative GPC3-targeted therapeutic methods have emerged with exciting results, including GPC3 vaccine, anti-GPC3 immunotoxin, combined therapy with immune checkpoint blockades (ICBs), and chimeric antigen receptor (CAR) T or NK cells. Here, we review the value of GPC3 in the diagnosis and prognosis of HCC, together with its signaling pathways, with a specific focus on GPC3-targeted treatments of HCC and some prospects for the future GPC3-based therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Xiufeng Zheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yanna Lei
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021; 14:41. [PMID: 35056937 PMCID: PMC8779722 DOI: 10.3390/pharmaceutics14010041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and is associated with a dismal median survival of 2-9 months. The fundamental limitations and ineffectiveness of current HCC treatments have led to the development of a vast range of nanotechnologies with the goal of improving the safety and efficacy of treatment for HCC. Although remarkable success has been achieved in nanomedicine research, there are unique considerations such as molecular heterogeneity and concomitant liver dysfunction that complicate the translation of nanotheranostics in HCC. This review highlights the progress, challenges, and targeting opportunities in HCC nanomedicine based on the growing literature in recent years.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
19
|
Makkouk A, Yang XC, Barca T, Lucas A, Turkoz M, Wong JTS, Nishimoto KP, Brodey MM, Tabrizizad M, Gundurao SRY, Bai L, Bhat A, An Z, Abbot S, Satpayev D, Aftab BT, Herrman M. Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J Immunother Cancer 2021; 9:jitc-2021-003441. [PMID: 34916256 PMCID: PMC8679077 DOI: 10.1136/jitc-2021-003441] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glypican-3 (GPC-3) is an oncofetal protein that is highly expressed in various solid tumors, but rarely expressed in healthy adult tissues and represents a rational target of particular relevance in hepatocellular carcinoma (HCC). Autologous chimeric antigen receptor (CAR) αβ T cell therapies have established significant clinical benefit in hematologic malignancies, although efficacy in solid tumors has been limited due to several challenges including T cell homing, target antigen heterogeneity, and immunosuppressive tumor microenvironments. Gamma delta (γδ) T cells are highly cytolytic effectors that can recognize and kill tumor cells through major histocompatibility complex (MHC)-independent antigens upregulated under stress. The Vδ1 subset is preferentially localized in peripheral tissue and engineering with CARs to further enhance intrinsic antitumor activity represents an attractive approach to overcome challenges for conventional T cell therapies in solid tumors. Allogeneic Vδ1 CAR T cell therapy may also overcome other hurdles faced by allogeneic αβ T cell therapy, including graft-versus-host disease (GvHD). METHODS We developed the first example of allogeneic CAR Vδ1 T cells that have been expanded from peripheral blood mononuclear cells (PBMCs) and genetically modified to express a 4-1BB/CD3z CAR against GPC-3. The CAR construct (GPC-3.CAR/secreted interleukin-15 (sIL)-15) additionally encodes a constitutively-secreted form of IL-15, which we hypothesized could sustain proliferation and antitumor activity of intratumoral Vδ1 T cells expressing GPC-3.CAR. RESULTS GPC-3.CAR/sIL-15 Vδ1 T cells expanded from PBMCs on average 20,000-fold and routinely reached >80% purity. Expanded Vδ1 T cells showed a primarily naïve-like memory phenotype with limited exhaustion marker expression and displayed robust in vitro proliferation, cytokine production, and cytotoxic activity against HCC cell lines expressing low (PLC/PRF/5) and high (HepG2) GPC-3 levels. In a subcutaneous HepG2 mouse model in immunodeficient NSG mice, GPC-3.CAR/sIL-15 Vδ1 T cells primarily accumulated and proliferated in the tumor, and a single dose efficiently controlled tumor growth without evidence of xenogeneic GvHD. Importantly, compared with GPC-3.CAR Vδ1 T cells lacking sIL-15, GPC-3.CAR/sIL-15 Vδ1 T cells displayed greater proliferation and resulted in enhanced therapeutic activity. CONCLUSIONS Expanded Vδ1 T cells engineered with a GPC-3 CAR and sIL-15 represent a promising platform warranting further clinical evaluation as an off-the-shelf treatment of HCC and potentially other GPC-3-expressing solid tumors.
Collapse
Affiliation(s)
| | | | - Taylor Barca
- Adicet Therapeutics, Menlo Park, California, USA
| | | | | | | | | | | | | | | | - Lu Bai
- Adicet Therapeutics, Menlo Park, California, USA
| | - Arun Bhat
- Adicet Therapeutics, Menlo Park, California, USA
| | - Zili An
- Adicet Therapeutics, Menlo Park, California, USA
| | | | | | | | | |
Collapse
|
20
|
Hong JA, Brechbiel M, Buchsbaum J, Canaria CA, Coleman CN, Escorcia FE, Espey M, Kunos C, Lin F, Narayanan D, Capala J. National Cancer Institute support for targeted alpha-emitter therapy. Eur J Nucl Med Mol Imaging 2021; 49:64-72. [PMID: 34378064 DOI: 10.1007/s00259-021-05503-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Radiopharmaceutical targeted therapy (RPT) has been studied for decades; however, recent clinical trials demonstrating efficacy have helped renewed interest in the modality. METHODS This article reviews National Cancer Institute (NCI)'s support of RPT through communication via workshops and interest groups, through funding extramural programs in academia and small business, and through intramural research, including preclinical and clinical studies. RESULTS NCI has co-organized workshops and organized interest groups on RPT and RPT dosimetry to encourage the community and facilitate rigorous preclinical and clinical studies. NCI has been supporting RPT research through various mechanisms. Research has been funded through peer-reviewed NCI Research and Program Grants (RPG) and NCI Small Business Innovation Research (SBIR) Development Center, which funds small business-initiated projects, some of which have led to clinical trials. The NCI Cancer Therapy Evaluation Program (CTEP)'s Radiopharmaceutical Development Initiative supports RPT in NCI-funded clinical trials, including Imaging and Radiation Oncology Core (IROC) expertise in imaging QA and dosimetry procedures. Preclinical targeted a-emitter therapy (TAT) research at the NCI's intramural program is ongoing, building on foundational work dating back to the 1980s. Ongoing "bench-to-bedside" efforts leverage the unique infrastructure of the National Institutes of Health's (NIH) Clinical Center. CONCLUSION Given the great potential of RPT, our goal is to continue to encourage its development that will generate the high-quality evidence needed to bring this multidisciplinary treatment to patients.
