1
|
Sayedyahossein S, Huang K, Zhang C, Karimi M, Bahmani M, O'Donnell BL, Wakefield B, Li Z, Johnston D, Leighton SE, Huver MS, Dagnino L, Sacks DB, Penuela S. Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma. FEBS J 2025. [PMID: 39786847 DOI: 10.1111/febs.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Revised: 08/19/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, Yes-associated protein 1 [YAP], Transcriptional coactivator with PDZ-binding motif [TAZ], and Hippo scaffold, Ras GTPase-activating-like protein IQGAP1 [IQGAP1], in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels. Notably, our investigations uncovered a previously unrecognized interaction between endogenous PANX1 and the Hippo scaffold protein IQGAP1 in melanoma cells. Moreover, our findings revealed that IQGAP1 exhibits differential expression in melanoma cells and plays a regulatory role in cellular morphology. Functional studies involving PANX1 knockdown provided compelling evidence that PANX1 modulates YAP protein levels and its cotranscriptional activity in melanoma and breast carcinoma cells. Importantly, our study highlights the potential therapeutic significance of targeting PANX1. Pharmacological inhibition of PANX1 using selective FDA-approved inhibitors or PANX1 knockdown reduced YAP levels in melanoma cells. Furthermore, our Clariom™ S analysis unveiled key genes implicated in cell proliferation, such as neuroglin1 (NRG1), β-galactoside binding protein and galectin-3 (LGALS3), that are affected in PANX1-deficient cells. In summary, our investigation delves into the intricate interplay between PANX1 and YAP in the context of invasive melanoma, offering valuable insights into potential therapeutic strategies for effective treatment.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Kenneth Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Christopher Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Mehdi Karimi
- Department of Mathematics, Illinois State University, Normal, IL, USA
| | | | - Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Stephanie E Leighton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Matthew S Huver
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| |
Collapse
|
2
|
Sayedyahossein S, Huang K, Zhang C, Karimi M, Bahmani M, O’Donnell BL, Wakefield B, Li Z, Johnston D, Leighton SE, Huver MS, Dagnino L, Sacks DB, Penuela S. Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611059. [PMID: 39372769 PMCID: PMC11451602 DOI: 10.1101/2024.09.03.611059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 10/08/2024]
Abstract
In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, YAP, TAZ, and Hippo scaffold, IQGAP1, in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels. Notably, our investigations uncovered a previously unrecognized interaction between endogenous PANX1 and the Hippo scaffold protein IQGAP1 in melanoma cells. Moreover, our findings revealed that IQGAP1 exhibits differential expression in melanoma cells and plays a regulatory role in cellular morphology. Functional studies involving PANX1 knockdown provided compelling evidence that PANX1 modulates YAP protein levels and its co-transcriptional activity in both melanoma and breast carcinoma cells. Importantly, our study showcases the potential therapeutic relevance of targeting PANX1, as pharmacological inhibition of PANX1 using selective FDA-approved inhibitors or PANX1 knockdown reduced YAP abundance in melanoma cells. Furthermore, our Clariom™ S analysis unveiled key genes implicated in cell proliferation, such as neuroglin1 (NRG1), β-galactoside binding protein, galectin-3 (LGALS3), that are affected in PANX1-deficient cells. In summary, our investigation delves into the intricate interplay between PANX1 and YAP in the context of invasive melanoma, offering valuable insights into potential therapeutic strategies for effective treatment.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Kenneth Huang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Christopher Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Mehdi Karimi
- Department of Mathematics, Illinois State University, Normal, Illinois, USA, 61790
| | | | - Brooke L. O’Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Stephanie E. Leighton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Matthew S. Huver
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
3
|
Vázquez-Cabrera G, Škandík M, Roncier N, Real Oualit F, Cruz De Los Santos M, Baleviciute A, Cheray M, Joseph B. ID2-ETS2 axis regulates the transcriptional acquisition of pro-tumoral microglia phenotype in glioma. Cell Death Dis 2024; 15:512. [PMID: 39019900 PMCID: PMC11255298 DOI: 10.1038/s41419-024-06903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Glioblastoma is a highly aggressive brain tumour that creates an immunosuppressive microenvironment. Microglia, the brain's resident immune cells, play a crucial role in this environment. Glioblastoma cells can reprogramme microglia to create a supportive niche that promotes tumour growth. However, the mechanisms controlling the acquisition of a transcriptome associated with a tumour-supportive microglial reactive state are not fully understood. In this study, we investigated changes in the transcriptional profile of BV2 microglia exposed to C6 glioma cells. RNA-sequencing analysis revealed a significant upregulation of microglial inhibitor of DNA binding 1 (Id1) and Id2, helix-loop-helix negative transcription regulatory factors. The concomitant regulation of microglial ETS proto-oncogene 2, transcription factor (ETS2)-target genes, i.e., Dusp6, Fli1, Jun, Hmox1, and Stab1, led us to hypothesize that ETS2 could be regulated by ID proteins. In fact, ID2-ETS2 protein interactions increased in microglia exposed to glioma cells. In addition, perturbation of the ID2-ETS2 transcriptional axis influenced the acquisition of a microglial tumour-supportive phenotype. ID2 and ETS2 genes were found to be expressed by the tumour-associated microglia isolated from human glioblastoma tumour biopsies. Furthermore, ID2 and ETS2 gene expressions exhibited inverse prognostic values in patients with glioma in cohorts from The Cancer Genome Atlas. Collectively, our findings indicate that the regulation of ETS2 by ID2 plays a role in the transcriptional regulation of microglia in response to stimuli originating from glioblastoma cells, information that could lead to developing therapeutic strategies to manipulate microglial tumour-trophic functions.
Collapse
Affiliation(s)
| | - Martin Škandík
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Noémie Roncier
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Farah Real Oualit
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Austeja Baleviciute
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong.
| |
Collapse
|
4
|
Jiang B, Yuan Y, Yi T, Dang W. The Roles of Antisense Long Noncoding RNAs in Tumorigenesis and Development through Cis-Regulation of Neighbouring Genes. Biomolecules 2023; 13:684. [PMID: 37189431 PMCID: PMC10135817 DOI: 10.3390/biom13040684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Antisense long noncoding RNA (as-lncRNA) is a lncRNA transcribed in reverse orientation that is partially or completely complementary to the corresponding sense protein-coding or noncoding genes. As-lncRNAs, one of the natural antisense transcripts (NATs), can regulate the expression of their adjacent sense genes through a variety of mechanisms, affect the biological activities of cells, and further participate in the occurrence and development of a variety of tumours. This study explores the functional roles of as-lncRNAs, which can cis-regulate protein-coding sense genes, in tumour aetiology to understand the occurrence and development of malignant tumours in depth and provide a better theoretical basis for tumour therapy targeting lncRNAs.
Collapse
Affiliation(s)
- Binyuan Jiang
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Yeqin Yuan
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Ting Yi
- Department of Science and Education, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Wei Dang
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Department of Science and Education, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| |
Collapse
|
5
|
Tao M, Ma H, Fu X, Wang C, Li Y, Hu X, Lv R, Zhou G, Wang J, Liu R, Zhou M, Xu G, Wang Z, Qin X, Long Y, Huang Q, Chen M, Zhou Q. Semaphorin 3F induces colorectal cancer cell chemosensitivity by promoting P27 nuclear export. Front Oncol 2022; 12:899927. [PMID: 36119535 PMCID: PMC9481271 DOI: 10.3389/fonc.2022.899927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal adenocarcinoma (CRC) is the third most common malignancy worldwide. Metastatic CRC has a poor prognosis because of chemotherapy resistance. Our previous study demonstrated that semaphorin 3F (SEMA3F) signaling may contribute to reversing chemotherapy resistance in CRC cells by reducing E-cadherin and integrin αvβ3 expression levels. Another study showed that upregulation of p27 significantly increase the expression of E-cadherin and integrin. This study aimed to evaluate the effect of SEMA3F on P27 and whether it can reverse resistance in CRC cells. We compared the chemosensitivity of human colorectal cancer cell lines with different SEMA3F expression levels to 5-Fu through cell experiment and animal experiment. Then the interaction between SEMA3F and p27 and its possible mechanism were explored by Western Blot, immunofluorescence and immunocoprecipitation. We also compared the disease-free survival of 118 CRC patients with high or low expression of SEMA3F.The results showed that overexpresstion of SEMA3F enhanced the chemotherapy sensitivity and apoptosis of CRC cells in vitro and in vivo. Among 118 postoperative CRC specimens, the disease-free survival of patients with positive SEMA3F expression was significantly longer than that with negative SEMA3F expression after adjuvant treatment. Upregulation of SEMA3F in multicellular spheroid culture (MSC) could increase p27 phosphorylation at serine 10 (Ser10), subsequently promote the cytosolic translocation of P27. Overall, our results reveal a novel molecular mechanism: SEMA3F mediates the degradation of p27 and regulates its subcellular localization to enhance chemosensitivity to 5-Fu in CRC cells, rather than inhibits p27 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qi Zhou
- Department of Oncology, Fuling Central Hospital of Chongqing City, Chongqing, China
| |
Collapse
|
6
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
7
|
Wu Z, Fang L, Yang S, Gao Y, Wang Z, Meng Q, Dang X, Sun YP, Cheng JC. GDF-11 promotes human trophoblast cell invasion by increasing ID2-mediated MMP2 expression. Cell Commun Signal 2022; 20:89. [PMID: 35705978 PMCID: PMC9202197 DOI: 10.1186/s12964-022-00899-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2022] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth differentiation factor-11 (GDF-11), also known as bone morphogenetic protein-11, belongs to the transforming growth factor-beta superfamily. GDF-11 was first identified as an important regulator during embryonic development. Increasing evidence has demonstrated that GDF-11 regulates the development of various organs and its aberrant expressions are associated with the risk of cardiovascular diseases and cancers. Extravillous trophoblast (EVT) cells invasion is a critical event for placenta development and needs to be finely regulated. However, to date, the biological function of GDF-11 in the human EVT cells remains unknown. METHODS HTR-8/SVneo, a human EVT cell line, and primary cultures of human EVT cells were used to examine the effect of GDF-11 on matrix metalloproteinase 2 (MMP2) expression. Matrigel-coated transwell invasion assay was used to examine cell invasiveness. A series of in vitro experiments were applied to explore the underlying mechanisms that mediate the effect of GDF-11 on MMP2 expression and cell invasion. RESULTS Treatment with GDF-11 stimulates MMP2 expression, in the HTR-8/SVneo and primary human EVT cells. Using a pharmacological inhibitor and siRNA-mediated knockdown approaches, our results demonstrated that the stimulatory effect of GDF-11 on MMP2 expression was mediated by the ALK4/5-SMAD2/3 signaling pathways. In addition, the expression of inhibitor of DNA-binding protein 2 (ID2) was upregulated by GDF-11 and that was required for the GDF-11-stimulated MMP2 expression and EVT cell invasion. CONCLUSIONS These findings discover a new biological function and underlying molecular mechanisms of GDF-11 in the regulation of human EVT cell invasion. Video Abstract.
