1
|
Suh HN, Choi GE. Wnt signaling in the tumor microenvironment: A driver of brain tumor dynamics. Life Sci 2024; 358:123174. [PMID: 39471897 DOI: 10.1016/j.lfs.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The Wnt signaling pathway is important for cell growth and development in the central nervous system and its associated vasculature. Thus, it is an interesting factor for establishing anti-brain cancer therapy. However, simply inhibiting the Wnt signaling pathway in patients with brain tumors is not an effective anti-cancer therapy. Due to their complex microenvironment, which comprises various cell types and signaling molecules, brain tumors pose significant challenges. It is important to understand the interplay between tumor cells and the microenvironment for developing effective therapeutic strategies for both benign and malignant brain tumors. Thus, this research focused on the role of the tumor microenvironment (TME) in brain tumor progression, particularly the involvement of Wnt-dependent signaling pathways. The brain parenchyma comprises neurons, glia, endothelial cells, and other extracellular matrix elements that can contribute to the TME. The TME components can secrete Wnt ligands or associated molecules, resulting in the aberrant activation of the Wnt signaling pathway, followed by tumor progression and therapeutic resistance. Therefore, it is essential to understand the intricate crosstalk between the Wnt signaling pathway and the TME in developing targeted therapies. This review aimed to elucidate the complexities of the brain TME and its interactions with the Wnt signaling pathways to improve treatment outcomes and our understanding of brain tumor biology.
Collapse
Affiliation(s)
- Han Na Suh
- Center for Translational Toxicologic Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeonbukdo 56212, Republic of Korea.
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, South Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
2
|
De Luca C, Virtuoso A, Papa M, Cirillo G, La Rocca G, Corvino S, Barbarisi M, Altieri R. The Three Pillars of Glioblastoma: A Systematic Review and Novel Analysis of Multi-Omics and Clinical Data. Cells 2024; 13:1754. [PMID: 39513861 PMCID: PMC11544881 DOI: 10.3390/cells13211754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma is the most fatal and common malignant brain tumor, excluding metastasis and with a median survival of approximately one year. While solid tumors benefit from newly approved drugs, immunotherapy, and prevention, none of these scenarios are opening for glioblastoma. The key to unlocking the peculiar features of glioblastoma is observing its molecular and anatomical features tightly entangled with the host's central nervous system (CNS). In June 2024, we searched the PUBMED electronic database. Data collection and analysis were conducted independently by two reviewers. Results: A total of 215 articles were identified, and 192 were excluded based on inclusion and exclusion criteria. The remaining 23 were used for collecting divergent molecular pathways and anatomical features of glioblastoma. The analysis of the selected papers revealed a multifaced tumor with extreme variability and cellular reprogramming that are observable within the same patient. All the variability of glioblastoma could be clustered into three pillars to dissect the physiology of the tumor: 1. necrotic core; 2. vascular proliferation; 3. CNS infiltration. These three pillars support glioblastoma survival, with a pivotal role of the neurovascular unit, as supported by the most recent paper published by experts in the field.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (M.P.); (G.C.)
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (M.P.); (G.C.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (M.P.); (G.C.)
- ISBE Italy, SYSBIO Centre of Systems Biology, 20126 Milan, Italy
| | - Giovanni Cirillo
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (M.P.); (G.C.)
| | - Giuseppe La Rocca
- Department of Neurosurgery, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Catholic University of Rome School of Medicine, 00153 Rome, Italy;
| | - Sergio Corvino
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, University “Federico II” of Naples, 80131 Naples, Italy;
| | - Manlio Barbarisi
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy (R.A.)
| | - Roberto Altieri
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy (R.A.)
| |
Collapse
|
3
|
White J, White MPJ, Wickremesekera A, Peng L, Gray C. The tumour microenvironment, treatment resistance and recurrence in glioblastoma. J Transl Med 2024; 22:540. [PMID: 38844944 PMCID: PMC11155041 DOI: 10.1186/s12967-024-05301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
The adaptability of glioblastoma (GBM) cells, encouraged by complex interactions with the tumour microenvironment (TME), currently renders GBM an incurable cancer. Despite intensive research, with many clinical trials, GBM patients rely on standard treatments including surgery followed by radiation and chemotherapy, which have been observed to induce a more aggressive phenotype in recurrent tumours. This failure to improve treatments is undoubtedly a result of insufficient models which fail to incorporate components of the human brain TME. Research has increasingly uncovered mechanisms of tumour-TME interactions that correlate to worsened patient prognoses, including tumour-associated astrocyte mitochondrial transfer, neuronal circuit remodelling and immunosuppression. This tumour hijacked TME is highly implicated in driving therapy resistance, with further alterations within the TME and tumour resulting from therapy exposure inducing increased tumour growth and invasion. Recent developments improving organoid models, including aspects of the TME, are paving an exciting future for the research and drug development for GBM, with the hopes of improving patient survival growing closer. This review focuses on GBMs interactions with the TME and their effect on tumour pathology and treatment efficiency, with a look at challenges GBM models face in sufficiently recapitulating this complex and highly adaptive cancer.