Collapse
Affiliation(s)
- Julie A Hong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Bethesda, MD, 20892, USA
| | - Martin Brechbiel
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jeff Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Bethesda, MD, 20892, USA
| | - Christie A Canaria
- Small Business Innovation Research Development Center, National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Bethesda, MD, 20892, USA
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Freddy E Escorcia
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, USA
| | - Michael Espey
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Bethesda, MD, 20892, USA
| | - Charles Kunos
- Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Frank Lin
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, USA
| | - Deepa Narayanan
- Small Business Innovation Research Development Center, National Cancer Institute, Bethesda, MD, USA
| | - Jacek Capala
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Yu S, Li Z, Li J, Zhao S, Wu S, Liu H, Bi X, Li D, Dong J, Duan S, Hammock BD. Generation of Dual functional Nanobody-Nanoluciferase Fusion and its potential in Bioluminescence Enzyme Immunoassay for trace Glypican-3 in Serum. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 336:129717. [PMID: 35250176 PMCID: PMC8896807 DOI: 10.1016/j.snb.2021.129717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/12/2023]
Abstract
Glypican-3 (GPC3) is a serological biomarker for the diagnosis of Hepatocellular carcinoma (HCC), but it is a challenging task to develop a bioassay for determination of the trace GPC3 in serum. In this study, Bioluminescense immunoassay based on bifunctional nanobody-nanoluciferase fusion was developed with the ultra-sensitive feature to achieve this goal. First, nanobodies special against GPC-3 binder as biological recognition element were generated by immunization and phage display technology. Second, The best clone GPN2 was fused with nanoluciferase as a dual-functional immunoreagent to establish an ultra-sensitive bioluminescence enzyme immunoassay (BLEIA), which is 30 and 5 times more sensitive than the traditional colorimetric assay and fluorescent assay, respectively. The cross-reactivity analysis of BLEIA showed that there was no cross-reactivity with HCC related tumor markers AFP, CEA, CA19-9 and GPC1/GPC2. The limit of detection (LOD) of developed BLEIA was 1.5 ng/mL, which assured its application in the diagnosis of GPC3 in 94 serum samples. This study indicates that BLEIA based on nanobody-nanoluciferase fusion could be used as a useful tool for the diagnosis of HCC patients.
Collapse
Affiliation(s)
- Sheng Yu
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi, 545005, China
- The Second Clinical Medical College of Guangxi University of Science and Technology, Liuzhou, Guangxi, 545005, China
- The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, 545005, China
| | - Zhenfeng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Jingzhang Li
- Liuzhou People’s Hospital, Liuzhou, Guangxi, 545005, China
| | - Shimei Zhao
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi, 545005, China
| | - Shanguang Wu
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi, 545005, China
| | - Hongjing Liu
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi, 545005, China
| | - Xiongjie Bi
- The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, 545005, China
| | - Dongyang Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Jiexian Dong
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
- Research Center for Innovative Anti-Cancer Drugs, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Corresponding author: Siliang Duan, and Jiexian Dong,
| | - Siliang Duan
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi, 545005, China
- Corresponding author: Siliang Duan, and Jiexian Dong,
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| |
Collapse
|
22
|
Radiomics, Radiogenomics, and Next-Generation Molecular Imaging to Augment Diagnosis of Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2021; 26:108-115. [PMID: 32205534 DOI: 10.1097/ppo.0000000000000435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Ultrasound, computed tomography, magnetic resonance imaging, and [F]F-fluorodeoxyglucose positron emission tomography are invaluable in the clinical evaluation of human cancers. Radiomics and radiogenomics tools may allow clinicians to standardize interpretation of these conventional imaging modalities, while better linking radiographic hallmarks to disease biology and prognosis. These advances, coupled with next-generation positron emission tomography imaging tracers capable of providing biologically relevant tumor information, may further expand the tools available in our armamentarium against human cancers. We present current imaging methods and explore emerging research that may improve diagnosis and monitoring of local, oligometastatic, and disseminated cancers exhibiting heterogeneous uptake of [F]F-fluorodeoxyglucose, using hepatocellular carcinoma as an example.
Collapse
|
23
|
Development of a Tetravalent T-Cell Engaging Bispecific Antibody Against Glypican-3 for Hepatocellular Carcinoma. J Immunother 2021; 44:106-113. [PMID: 33239522 DOI: 10.1097/cji.0000000000000349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 01/10/2023]
Abstract
Cancer therapies benefit from accelerated development of biotechnology, and many immunotherapeutic strategies spring up including vaccines, the immune checkpoint blockade, chimeric antigen receptor T cells, and bispecific antibodies (BsAbs). Glypican-3 (GPC3) is a member of the heparan sulfate proteoglycan family of proteins and is highly expressed in hepatocellular carcinoma (HCC) cell membranes. Here, the authors describe a new tetravalent BsAb h8B-BsAb targeting GPC3 and CD3 antigens and studied its antitumor activities against HCC. h8B-BsAb was designed based on immunoglobulin G with a fragment variable fused to the light chain, whose biophysical stabilities including degradation resistance and thermostability were improved by introducing disulfide bonds. In vitro activity of h8B-BsAb showed potent T-cell recruitment and activation for HCC cell lysis by the presence of peripheral blood mononuclear cells, but no specific killing in GPC3-negative cells. In HCC xenograft mouse studies, h8B-BsAb induced robust regression of tumors. In summary, we engineered a highly stable and efficacious BsAb as a potential candidate for HCC treatment.
Collapse
|
24
|
Gerlza T, Trojacher C, Kitic N, Adage T, Kungl AJ. Development of Molecules Antagonizing Heparan Sulfate Proteoglycans. Semin Thromb Hemost 2021; 47:316-332. [PMID: 33794555 DOI: 10.1055/s-0041-1725067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) occur in almost every tissue of the human body and consist of a protein core, with covalently attached glycosaminoglycan polysaccharide chains. These glycosaminoglycans are characterized by their polyanionic nature, due to sulfate and carboxyl groups, which are distributed along the chain. These chains can be modified by different enzymes at varying positions, which leads to huge diversity of possible structures with the complexity further increased by varying chain lengths. According to their location, HSPGs are divided into different families, the membrane bound, the secreted extracellular matrix, and the secretory vesicle family. As members of the extracellular matrix, they take part in cell-cell communication processes on many levels and with different degrees of involvement. Of particular therapeutic interest is their role in cancer and inflammation as well as in infectious diseases. In this review, we give an overview of the current status of medical approaches to antagonize HSPG function in pathology.
Collapse
Affiliation(s)
- Tanja Gerlza
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Christina Trojacher
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Nikola Kitic
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | | | - Andreas J Kungl
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria.,Antagonis Biotherapeutics GmbH, Graz, Austria
| |
Collapse
|
25
|
Yi B, Wu T, Zhu N, Huang Y, Yang X, Yuan L, Wu Y, Liang X, Jiang X. The clinical significance of CTC enrichment by GPC3-IML and its genetic analysis in hepatocellular carcinoma. J Nanobiotechnology 2021; 19:74. [PMID: 33726759 PMCID: PMC7962223 DOI: 10.1186/s12951-021-00818-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2020] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background This research was to develop a special method for enriching Circulating tumor cells (CTCs) of Hepatocellular carcinoma (HCC) by Glypican-3 immunoliposomes (GPC3-IML), and to analyze the correlation between the CTCs count and tumor malignancy, as well as to investigate the mutation characteristics of CTC-derived NGS. Results In this study characterization of physical parameters was performed with the preparation of GPC3-IML. CTCs in peripheral blood of HCC patients were further separated and identified. Immunofluorescence was used to identify CTCs for further counting. By this means, the correlation between CTCs count and clinicopathological features was analyzed, and the genetic mutation characteristics of NGS derived from CTCs were investigated and compared with that of tissue NGS. Results showed that compared with EpCAM and vimentin, GPC-3 had a stronger CTCs separation ability. There was a correlation between "positive" count of CTCs (≥ 5 PV-CTC per 7.5 ml blood) and BCLC stage (P = 0.055). The result of CTC-NGS was consistent with that of tissue-NGS in 60% cases, revealing that KMT2C was a common highly-frequent mutated gene. Conclusion The combination of immunomagnetic separation of CTCs and anti-tumor marker identification technology can be regarded as a new technology of CTCs detection in peripheral blood of patients with HCC. Trial registration EHBHKY2020-k-024. Registered 17 August 2020—Retrospectively registered![]()
Collapse
Affiliation(s)
- Bin Yi
- Department of Organ Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tian Wu
- Jukang (Shanghai) Biotechnology Co. Ltd., 28, Xiangle Rd., Shanghai, 201800, China
| | - Nan Zhu
- Department of Organ Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yao Huang
- Department of Organ Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoyu Yang
- Department of Organ Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Yuan
- Department I of Biliary Tract, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, No. 225, Changhai Rd., Shanghai, 200438, China
| | - Yingjun Wu
- Department I of Biliary Tract, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, No. 225, Changhai Rd., Shanghai, 200438, China
| | - Xiaofei Liang
- Jukang (Shanghai) Biotechnology Co. Ltd., 28, Xiangle Rd., Shanghai, 201800, China.