Collapse
Affiliation(s)
- Ze Wu
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Lanlan Fang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Sizhu Yang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Yibo Gao
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Zhen Wang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Qingxue Meng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Xuan Dang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Ying-Pu Sun
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
8
|
Liu F, Chen S, Yu Y, Huang C, Chen H, Wang L, Zhang W, Wu J, Ye Y. Inhibitor of DNA binding 2 knockdown inhibits the growth and liver metastasis of colorectal cancer. Gene 2022; 819:146240. [PMID: 35114275 DOI: 10.1016/j.gene.2022.146240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Liver metastasis of colorectal cancer (CRC) remains high mortality and the mechanism is still unknown. Here we investigated the effects of inhibitor of DNA binding 2 (Id2) on growth and liver metastasis of CRC. METHODS qPCR and western blotting were used to demonstrate mRNA and protein expressions in Id2-knockdown HCT116 cells. Cell growth was observed by cell proliferation assay, colony formation assay and flow cytometry. Cell migration and invasion were observed with wound healing assay and transwell migration and invasion assay. The effects of Id2 knockdown on tumor growth and liver metastasis in vivo were evaluated respectively with subcutaneous tumor model and colorectal liver metastasis model by injecting HCT116 cells into the mesentery triangle of cecum in mice. RESULTS Id2 overexpression was found in CRC cell lines. Id2 knockdown resulted in a reduction in the proliferation, colony formation, migration and invasion of HCT116 cells. The suppression of cell proliferation was accompanied by the cell cycle arrest in the G0/G1 phase with down-regulation of Cyclin D1, Cyclin E, p-Cdk2/3, Cdk6, p-p27 and up-regulation of p21 and p27. Id2 knockdown reversed epithelial-mesenchymal transition (EMT) through increasing E-Cadherin and inhibiting N-Cadherin, Vimentin, β-catenin, Snail and Slug. Id2 was also found to inhibit CRC metastasis via MMP2, MMP9 and TIMP-1. Furthermore, Id2 knockdown suppressed CRC liver metastasis in vivo. CONCLUSION Id2 promotes CRC growth through activation of the PI3K/AKT signaling pathway, and triggers EMT to enhance CRC migration and invasion.
Collapse
Affiliation(s)
- Fang Liu
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Shuping Chen
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Yue Yu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Huijing Chen
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Ling Wang
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Wanping Zhang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Junxin Wu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China.
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China.
| |
Collapse
|
9
|
Loss of E-cadherin leads to Id2-dependent inhibition of cell cycle progression in metastatic lobular breast cancer. Oncogene 2022; 41:2932-2944. [PMID: 35437308 PMCID: PMC9122823 DOI: 10.1038/s41388-022-02314-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/30/2022]
Abstract
Invasive lobular breast carcinoma (ILC) is characterized by proliferative indolence and long-term latency relapses. This study aimed to identify how disseminating ILC cells control the balance between quiescence and cell cycle re-entry. In the absence of anchorage, ILC cells undergo a sustained cell cycle arrest in G0/G1 while maintaining viability. From the genes that are upregulated in anchorage independent ILC cells, we selected Inhibitor of DNA binding 2 (Id2), a mediator of cell cycle progression. Using loss-of-function experiments, we demonstrate that Id2 is essential for anchorage independent survival (anoikis resistance) in vitro and lung colonization in mice. Importantly, we find that under anchorage independent conditions, E-cadherin loss promotes expression of Id2 in multiple mouse and (organotypic) human models of ILC, an event that is caused by a direct p120-catenin/Kaiso-dependent transcriptional de-repression of the canonical Kaiso binding sequence TCCTGCNA. Conversely, stable inducible restoration of E-cadherin expression in the ILC cell line SUM44PE inhibits Id2 expression and anoikis resistance. We show evidence that Id2 accumulates in the cytosol, where it induces a sustained and CDK4/6-dependent G0/G1 cell cycle arrest through interaction with hypo-phosphorylated Rb. Finally, we find that Id2 is indeed enriched in ILC when compared to other breast cancers, and confirm cytosolic Id2 protein expression in primary ILC samples. In sum, we have linked mutational inactivation of E-cadherin to direct inhibition of cell cycle progression. Our work indicates that loss of E-cadherin and subsequent expression of Id2 drive indolence and dissemination of ILC. As such, E-cadherin and Id2 are promising candidates to stratify low and intermediate grade invasive breast cancers for the use of clinical cell cycle intervention drugs.
Collapse
|
10
|
Piacentino ML, Hutchins EJ, Bronner ME. Essential function and targets of BMP signaling during midbrain neural crest delamination. Dev Biol 2021; 477:251-261. [PMID: 34102166 PMCID: PMC8277753 DOI: 10.1016/j.ydbio.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
BMP signaling plays iterative roles during vertebrate neural crest development from induction through craniofacial morphogenesis. However, far less is known about the role of BMP activity in cranial neural crest epithelial-to-mesenchymal transition and delamination. By measuring canonical BMP signaling activity as a function of time from specification through early migration of avian midbrain neural crest cells, we found elevated BMP signaling during delamination stages. Moreover, inhibition of canonical BMP activity via a dominant negative mutant Type I BMP receptor showed that BMP signaling is required for neural crest migration from the midbrain, independent from an effect on EMT and delamination. Transcriptome profiling on control compared to BMP-inhibited cranial neural crest cells identified novel BMP targets during neural crest delamination and early migration including targets of the Notch pathway that are upregulated following BMP inhibition. These results suggest potential crosstalk between the BMP and Notch pathways in early migrating cranial neural crest and provide novel insight into mechanisms regulated by BMP signaling during early craniofacial development.
Collapse
Affiliation(s)
- Michael L Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Erica J Hutchins
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
11
|
Luna-Velez MV, Dijkstra JJ, Heuschkel MA, Smit FP, van de Zande G, Smeets D, Sedelaar JPM, Vermeulen M, Verhaegh GW, Schalken JA. Androgen receptor signalling confers clonogenic and migratory advantages in urothelial cell carcinoma of the bladder. Mol Oncol 2021; 15:1882-1900. [PMID: 33797847 PMCID: PMC8253097 DOI: 10.1002/1878-0261.12957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder urothelial cell carcinoma (UCC) incidence is about three times higher in men compared with women. There are several indications for the involvement of hormonal factors in the aetiology of UCC. Here, we provide evidence of androgen signalling in UCC progression. Microarray and qPCR analysis revealed that the androgen receptor (AR) mRNA level is upregulated in a subset of UCC cases. In an AR‐positive UCC‐derived cell line model, UM‐UC‐3‐AR, androgen treatment increased clonogenic capacity inducing the formation of big stem cell‐like holoclones, while AR knockdown or treatment with the AR antagonist enzalutamide abrogated this clonogenic advantage. Additionally, blockage of AR signalling reduced the cell migration potential of androgen‐stimulated UM‐UC‐3‐AR cells. These phenotypic changes were accompanied by a rewiring of the transcriptome with almost 300 genes being differentially regulated by androgens, some of which correlated with AR expression in UCC patients in two independent data sets. Our results demonstrate that AR signals in UCC favouring the development of an aggressive phenotype and highlights its potential as a therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Maria V Luna-Velez
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Jelmer J Dijkstra
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Marina A Heuschkel
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Guillaume van de Zande
- Department of Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Smeets
- Department of Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - J P Michiel Sedelaar
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Valentini E, Di Martile M, Del Bufalo D, D'Aguanno S. SEMAPHORINS and their receptors: focus on the crosstalk between melanoma and hypoxia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:131. [PMID: 33858502 PMCID: PMC8050914 DOI: 10.1186/s13046-021-01929-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Hypoxia, a condition of oxygen deprivation, is considered a hallmark of tumor microenvironment regulating several pathways and promoting cancer progression and resistance to therapy. Semaphorins, a family of about 20 secreted, transmembrane and GPI-linked glycoproteins, and their cognate receptors (plexins and neuropilins) play a pivotal role in the crosstalk between cancer and stromal cells present in the tumor microenvironment. Many studies reported that some semaphorins are involved in the development of a permissive tumor niche, guiding cell-cell communication and, consequently, the development and progression, as well as the response to therapy, of different cancer histotypes, including melanoma. In this review we will summarize the state of art of semaphorins regulation by hypoxic condition in cancer with different origin. We will also describe evidence about the ability of semaphorins to affect the expression and activity of transcription factors activated by hypoxia, such as hypoxia-inducible factor-1. Finally, we will focus our attention on findings reporting the role of semaphorins in melanocytes transformation, melanoma progression and response to therapy. Further studies are necessary to understand the mechanisms through which semaphorins induce their effect and to shed light on the possibility to use semaphorins or their cognate receptors as prognostic markers and/or therapeutic targets in melanoma or other malignancies.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy.