Collapse
Affiliation(s)
- Jasmine White
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | | | - Agadha Wickremesekera
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
4
|
Ji J, Ding K, Cheng B, Zhang X, Luo T, Huang B, Yu H, Chen Y, Xu X, Lin H, Zhou J, Wang T, Jin M, Liu A, Yan D, Liu F, Wang C, Chen J, Yan F, Wang L, Zhang J, Yan S, Wang J, Li X, Chen G. Radiotherapy-Induced Astrocyte Senescence Promotes an Immunosuppressive Microenvironment in Glioblastoma to Facilitate Tumor Regrowth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304609. [PMID: 38342629 PMCID: PMC11022718 DOI: 10.1002/advs.202304609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Accumulating evidence suggests that changes in the tumor microenvironment caused by radiotherapy are closely related to the recurrence of glioma. However, the mechanisms by which such radiation-induced changes are involved in tumor regrowth have not yet been fully investigated. In the present study, how cranial irradiation-induced senescence in non-neoplastic brain cells contributes to glioma progression is explored. It is observed that senescent brain cells facilitated tumor regrowth by enhancing the peripheral recruitment of myeloid inflammatory cells in glioblastoma. Further, it is identified that astrocytes are one of the most susceptible senescent populations and that they promoted chemokine secretion in glioma cells via the senescence-associated secretory phenotype. By using senolytic agents after radiotherapy to eliminate these senescent cells substantially prolonged survival time in preclinical models. The findings suggest the tumor-promoting role of senescent astrocytes in the irradiated glioma microenvironment and emphasize the translational relevance of senolytic agents for enhancing the efficacy of radiotherapy in gliomas.
Collapse
Affiliation(s)
- Jianxiong Ji
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Department of Radiation OncologyMayo ClinicRochesterMN55905USA
| | - Kaikai Ding
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Department of Radiation Oncologythe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000P. R. China
| | - Bo Cheng
- Department of Radiation OncologyQilu Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinanShandong250012P. R. China
| | - Xin Zhang
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Tao Luo
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Bin Huang
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Hao Yu
- Department of Radiation Oncologythe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000P. R. China
| | - Yike Chen
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Xiaohui Xu
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Haopu Lin
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Jiayin Zhou
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Tingtin Wang
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Mengmeng Jin
- Department of Reproductive EndocrinologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiang310000P. R. China
| | - Aixia Liu
- Department of Reproductive EndocrinologyWomen's HospitalZhejiang University School of MedicineHangzhouZhejiang310000P. R. China
| | - Danfang Yan
- Department of Radiation Oncologythe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000P. R. China
| | - Fuyi Liu
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Chun Wang
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Jingsen Chen
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Feng Yan
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Lin Wang
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Jianmin Zhang
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| | - Senxiang Yan
- Department of Radiation Oncologythe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310000P. R. China
| | - Jian Wang
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Department of BiomedicineUniversity of BergenJonas Lies vei 91BergenNorway5009
| | - Xingang Li
- Department of NeurosurgeryQilu Hospital of Shandong University and Brain Science Research InstituteCheeloo College of MedicineShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
- Key Laboratory of Brain Functional RemodelingShandong University107 Wenhua Xi RoadJinanShandong250012P. R. China
| | - Gao Chen
- Department of Neurosurgerythe Second Affiliated Hospital of Zhejiang University School of MedicineKey Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiang310000P. R. China
| |
Collapse
|
5
|
Gao L, Pan X, Zhang JH, Xia Y. Glial cells: an important switch for the vascular function of the central nervous system. Front Cell Neurosci 2023; 17:1166770. [PMID: 37206667 PMCID: PMC10188976 DOI: 10.3389/fncel.2023.1166770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
In this review, we first describe the current understanding of glial-mediated vascular function affecting the role of the blood-brain barrier (BBB) in central nervous system (CNS) disorders. BBB, mainly composed of glial and endothelial cells (ECs), is the protective structure that orchestrates the transport of substances, including ions, molecules, and cells from brain vessels into or out of the CNS. Then, we display the multiple communication between glial and vascular function based on angiogenesis, vascular wrapping, and blood perfusion in the brain. Glial can support microvascular ECs to form a blood network connecting to neurons. Astrocytes, microglia, and oligodendrocytes are the common types of glial surrounding the brain vessel. Glial-vessel interaction is required for the permeability and integrity of BBB. Glial cells surrounding the cerebral blood vessels can transmit communication signals to ECs and regulate the activity of vascular endothelial growth factor (VEGF) or Wnt-dependent endothelial angiogenesis mechanism. In addition, these glial cells monitor the blood flow in the brain via Ca2+/K+-dependent pathways. Finally, we provide a potential research direction for the glial-vessel axis in CNS disorders. Microglial activation can trigger astrocyte activation, which suggests that microglia-astrocyte interaction may play a key role in monitoring cerebral blood flow. Thus, microglia-astrocyte interaction can be the key point of follow-up studies focusing on the microglia-blood mechanism. More investigations focus on the mechanism of how oligodendrocyte progenitor cells communicate and interact with ECs. The direct role of oligodendrocytes in modulating vascular function needs to be explored in the future.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Xuezhen Pan
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| |
Collapse
|
6
|