| | - Xiaoqing Jiang
- Department I of Biliary Tract, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, No. 225, Changhai Rd., Shanghai, 200438, China.
| |
Collapse
|
26
|
Rodakowska E, Walczak-Drzewiecka A, Borowiec M, Gorzkiewicz M, Grzesik J, Ratajewski M, Rozanski M, Dastych J, Ginalski K, Rychlewski L. Recombinant immunotoxin targeting GPC3 is cytotoxic to H446 small cell lung cancer cells. Oncol Lett 2021; 21:222. [PMID: 33613711 PMCID: PMC7859473 DOI: 10.3892/ol.2021.12483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glypican-3 (GPC3) is a cell membrane glycoprotein that regulates cell growth and proliferation. Aberrant expression or distribution of GPC3 underlies developmental abnormalities and the development of solid tumours. The strongest evidence for the participation of GPC3 in carcinogenesis stems from studies on hepatocellular carcinoma and lung squamous cell carcinoma. To the best of our knowledge, the role of the GPC3 protein and its potential therapeutic application have never been studied in small cell lung carcinoma (SCLC), despite the known involvement of associated pathways and the high mortality caused by this disease. Therefore, the aim of the present study was to examine GPC3 targeting for SCLC immunotherapy. An immunotoxin carrying an anti-GPC3 antibody (hGC33) and Pseudomonas aeruginosa exotoxin A 38 (PE38) was generated. This hGC33-PE38 protein was overexpressed in E. coli and purified. ADP-ribosylation activity was tested in vitro against eukaryotic translation elongation factor 2. Cell internalisation ability was confirmed by confocal microscopy. Cytotoxicity was analysed by treating liver cancer (HepG2, SNU-398 and SNU-449) and lung cancer (NCI-H510A, NCI-H446, A549 and SK-MES1) cell lines with hGC33-PE38 and estimating viable cells number. A BrdU assay was employed to verify anti-proliferative activity of hGC33-PE38 on treated cells. Fluorescence-activated cell sorting was used for the detection of cell membrane-bound GPC3. The hGC33-PE38 immunotoxin displayed enzymatic activity comparable to native PE38. The protein was efficiently internalised by GPC3-positive cells. Moreover, hGC33-PE38 was cytotoxic to HepG2 cells but had no effect on known GPC3-negative cell lines. The H446 cells were sensitive to hGC33-PE38 (IC50, 70.6±4.6 ng/ml), whereas H510A cells were resistant. Cell surface-bound GPC3 was abundant on the membranes of H446 cells, but absent on H510A. Altogether, the present findings suggested that GPC3 could be considered as a potential therapeutic target for SCLC immunotherapy.
Collapse
Affiliation(s)
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Marta Borowiec
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | - Michal Gorzkiewicz
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.,Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Joanna Grzesik
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Michal Rozanski
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Jaroslaw Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | | |
Collapse
|
27
|
Wang W, Xu C, Wang H, Jiang C. Identification of nanobodies against hepatocellular carcinoma marker glypican-3. Mol Immunol 2021; 131:13-22. [PMID: 33453658 DOI: 10.1016/j.molimm.2021.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
Glypican-3 (GPC3) is a highly specific diagnostic marker for hepatocellular carcinoma (HCC) diagnosis and a potential target in HCC therapy. Nanobodies (Nbs) are promising targeting molecules due to their high specificity and strong affinities to antigens, high stability, deep tissue penetration, and low immunogenicity. In this study, we isolated Nbs against GPC3 marker protein from a synthetic Nb library by phage display. To characterize these Nbs, we performed enzyme-linked immunosorbent assay, immunoprecipitation assay, and immunofluorescent assay to demonstrate that four (G8, G10, G11, and G64) of them bound specifically to recombinant as well as endogenous GPC3, and epitope mapping showed they all bound to N-terminal subunit of GPC3. Furthermore, we found that G64 exhibited high protein stability and GPC3 binding activity in serum at 37℃ for at least 96 h, and G64 did not affect the proliferation of HEK293T cells and HCC cell line HepG2. Our study provides four anti-GPC3 Nbs as promising targeting molecules for HCC diagnostic and therapeutic drugs.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519080, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Chang Xu
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519080, China
| | - Huanan Wang
- Department of Respiratory Medicine, The 990th Hospital of Joint Logistics Support Force, Xinyang, Henan, 464000, China
| | - Changan Jiang
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong, 519080, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
28
|
Du K, Li Y, Liu J, Chen W, Wei Z, Luo Y, Liu H, Qi Y, Wang F, Sui J. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol Ther 2021; 29:1572-1584. [PMID: 33429083 DOI: 10.1016/j.ymthe.2021.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2020] [Revised: 11/23/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is a well-characterized hepatocellular carcinoma (HCC)-associated antigen, yet anti-GPC3 therapies have achieved only minimal clinical progress. CD47 is a ubiquitously expressed innate immune checkpoint that promotes evasion of tumors from immune surveillance. Given both the specific expression of GPC3 in HCC and the known phagocytosis inhibitory effect of CD47 in liver cancer, we hypothesized that a bispecific antibody (BsAb) that co-engages with GPC3 and CD47 may offer excellent antitumor efficacy with minimal toxicity. Here, we generated a novel BsAb: GPC3/CD47 biAb. With the use of both in vitro and in vivo assays, we found that GPC3/CD47 biAb exerts strong antitumor activity preferentially against dual antigen-expressing tumor cells. In hCD47/human signal regulatory protein alpha (hCD47/hSIRPα) humanized mice, GPC3/CD47 biAb had an extended serum half-life without causing systemic toxicity. Importantly, GPC3/CD47 biAb induced enhanced Fc-mediated effector functions to dual antigen-expressing HCC cells in vitro, and both macrophages and neutrophils are required for its strong efficacy against xenograft HCC tumors. Notably, GPC3/CD47 biAb outperformed monotherapies and a combination therapy with anti-CD47 and anti-GPC3 monoclonal antibodies (mAbs) in a xenograft HCC model. Our study illustrates a strategy for improving HCC treatment by boosting innate immune responses and presents new insights to inform antibody design for the future development of innovative immune therapies.