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| |
Collapse
|
13
|
Kim HR, Moon JH, Lee JH, Lim YC. Inhibitor of DNA Binding 2 (ID2): A Novel Marker for Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma. Ann Surg Oncol 2021; 28:6479-6488. [PMID: 33783641 DOI: 10.1245/s10434-021-09832-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2020] [Accepted: 02/19/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although aggressive invasion and sequential lymph node metastasis (LNM) significantly affect the prognosis of patients with head and neck squamous cell carcinoma (HNSCC), studies on identifying the factors that regulate this process remain scarce. This study found an inhibitor of DNA binding 2 (ID2) as a novel molecule involved in the regulation of invasion and LNM of HNSCC and further verified its functional role. METHODS The study examined the translational significance between ID2 expression levels and the presence of LNM as well as the prognosis for 119 patients with HNSCC after treatment. In addition, in vitro and in vivo experiments were performed using ID2 gene-modulated HNSCC cell lines to determine the functional role of ID2 in the invasion and LNM of HNSCC. RESULTS Elevated levels of ID2 expression were closely associated with the presence of LNM in 119 patients with HNSCC, resulting in a poor prognosis. Overexpression of ID2-induced invasion and LNM of HNSCC cells was observed in vitro and in vivo. By contrast, knockdown of the ID2 gene diminished invasion and LNM of HNSCC cells. In addition, the ID2 expression level increased the expression level of matrix metalloproteinase 1 (MMP1), a molecule downstream to ID2. Furthermore, silencing of MMP1 in ID2-overexpressed HNSCC cells rescued the elevated invasion and LNM capabilities of these cells, suggesting that ID2 enhances invasion and LNM partly via MMP1 activation. CONCLUSION In the invasion and LNM of HNSCC, ID2 plays an important role by modulating MMP1 expression, suggesting ID2-MMP1 axis to be a novel alternative therapeutic target for invasion and LNM of HNSCC.
Collapse
Affiliation(s)
- Hye Ryun Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jung Hwa Moon
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jun Hwan Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Zhou Q, Mei YD, Yang HJ, Tao YL. Inhibitor of DNA-binding family regulates the prognosis of ovarian cancer. Future Oncol 2021; 17:1889-1906. [PMID: 33728938 DOI: 10.2217/fon-2020-1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The mechanistic role of inhibitor of DNA binding or differentiation (ID) family in ovarian cancer (OC) has remained unclear. Materials & methods: We used the Oncomine, GEPIA, Kaplan-Meier Plotter, cBioPortal, SurvExpress, PROGgene V2, TIMER, and FunRich to evaluate the prognostic value of IDs in patients with OC. Results: the mRNA transcripts of all IDs were markedly downregulated in OC compared with normal tissue. The prognostic value of IDs was also explored within the subtypes, pathological stages, clinical stages and TP53 mutational status. The group with low-risk IDs showed relatively good overall survival (OS) compared with the high-risk group. Conclusion: ID1/3/4 may be exploited as promising prognostic biomarkers and therapeutic targets in OC patients.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Gynecology & Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Hubei, 443000, PR China
| | - Ye-Dong Mei
- Department of Obstetrics & Gynecology, The People's Hospital of Wufeng Tujia Autonomous County, Yi Chang, Hubei, 443000, PR China
| | - Huai-Jie Yang
- Department of Gynecology & Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Hubei, 443000, PR China
| | - Ya-Ling Tao
- Department of Gynecology & Obstetrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Hubei, 443000, PR China
| |
Collapse
|
15
|
MYC as a Multifaceted Regulator of Tumor Microenvironment Leading to Metastasis. Int J Mol Sci 2020; 21:ijms21207710. [PMID: 33081056 PMCID: PMC7589112 DOI: 10.3390/ijms21207710] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
The Myc family of oncogenes is deregulated in many types of cancer, and their over-expression is often correlated with poor prognosis. The Myc family members are transcription factors that can coordinate the expression of thousands of genes. Among them, c-Myc (MYC) is the gene most strongly associated with cancer, and it is the focus of this review. It regulates the expression of genes involved in cell proliferation, growth, differentiation, self-renewal, survival, metabolism, protein synthesis, and apoptosis. More recently, novel studies have shown that MYC plays a role not only in tumor initiation and growth but also has a broader spectrum of functions in tumor progression. MYC contributes to angiogenesis, immune evasion, invasion, and migration, which all lead to distant metastasis. Moreover, MYC is able to promote tumor growth and aggressiveness by recruiting stromal and tumor-infiltrating cells. In this review, we will dissect all of these novel functions and their involvement in the crosstalk between tumor and host, which have demonstrated that MYC is undoubtedly the master regulator of the tumor microenvironment. In sum, a better understanding of MYC’s role in the tumor microenvironment and metastasis development is crucial in proposing novel and effective cancer treatment strategies.
Collapse
|
16
|
Zhang H, Vreeken D, Junaid A, Wang G, Sol WMPJ, de Bruin RG, van Zonneveld AJ, van Gils JM. Endothelial Semaphorin 3F Maintains Endothelial Barrier Function and Inhibits Monocyte Migration. Int J Mol Sci 2020; 21:ijms21041471. [PMID: 32098168 PMCID: PMC7073048 DOI: 10.3390/ijms21041471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In normal physiology, endothelial cells (ECs) form a vital barrier between the blood and underlying tissue controlling leukocyte diapedesis and vascular inflammation. Emerging data suggest that neuronal guidance cues, typically expressed during development, have roles outside the nervous system in vascular biology and immune responses. In particular, Class III semaphorins have been reported to affect EC migration and angiogenesis. While ECs express high levels of semaphorin 3F (SEMA3F), little is known about its function in mature ECs. Here we show that SEMA3F expression is reduced by inflammatory stimuli and increased by laminar flow. Endothelial cells exposed to laminar flow secrete SEMA3F, which subsequently binds to heparan sulfates on the surface of ECs. However, under pro-inflammatory conditions, reduced levels of SEMA3F make ECs more prone to monocyte diapedesis and display impaired barrier function as measured with an electric cell-substrate impedance sensing system and a microfluidic system. In addition, we demonstrate that SEMA3F can directly inhibit the migration of activated monocytes. Taken together, our data suggest an important homeostatic function for EC-expressed SEMA3F, serving as a mediator of endothelial quiescence.
Collapse
|
17
|
Ye K, Ouyang X, Wang Z, Yao L, Zhang G. SEMA3F Promotes Liver Hepatocellular Carcinoma Metastasis by Activating Focal Adhesion Pathway. DNA Cell Biol 2020; 39:474-483. [PMID: 31968181 DOI: 10.1089/dna.2019.4904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies have shown that semaphorin-3F (SEMA3F) functions as a tumor suppressor in several tumor types. However, the role of SEMA3F in the metastasis and prognosis of liver hepatocellular carcinoma (LIHC) remains unknown. In this study, by performing bioinformatics analysis on the transcriptome profiles from The Cancer Genome Atlas (TCGA), we demonstrated that SEMA3F was significantly upregulated in LIHC tissues, compared with normal controls. Moreover, the expression value of SEMA3F was positively correlated with patients' pathological stages and tumor metastasis, predicting a poor overall survival. Besides, SEMA3F expression level was negatively correlated with its methylation level, but positively correlated with its gene copy number. Differential expression analysis of LIHC samples with high or low SEMA3F expression values suggested that 983 genes were differentially expressed, among which 723 genes were upregulated and 260 genes were downregulated. Furthermore, enrichment analysis of differentially expressed genes revealed that SEMA3F was involved in the activation of focal adhesion pathway, which induced tumor metastasis. Taken together, our results suggested that the oncogenic function of SEMA3F promoted hepatocellular carcinoma metastasis by activating focal adhesion pathway.