Wu H, Guo C, Wang C, Xu J, Zheng S, Duan J, Li Y, Bai H, Xu Q, Ning F, Wang F, Yang Q. Single-cell RNA sequencing reveals tumor heterogeneity, microenvironment, and drug-resistance mechanisms of recurrent glioblastoma. Cancer Sci 2023. [PMID: 36853018 DOI: 10.1111/cas.15773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Glioblastomas are highly heterogeneous brain tumors. Despite the availability of standard treatment for glioblastoma multiforme (GBM), i.e., Stupp protocol, which involves surgical resection followed by radiotherapy and chemotherapy, glioblastoma remains refractory to treatment and recurrence is inevitable. Moreover, the biology of recurrent glioblastoma remains unclear. Increasing evidence has shown that intratumoral heterogeneity and the tumor microenvironment contribute to therapeutic resistance. However, the interaction between intracellular heterogeneity and drug resistance in recurrent GBMs remains controversial. The aim of this study was to map the transcriptome landscape of cancer cells and the tumor heterogeneity and tumor microenvironment in recurrent and drug-resistant GBMs at a single-cell resolution and further explore the mechanism of drug resistance of GBMs. We analyzed six tumor tissue samples from three patients with primary GBM and three patients with recurrent GBM in which recurrence and drug resistance developed after treatment with the standard Stupp protocol using single-cell RNA sequencing. Using unbiased clustering, nine major cell clusters were identified. Upregulation of the expression of stemness-related and cell-cycle-related genes was observed in recurrent GBM cells. Compared with the initial GBM tissues, recurrent GBM tissues showed a decreased proportion of microglia, consistent with previous reports. Finally, vascular endothelial growth factor A expression and the blood-brain barrier permeability were high, and the O6 -methylguanine DNA methyltransferase-related signaling pathway was activated in recurrent GBM. Our results delineate the single-cell map of recurrent glioblastoma, tumor heterogeneity, tumor microenvironment, and drug-resistance mechanisms, providing new insights into treatment strategies for recurrent glioblastomas.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaoye Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biometric Information, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Duan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiyun Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongming Bai
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Qiuyan Xu
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangling Ning
- Department of Medical Oncology, Binzhou Medical University Hospital, Binzhou, China
| | - Feng Wang
- Department of Medical Oncology, Binzhou Medical University Hospital, Binzhou, China
| | - Qunying Yang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Zou Y, Ye F, Kong Y, Hu X, Deng X, Xie J, Song C, Ou X, Wu S, Wu L, Xie Y, Tian W, Tang Y, Wong C, Chen Z, Xie X, Tang H. The Single-Cell Landscape of Intratumoral Heterogeneity and The Immunosuppressive Microenvironment in Liver and Brain Metastases of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203699. [PMID: 36529697 PMCID: PMC9929130 DOI: 10.1002/advs.202203699] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/11/2022] [Indexed: 05/07/2023]
Abstract
Distant metastasis remains the major cause of morbidity for breast cancer. Individuals with liver or brain metastasis have an extremely poor prognosis and low response rates to anti-PD-1/L1 immune checkpoint therapy compared to those with metastasis at other sites. Therefore, it is urgent to investigate the underlying mechanism of anti-PD-1/L1 resistance and develop more effective immunotherapy strategies for these patients. Using single-cell RNA sequencing, a high-resolution map of the entire tumor ecosystem based on 44 473 cells from breast cancer liver and brain metastases is depicted. Identified by canonical markers and confirmed by multiplex immunofluorescent staining, the metastatic ecosystem features remarkable reprogramming of immunosuppressive cells such as FOXP3+ regulatory T cells, LAMP3+ tolerogenic dendritic cells, CCL18+ M2-like macrophages, RGS5+ cancer-associated fibroblasts, and LGALS1+ microglial cells. In addition, PD-1 and PD-L1/2 are barely expressed in CD8+ T cells and cancer/immune/stromal cells, respectively. Interactions of the immune checkpoint molecules LAG3-LGALS3 and TIGIT-NECTIN2 between CD8+ T cells and cancer/immune/stromal cells are found to play dominant roles in the immune escape. In summary, this study dissects the intratumoral heterogeneity and immunosuppressive microenvironment in liver and brain metastases of breast cancer for the first time, providing insights into the most appropriate immunotherapy strategies for these patients.
Collapse
Affiliation(s)
- Yutian Zou
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Feng Ye
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yanan Kong
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Xiaoqian Hu
- School of Biomedical SciencesFaculty of MedicineThe University of Hong Kong21 Sassoon RoadHong Kong999077China
| | - Xinpei Deng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Jindong Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Cailu Song
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Xueqi Ou
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Song Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Linyu Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yi Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Wenwen Tian
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yuhui Tang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Chau‐Wei Wong
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityQueensNYUSA
| | - Xinhua Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Hailin Tang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| |
Collapse
|
8
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
9
|
Diverse roles of tumor-stromal PDGFB-to-PDGFRβ signaling in breast cancer growth and metastasis. Adv Cancer Res 2022; 154:93-140. [PMID: 35459473 DOI: 10.1016/bs.acr.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last couple of decades, it has become increasingly apparent that the tumor microenvironment (TME) mediates every step of cancer progression and solid tumors are only able to metastasize with a permissive TME. This intricate interaction of cancer cells with their surrounding TME, or stroma, is becoming more understood with an ever greater knowledge of tumor-stromal signaling pairs such as platelet-derived growth factors (PDGF) and their cognate receptors. We and others have focused our research efforts on understanding how tumor-derived PDGFB activates platelet-derived growth factor receptor beta (PDGFRβ) signaling specifically in the breast cancer TME. In this chapter, we broadly discuss PDGF and PDGFR expression patterns and signaling in normal physiology and breast cancer. We then detail the expansive roles played by the PDGFB-to-PDGFRβ signaling pathway in modulating breast tumor growth and metastasis with a focus on specific cellular populations within the TME, which are responsive to tumor-derived PDGFB. Given the increasingly appreciated importance of PDGFB-to-PDGFRβ signaling in breast cancer progression, specifically in promoting metastasis, we end by discussing how therapeutic targeting of PDGFB-to-PDGFRβ signaling holds great promise for improving current breast cancer treatment strategies.