Collapse
Affiliation(s)
- Kaixin Du
- School of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Juan Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Wei Chen
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong Luo
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Huisi Liu
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yonghe Qi
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
29
|
Kumar V, Rahman M, Gahtori P, Al-Abbasi F, Anwar F, Kim HS. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Expert Opin Drug Deliv 2020; 18:673-694. [PMID: 33295218 DOI: 10.1080/17425247.2021.1860939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide. Conventional therapies covering either chemotherapy or combination therapy still have sub-optimal responses with significant adverse effects and toxicity. Moreover, tumor cells usually acquire resistance quickly for traditional approaches, limiting their use in HCC. Interest in nanomedicine due to minimal systemic toxicity and a high degree of target-specific drug-delivery have pulled the attention of health scientists in this area of therapeutics. AREA COVERED The review covers the incidence and epidemiology of HCC, proposed molecular drug targets, mechanistic approach and emergence of nanomedicines including nanoparticles, lipidic nanoparticles, vesicular-based nanocarrier, virus-like particles with momentous therapeutic aspects including biocompatibility, and toxicity of nanocarriers along with conclusions and future perspective, with an efficient approach to safely cross physiological barriers to reach the target site for treating liver cancer. EXPERT OPINION Remarkable outcomes have recently been observed for the therapeutic efficacy of nanocarriers with respect to a specific drug target against the treatment of HCC by existing under trial drugs.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University Dehradun 248002, Uttarakhand, India
| | - Fahad Al-Abbasi
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, 2066, Seobu-ro, Korea
| |
Collapse
|
30
|
Bell MM, Gutsche NT, King AP, Baidoo KE, Kelada OJ, Choyke PL, Escorcia FE. Glypican-3-Targeted Alpha Particle Therapy for Hepatocellular Carcinoma. Molecules 2020; 26:molecules26010004. [PMID: 33374953 PMCID: PMC7792624 DOI: 10.3390/molecules26010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Glypican-3 (GPC3) is expressed in 75% of hepatocellular carcinoma (HCC), but not normal liver, making it a promising HCC therapeutic target. GC33 is a full-length humanized monoclonal IgG1 specific to GPC3 that can localize to HCC in vivo. GC33 alone failed to demonstrate therapeutic efficacy when evaluated in patients with HCC; however, we posit that cytotoxic functionalization of the antibody with therapeutic radionuclides, may be warranted. Alpha particles, which are emitted by radioisotopes such as Actinium-225 (Ac-225) exhibit high linear energy transfer and short pathlength that, when targeted to tumors, can effectively kill cancer and limit bystander cytotoxicity. Macropa, an 18-member heterocyclic crown ether, can stably chelate Ac-225 at room temperature. Here, we synthesized and evaluated the efficacy of [225Ac]Ac–Macropa–GC33 in mice engrafted with the GPC3-expressing human liver cancer cell line HepG2. Following a pilot dose-finding study, mice (n = 10 per group) were treated with (1) PBS, (2) mass-equivalent unmodified GC33, (3) 18.5 kBq [225Ac]Ac–Macropa–IgG1 (isotype control), (4) 9.25 kBq [225Ac]Ac–Macropa–GC33, and (5) 18.5 kBq [225Ac]Ac–Macropa–GC33. While significant toxicity was observed in all groups receiving radioconjugates, the 9.25 kBq [225Ac]Ac–Macropa–GC33 group demonstrated a modest survival advantage compared to PBS (p = 0.0012) and 18.5 kBq [225Ac]Ac–IgG1 (p = 0.0412). Hematological analysis demonstrated a marked, rapid reduction in white blood cells in all radioconjugate-treated groups compared to the PBS and unmodified GC33 control groups. Our studies highlight a significant disadvantage of using directly-labeled biomolecules with long blood circulation times for TAT. Strategies to mitigate such treatment toxicity include dose fractionation, pretargeting, and using smaller targeting ligands.
Collapse
Affiliation(s)
- Meghan M. Bell
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
| | - Nicholas T. Gutsche
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
| | - A. Paden King
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
| | - Kwamena E. Baidoo
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
| | - Olivia J. Kelada
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
- In Vivo Imaging, Discovery and Analytics, PerkinElmer Inc., Hopkinton, MA 01748, USA
| | - Peter L. Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
| | - Freddy E. Escorcia
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (M.M.B.); (N.T.G.); (A.P.K.); (K.E.B.); (O.J.K.); (P.L.C.)
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-240-858-3062
| |
Collapse
|
31
|
Hussein NH, Amin NS, El Tayebi HM. GPI-AP: Unraveling a New Class of Malignancy Mediators and Potential Immunotherapy Targets. Front Oncol 2020; 10:537311. [PMID: 33344222 PMCID: PMC7746843 DOI: 10.3389/fonc.2020.537311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
With millions of cases diagnosed annually and high economic burden to cover expensive costs, cancer is one of the most difficult diseases to treat due to late diagnosis and severe adverse effects from conventional therapy. This creates an urgent need to find new targets for early diagnosis and therapy. Progress in research revealed the key steps of carcinogenesis. They are called cancer hallmarks. Zooming in, cancer hallmarks are characterized by ligands binding to their cognate receptor and so triggering signaling cascade within cell to make response for stimulus. Accordingly, understanding membrane topology is vital. In this review, we shall discuss one type of transmembrane proteins: Glycosylphosphatidylinositol-Anchored Proteins (GPI-APs), with specific emphasis on those involved in tumor cells by evading immune surveillance and future applications for diagnosis and immune targeted therapy.
Collapse
|
32
|
Shih TC, Wang L, Wang HC, Wan YJY. Glypican-3: A molecular marker for the detection and treatment of hepatocellular carcinoma ☆. LIVER RESEARCH 2020; 4:168-172. [PMID: 33384879 PMCID: PMC7771890 DOI: 10.1016/j.livres.2020.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with a fairly poor prognosis (5-year survival of less than 50%). Using sorafenib, the only food and drug administration (FDA)-approved drug, HCC cannot be effectively treated; it can only be controlled at most for a couple of months. There is a great need to develop efficacious treatment against this debilitating disease. Glypican-3 (GPC3), a member of the glypican family that attaches to the cell surface by a glycosylphosphatidylinositol anchor, is overexpressed in HCC cases and is elevated in the serum of a large proportion of patients with HCC. GPC3 expression contributes to HCC growth and metastasis. Furthermore, several different types of antibodies targeting GPC3 have been developed. The aim of this review is to summarize the current literatures on the GPC3 expression in human HCC, molecular mechanisms of GPC3 regulation and antibodies targeting GPC3.
Collapse
Affiliation(s)
- Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Hsiao-Chi Wang
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA,Corresponding author. Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
33
|
Hepatocellular carcinoma immunotherapy: The impact of epigenetic drugs and the gut microbiome. LIVER RESEARCH 2020; 4:191-198. [PMID: 33343967 PMCID: PMC7746137 DOI: 10.1016/j.livres.2020.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) has been increasing for decades. This disease has now risen to become the sixth most common malignancy overall, while ranking as the third most frequent cause of cancer mortality. While several surgical interventions and loco-regional treatment options are available, up to 80% of patients present with advanced disease not amenable to standard therapies. Indeed, traditional cytotoxic chemotherapeutic agents are notoriously ineffective and essentially play no role in the management of affected patients. This has led to an enormous need for more effective systemic therapeutic options. In recent years, immunotherapy has emerged as a potentially viable and exciting new alternative for the treatment of HCC. Although the current immunotherapeutic options remain imperfect, various strategies can be employed to further improve their efficacy. New findings have revealed epigenetic modulation can be effective as a new approach for improving HCC immunotherapy. Studying the gut microbiome (gut-liver axis) can also be an interesting subject in this regard. Here, we explore the latest insights into the role of immunotherapy treatmenting HCC, both mono and in combination with other agents. We also focus on the impact of epigenetic drugs and the microbiome in the overall effectiveness of HCC immunotherapy.