Collapse
Affiliation(s)
- Ke Ye
- Department of General Surgery, Central South University, Xiangya Hospital, Changsha, Hunan, China
| | - Xiwu Ouyang
- Department of General Surgery, Central South University, Xiangya Hospital, Changsha, Hunan, China
| | - Zhiming Wang
- Department of General Surgery, Central South University, Xiangya Hospital, Changsha, Hunan, China
| | - Lei Yao
- Department of General Surgery, Central South University, Xiangya Hospital, Changsha, Hunan, China
| | - Gewen Zhang
- Department of General Surgery, Central South University, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
18
|
Semaphorin 3F Promotes Transendothelial Migration of Leukocytes in the Inflammatory Response After Survived Cardiac Arrest. Inflammation 2020; 42:1252-1264. [PMID: 30877507 DOI: 10.1007/s10753-019-00985-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Leukocyte transmigration through the blood vessel wall is a fundamental step of the inflammatory response and requires expression of adhesion molecule PECAM-1. Accumulating evidence implicates that semaphorin (Sema) 3F and its receptor neuropilin (NRP) 2 are central regulators in vascular biology. Herein, we assess the role of Sema3F in leukocyte migration in vitro and in vivo. To determine the impact of Sema3F on leukocyte recruitment in vivo, we used the thioglycollate-induced peritonitis model. After the induction of peritonitis, C57BL/6 mice were intraperitoneally (i.p.) injected daily with recombinant Sema3F or solvent for 3 days. Compared with solvent-treated controls, leukocyte count was increased in the peritoneal lavage of Sema3F-treated mice indicating that Sema3F promotes leukocyte extravasation into the peritoneal cavity. In line with this observation, stimulation of human endothelial cells with Sema3F enhanced the passage of peripheral blood mononuclear cells (PBMCs) through the endothelial monolayer in the transwell migration assays. Conversely, silencing of endothelial Sema3F by siRNA transfection dampened diapedesis of PBMCs through the endothelium in vitro. xMechanistically, Sema3F induced upregulation of adhesion molecule PECAM-1 in endothelial cells and in murine heart tissue shown by immunofluorescence and western blotting. The inhibition of PECAM-1 by blocking antibody HEC7 blunted Sema3F-induced leukocyte migration in transwell assays. SiRNA-based NRP2 knockdown reduced PECAM-1 expression and migration of PBMCs in Sema3F-treated endothelial cells, indicating that PECAM-1 expression and leukocyte migration in response to Sema3F depend on endothelial NRP2. To assess the regulation of Sema3F in human inflammatory disease, we collected serum samples of patients from day 0 to day 7 after survived out-of-hospital cardiac arrest (OHCA, n = 41). First, we demonstrated enhanced migration of PBMCs through endothelial cells exposed to the serum of patients after OHCA in comparison to the serum of patients with stable coronary artery disease or healthy volunteers. Remarkably, serum samples of OHCA patients contained significantly higher Sema3F protein levels compared with CAD patients (CAD, n = 37) and healthy volunteers (n = 11), suggesting a role of Sema3F in the pathophysiology of the inflammatory response after OHCA. Subgroup analysis revealed that elevated serum Sema3F levels after ROSC are associated with decreased survival, myocardial dysfunction, and prolonged vasopressor therapy, clinical findings that determine the outcome of post-resuscitation period after OHCA. The present study provides novel evidence that endothelial Sema3F controls leukocyte recruitment through a NRP2/PECAM-1-dependent mechanism. Sema3F serum concentrations are elevated following successful resuscitation suggesting that Sema3F might be involved in the inflammatory response after survived OHCA. Targeting the Sema3F/NRP2/PECAM-1 pathway could provide a novel approach to abolish overwhelming inflammation after resuscitation.
Collapse
|
19
|
Zhou Y, Huan L, Wu Y, Bao C, Chen B, Wang L, Huang S, Liang L, He X. LncRNA ID2-AS1 suppresses tumor metastasis by activating the HDAC8/ID2 pathway in hepatocellular carcinoma. Cancer Lett 2020; 469:399-409. [DOI: 10.1016/j.canlet.2019.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/13/2023]
|
20
|
Jiang G, Huang C, Liao X, Li J, Wu XR, Zeng F, Huang C. The RING domain in the anti-apoptotic protein XIAP stabilizes c-Myc protein and preserves anchorage-independent growth of bladder cancer cells. J Biol Chem 2019; 294:5935-5944. [PMID: 30819803 DOI: 10.1074/jbc.ra118.005621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2018] [Revised: 02/12/2019] [Indexed: 01/08/2023] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) suppresses apoptosis and plays key roles in the development, growth, migration, and invasion of cancer cells. Therefore, XIAP has recently attracted much attention as a potential antineoplastic therapeutic target, requiring elucidation of the molecular mechanisms underlying its biological activities. Here, using shRNA-mediated gene silencing, immunoblotting, quantitative RT-PCR, anchorage-independent growth assay, and invasive assay, we found that XIAP's RING domain, but not its BIR domain, is crucial for XIAP-mediated up-regulation of c-Myc protein expression in human bladder cancer (BC) cells. Mechanistically, we observed that the RING domain stabilizes c-Myc by inhibiting its phosphorylation at Thr-58 and that this inhibition is due to activated ERK1/2-mediated phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser-9. Functional studies further revealed that c-Myc protein promotes anchorage-independent growth and invasion stimulated by the XIAP RING domain in human BC cells. Collectively, the findings in our study uncover that the RING domain of XIAP supports c-Myc protein stability, providing insight into the molecular mechanism and role of c-Myc overexpression in cancer progression. Our observations support the notion of targeting XIAP's RING domain and c-Myc in cancer therapy.
Collapse
Affiliation(s)
- Guosong Jiang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987; the Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Huang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987; the Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Liao
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jingxia Li
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Xue-Ru Wu
- the Department of Urology, New York University School of Medicine, New York, New York 10016
| | - Fuqing Zeng
- the Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Chuanshu Huang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987.
| |
Collapse
|
21
|
Liu Y, Pandey PR, Sharma S, Xing F, Wu K, Chittiboyina A, Wu SY, Tyagi A, Watabe K. ID2 and GJB2 promote early-stage breast cancer progression by regulating cancer stemness. Breast Cancer Res Treat 2019; 175:77-90. [PMID: 30725231 DOI: 10.1007/s10549-018-05126-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2018] [Accepted: 12/27/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer which could progress to or recur as invasive breast cancer. The underlying molecular mechanism of DCIS progression is yet poorly understood, and appropriate biomarkers to distinguish benign form of DCIS from potentially invasive tumor are urgently needed. METHODS To identify the key regulators of DCIS progression, we performed gene-expression analysis of syngeneic breast cancer cell lines MCF10A, DCIS.com, and MCF10CA and cross-referenced the targets with patient cohort data. RESULTS We identified ID2 as a critical gene for DCIS initiation and found that ID2 promoted DCIS formation by enhancing cancer stemness of pre-malignant cells. ID2 also plays a pivotal role in survival of the aggressive cancer cells. In addition, we identified INHBA and GJB2 as key regulators for the transition of benign DCIS to aggressive phenotype. These two genes regulate migration, colonization, and stemness of invasive cancer cells. Upregulation of ID2 and GJB2 predicts poor prognosis after breast-conserving surgery. Finally, we found a natural compound Helichrysetin as ID2 inhibitor which suppresses DCIS formation in vitro and in vivo. CONCLUSION Our results indicate that ID2 is a key driver of DCIS formation and therefore is considered to be a potential target for prevention of DCIS, while INHBA and GJB2 play vital roles in progression of DCIS to IDC and they may serve as potential prognosis markers.
Collapse
Affiliation(s)
- Yin Liu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27151, USA
| | - Puspa R Pandey
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.,Lonza Walkersville, Inc, Walkersville, MD, USA
| | - Sambad Sharma
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27151, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27151, USA
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27151, USA
| | | | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27151, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27151, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27151, USA.
| |
Collapse
|
22
|
Ke J, Wu R, Chen Y, Abba ML. Inhibitor of DNA binding proteins: implications in human cancer progression and metastasis. Am J Transl Res 2018; 10:3887-3910. [PMID: 30662638 PMCID: PMC6325517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are a class of helix-loop-helix (HLH) transcription regulatory factors that act as dominant-negative antagonists of other basic HLH proteins through the formation of non-functional heterodimers. These proteins have been shown to play critical roles in a wide range of tumor-associated processes, including cell differentiation, cell cycle progression, migration and invasion, epithelial-mesenchymal transition, angiogenesis, stemness, chemoresistance, tumorigenesis, and metastasis. The aberrant expression of ID proteins has not only been detected in many types of human cancers, but is also associated with advanced tumor stages and poor clinical outcome. In this review, we provide an overview of the key biological functions of ID proteins including affiliated signaling pathways. We also describe the regulation of ID proteins in cancer progression and metastasis, and elaborate on expression profiles in cancer and the implications for prognosis. Lastly, we outline strategies for the therapeutic targeting of ID proteins as a promising and effective approach for anticancer therapy.
Collapse
Affiliation(s)
- Jing Ke
- Department of Liver Disease, The Fourth Affiliated Hospital of Anhui Medical UniversityHefei 230022, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Ruolin Wu
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, First Affiliated Hospital of Anhui Medical University218 Jixi Avenue, Hefei 230022, Anhui, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Yong Chen
- Department of Medical Oncology, Subei People’s HospitalYangzhou, Jiangsu 225000, China
| | - Mohammed L Abba
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany
| |
Collapse
|
23
|
Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput Struct Biotechnol J 2018; 17:1-13. [PMID: 30581539 PMCID: PMC6297055 DOI: 10.1016/j.csbj.2018.11.004] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/24/2022] Open
Abstract
Studies have reported a positive correlation between elevated CD8+ T cells in the tumor microenvironment (TME) and good prognosis in cancer. However, the mechanisms linking T cell tumor-infiltration and tumor rejection are yet to be fully understood. The cells and factors of the TME facilitate tumor development in various ways. CD8+ T cell function is influenced by a number of factors, including CD8+ T cell trafficking and localization into tumor sites; as well as CD8+ T cell growth and differentiation. This review highlights recent literature as well as currently evolving concepts regarding the fates of CD8+ T cells in the TME from three different aspects CD8+ T cell trafficking, differentiation and function. A thorough understanding of factors contributing to the fates of CD8+ T cells will allow researchers to develop new strategies and improve on already existing strategies to facilitate CD8+ T cell mediated anti-tumor function, impede T cell dysfunction and modulate the TME into a less immunosuppressive TME.