Collapse
|
10
|
Yang Z, Chen Z, Wang Y, Wang Z, Zhang D, Yue X, Zheng Y, Li L, Bian E, Zhao B. A Novel Defined Pyroptosis-Related Gene Signature for Predicting Prognosis and Treatment of Glioma. Front Oncol 2022; 12:717926. [PMID: 35433410 PMCID: PMC9008739 DOI: 10.3389/fonc.2022.717926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Pyroptosis, a form of programmed cell death, that plays a significant role in the occurrence and progression of tumors, has been frequently investigated recently. However, the prognostic significance and therapeutic value of pyroptosis in glioma remain undetermined. In this research, we revealed the relationship of pyroptosis-related genes to glioma by analyzing whole transcriptome data from The Cancer Genome Atlas (TCGA) dataset serving as the training set and the Chinese Glioma Genome Atlas (CGGA) dataset serving as the validation set. We identified two subgroups of glioma patients with disparate prognostic and clinical features by performing consensus clustering analysis on nineteen pyroptosis-related genes that were differentially expressed between glioma and normal brain tissues. We further derived a risk signature, using eleven pyroptosis-related genes, that was demonstrated to be an independent prognostic factor for glioma. Furthermore, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to implement functional analysis of our gene set, and the results were closely related to immune and inflammatory responses in accordance with the characteristics of pyroptosis. Moreover, Gene Set Enrichment Analysis (GSEA) results showed that that the high-risk group exhibited enriched characteristics of malignant tumors in accordance with its poor prognosis. Next, we analyzed different immune cell infiltration between the two risk groups using ssGSEA. Finally, CASP1 was identified as a core gene, so we subsequently selected an inhibitor targeting CASP1 and simulated molecular docking. In addition, the inhibitory effect of belnacasan on glioma was verified at the cellular level. In conclusion, pyroptosis-related genes are of great significance for performing prognostic stratification and developing treatment strategies for glioma.
Collapse
Affiliation(s)
- Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Yu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Deran Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
Rajappa P, Eng KW, Bareja R, Bander ED, Yuan M, Dua A, Maachani UB, Snuderl M, Pan H, Zhang T, Tosi U, Ivasyk I, Souweidane MM, Elemento O, Sboner A, Greenfield JP, Pisapia DJ. Utility of Multimodality Molecular Profiling for Pediatric Patients with Central Nervous System Tumors. Neurooncol Adv 2022; 4:vdac031. [PMID: 35475276 PMCID: PMC9034114 DOI: 10.1093/noajnl/vdac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
As our molecular understanding of pediatric central nervous system (CNS) tumors evolves, so too do diagnostic criteria, prognostic biomarkers, and clinical management decision-making algorithms. Here, we explore the clinical utility of wide-breadth assays including whole-exome sequencing (WES), RNA sequencing (RNAseq), and methylation array profiling as an addition to more conventional diagnostic tools for pediatric CNS tumors.
Methods
This study comprises an observational, prospective cohort followed at a single academic medical center over three years. Paired tumor and normal control specimens from 53 enrolled pediatric patients with CNS tumors underwent WES. A subset of cases also underwent RNAseq (n=28) and/or methylation array analysis (n=27).
Results
RNAseq identified driver and/or targetable fusions in 7/28 cases, including potentially targetable NTRK fusions, and uncovered possible rationalized treatment options based on outlier gene expression in 23/28 cases. Methylation profiling added diagnostic confidence (8/27 cases) or diagnostic subclassification endorsed by the WHO (10/27 cases). WES detected clinically pertinent Tier 1 or Tier 2 variants in 36/53 patients. Of these, 16/17 SNVs/indels and 10/19 copy number alterations would have been detected by current in-house conventional tests including targeted sequencing panels.
Conclusions
Over a heterogeneous set of pediatric tumors, RNAseq and methylation profiling frequently yielded clinically relevant information orthogonal to conventional methods while WES demonstrated clinically-relevant added-value primarily via copy number assessment. Longitudinal cohorts comparing targeted molecular pathology workup versus broader genomic approaches including therapeutic selection based on RNA-expression data will be necessary to further evaluate the clinical benefits of these modalities in practice.
Collapse
Affiliation(s)
- Prajwal Rajappa
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Kenneth W Eng
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Rohan Bareja
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Evan D Bander
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | - Melissa Yuan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | - Alisha Dua
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | | | - Matija Snuderl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Heng Pan
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Tuo Zhang
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Umberto Tosi
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | - Iryna Ivasyk
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Andreas Sboner
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - David J Pisapia
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
13
|
Tian Y, Zhan Y, Jiang Q, Lu W, Li X. Expression and function of PDGF-C in development and stem cells. Open Biol 2021; 11:210268. [PMID: 34847773 PMCID: PMC8633783 DOI: 10.1098/rsob.210268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.
Collapse
Affiliation(s)
- Yi Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Ying Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Qin Jiang
- Ophthalmic Department, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
14
|
Parmigiani E, Scalera M, Mori E, Tantillo E, Vannini E. Old Stars and New Players in the Brain Tumor Microenvironment. Front Cell Neurosci 2021; 15:709917. [PMID: 34690699 PMCID: PMC8527006 DOI: 10.3389/fncel.2021.709917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the direct interaction between cancer cells and tumor microenvironment (TME) has emerged as a crucial regulator of tumor growth and a promising therapeutic target. The TME, including the surrounding peritumoral regions, is dynamically modified during tumor progression and in response to therapies. However, the mechanisms regulating the crosstalk between malignant and non-malignant cells are still poorly understood, especially in the case of glioma, an aggressive form of brain tumor. The presence of unique brain-resident cell types, namely neurons and glial cells, and an exceptionally immunosuppressive microenvironment pose additional important challenges to the development of effective treatments targeting the TME. In this review, we provide an overview on the direct and indirect interplay between glioma and neuronal and glial cells, introducing new players and mechanisms that still deserve further investigation. We will focus on the effects of neural activity and glial response in controlling glioma cell behavior and discuss the potential of exploiting these cellular interactions to develop new therapeutic approaches with the aim to preserve proper brain functionality.