Collapse
|
34
|
Yu L, Yang X, Huang N, Wu M, Sun H, He Q, Lang Q, Zou X, Liu Z, Wang J, Ge L. Generation of fully human anti-GPC3 antibodies with high-affinity recognition of GPC3 positive tumors. Invest New Drugs 2020; 39:615-626. [PMID: 33215325 DOI: 10.1007/s10637-020-01033-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
The acceleration of therapeutic antibody development has been motivated by the benefit to and their demand for human health. In particular, humanized transgenic antibody discovery platforms, combined with immunization, hybridoma fusion and/or single cell DNA sequencing are the most reliable and rapid methods for mining the human monoclonal antibodies. Human GPC3 protein is an oncofetal antigen, and it is highly expressed in most hepatocellular carcinomas and some types of squamous cell carcinomas. Currently, no fully human anti-GPC3 therapeutic antibodies have been reported and evaluated in extensive tumor tissues. Here, we utilized a new humanized transgenic mouse antibody discovery platform (CAMouse) that contains large V(D)J -regions and human gamma-constant regions of human immunoglobulin in authentic configurations to generate fully human anti-GPC3 antibodies. Our experiments resulted in four anti-GPC3 antibodies with high-specific binding and cytotoxicity to GPC3 positive cancer cells, and the antibody affinities are in the nanomolar range. Immunohistochemistry analysis demonstrated that these antibodies can recognize GPC3 protein on many types of solid tumors. In summary, the human anti-human GPC3 monoclonal antibodies described here are leading candidates for further preclinical studies of cancer therapy, further, the CAMouse platform is a robust tool for human therapeutic antibody discovery.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Xi Yang
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Nan Huang
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Qilin He
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Qiaoli Lang
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Xiangang Zou
- Chongqing CAMAB Biotech Ltd., Chongqing, 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China.,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, No.51 Changlong Street, Rongchang District, Chongqing, 402460, China. .,Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, Chongqing, 402460, China. .,Chongqing CAMAB Biotech Ltd., Chongqing, 402460, China.
| |
Collapse
|
35
|
Yang F, Zhao L, Wei Z, Yang Y, Liu J, Li Y, Tian X, Liu X, Lü X, Sui J. A Cross-Species Reactive TIGIT-Blocking Antibody Fc Dependently Confers Potent Antitumor Effects. THE JOURNAL OF IMMUNOLOGY 2020; 205:2156-2168. [PMID: 32887749 DOI: 10.4049/jimmunol.1901413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/26/2019] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
The T cell immunoreceptor with Ig and ITIM domains (TIGIT) has been shown to exert inhibitory roles in antitumor immune responses. In this study, we report the development of a human mAb, T4, which recognizes both human and mouse TIGIT and blocks the interaction of TIGIT with its ligand CD155 in both species. The T4 Ab targets the segment connecting F and G strands of TIGIT's extracellular IgV domain, and we show in studies with mouse tumor models that the T4 Ab exerts strong antitumor activity and induces durable immune memory against various tumor types. Mechanistically, we demonstrate that the T4 Ab's antitumor effects are mediated via multiple immunological impacts, including a CD8+ T immune response and Fc-mediated effector functions, through NK cells that cause significant reduction in the frequency of intratumoral T regulatory cells (Tregs). Notably, this Treg reduction apparently activates additional antitumor CD8+ T cell responses, targeting tumor-shared Ags that are normally cryptic or suppressed by Tregs, thus conferring cross-tumor immune memory. Subsequent engineering for Fc variants of the T4 Ab with enhanced Fc-mediated effector functions yielded yet further improvements in antitumor efficacy. Thus, beyond demonstrating the T4 Ab as a promising candidate for the development of cancer immunotherapies, our study illustrates how the therapeutic efficacy of an anti-TIGIT Ab can be improved by enhancing Fc-mediated immune effector functions. Our insights about the multiple mechanisms of action of the T4 Ab and its Fc variants should help in developing new strategies that can realize the full clinical potential of anti-TIGIT Ab therapies.
Collapse
Affiliation(s)
- Fang Yang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Linlin Zhao
- National Institute of Biological Sciences, Beijing 102206, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, Beijing 102206, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yajing Yang
- National Institute of Biological Sciences, Beijing 102206, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Juan Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, Beijing 102206, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, College of Life Sciences, Peking University, Beijing 100871, China; and
| | - Xinxin Tian
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ximing Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xueyuan Lü
- National Institute of Biological Sciences, Beijing 102206, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing 102206, China; .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
36
|
32A9, a novel human antibody for designing an immunotoxin and CAR-T cells against glypican-3 in hepatocellular carcinoma. J Transl Med 2020; 18:295. [PMID: 32746924 PMCID: PMC7398316 DOI: 10.1186/s12967-020-02462-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background Treatment of hepatocellular carcinoma (HCC) using antibody-based targeted therapies, such as antibody conjugates and chimeric antigen receptor T (CAR-T) cell therapy, shows potent antitumor efficacy. Glypican-3 (GPC3) is an emerging HCC therapeutic target; therefore, antibodies against GPC3 would be useful tools for developing immunotherapies for HCC. Methods We isolated a novel human monoclonal antibody, 32A9, by phage display technology. We determined specificity, affinity, epitope and anti-tumor activity of 32A9, and developed 32A9-based immunotherapy technologies for evaluating the potency of HCC treatment in vitro or in vivo. Results 32A9 recognized human GPC3 with potent affinity and specificity. The epitope of 32A9 was located in the region of the GPC3 protein core close to the modification sites of the HS chain and outside of the Wnt-binding site of GPC3. The 32A9 antibody significantly inhibited HCC xenograft tumor growth in vivo. We then pursued two 32A9-based immunotherapeutic strategies by constructing an immunotoxin and CAR-T cells. The 32A9 immunotoxin exhibited specific cytotoxicity to GPC3-positive cancer cells, while 32A9 CAR-T cells efficiently eliminated GPC3-positive HCC cells in vitro and caused HCC xenograft tumor regressions in vivo. Conclusions Our study provides a rationale for 32A9 as a promising GPC3-specific antibody candidate for HCC immunotherapy.
Collapse
|
37
|
Abstract
Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline R Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Dal Bo M, De Mattia E, Baboci L, Mezzalira S, Cecchin E, Assaraf YG, Toffoli G. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resist Updat 2020; 51:100702. [DOI: 10.1016/j.drup.2020.100702] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
|
39
|
Development of Glypican-3 Targeting Immunotoxins for the Treatment of Liver Cancer: An Update. Biomolecules 2020; 10:biom10060934. [PMID: 32575752 PMCID: PMC7356171 DOI: 10.3390/biom10060934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for most liver cancers and represents one of the deadliest cancers in the world. Despite the global demand for liver cancer treatments, there remain few options available. The U.S. Food and Drug Administration (FDA) recently approved Lumoxiti, a CD22-targeting immunotoxin, as a treatment for patients with hairy cell leukemia. This approval helps to demonstrate the potential role that immunotoxins can play in the cancer therapeutics pipeline. However, concerns have been raised about the use of immunotoxins, including their high immunogenicity and short half-life, in particular for treating solid tumors such as liver cancer. This review provides an overview of recent efforts to develop a glypican-3 (GPC3) targeting immunotoxin for treating HCC, including strategies to deimmunize immunotoxins by removing B- or T-cell epitopes on the bacterial toxin and to improve the serum half-life of immunotoxins by incorporating an albumin binding domain.