Collapse
Affiliation(s)
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou 450052, China
| |
Collapse
|
24
|
Tome-Garcia J, Erfani P, Nudelman G, Tsankov AM, Katsyv I, Tejero R, Bin Zhang, Walsh M, Friedel RH, Zaslavsky E, Tsankova NM. Analysis of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma. Nat Commun 2018; 9:4020. [PMID: 30275445 PMCID: PMC6167382 DOI: 10.1038/s41467-018-06258-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
The intrinsic drivers of migration in glioblastoma (GBM) are poorly understood. To better capture the native molecular imprint of GBM and its developmental context, here we isolate human stem cell populations from GBM (GSC) and germinal matrix tissues and map their chromatin accessibility via ATAC-seq. We uncover two distinct regulatory GSC signatures, a developmentally shared/proliferative and a tumor-specific/migratory one in which TEAD1/4 motifs are uniquely overrepresented. Using ChIP-PCR, we validate TEAD1 trans occupancy at accessibility sites within AQP4, EGFR, and CDH4. To further characterize TEAD’s functional role in GBM, we knockout TEAD1 or TEAD4 in patient-derived GBM lines using CRISPR-Cas9. TEAD1 ablation robustly diminishes migration, both in vitro and in vivo, and alters migratory and EMT transcriptome signatures with consistent downregulation of its target AQP4. TEAD1 overexpression restores AQP4 expression, and both TEAD1 and AQP4 overexpression rescue migratory deficits in TEAD1-knockout cells, implicating a direct regulatory role for TEAD1–AQP4 in GBM migration. The intrinsic drivers of glioblastoma (GBM) migration are still poorly understood. Here the authors purify GBM stem cells (GSCs) from patients and profile chromatin accessibility in these cells, identifying TEAD1 as a regulator of migration in human glioblastoma.
Collapse
Affiliation(s)
- Jessica Tome-Garcia
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Parsa Erfani
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Igor Katsyv
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rut Tejero
- Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Center for RNA Biology and Medicine, New York, NY, 10029, USA
| | - Roland H Friedel
- Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nadejda M Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
25
|
Roszik J, Ring KL, Wani KM, Lazar AJ, Yemelyanova AV, Soliman PT, Frumovitz M, Jazaeri AA. Gene Expression Analysis Identifies Novel Targets for Cervical Cancer Therapy. Front Immunol 2018; 9:2102. [PMID: 30283446 PMCID: PMC6156434 DOI: 10.3389/fimmu.2018.02102] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2018] [Accepted: 08/28/2018] [Indexed: 01/17/2023] Open
Abstract
Although there has been significant progress in prevention and treatment of cervical cancer, this malignancy is still a leading cause of cancer death for women. Anti-angiogenesis and immunotherapy approaches have been providing survival benefits, however, response rates and durability of response need to be improved. There is a clear need for combination therapies that increase effectiveness of these agents and further improve patient outcome. Previous studies have largely focused on gene expression and molecular pathways in untreated cervix cancer. The goal of this study was to evaluate cancer-specific molecular pathways and their correlation with tumor immune profile in recurrent cervical cancer. Tumor and adjacent normal tissues were used to identify potential combination therapy targets. We found that DNA damage repair pathway genes were significantly overexpressed in the tumor. Based on our results and other recent investigations, we suggest that combination immune checkpoint and PARP inhibitor therapy is a high priority consideration for patients with recurrent, previously treated cervical cancer. We also show that multiple epithelial-mesenchymal transition-related genes, including MAP2K4, ID2, JAK1, FGF2, PIK3R1, AKT3, FGF13, and STAT3 may be potential targets. Interestingly, high-throughput analysis of Cancer Genome Atlas data identified distinct targets, including Fatty acid synthase FASN and Matrix Metallopeptidase 1 MMP1 as novel, promising combination therapy partners.
Collapse
Affiliation(s)
- Jason Roszik
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kari L. Ring
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Virginia Health System, Charlottesville, VA, United States
| | - Khalida M. Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anna V. Yemelyanova
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pamela T. Soliman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amir A. Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
26
|
Cruz-Rodriguez N, Combita AL, Enciso LJ, Raney LF, Pinzon PL, Lozano OC, Campos AM, Peñaloza N, Solano J, Herrera MV, Zabaleta J, Quijano S. Prognostic stratification improvement by integrating ID1/ID3/IGJ gene expression signature and immunophenotypic profile in adult patients with B-ALL. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:37. [PMID: 28245840 PMCID: PMC5331651 DOI: 10.1186/s13046-017-0506-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/19/2017] [Accepted: 02/21/2017] [Indexed: 01/25/2023]
Abstract
Background Survival of adults with B-Acute Lymphoblastic Leukemia requires accurate risk stratification of patients in order to provide the appropriate therapy. Contemporary techniques, using clinical and cytogenetic variables are incomplete for prognosis prediction. Methods To improve the classification of adult patients diagnosed with B-ALL into prognosis groups, two strategies were examined and combined: the expression of the ID1/ID3/IGJ gene signature by RT-PCR and the immunophenotypic profile of 19 markers proposed in the EuroFlow protocol by Flow Cytometry in bone marrow samples. Results Both techniques were correlated to stratify patients into prognostic groups. An inverse relationship between survival and expression of the three-genes signature was observed and an immunophenotypic profile associated with clinical outcome was identified. Markers CD10 and CD20 were correlated with simultaneous overexpression of ID1, ID3 and IGJ. Patients with simultaneous expression of the poor prognosis gene signature and overexpression of CD10 or CD20, had worse Event Free Survival and Overall Survival than patients who had either the poor prognosis gene expression signature or only CD20 or CD10 overexpressed. Conclusion By utilizing the combined evaluation of these two immunophenotypic markers along with the poor prognosis gene expression signature, the risk stratification can be significantly strengthened. Further studies including a large number of patients are needed to confirm these findings. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0506-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nataly Cruz-Rodriguez
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia.,Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia.,Programa de Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alba L Combita
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia. .,Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia. .,Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Leonardo J Enciso
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia.,Grupo de Hemato-Oncología, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Lauren F Raney
- Department of Pediatrics, Pediatric Hematology-Oncology Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Paula L Pinzon
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Olga C Lozano
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Alba M Campos
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Julio Solano
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sandra Quijano
- Hospital Universitario San Ignacio, Bogotá, Colombia. .,Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
27
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
28
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
29
|
BMP4 promotes metastasis of hepatocellular carcinoma by an induction of epithelial-mesenchymal transition via upregulating ID2. Cancer Lett 2017; 390:67-76. [PMID: 28093286 DOI: 10.1016/j.canlet.2016.12.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 12/12/2022]
Abstract
The role of bone morphogenetic protein 4 (BMP4), a crucial epithelial-mesenchymal transition (EMT) mediator, in the progression of hepatocellular carcinoma (HCC) patients heretofore has not been elucidated. The present study analyzed BMP4 expression in tumors and paired non-tumorous liver tissue and its correlation with clinicopathological characteristics from two independent cohorts consisting of 420 HCC patients. Functional analysis of BMP4 was performed in Bel-7402 and HCCLM3 HCC cells, and in a murine HCC model. The downstream targets of BMP4 in HCC were screened and confirmed. The results indicated that BMP4 expression was significantly increased in HCC tissue and highly metastatic HCC cells. BMP4 expression was correlated with vein invasion, overall survival and recurrence-free survival of HCC. BMP4 promoted HCC EMT and metastasis in vitro, and consistently in vivo. BMP4 knockdown blocked EMT and tumor metastasis in nude mice. ID2 was up-regulated by recombinant human BMP4, resulting in HCC EMT. Knockdown of ID2 blocked BMP4-induced EMT. In conclusion, BMP4 promotes invasion and metastasis of HCC by an induction of EMT via up-regulating ID2. BMP4 may be a valuable prognostic factor and potential therapeutic target for HCC therapy.
Collapse
|
30
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The role of the semaphorins in cancer. Cell Adh Migr 2016; 10:652-674. [PMID: 27533782 PMCID: PMC5160032 DOI: 10.1080/19336918.2016.1197478] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tatyana Smolkin
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Shira Toledano
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbal Nir-Zvi
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
31
|
Mucka P, Levonyak N, Geretti E, Zwaans BMM, Li X, Adini I, Klagsbrun M, Adam RM, Bielenberg DR. Inflammation and Lymphedema Are Exacerbated and Prolonged by Neuropilin 2 Deficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2803-2812. [PMID: 27751443 DOI: 10.1016/j.ajpath.2016.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/16/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Abstract
The vasculature influences the progression and resolution of tissue inflammation. Capillaries express vascular endothelial growth factor (VEGF) receptors, including neuropilins (NRPs), which regulate interstitial fluid flow. NRP2, a receptor of VEGFA and semaphorin (SEMA) 3F ligands, is expressed in the vascular and lymphatic endothelia. Previous studies have demonstrated that blocking VEGF receptor 2 attenuates VEGFA-induced vascular permeability. The inhibition of NRP2 was hypothesized to decrease vascular permeability as well. Unexpectedly, massive tissue swelling and edema were observed in Nrp2-/- mice compared with wild-type littermates after delayed-type hypersensitivity reactions. Vascular permeability was twofold greater in inflamed blood vessels in Nrp2-deficient mice compared to those in Nrp2-intact littermates. The addition of exogenous SEMA3F protein inhibited vascular permeability in Balb/cJ mice, suggesting that the loss of endogenous Sema3F activity in the Nrp2-deficient mice was responsible for the enhanced vessel leakage. Functional lymphatic capillaries are necessary for draining excess fluid after inflammation; however, Nrp2-mutant mice lacked superficial lymphatic capillaries, leading to 2.5-fold greater fluid retention and severe lymphedema after inflammation. In conclusion, Nrp2 deficiency increased blood vessel permeability and decreased lymphatic vessel drainage during inflammation, highlighting the importance of the NRP2/SEMA3F pathway in the modulation of tissue swelling and resolution of postinflammatory edema.