Collapse
Affiliation(s)
- Elena Parmigiani
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marta Scalera
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | | | - Elena Tantillo
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| |
Collapse
|
15
|
Delayed rFGF21 Administration Improves Cerebrovascular Remodeling and White Matter Repair After Focal Stroke in Diabetic Mice. Transl Stroke Res 2021; 13:311-325. [PMID: 34523038 DOI: 10.1007/s12975-021-00941-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major comorbidity exacerbating ischemic brain injury and impairing post-stroke recovery. Our previous study suggested that recombinant human fibroblast growth factor (rFGF) 21 might be a potent therapeutic targeting multiple aspects of pathophysiology in T2DM stroke. This study aims to evaluate the potential effects of rFGF21 on cerebrovascular remodeling after T2DM stroke. Permanent distal middle cerebral artery occlusion was performed in heterozygous non-diabetic db/ + and homozygous diabetic db/db mice. Daily rFGF21 administration was initiated 1 week after stroke induction and maintained for up to 2 weeks thereafter. Multiple markers associated with post-stroke recovery, including angiogenesis, oligodendrogenesis, white matter integrity, and neurogenesis, were assessed up to 3 weeks after stroke. Our results showed an impairment in post-stroke vascular remodeling under T2DM condition, reflected by the decreased expression of trophic factors in brain microvessels and impairments of angiogenesis. The defected cerebrovascular remodeling was accompanied by the decreased oligodendrogenesis and neurogenesis. However, delayed rFGF21 administration normalized post-stroke hyperglycemia and improved neurological outcomes, which may partially be via the promotion of pro-angiogenic trophic factor expression in brain microvessels and cerebrovascular remodeling. The better cerebrovascular remodeling may also contribute to oligodendrogenesis, white matter integrity, and neurogenesis after T2DM stroke. Therefore, delayed rFGF21 administration may improve neurological outcomes in T2DM stroke mice, at least in part by normalizing the metabolic abnormalities and promoting cerebrovascular remodeling and white matter repair.
Collapse
|
16
|
Nalamalapu RR, Yue M, Stone AR, Murphy S, Saha MS. The tweety Gene Family: From Embryo to Disease. Front Mol Neurosci 2021; 14:672511. [PMID: 34262434 PMCID: PMC8273234 DOI: 10.3389/fnmol.2021.672511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members—ttyh1, ttyh2, and ttyh3—that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.
Collapse
Affiliation(s)
- Rithvik R Nalamalapu
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Michelle Yue
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Aaron R Stone
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Samantha Murphy
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
17
|
Kälin RE, Cai L, Li Y, Zhao D, Zhang H, Cheng J, Zhang W, Wu Y, Eisenhut K, Janssen P, Schmitt L, Enard W, Michels F, Flüh C, Hou M, Kirchleitner SV, Siller S, Schiemann M, Andrä I, Montanez E, Giachino C, Taylor V, Synowitz M, Tonn JC, von Baumgarten L, Schulz C, Hellmann I, Glass R. TAMEP are brain tumor parenchymal cells controlling neoplastic angiogenesis and progression. Cell Syst 2021; 12:248-262.e7. [PMID: 33592194 DOI: 10.1016/j.cels.2021.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/07/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Aggressive brain tumors like glioblastoma depend on support by their local environment and subsets of tumor parenchymal cells may promote specific phases of disease progression. We investigated the glioblastoma microenvironment with transgenic lineage-tracing models, intravital imaging, single-cell transcriptomics, immunofluorescence analysis as well as histopathology and characterized a previously unacknowledged population of tumor-associated cells with a myeloid-like expression profile (TAMEP) that transiently appeared during glioblastoma growth. TAMEP of mice and humans were identified with specific markers. Notably, TAMEP did not derive from microglia or peripheral monocytes but were generated by a fraction of CNS-resident, SOX2-positive progenitors. Abrogation of this progenitor cell population, by conditional Sox2-knockout, drastically reduced glioblastoma vascularization and size. Hence, TAMEP emerge as a tumor parenchymal component with a strong impact on glioblastoma progression.