Collapse
|
40
|
Li D, Li N, Zhang YF, Fu H, Feng M, Schneider D, Su L, Wu X, Zhou J, Mackay S, Kramer J, Duan Z, Yang H, Kolluri A, Hummer AM, Torres MB, Zhu H, Hall MD, Luo X, Chen J, Wang Q, Abate-Daga D, Dropulic B, Hewitt SM, Orentas RJ, Greten TF, Ho M. Persistent Polyfunctional Chimeric Antigen Receptor T Cells That Target Glypican 3 Eliminate Orthotopic Hepatocellular Carcinomas in Mice. Gastroenterology 2020; 158:2250-2265.e20. [PMID: 32060001 PMCID: PMC7282931 DOI: 10.1053/j.gastro.2020.02.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/13/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Glypican 3 (GPC3) is an oncofetal antigen involved in Wnt-dependent cell proliferation that is highly expressed in hepatocellular carcinoma (HCC). We investigated whether the functions of chimeric antigen receptors (CARs) that target GPC3 are affected by their antibody-binding properties. METHODS We collected peripheral blood mononuclear cells from healthy donors and patients with HCC and used them to create CAR T cells, based on the humanized YP7 (hYP7) and HN3 antibodies, which have high affinities for the C-lobe and N-lobe of GPC3, respectively. NOD/SCID/IL-2Rgcnull (NSG) mice were given intraperitoneal injections of luciferase-expressing (Luc) Hep3B or HepG2 cells and after xenograft tumors formed, mice were given injections of saline or untransduced T cells (mock control), or CAR (HN3) T cells or CAR (hYP7) T cells. In other NOD/SCID/IL-2Rgcnull (NSG) mice, HepG2-Luc or Hep3B-Luc cells were injected into liver, and after orthotopic tumors formed, mice were given 1 injection of CAR (hYP7) T cells or CD19 CAR T cells (control). We developed droplet digital polymerase chain reaction and genome sequencing methods to analyze persistent CAR T cells in mice. RESULTS Injections of CAR (hYP7) T cells eliminated tumors in 66% of mice by week 3, whereas CAR (HN3) T cells did not reduce tumor burden. Mice given CAR (hYP7) T cells remained tumor free after re-challenge with additional Hep3B cells. The CAR T cells induced perforin- and granzyme-mediated apoptosis and reduced levels of active β-catenin in HCC cells. Mice injected with CAR (hYP7) T cells had persistent expansion of T cells and subsets of polyfunctional CAR T cells via antigen-induced selection. These T cells were observed in the tumor microenvironment and spleen for up to 7 weeks after CAR T-cell administration. Integration sites in pre-infusion CAR (HN3) and CAR (hYP7) T cells were randomly distributed, whereas integration into NUPL1 was detected in 3.9% of CAR (hYP7) T cells 5 weeks after injection into tumor-bearing mice and 18.1% of CAR (hYP7) T cells at week 7. There was no common site of integration in CAR (HN3) or CD19 CAR T cells from tumor-bearing mice. CONCLUSIONS In mice with xenograft or orthoptic liver tumors, CAR (hYP7) T cells eliminate GPC3-positive HCC cells, possibly by inducing perforin- and granzyme-mediated apoptosis or reducing Wnt signaling in tumor cells. GPC3-targeted CAR T cells might be developed for treatment of patients with HCC.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Apoptosis
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Glypicans/genetics
- Glypicans/immunology
- Glypicans/metabolism
- Granzymes/metabolism
- Hep G2 Cells
- Humans
- Immunotherapy, Adoptive
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Male
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- Perforin/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Burden
- Tumor Microenvironment
- Wnt Signaling Pathway
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; School of Life Sciences, East China Normal University, Shanghai, China
| | - Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yi-Fan Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haiying Fu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Mingqian Feng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dina Schneider
- Lentingen, a Miltenyi Biotec Company, Gaithersburg, Maryland
| | - Ling Su
- Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - Jing Zhou
- IsoPlexis Corporation, Branford, Connecticut
| | - Sean Mackay
- IsoPlexis Corporation, Branford, Connecticut
| | - Josh Kramer
- Animal Facility, Leidos Biomedical Research, Inc, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Zhijian Duan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hongjia Yang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aarti Kolluri
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alissa M Hummer
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline B Torres
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hu Zhu
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Matthew D Hall
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jinqiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Qun Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Daniel Abate-Daga
- Departments of Immunology, Cutaneous Oncology, and Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Boro Dropulic
- Lentingen, a Miltenyi Biotec Company, Gaithersburg, Maryland
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Tim F Greten
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
41
|
Fujii E, Funahashi S, Taniguchi K, Kawai S, Nakano K, Kato A, Suzuki M. Tissue-specific effects of an anti-desmoglein-3 ADCC antibody due to expression of the target antigen and physiological characteristics of the mouse vagina. J Toxicol Pathol 2020; 33:67-76. [PMID: 32425339 PMCID: PMC7218237 DOI: 10.1293/tox.2019-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
Desmoglein-3 (DSG3) is a potential target of cytotoxic antibody therapy for squamous cell carcinomas but is also expressed in various normal squamous epithelia. We obtained information about DSG3 distribution in mouse tissues by immunohistochemistry and conducted an intravenous multiple-dose study in mouse to estimate the toxic potential of anti-DSG3 therapy. DSG3 was expressed in the squamous epithelium of several organs including the skin, esophagus, tongue, forestomach, eye, and vagina. It was expressed at all estrous cycles of the vagina with changes in distribution patterns along with the structural changes in each cycle, and expression was reduced in ovariectomized (OVX) mice. On the administration of the antibody, there was disarrangement of the vaginal mucosal epithelium with formation of miroabscess, increased granulocyte infiltration, and single cell necrosis. Despite similar expression levels of DSG3 in other tissues, histopathological changes were limited to the vagina. The severity of the changes was reduced by ovariectomy. From these findings, the lesions were thought to be related to the drastic change in the histological structure of the vaginal mucosa accompanying the estrous cycle. Thus, we have shown that the changing expression of target antigen distribution and its relationship with physiological changes in tissue structure are important features for estimating the toxic potential of cytotoxic antibody therapy.