Collapse
Affiliation(s)
- Patrick Mucka
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Nicholas Levonyak
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Elena Geretti
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - Xiaoran Li
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Irit Adini
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Michael Klagsbrun
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Rosalyn M Adam
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
32
|
Cruz-Rodriguez N, Combita AL, Enciso LJ, Quijano SM, Pinzon PL, Lozano OC, Castillo JS, Li L, Bareño J, Cardozo C, Solano J, Herrera MV, Cudris J, Zabaleta J. High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-acute lymphoblastic leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:64. [PMID: 27044543 PMCID: PMC4820984 DOI: 10.1186/s13046-016-0333-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/23/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
Abstract
Background B-Acute lymphoblastic leukemia (B-ALL) represents a hematologic malignancy with poor clinical outcome and low survival rates in adult patients. Remission rates in Hispanic population are almost 30 % lower and Overall Survival (OS) nearly two years inferior than those reported in other ethnic groups. Only 61 % of Colombian adult patients with ALL achieve complete remission (CR), median overall survival is 11.3 months and event-free survival (EFS) is 7.34 months. Identification of prognostic factors is crucial for the application of proper treatment strategies and subsequently for successful outcome. Our goal was to identify a gene expression signature that might correlate with response to therapy and evaluate the utility of these as prognostic tool in hispanic patients. Methods We included 43 adult patients newly diagnosed with B-ALL. We used microarray analysis in order to identify genes that distinguish poor from good response to treatment using differential gene expression analysis. The expression profile was validated by real-time PCR (RT-PCT). Results We identified 442 differentially expressed genes between responders and non-responders to induction treatment. Hierarchical analysis according to the expression of a 7-gene signature revealed 2 subsets of patients that differed in their clinical characteristics and outcome. Conclusions Our study suggests that response to induction treatment and clinical outcome of Hispanic patients can be predicted from the onset of the disease and that gene expression profiles can be used to stratify patient risk adequately and accurately. The present study represents the first that shows the gene expression profiling of B-ALL Colombian adults and its relevance for stratification in the early course of disease. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0333-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nataly Cruz-Rodriguez
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia.,Group of Investigation in Biology of Cancer, Instituto Nacional de Cancerología, Calle 1 # 9-85, Bogotá, Colombia.,Programa de Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alba L Combita
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia. .,Group of Investigation in Biology of Cancer, Instituto Nacional de Cancerología, Calle 1 # 9-85, Bogotá, Colombia. .,Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Leonardo J Enciso
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia.,Grupo de Hemato Oncología, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Sandra M Quijano
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Paula L Pinzon
- Group of Investigation in Biology of Cancer, Instituto Nacional de Cancerología, Calle 1 # 9-85, Bogotá, Colombia
| | - Olga C Lozano
- Group of Investigation in Biology of Cancer, Instituto Nacional de Cancerología, Calle 1 # 9-85, Bogotá, Colombia
| | - Juan S Castillo
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Li Li
- Stanley S. Scott Cancer Center, Center Louisiana State University Health Sciences Center Louisiana Cancer Research Center, 1700 Tulane Ave, Room 909, New Orleans, LA, USA
| | | | | | - Julio Solano
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | | | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, Center Louisiana State University Health Sciences Center Louisiana Cancer Research Center, 1700 Tulane Ave, Room 909, New Orleans, LA, USA. .,Department of Pediatrics, Center Louisiana State University Health Sciences Center Louisiana Cancer Research Center, 1700 Tulane Ave, Room 909, New Orleans, LA, USA.
| |
Collapse
|
33
|
The Wnt/β-catenin signaling/Id2 cascade mediates the effects of hypoxia on the hierarchy of colorectal-cancer stem cells. Sci Rep 2016; 6:22966. [PMID: 26965643 PMCID: PMC4786801 DOI: 10.1038/srep22966] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2015] [Accepted: 02/22/2016] [Indexed: 01/03/2023] Open
Abstract
Hypoxia, a feature common to most solid tumors, is known to regulate many aspects of tumorigenesis. Recently, it was suggested that hypoxia increased the size of the cancer stem-cell (CSC) subpopulations and promoted the acquisition of a CSC-like phenotype. However, candidate hypoxia-regulated mediators specifically relevant to the stemness-related functions of colorectal CSCs have not been examined in detail. In the present study, we showed that hypoxia specifically promoted the self-renewal potential of CSCs. Through various in vitro studies, we found that hypoxia-induced Wnt/β-catenin signaling increased the occurrence of CSC-like phenotypes and the level of Id2 expression in colorectal-cancer cells. Importantly, the levels of hypoxia-induced CSC-sphere formation and Id2 expression were successfully attenuated by treatment with a Wnt/β-catenin-signaling inhibitor. We further demonstrated, for the first time, that the degree of hypoxia-induced CSC-sphere formation (CD44(+) subpopulation) in vitro and of tumor metastasis/dissemination in vivo were markedly suppressed by knocking down Id2 expression. Taken together, these data suggested that Wnt/β-catenin signaling mediated the hypoxia-induced self-renewal potential of colorectal-cancer CSCs through reactivating Id2 expression.
Collapse
|
34
|
Le AP, Huang Y, Pingle SC, Kesari S, Wang H, Yong RL, Zou H, Friedel RH. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget 2016; 6:7293-304. [PMID: 25762646 PMCID: PMC4466685 DOI: 10.18632/oncotarget.3421] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 01/01/2023] Open
Abstract
Invasive growth is a major determinant of the high lethality of malignant gliomas. Plexin-B2, an axon guidance receptor important for mediating neural progenitor cell migration during development, is upregulated in gliomas, but its function therein remains poorly understood. Combining bioinformatic analyses, immunoblotting and immunohistochemistry of patient samples, we demonstrate that Plexin-B2 is consistently upregulated in all types of human gliomas and that its expression levels correlate with glioma grade and poor survival. Activation of Plexin-B2 by Sema4C ligand in glioblastoma cells induced actin-based cytoskeletal dynamics and invasive migration in vitro. This proinvasive effect was associated with activation of the cell motility mediators RhoA and Rac1. Furthermore, costimulation of Plexin-B2 and the receptor tyrosine kinase Met led to synergistic Met phosphorylation. In intracranial glioblastoma transplants, Plexin-B2 knockdown hindered invasive growth and perivascular spreading, and resulted in decreased tumor vascularity. Our results demonstrate that Plexin-B2 promotes glioma invasion and vascularization, and they identify Plexin-B2 as a potential novel prognostic marker for glioma malignancy. Targeting the Plexin-B2 pathway may represent a novel therapeutic approach to curtail invasive growth of glioblastoma.
Collapse
Affiliation(s)
- Audrey P Le
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yong Huang
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandeep C Pingle
- Translational Neuro-Oncology Laboratories, Moores UCSD Cancer Center and Department of Neurosciences, La Jolla, CA, USA
| | - Santosh Kesari
- Translational Neuro-Oncology Laboratories, Moores UCSD Cancer Center and Department of Neurosciences, La Jolla, CA, USA
| | - Huaien Wang
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Comprehensive Brain Tumor Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raymund L Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Comprehensive Brain Tumor Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Zou
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland H Friedel
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Gao X, Tang C, Shi W, Feng S, Qin W, Jiang T, Sun Y. Semaphorin-3F functions as a tumor suppressor in colorectal cancer due to regulation by DNA methylation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12766-12774. [PMID: 26722466 PMCID: PMC4680411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Semaphorin-3F (SEMA3F) is a member of the class III semaphorin family, and is seen as a candidate tumor suppressor gene. The aims of this study were to evaluate the effect of SEMA3F in colorectal cancer (CRC) patients, and to explore the mechanism for that SEMA3F suppresses tumor progression and metastasis. The expression levels of SEMA3F in the colorectal cancer tissues and corresponding non-tumor colorectal tissues were determined by Western blotting and real-time quantitative PCR (qRT-PCR). In addition, we evaluate the effects of SEMA3F on CRC cell migration and colony formation in vitro. Subsequently, quantitative methylation-specific PCR (qMSP) was used to detect the DNA methylation status in the CpG islands of SEMA3F gene promoter in normal colon and colorectal cancer cell lines, colorectal cancer tissues and corresponding non-tumor colorectal tissues. We found that SEMA3F was downregulated in the protein (P < 0.01) and mRNA (P < 0.001) levels in CRC tissues as compared to matched adjacent non-tumor tissues. Moreover, MSP assay showed high levels of SEMA3F gene promoter methylation in the CpG islands in some CRC cell lines and tissue samples. Furthermore, SEMA3F expression was reactivated in CRC cell lines after treatment with 5-Aza-CdR, demethylation of SW620 cells resulted in cell colony formation and invasion inhibition. These findings suggest DNA methylation of promoter CpG island-mediated silencing of the tumor suppressor SEMA3F gene plays an important role in the carcinogenesis of CRC.
Collapse
Affiliation(s)
- Xuesong Gao
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University Nantong 226001, Jiangsu, People's Republic of China
| | - Chong Tang
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University Nantong 226001, Jiangsu, People's Republic of China
| | - Wen Shi
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University Nantong 226001, Jiangsu, People's Republic of China
| | - Shichun Feng
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University Nantong 226001, Jiangsu, People's Republic of China
| | - Weiyan Qin
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University Nantong 226001, Jiangsu, People's Republic of China
| | - Tian Jiang
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University Nantong 226001, Jiangsu, People's Republic of China
| | - Yongqiang Sun
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
36
|
Abstract
The p21-activated kinase 5 (PAK5) is overexpressed in advanced cancer and the transcription factor E47 is a direct repressor of E-cadherin and inducer of epithelial-mesenchymal transition (EMT). However, the relationship between PAK5 and E47 has not been explored. In this study, we found that PAK5-mediated E47 phosphorylation promoted EMT in advanced colon cancer. PAK5 interacted with E47 and phosphorylated E47 on Ser39 under hepatocyte growth factor (HGF) stimulation, which decreased cell-cell cohesion, increased cell migration and invasion in vitro and promoted metastasis in a xenograft model. Furthermore, phosphorylation of E47 facilitated its accumulating in nucleus in an importin α-dependent manner, and enhanced E47 binding to E-cadherin promoter directly, leading to inhibition of E-cadherin transcription. In contrast, PAK5-knockdown resulted in blockage of HGF-induced E47 phosphorylation, attenuated association of E47 with importin α and decreased E47 binding to E-cadherin promoter. In addition, we demonstrated a close correlation between PAK5 and phospho-Ser39 E47 expression in colon cancer specimens. More importantly, high expression of phospho-E47 was associated with an aggressive phenotype of colon cancer and nuclear phospho-E47 staining was found in certain cases of colon cancer with metastasis. Collectively, E47 is a novel substrate of PAK5, and PAK5-mediated phosphorylation of E47 promotes EMT and metastasis of colon cancer, suggesting that phosphorylated E47 on Ser39 may be a potential therapeutic target in progressive colon cancer.