Collapse
Affiliation(s)
- Roland E Kälin
- Neurosurgical Research, University Hospital, LMU Munich, 81377 Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Linzhi Cai
- Neurosurgical Research, University Hospital, LMU Munich, 81377 Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Yuping Li
- Neurosurgical Research, University Hospital, LMU Munich, 81377 Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Dongxu Zhao
- Neurosurgical Research, University Hospital, LMU Munich, 81377 Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Huabin Zhang
- Neurosurgical Research, University Hospital, LMU Munich, 81377 Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jiying Cheng
- Neurosurgical Research, University Hospital, LMU Munich, 81377 Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Wenlong Zhang
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Yingxi Wu
- Neurosurgical Research, University Hospital, LMU Munich, 81377 Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katharina Eisenhut
- Neurosurgical Research, University Hospital, LMU Munich, 81377 Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Philipp Janssen
- Anthropology and Human Genomics, Department Biology II, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Lukas Schmitt
- Anthropology and Human Genomics, Department Biology II, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department Biology II, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Friederike Michels
- Department of Neurosurgery, University Hospital Center Schleswig Holstein, 24105 Kiel, Germany
| | - Charlotte Flüh
- Department of Neurosurgery, University Hospital Center Schleswig Holstein, 24105 Kiel, Germany
| | - Mengzhuo Hou
- Neurosurgical Research, University Hospital, LMU Munich, 81377 Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | | | - Sebastian Siller
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 München, Germany
| | - Immanuel Andrä
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 München, Germany
| | - Eloi Montanez
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), 08907 Hospitalet de Llobregat, Spain
| | - Claudio Giachino
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Michael Synowitz
- Department of Neurosurgery, University Hospital Center Schleswig Holstein, 24105 Kiel, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Munich, 69120 Heidelberg, Germany
| | - Louisa von Baumgarten
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany; Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Christian Schulz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, 81377 Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80333 Munich, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Department Biology II, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Rainer Glass
- Neurosurgical Research, University Hospital, LMU Munich, 81377 Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Munich, 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Raghavan S, Snyder CS, Wang A, McLean K, Zamarin D, Buckanovich RJ, Mehta G. Carcinoma-Associated Mesenchymal Stem Cells Promote Chemoresistance in Ovarian Cancer Stem Cells via PDGF Signaling. Cancers (Basel) 2020; 12:cancers12082063. [PMID: 32726910 PMCID: PMC7464970 DOI: 10.3390/cancers12082063] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Within the ovarian cancer tumor microenvironment, cancer stem-like cells (CSC) interact with carcinoma associated mesenchymal stem/stromal cells (CA-MSC) through multiple secreted cytokines and growth factors. These paracrine interactions have been revealed to cause enrichment of CSC and their chemoprotection; however, it is still not known if platelet-derived growth factor (PDGF) signaling is involved in facilitating these responses. In order to probe this undiscovered bidirectional communication, we created a model of ovarian malignant ascites in the three-dimensional (3D) hanging drop heterospheroid array, with CSC and CA-MSC. We hypothesized that PDGF secretion by CA-MSC increases self-renewal, migration, epithelial to mesenchymal transition (EMT) and chemoresistance in ovarian CSC. Our results indicate that PDGF signaling in the CSC-MSC heterospheroids significantly increased stemness, metastatic potential and chemoresistance of CSC. Knockdown of PDGFB in MSC resulted in abrogation of these phenotypes in the heterospheroids. Our studies also reveal a cross-talk between PDGF and Hedgehog signaling in ovarian cancer. Overall, our data suggest that when the stromal signaling via PDGF to ovarian CSC is blocked in addition to chemotherapy pressure, the tumor cells are significantly more sensitive to chemotherapy. Our results emphasize the importance of disrupting the signals from the microenvironment to the tumor cells, in order to improve response rates. These findings may lead to the development of combination therapies targeting stromal signaling (such as PDGF and Hedgehog) that can abrogate the tumorigenic, metastatic and platinum resistant phenotypes of ovarian CSC through additional investigations.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Catherine S. Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Anni Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Karen McLean
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitriy Zamarin
- Department of Gynecologic Medical Oncology and Immunotherapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ronald J. Buckanovich
- Director of Ovarian Cancer Research, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Macromolecular Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Precision Health, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-763-3957; Fax: +1-734-763-4788
| |
Collapse
|
19
|
Preferential Expression of B7-H6 in Glioma Stem-Like Cells Enhances Tumor Cell Proliferation via the c-Myc/RNMT Axis. J Immunol Res 2020; 2020:2328675. [PMID: 32322592 PMCID: PMC7165331 DOI: 10.1155/2020/2328675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
B7 homologue 6 (B7-H6), a newly identified member of the B7 costimulatory molecule family, is not only a crucial regulator of NK cell-mediated immune responses through binding to NKp30 but also has clinical implications due to its abnormal expression in human cancers. Here, we show that B7-H6 expression is abnormally upregulated in glioma tissue and that B7-H6 is coexpressed with stem cell marker Sox2. Intriguingly, B7-H6 was rarely detected on the surface of glioma cell lines but was abundantly expressed in glioma stem-like cells (GSLCs) that were derived from the glioma cell lines in vitro. Surprisingly, B7-H6 was the only one that was preferentially expressed in the GSLCs among the B7 family members. Functionally, knockdown of B7-H6 in GSLCs by siRNAs led to the inhibition of cell proliferation, with decrease in the expression of the oncogene Myc as well as inactivation of PI3K/Akt and ERK/MAPK signaling pathways. Moreover, we determined that three genes CBL (Casitas B-Lineage Lymphoma Proto-Oncogene), CCNT1 (Cyclin T1), and RNMT (RNA guanine-7 methyltransferase) were coexpressed with B7-H6 and c-myc in glioma tissue samples from the TCGA database and found, however that only RNMT expression was inhibited by the knockdown of B7-H6 expression in the GSLCs, suggesting the involvement of RNMT in the B7-H6/c-myc axis. Extending this to 293T cells, we observed that knocking out of B7-H6 with CRISPR-Cas9 system also suppressed cell proliferation. Thus, our findings suggest B7-H6 as a potential molecule for glioma stem cell targeted immunotherapy.
Collapse
|
20
|
Li X, Wang X, Xie J, Liang B, Wu J. Suppression of Angiotensin-(1-7) on the Disruption of Blood-Brain Barrier in Rat of Brain Glioma. Pathol Oncol Res 2018; 25:429-435. [PMID: 30229380 DOI: 10.1007/s12253-018-0471-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 01/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the most primary brain tumor, specially characterized with the damage of blood-brain barrier (BBB). The Ang-(1-7) was proven to have an inhibitory effect on glioblastoma growth. However, its role on blood-brain barrier (BBB) and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved the damage of blood-brain barrier in rats with intracranial U87 gliomas as evaluated by magnetic resonance imaging (MRI). Furthermore, its treatment attenuated BBB permeability, tumor growth and edema formation. Similarly, Ang-(1-7) also decreased U87 glioma cells barrier permeability in vitro. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and ZO-1) expression levels both in rats and U87 glioma cells by affecting the activation of JNK pathway. SP600125, an inhibitor of JNK, significantly enhanced the expression of Claudin-5 and ZO-1, and decreased the disruption of BBB and enhanced the efficiency of Ang-(1-7) in glioma rats. Taken together, this study demonstrated a protective role of Ang-(1-7) in glioma-induced blood-brain barrier damage by regulating tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against glioma.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China.