Collapse
Affiliation(s)
- Etsuko Fujii
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 6-1 Komaba 4, Meguro, Tokyo 153-8904, Japan.,Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Shinichi Funahashi
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 6-1 Komaba 4, Meguro, Tokyo 153-8904, Japan
| | - Kenji Taniguchi
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Shigeto Kawai
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 6-1 Komaba 4, Meguro, Tokyo 153-8904, Japan
| | - Kiyotaka Nakano
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 6-1 Komaba 4, Meguro, Tokyo 153-8904, Japan
| | - Atsuhiko Kato
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Masami Suzuki
- Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, 6-1 Komaba 4, Meguro, Tokyo 153-8904, Japan.,Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| |
Collapse
|
42
|
Yu L, Yang X, Huang N, Lang QL, He QL, Jian-Hua W, Liang-Peng G. A novel targeted GPC3/CD3 bispecific antibody for the treatment hepatocellular carcinoma. Cancer Biol Ther 2020; 21:597-603. [PMID: 32240054 DOI: 10.1080/15384047.2020.1743158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer but has shown limited success to date in the treatment of advanced stage. Recruitment of T cells for cancer treatment is a rapidly growing strategy in immunotherapy such as chimeric antigen receptor T cells and bispecific antibodies. However, unwanted aggregations, structural instability or short serum half-life are major challenges of bispecific antibodies. Here, we developed a new format of T cell-redirecting antibody that is bispecific for membrane proteoglycans GPC3 of HCC and the T-cell-specific antigen CD3, which demonstrated to be favorable stability and productivity. Cross-linking of T cells with GPC3 positive tumor cells by the anti-GPC3/CD3 bispecific antibody-mediated potent GPC3-dependent and concentration-dependent cytotoxicity in vitro. Administration of the bispecific antibody with different concentrations in murine xenograft models of human HCC significantly inhibited tumor growth. In addition, no effects on tumor growth were observed in the absence of human effector cells or the bispecific antibody. Taken together, the anti-GPC3/CD3 bispecific antibody might be a potential therapeutic treatment for HCC.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University , Chongqing, China
| | - Xi Yang
- Department of Bioengineering, Chongqing Academy of Animal Sciences , Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture , Chongqing, China.,Department of Bioengineering, Chongqing Key Laboratory of Pig Industry Sciences , Chongqing, China.,Department of Bioengineering, Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application , Chongqing, China
| | - Nan Huang
- Department of Bioengineering, Chongqing Academy of Animal Sciences , Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture , Chongqing, China.,Department of Bioengineering, Chongqing Key Laboratory of Pig Industry Sciences , Chongqing, China.,Department of Bioengineering, Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application , Chongqing, China
| | - Qiao-Li Lang
- Department of Bioengineering, Chongqing Academy of Animal Sciences , Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture , Chongqing, China.,Department of Bioengineering, Chongqing Key Laboratory of Pig Industry Sciences , Chongqing, China.,Department of Bioengineering, Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application , Chongqing, China
| | - Qi-Lin He
- Department of Bioengineering, Chongqing Academy of Animal Sciences , Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture , Chongqing, China.,Department of Bioengineering, Chongqing Key Laboratory of Pig Industry Sciences , Chongqing, China.,Department of Bioengineering, Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application , Chongqing, China
| | - Wang Jian-Hua
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University , Chongqing, China
| | - Ge Liang-Peng
- Department of Bioengineering, Chongqing Academy of Animal Sciences , Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture , Chongqing, China.,Department of Bioengineering, Chongqing Key Laboratory of Pig Industry Sciences , Chongqing, China.,Department of Bioengineering, Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application , Chongqing, China
| |
Collapse
|
43
|
Liu X, Wen J, Yi H, Hou X, Yin Y, Ye G, Wu X, Jiang X. Split chimeric antigen receptor-modified T cells targeting glypican-3 suppress hepatocellular carcinoma growth with reduced cytokine release. Ther Adv Med Oncol 2020; 12:1758835920910347. [PMID: 32215059 PMCID: PMC7065297 DOI: 10.1177/1758835920910347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Human glypican-3 (hGPC3) is a protein highly expressed in hepatocellular carcinoma (HCC) but limited in normal tissues, making it an ideal target for immunotherapy. The adoptive transfer of hGPC3-specific chimeric antigen receptor T (CAR-T) cells for HCC treatment has been conducted in clinical trials. Due to the rigid construction, conventional CAR-T cells have some intrinsic limitations, like uncontrollable overactivation and inducing severe cytokine release syndrome. Methods: We redesigned the hGPC3-specific CAR by splitting the traditional CAR into two parts. By using coculturing assays and a xenograft mouse model, the in vitro and in vivo cytotoxicity and cytokine release of the split anti-hGPC3 CAR-T cells were evaluated against various HCC cell lines and compared with conventional CAR-T cells. Results: In vitro data demonstrated that split anti-hGPC3 CAR-T cells could recognize and lyse hGPC3+ HepG2 and Huh7 cells in a dose-dependent manner. Impressively, split anti-hGPC3 CAR-T cells produced and released a significantly lower amount of proinflammatory cytokines, including IFN-γ, TNF-α, IL-6, and GM-CSF, than conventional CAR-T cells. When injected into immunodeficient mice inoculated subcutaneously with HepG2 cells, our split anti-hGPC3 CAR-T cells could suppress HCC tumor growth, but released significantly lower levels of cytokines than conventional CAR-T cells. Conclusions: We describe here for the first time the use of split anti-hGPC3 CAR-T cells to treat HCC; split anti-hGPC3 CAR-T cells could suppress tumor growth and reduce cytokine release, and represent a more versatile and safer alternative to conventional CAR-T cells treatment.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianyun Wen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Honglei Yi
- Department of Orthopedics, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Yin
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Tonghe Road, Guangzhou, 510515, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Shatai Road, Guangzhou, 510515, China
| |
Collapse
|
44
|
Ge Y, Mu W, Ba Q, Li J, Jiang Y, Xia Q, Wang H. Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application. Cancer Lett 2020; 477:41-48. [PMID: 32112905 DOI: 10.1016/j.canlet.2020.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, despite improvements in the clinical trial and diagnosis, HCC still remains high mortality due to the 70% recurrence and lung metastasis after surgical resection. Exosomes are small membrane vesicles, which are shuttled from donor cells to recipient cells, contributing to the recruitment and reprogramming of constituents via an autocrine or paracrine fashion. HCC derived exosomes could redirect metastasis of tumor cells which lack the capacity to metastasize to a specific organ via generating pre-metastatic niche. These findings emphasize a practical and potentially feasible role of exosomes in the treatment of patients with HCC, both as a target and a vehicle for drug design. We herein summarize recent findings that implicate oncogenes and non-canonical signaling of HCC exosomes, as well as the impact of exosomal bioactive molecules in high recurrence induced by organ-specific metastasis. The aim of review is to illustrate the underlying mechanism of exosomes in tumor metastasis, immune evasion, and the potential application of prognostic biomarker in HCC process.
Collapse
Affiliation(s)
- Yang Ge
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yiguo Jiang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiang Xia
- Organ Transplantation Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
45
|
Guo M, Zhang H, Zheng J, Liu Y. Glypican-3: A New Target for Diagnosis and Treatment of Hepatocellular Carcinoma. J Cancer 2020; 11:2008-2021. [PMID: 32127929 PMCID: PMC7052944 DOI: 10.7150/jca.39972] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related deaths worldwide, and hepatocellular carcinoma is the most common type. The pathogenesis of hepatocellular carcinoma is concealed, its progress is rapid, its prognosis is poor, and the mortality rate is high. Therefore, novel molecular targets for hepatocellular carcinoma early diagnosis and development of targeted therapy are critically needed. Glypican-3, a cell-surface glycoproteins in which heparan sulfate glycosaminoglycan chains are covalently linked to a protein core, is overexpressed in HCC tissues but not in the healthy adult liver. Thus, Glypican-3 is becoming a promising candidate for liver cancer diagnosis and immunotherapy. Up to now, Glypican-3 has been a reliable immunohistochemical marker for hepatocellular carcinoma diagnosis, and soluble Glypican-3 in serum has becoming a promising marker for liquid biopsy. Moreover, various immunotherapies targeting Glypican-3 have been developed, including Glypican-3 vaccines, anti- Glypican-3 immunotoxin and chimeric-antigen-receptor modified cells. In this review, we summarize and analyze the structure and physicochemical properties of Glypican-3 molecules, then review their biological functions and applications in clinical diagnosis, and explore the diagnosis and treatment strategies based on Glypican-3.
Collapse
Affiliation(s)
- Meng Guo
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianming Zheng
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yangfang Liu
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
46
|
Siracusano G, Tagliamonte M, Buonaguro L, Lopalco L. Cell Surface Proteins in Hepatocellular Carcinoma: From Bench to Bedside. Vaccines (Basel) 2020; 8:vaccines8010041. [PMID: 31991677 PMCID: PMC7157713 DOI: 10.3390/vaccines8010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Cell surface proteins act as the go-between in carrying the information from the extracellular environment to the intracellular signaling proteins. However, these proteins are often deregulated in neoplastic diseases, including hepatocellular carcinoma. This review discusses several recent studies that have investigated the role of cell surface proteins in the occurrence and progression of HCC, highlighting the possibility to use them as biomarkers of the disease and/or targets for vaccines and therapeutics.