Collapse
|
37
|
Zhou ZH, Rao J, Yang J, Wu F, Tan J, Xu SL, Ding Y, Zhan N, Hu XG, Cui YH, Zhang X, Dong W, Liu XD, Bian XW. SEMA3F prevents metastasis of colorectal cancer by PI3K-AKT-dependent down-regulation of the ASCL2-CXCR4 axis. J Pathol 2015; 236:467-78. [PMID: 25866254 DOI: 10.1002/path.4541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2015] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 11/11/2022]
Abstract
Semaphorin-3F (SEMA3F), an axonal repulsant in nerve development, has been shown to inhibit the progression of human colorectal cancer (CRC); however, the underlying mechanism remains elusive. In this study we found a negative correlation between the levels of SEMA3F and CXCR4 in CRC specimens from 85 patients, confirmed by bioinformatics analysis of gene expression in 229 CRC samples from the Cancer Genome Atlas. SEMA3F(high) /CXCR4(low) patients showed the lowest frequency of lymph node and distant metastasis and the longest survival. Mechanistically, SEMA3F inhibited the invasion and metastasis of CRC cells through PI3K-AKT-dependent down-regulation of the ASCL2-CXCR4 axis. Specifically, ASCL2 enhanced the invasion and metastasis of CRC cells in vitro and expression of ASCL2 correlated with distant metastasis, tumour size and poor overall survival in CRC patients. Treatment of CRC cells with the CXCR4 antagonist AMD3100 attenuated SEMA3F knockdown-induced invasion and metastasis of CRC cells in vitro and in vivo. Our study thus demonstrates that SEMA3F functions as a suppressor of CRC metastasis via down-regulating the ASCL2-CXCR4 axis.
Collapse
Affiliation(s)
- Zhi-hang Zhou
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Jun Rao
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Jing Yang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Feng Wu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Juan Tan
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Sen-lin Xu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Na Zhan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xu-gang Hu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - You-hong Cui
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xin-dong Liu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
38
|
Liu W, Li J, Liu M, Zhang H, Wang N. PPAR-γ Promotes Endothelial Cell Migration By Inducing the Expression of Sema3g. J Cell Biochem 2015; 116:514-23. [DOI: 10.1002/jcb.24994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Weiwei Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Peking University Health Science Center; Beijing China
| | - Jingjin Li
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Peking University Health Science Center; Beijing China
- Department of Cardiology; Peking University People's Hospital; Beijing China
| | - Min Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Peking University Health Science Center; Beijing China
| | - Hong Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Peking University Health Science Center; Beijing China
| | - Nanping Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Peking University Health Science Center; Beijing China
| |
Collapse
|
39
|
Mishra R, Kumar D, Tomar D, Chakraborty G, Kumar S, Kundu GC. The potential of class 3 semaphorins as both targets and therapeutics in cancer. Expert Opin Ther Targets 2014; 19:427-42. [PMID: 25434284 DOI: 10.1517/14728222.2014.986095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Semaphorins have been originally identified as a family of evolutionary conserved soluble or membrane-associated proteins involved in diverse developmental phenomena. This family of proteins profoundly influences numerous pathophysiological processes, including organogenesis, cardiovascular development and immune response. Apart from steering the neural networking process, these are implicated in a broad range of biological operations including regulation of tumor progression and angiogenesis. AREAS COVERED Members of class 3 semaphorin family are known to modulate various cellular processes involved in malignant transformation. Some of the family members trigger diverse signaling processes involved in tumor progression and angiogenesis by binding with plexin and neuropilin. A better understanding of the various signaling mechanisms by which semaphorins modulate tumor progression and angiogenesis may serve as crucial tool in crafting new semaphorin-based anticancer therapy. These include treatment with recombinant tumor suppressive semaphorins or inhibition of tumor-promoting semaphorins by their specific siRNAs, small-molecule inhibitors or specific receptors using neutralizing antibodies or blocking peptides that might serve as novel strategies for effective management of cancers. EXPERT OPINION This review focuses on all the possible avenues to explore various members of class 3 semaphorin family to serve as therapeutics for combating cancer.
Collapse
Affiliation(s)
- Rosalin Mishra
- Loboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science (NCCS) , Pune 411007 , India
| | | | | | | | | | | |
Collapse
|
40
|
Combined analysis of copy number alterations by single-nucleotide polymorphism array and MYC status in non-metastatic breast cancer patients: comparison according to the circulating tumor cell status. Tumour Biol 2014; 36:711-8. [PMID: 25286758 DOI: 10.1007/s13277-014-2668-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022] Open
Abstract
Recent technological advances have made it possible to detect circulating tumor cells (CTCs) as a prognostic marker in operable breast cancer patients. Whether the presence of CTCs in cancer patients correlates with molecular alterations in the primary tumor has not been widely explored. We identified 14 primary breast cancer specimens with known CTC status, in order to evaluate the presence of differential genetic aberrations by using SNP array assay. There was a global increase of altered genome, CNA, and copy-neutral loss of heterozygosity (cn-LOH) observed in the CTC-positive (CTC(+)) versus CTC-negative (CTC(-)) cases. As the preliminary results showed a higher proportion of copy number alteration (CNA) at 8q24 (MYC loci) and the available evidence supporting the role of MYC in the processes cancer metastases is conflicting, MYC status was determined in tissue microarray sections in a larger series of patients (n = 49) with known CTC status using FISH. MYC was altered in 62% (16/26) CTC(+) patients and in 43% (6/14) CTC(-) patients (p = 0.25). Based on the observation in our study, future studies involving a larger number of patients should be performed in order to definitively define if this correlation exists.
Collapse
|
41
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
42
|
Ferrer-Vicens I, Riffo‐Campos ÁL, Zaragozá R, García C, López-Rodas G, Viña JR, Torres L, García-Trevijano ER. In vivo genome-wide binding of Id2 to E2F4 target genes as part of a reversible program in mice liver. Cell Mol Life Sci 2014; 71:3583-97. [PMID: 24573694 PMCID: PMC11113549 DOI: 10.1007/s00018-014-1588-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2013] [Revised: 01/30/2014] [Accepted: 02/12/2014] [Indexed: 12/14/2022]
Abstract
The inhibitor of differentiation Id2, a protein lacking the basic DNA-binding domain, is involved in the modulation of a number of biological processes. The molecular mechanisms explaining Id2 pleiotropic functions are poorly understood. Id2 and E2F4 are known to bind simultaneously to c-myc promoter. To study whether Id2 plays a global role on transcriptional regulation, we performed in vivo genome-wide ChIP/chip experiments for Id2 and E2F4 in adult mouse liver. An Id2-containing complex was bound to a common sequence downstream from the TSS on a subset of 442 E2F4 target genes mainly related to cell development and chromatin structure. We found a positive correlation between Id2 protein levels and the expression of E2F4/Id2 targets in fetal and adult liver. Id2 protein stability increased in fetal liver by interaction with USP1 de-ubiquitinating enzyme, which was induced during development. In adult liver, USP1 and Id2 levels dramatically decreased. In differentiated liver tissue, when Id2 concentration was low, E2F4/Id2 was bound to the same region as paused Pol II and target genes remained transcriptionally inactive. Conversely, in fetal liver when Id2 levels were increased, Id2 and Pol II were released from gene promoters and target genes up-regulated. During liver regeneration after partial hepatectomy, we obtained the same results as in fetal liver. Our results suggest that Id2 might be part of a reversible development-related program involved in the paused-ON/OFF state of Pol II on selected genes that would remain responsive to specific stimuli.