| | - Jingwei Xie
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China
| | - Bo Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China
| | - Jianheng Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China
| |
Collapse
|
21
|
Li H, Zeitelhofer M, Nilsson I, Liu X, Allan L, Gloria B, Perani A, Murone C, Catimel B, Neville AM, Scott FE, Scott AM, Eriksson U. Development of monoclonal anti-PDGF-CC antibodies as tools for investigating human tissue expression and for blocking PDGF-CC induced PDGFRα signalling in vivo. PLoS One 2018; 13:e0201089. [PMID: 30052660 PMCID: PMC6063412 DOI: 10.1371/journal.pone.0201089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023] Open
Abstract
PDGF-CC is a member of the platelet-derived growth factor (PDGF) family that stimulates PDGFRα phosphorylation and thereby activates intracellular signalling events essential for development but also in cancer, fibrosis and neuropathologies involving blood-brain barrier (BBB) disruption. In order to elucidate the biological and pathological role(s) of PDGF-CC signalling, we have generated high affinity neutralizing monoclonal antibodies (mAbs) recognizing human PDGF-CC. We determined the complementarity determining regions (CDRs) of the selected clones, and mapped the binding epitope for clone 6B3. Using the monoclonal 6B3, we determined the expression pattern for PDGF-CC in different human primary tumours and control tissues, and explored its ability to neutralize PDGF-CC-induced phosphorylation of PDGFRα. In addition, we showed that PDGF-CC induced disruption of the blood-retinal barrier (BRB) was significantly reduced upon intraperitoneal administration of a chimeric anti-PDGF-CC antibody. In summary, we report on high affinity monoclonal antibodies against PDGF-CC that have therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Hong Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xicong Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Laura Allan
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Benjamin Gloria
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Angelo Perani
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
| | - Carmel Murone
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Bruno Catimel
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
| | - A. Munro Neville
- Ludwig Institute for Cancer Research, New York, New York, United States of America
| | - Fiona E. Scott
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Andrew M. Scott
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Sumiyoshi K, Koso H, Watanabe S. Spontaneous development of intratumoral heterogeneity in a transposon-induced mouse model of glioma. Cancer Sci 2018; 109:1513-1523. [PMID: 29575648 PMCID: PMC5980157 DOI: 10.1111/cas.13579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 01/20/2023] Open
Abstract
Glioma is the most common form of malignant brain cancer in adults. The Sleeping Beauty (SB) transposon‐based glioma mouse model allows for effective in vivo analysis of candidate genes. In the present study, we developed a transposon vector that encodes the triple combination of platelet‐derived growth factor subunit A (PDGFA), and shRNAs against Nf1 and Trp53 (shNf1/shp53). Initiation and progression of glioma in the brain were monitored by expression of a fluorescent protein. Transduction of the vector into neural progenitor and stem cells (NPC) in the subventricular zone (SVZ) of the neonatal brain induced proliferation of oligodendrocyte precursor cells, and promoted formation of highly penetrant malignant gliomas within 2‐4 months. Cells isolated from the tumors were capable of forming secondary tumors. Two transposon vectors, encoding either PDGFA or shNf1/shp53 were co‐electroporated into NPC. Cells expressing PDGFA or shNf1/shp53 were labeled with unique fluorescent proteins allowing visualization of the spatial distribution of cells with different genetic alterations within the same tumor. Tumor cells located at the center of tumors expressed PDGFA at higher levels than those located at the periphery, indicating that intratumoral heterogeneity in PDGFA expression levels spontaneously developed within the same tumor. Tumor cells comprising the palisading necrosis strongly expressed PDGFA, suggesting that PDGFA signaling is involved in hypoxic responses in glioma. The transposon vectors developed are compatible with any genetically engineered mouse model, providing a useful tool for the functional analysis of candidate genes in glioma.