Collapse
Affiliation(s)
- Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy;
- Correspondence: ; Tel.: +39-022643-4957
| | - Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (M.T.); (L.B.)
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (M.T.); (L.B.)
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy;
| |
Collapse
|
47
|
Ma W, Zhu D, Li J, Chen X, Xie W, Jiang X, Wu L, Wang G, Xiao Y, Liu Z, Wang F, Li A, Shao D, Dong W, Liu W, Yuan Y. Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics 2020; 10:1281-1295. [PMID: 31938065 PMCID: PMC6956810 DOI: 10.7150/thno.40291] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Rationale: Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies in the world. Apart from traditional surgical resection, radiotherapy, and chemotherapy, more recent techniques such as nano-photothermal therapy and biotherapy are gradually being adopted for the treatment of HCC. This project intends to combine the advantages of nanoscale drug delivery systems with the targeting ability of CAR-T cells. Method: Based on cell membrane-coated nanoparticles and cell membrane-targeting modifications, a novel nanomaterial was prepared by coating CAR-T cell membranes specifically recognizing GPC3+ HCC cells onto mesoporous silica containing IR780 nanoparticles. Subsequently, the physical properties were characterized, and the in vitro and in vivo targeting abilities of this nanoparticle were verified. Results: CAR-T cells were constructed which could recognize GPC3 expressed on the cell surface of HCC cells. Then the isolated CAR-T cell membrane was successfully coated on the IR780 loaded mesoporous silica materials, as verified by transmission electron microscopy. The superior targeting ability of CAR-T cell membrane coated nanoparticles compared to IR780 loaded mesoporous silica nanoparticles was verified, both in vitro and in vivo. Conclusion: This new nanomaterial exhibits photothermal antitumor abilities along with enhanced targeting abilities, suggesting a promising strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Daoming Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jinghua Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Xie
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Long Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yusha Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhisu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Andrew Li
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Dan Shao
- Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Wenfei Dong
- Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
48
|
Intratumoral reciprocal expression of monocarboxylate transporter 4 and glypican-3 in hepatocellular carcinomas. BMC Res Notes 2019; 12:741. [PMID: 31706332 PMCID: PMC6842510 DOI: 10.1186/s13104-019-4778-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022] Open
Abstract
Objective We previously reported the identification of monocarboxylate transporter 4 (MCT4) and glypican-3 (GPC3) as prognostic factors for hepatocellular carcinoma (HCC), which are now considered significant poor prognostic factors for the disease. This study aimed to clarify the detailed interaction of these two factors in HCC to improve our understanding of aggressive HCC phenotypes. A total of 225 Japanese patients with HCC from our previous study were subjected to immunohistochemical analyses. Results The number of MCT4-positive (MCT4+) HCC cases was 47 (21%), and most MCT4+ HCC showed high GPC3 expression (94%, 44/47 cases). In 44 MCT4+/GPC3+ HCC cases, intratumoral heterogeneity of GPC3 or MCT4 expression was further evaluated. We observed reciprocal (inverse), synergistic, mixed reciprocal and synergistic, or irrelevant interaction of MCT4 and GPC3 expression in 29 (66%), 5 (11%), 1 (2%), and 9 cases (21%), respectively. The cases exhibiting reciprocal expression of both markers tended to have cirrhosis without a history of neoadjuvant therapy. In summary, although MCT4+ HCC cases are mostly GPC3+, intratumoral expression patterns of MCT4 and GPC3 are frequently reciprocal each other, suggesting that dual targeting of MCT4 and GPC3 may achieve a better antitumor effect for MCT4+ HCC cases.
Collapse
|
49
|
Ludwig AD, Labadie KP, Seo YD, Hamlin DK, Nguyen HM, Mahadev VM, Yeung RS, Wilbur DS, Park JO. Yttrium-90-Labeled Anti-Glypican 3 Radioimmunotherapy Halts Tumor Growth in an Orthotopic Xenograft Model of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2019; 2019:4564707. [PMID: 31636665 PMCID: PMC6766125 DOI: 10.1155/2019/4564707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/26/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal malignancy globally and is increasing in incidence in the United States. Unfortunately, there are few effective systemic treatment options, particularly for disseminated disease. Glypican-3 (GPC3) is a proteoglycan cell surface receptor overexpressed in most HCCs and provides a unique target for molecular therapies. We have previously demonstrated that PET imaging using a 89Zr-conjugated monoclonal anti-GPC3 antibody (αGPC3) can bind to minute tumors and allow imaging with high sensitivity and specificity in an orthotopic xenograft mouse model of HCC and that serum alpha-fetoprotein (AFP) levels are highly correlated with tumor size in this model. In the present study, we conjugated 90Y, a high-energy beta-particle-emitting radionuclide, to our αGPC3 antibody to develop a novel antibody-directed radiotherapeutic approach for HCC. Luciferase-expressing HepG2 human hepatoblastoma cells were orthotopically implanted in the livers of athymic nude mice, and tumor establishment was verified at 6 weeks after implantation by bioluminescent imaging and serum AFP concentration. Tumor burden by bioluminescence and serum AFP concentration was highly correlated in our model. Yttrium-90 was conjugated to αGPC3 using the chelating agent 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and injected via the tail vein into the experimental mice at a dose of 200 μCi/mouse or 300 μCi/mouse. Control mice received DOTA-αGPC3 without radionuclide. At 30 days after a single dose of the radioimmunotherapy agent, mean serum AFP levels in control animals increased dramatically, while animals treated with 200 μCi only experienced a minor increase, indicating cessation of tumor growth, and animals treated with 300 μCi experienced a reduction in serum AFP concentration, indicating tumor shrinkage. Mean tumor-bearing liver weight in control animals was also significantly greater than that in animals that received either dose of 90Y-αGPC3. These results were achieved without significant toxicity as measured by body condition scoring and body weight. The results of this preclinical pilot demonstrate that GPC3 can be used as a target for radioimmunotherapy in an orthotopic mouse model of HCC and may be a target of clinical significance, particularly for disseminated HCC.
Collapse
Affiliation(s)
- Andrew D. Ludwig
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Kevin P. Labadie
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Y. David Seo
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Donald K. Hamlin
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Holly M. Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | | | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - D. S. Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - James O. Park
- Department of Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
50
|
Nishida T, Kataoka H. Glypican 3-Targeted Therapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:E1339. [PMID: 31510063 PMCID: PMC6770328 DOI: 10.3390/cancers11091339] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is an oncofetal glycoprotein attached to the cell membrane by a glycophosphatidylinositol anchor. GPC3 is overexpressed in some kinds of tumors, particularly hepatocellular carcinoma (HCC). The prognostic significance of serum GPC3 levels and GPC3 immunoreactivity in tumor cells has been defined in patients with HCC. In addition to its usefulness as a biomarker, GPC3 has attracted attention as a novel therapeutic target molecule, and clinical trials targeting GPC3 are in progress. The major mechanism of anti-GPC3 antibody (GPC3Ab) against cancer cells is antibody-dependent cellular cytotoxicity and/or complement-dependent cytotoxicity. Since GPC3Ab is associated with immune responses, a combination of protocols with immune checkpoint inhibitors has also been investigated. Moreover, some innovative approaches for GPC3-targeting therapy have emerged in recent years. This review introduces the results of recent clinical trials targeting GPC3 in HCC and summarizes the latest knowledge regarding the role of GPC3 in HCC progression and clinical application targeting GPC3.
Collapse
Affiliation(s)
- Takahiro Nishida
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
- Division of Gastrointestinal, Endocrine and Pediatric Surgery, Department of Surgery, University of Miyazaki Faculty of Medicine, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|