Collapse
Affiliation(s)
- Ivan Ferrer-Vicens
- Departamento de Bioquímica y Biología Molecular. Facultad de Medicina. Fundación Investigación Hospital Clínico-INCLIVA, Universidad de Valencia, Avda. Blasco Ibañez, 17, 46010 Valencia, Spain
| | - Ángela L. Riffo‐Campos
- Facultad de Ciencias Biológicas. Fundación Investigación Hospital Clínico-INCLIVA, Universidad de Valencia, Avda. Blasco Ibañez, 17, 46010 Valencia, Spain
| | - Rosa Zaragozá
- Departamento de Bioquímica y Biología Molecular. Facultad de Medicina. Fundación Investigación Hospital Clínico-INCLIVA, Universidad de Valencia, Avda. Blasco Ibañez, 17, 46010 Valencia, Spain
| | - Concha García
- Departamento de Bioquímica y Biología Molecular. Facultad de Medicina. Fundación Investigación Hospital Clínico-INCLIVA, Universidad de Valencia, Avda. Blasco Ibañez, 17, 46010 Valencia, Spain
| | - Gerardo López-Rodas
- Facultad de Ciencias Biológicas. Fundación Investigación Hospital Clínico-INCLIVA, Universidad de Valencia, Avda. Blasco Ibañez, 17, 46010 Valencia, Spain
| | - Juan R. Viña
- Departamento de Bioquímica y Biología Molecular. Facultad de Medicina. Fundación Investigación Hospital Clínico-INCLIVA, Universidad de Valencia, Avda. Blasco Ibañez, 17, 46010 Valencia, Spain
| | - Luis Torres
- Departamento de Bioquímica y Biología Molecular. Facultad de Medicina. Fundación Investigación Hospital Clínico-INCLIVA, Universidad de Valencia, Avda. Blasco Ibañez, 17, 46010 Valencia, Spain
| | - Elena R. García-Trevijano
- Departamento de Bioquímica y Biología Molecular. Facultad de Medicina. Fundación Investigación Hospital Clínico-INCLIVA, Universidad de Valencia, Avda. Blasco Ibañez, 17, 46010 Valencia, Spain
| |
Collapse
|
43
|
Zhang Z, Lin CCJ. Taking advantage of neural development to treat glioblastoma. Eur J Neurosci 2014; 40:2859-66. [PMID: 24964151 DOI: 10.1111/ejn.12655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2014] [Revised: 04/29/2014] [Accepted: 05/11/2014] [Indexed: 01/02/2023]
Abstract
Glioblastoma (GBM) is by far the most common and most malignant primary adult brain tumor (World Health Organization grade IV), containing a fraction of stem-like cells that are highly tumorigenic and multipotent. Recent research has revealed that GBM stem-like cells play important roles in GBM pathogenesis. GBM is thought to arise from genetic anomalies in glial development. Over the past decade, a wide range of studies have shown that several signaling pathways involved in neural development, including basic helix-loop-helix, Wnt-β-catenin, bone morphogenetic proteins-Smads, epidermal growth factor-epidermal growth factor receptor, and Notch, play important roles in GBM pathogenesis. In this review, we highlight the significance of these pathways in the context of developing treatments for GBM. Extrapolating knowledge and concepts from neural development will have significant implications for designing better strategies with which to treat GBM.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, China; Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | | |
Collapse
|
44
|
Gleevec/imatinib, an ABL2 kinase inhibitor, protects tumor and endothelial cells from semaphorin-induced cytoskeleton collapse and loss of cell motility. Biochem Biophys Res Commun 2014; 448:134-8. [PMID: 24759231 DOI: 10.1016/j.bbrc.2014.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 11/20/2022]
Abstract
Class 3 semaphorins are axonal guidance mediators and regulators of angiogenesis and tumor progression. Semaphorin 3A and 3F (SEMA3A&F) act by depolymerizing F-actin, resulting in cytoskeleton collapse. A key signaling step is that SEMA3A&F activates ABL2 tyrosine kinase, which activates p190RhoGAP, which in turn inactivates RhoA, thereby diminishing stress fiber formation and ensuing cell migration. We now demonstrate that Gleevec (imatinib, STI571), an ABL2 tyrosine kinase inhibitor, abrogates SEMA3A&F-induced stress fiber loss in glioblastoma cells and endothelial cells and diminishes their ability to inhibit migration. On the other hand, Sutent (sunitinib), a receptor tyrosine kinase inhibitor, did not rescue SEMA3A&F-induced collapsing activity. These results describe a novel property of Gleevec, its ability to antagonize semaphorins.
Collapse
|
45
|
Xu K, Wang L, Shu HKG. COX-2 overexpression increases malignant potential of human glioma cells through Id1. Oncotarget 2014; 5:1241-52. [PMID: 24659686 PMCID: PMC4012736 DOI: 10.18632/oncotarget.1370] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2013] [Accepted: 10/29/2013] [Indexed: 01/19/2023] Open
Abstract
Increased COX-2 expression directly correlates with glioma grade and is associated with shorter survival in glioblastoma (GBM) patients. COX-2 is also regulated by epidermal growth factor receptor signaling which is important in the pathogenesis of GBMs. However, COX-2 expression has not been previously shown to directly alter malignancy of GBMs. Id1 is a member of the helix-loop-helix (HLH) family of transcriptional repressors that act as dominant-negative inhibitors of basic-HLH factors. This factor has been shown to be regulated by COX-2 in breast carcinoma cells and recent studies suggest that Id1 may also be involved in the genesis/progression of gliomas. We now show that COX-2 increases the aggressiveness of GBM cells. GBM cells with COX-2 overexpression show increased growth of colonies in soft agar. Tumorigenesis in vivo is also increased in both subcutaneous flank and orthotopic intracranial tumor models. COX-2 overexpression induces Id1 expression in two GBM cell lines suggesting a role for Id1 in glioma transformation/tumorigenesis. Furthermore, we find direct evidence of a role for Id1 with significant suppression of in vitro transformation and in vivo tumorigenesis in COX-2-overexpressing GBM cells where Id1 has been knocked down. In fact, Id1 is even more efficient at enhancing transformation/tumorigenesis of GBM cells than COX-2. Finally, GBM cells with COX-2 or Id1 overexpression show greater migration/invasive potential and tumors that arise from these cells also display increased microvessel density, results in line with the increased malignant potential seen in these cells. Thus, COX-2 enhances the malignancy of GBM cells through induction of Id1.
Collapse
Affiliation(s)
- Kaiming Xu
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA
| | - Lanfang Wang
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
46
|
Townley-Tilson WHD, Wu Y, Ferguson JE, Patterson C. The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2. PLoS One 2014; 9:e89451. [PMID: 24586788 PMCID: PMC3931756 DOI: 10.1371/journal.pone.0089451] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2013] [Accepted: 01/21/2014] [Indexed: 01/22/2023] Open
Abstract
Vascularization of the placenta is a critical developmental process that ensures fetal viability. Although the vascular health of the placenta affects both maternal and fetal well being, relatively little is known about the early stages of placental vascular development. The ubiquitin ligase Ankyrin repeat, SOCS box-containing 4 (ASB4) promotes embryonic stem cell differentiation to vascular lineages and is highly expressed early in placental development. The transcriptional regulator Inhibitor of DNA binding 2 (ID2) negatively regulates vascular differentiation during development and is a target of many ubiquitin ligases. Due to their overlapping spatiotemporal expression pattern in the placenta and contrasting effects on vascular differentiation, we investigated whether ASB4 regulates ID2 through its ligase activity in the placenta and whether this activity mediates vascular differentiation. In mouse placentas, ASB4 expression is restricted to a subset of cells that express both stem cell and endothelial markers. Placentas that lack Asb4 display immature vascular patterning and retain expression of placental progenitor markers, including ID2 expression. Using JAR placental cells, we determined that ASB4 ubiquitinates and represses ID2 expression in a proteasome-dependent fashion. Expression of ASB4 in JAR cells and primary isolated trophoblast stem cells promotes the expression of differentiation markers. In functional endothelial co-culture assays, JAR cells ectopically expressing ASB4 increased endothelial cell turnover and stabilized endothelial tube formation, both of which are hallmarks of vascular differentiation within the placenta. Co-transfection of a degradation-resistant Id2 mutant with Asb4 inhibits both differentiation and functional responses. Lastly, deletion of Asb4 in mice induces a pathology that phenocopies human pre-eclampsia, including hypertension and proteinuria in late-stage pregnant females. These results indicate that ASB4 mediates vascular differentiation in the placenta via its degradation of ID2.
Collapse
Affiliation(s)
- W. H. Davin Townley-Tilson
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yaxu Wu
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James E. Ferguson
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
47
|
Hamada S, Masamune A, Miura S, Satoh K, Shimosegawa T. MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell Signal 2014; 26:179-85. [DOI: 10.1016/j.cellsig.2013.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 01/31/2023]
|
48
|
Abstract
Inhibitor of DNA binding (ID) proteins are transcriptional regulators that control the timing of cell fate determination and differentiation in stem and progenitor cells during normal development and adult life. ID genes are frequently deregulated in many types of human neoplasms, and they endow cancer cells with biological features that are hijacked from normal stem cells. The ability of ID proteins to function as central 'hubs' for the coordination of multiple cancer hallmarks has established these transcriptional regulators as therapeutic targets and biomarkers in specific types of human tumours.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology and Pediatrics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 241, New York, 10065 New York, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| |
Collapse
|
49
|
Rahme GJ, Israel MA. Id4 suppresses MMP2-mediated invasion of glioblastoma-derived cells by direct inactivation of Twist1 function. Oncogene 2014; 34:53-62. [DOI: 10.1038/onc.2013.531] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022]
|
50
|
Melis JPM, Derks KWJ, Pronk TE, Wackers P, Schaap MM, Zwart E, van Ijcken WFJ, Jonker MJ, Breit TM, Pothof J, van Steeg H, Luijten M. In vivo murine hepatic microRNA and mRNA expression signatures predicting the (non-)genotoxic carcinogenic potential of chemicals. Arch Toxicol 2014; 88:1023-34. [PMID: 24390151 DOI: 10.1007/s00204-013-1189-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023]
Abstract
There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic expression patterns of mRNA and microRNA transcripts were determined after exposure and used to assess the discriminative power of the in vivo transcriptome for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, was generated from the transcriptomic data using a tiered approach. This appeared to be a valid approach, since the predictive power of the final classifier set in three different classifier algorithms was very high for the original training set of chemicals. Subsequent validation in an additional set of chemicals revealed that the predictive power for GTXC remained high, in contrast to NGTXC, which appeared to be more troublesome. Our study demonstrated that the in vivo microRNA-ome has less discriminative power to correctly identify (non-)genotoxic carcinogen classes. The results generally indicate that single mRNA transcripts do have the potential to be applied in risk assessment, but that additional (genomic) strategies are necessary to correctly predict the non-genotoxic carcinogenic potential of a chemical.
Collapse
Affiliation(s)
- Joost P M Melis
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|