Collapse
Affiliation(s)
- Keisuke Sumiyoshi
- Division of Molecular and Developmental Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideto Koso
- Division of Molecular and Developmental Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S. PDGF/PDGFR axis in the neural systems. Mol Aspects Med 2018; 62:63-74. [PMID: 29409855 DOI: 10.1016/j.mam.2018.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/08/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022]
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are expressed in several cell types including the brain cells such as neuronal progenitors, neurons, astrocytes, and oligodendrocytes. Emerging evidence shows that PDGF-mediated signaling regulates diverse functions in the central nervous system (CNS) such as neurogenesis, cell survival, synaptogenesis, modulation of ligand-gated ion channels, and development of specific types of neurons. Interestingly, PDGF/PDFGR signaling can elicit paradoxical roles in the CNS, depending on the cell type and the activation stimuli and is implicated in the pathogenesis of various neurodegenerative diseases. This review summarizes the role of PDGFs/PDGFRs in several neurodegenerative diseases such as Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, brain cancer, cerebral ischemia, HIV-1 and drug abuse. Understanding PDGF/PDGFR signaling may lead to novel approaches for the future development of therapeutic strategies for combating CNS pathologies.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
24
|
Zhang C, Cheng W, Ren X, Wang Z, Liu X, Li G, Han S, Jiang T, Wu A. Tumor Purity as an Underlying Key Factor in Glioma. Clin Cancer Res 2017; 23:6279-6291. [PMID: 28754819 DOI: 10.1158/1078-0432.ccr-16-2598] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/26/2017] [Accepted: 07/20/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Glioma tissues consist of not only glioma cells but also glioma-associated nontumor cells, such as stromal cells and immune cells. These nontumor cells dilute the purity of glioma cells and play important roles in glioma biology. Currently, the implications of variation in glioma purity are not sufficiently clarified.Experimental Design: Here, tumor purity was inferred for 2,249 gliomas and 29 normal brain tissues from 5 cohorts. Based on the transcriptomic profiling method, we classified CGGA and TCGA-RNAseq cohorts as the RNAseq set for discovery. Cases from TCGA-microarray, REMBRANDT, and GSE16011 cohorts were grouped as a microarray set for validation. Tissues from the CGGA cohort were reviewed for histopathologic validation.Results: We found that glioma purity was highly associated with major clinical and molecular features. Low purity cases were more likely to be diagnosed as malignant entities and independently correlated with reduced survival time. Integrating glioma purity into prognostic nomogram significantly improved the predictive validity. Moreover, most recognized prognostic indicators were no longer significantly effective under different purity conditions. These results highlighted the clinical importance of glioma purity. Further analyses found distinct genomic patterns associated with glioma purity. Low purity cases were distinguished by enhanced immune phenotypes. Macrophages, microglia, and neutrophils were mutually associated and enriched in low purity gliomas, whereas only macrophages and neutrophils served as robust indicators for poor prognosis.Conclusions: Glioma purity and relevant nontumor cells within microenvironment confer important clinical, genomic, and biological implications, which should be fully valued for precise classification and clinical prediction. Clin Cancer Res; 23(20); 6279-91. ©2017 AACR.
Collapse
Affiliation(s)
- Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiufang Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xing Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
25
|
Leiss L, Mutlu E, Øyan A, Yan T, Tsinkalovsky O, Sleire L, Petersen K, Rahman MA, Johannessen M, Mitra SS, Jacobsen HK, Talasila KM, Miletic H, Jonassen I, Li X, Brons NH, Kalland KH, Wang J, Enger PØ. Tumour-associated glial host cells display a stem-like phenotype with a distinct gene expression profile and promote growth of GBM xenografts. BMC Cancer 2017; 17:108. [PMID: 28173797 PMCID: PMC5294893 DOI: 10.1186/s12885-017-3109-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the role of glial host cells in brain tumours. However, supporting stromal cells have been shown to foster tumour growth in other cancers. METHODS We isolated stromal cells from patient-derived glioblastoma (GBM) xenografts established in GFP-NOD/scid mice. With simultaneous removal of CD11b+ immune and CD31+ endothelial cells by fluorescence activated cell sorting (FACS), we obtained a population of tumour-associated glial cells, TAGs, expressing markers of terminally differentiaed glial cell types or glial progenitors. This cell population was subsequently characterised using gene expression analyses and immunocytochemistry. Furthermore, sphere formation was assessed in vitro and their glioma growth-promoting ability was examined in vivo. Finally, the expression of TAG related markers was validated in human GBMs. RESULTS TAGs were highly enriched for the expression of glial cell proteins including GFAP and myelin basic protein (MBP), and immature markers such as Nestin and O4. A fraction of TAGs displayed sphere formation in stem cell medium. Moreover, TAGs promoted brain tumour growth in vivo when co-implanted with glioma cells, compared to implanting only glioma cells, or glioma cells and unconditioned glial cells from mice without tumours. Genome-wide microarray analysis of TAGs showed an expression profile distinct from glial cells from healthy mice brains. Notably, TAGs upregulated genes associated with immature cell types and self-renewal, including Pou3f2 and Sox2. In addition, TAGs from highly angiogenic tumours showed upregulation of angiogenic factors, including Vegf and Angiopoietin 2. Immunohistochemistry of three GBMs, two patient biopsies and one GBM xenograft, confirmed that the expression of these genes was mainly confined to TAGs in the tumour bed. Furthermore, their expression profiles displayed a significant overlap with gene clusters defining prognostic subclasses of human GBMs. CONCLUSIONS Our data demonstrate that glial host cells in brain tumours are functionally distinct from glial cells of healthy mice brains. Furthermore, TAGs display a gene expression profile with enrichment for genes related to stem cells, immature cell types and developmental processes. Future studies are needed to delineate the biological mechanisms regulating the brain tumour-host interplay.
Collapse
Affiliation(s)
- Lina Leiss
- Neuro Clinic, Haukeland University Hospital, Bergen, Norway.,Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ercan Mutlu
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Anne Øyan
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology and Immunology, Haukeland University Hospital, Bergen, Norway
| | - Tao Yan
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Oleg Tsinkalovsky
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Linda Sleire
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kjell Petersen
- Computational Biology Unit, Uni Computing, Uni Research AS, Bergen, Norway
| | - Mohummad Aminur Rahman
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Mireille Johannessen
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sidhartha S Mitra
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Hege K Jacobsen
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Krishna M Talasila
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hrvoje Miletic
- Translational Cancer Research Group, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Clinical Medicine, Haukeland University Hospital, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Uni Computing, Uni Research AS, Bergen, Norway.,Department of Informatics, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Nicolaas H Brons
- Core Facility Flow Cytometry, Centre de Recherche Public de la Santé (CRP-Santé), L-1526, Luxembourg, Luxembourg
| | - Karl-Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology and Immunology, Haukeland University Hospital, Bergen, Norway
| | - Jian Wang
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, People's Republic of China
| | - Per Øyvind Enger
- Oncomatrix Research Lab, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Maki T. Novel roles of oligodendrocyte precursor cells in the developing and damaged brain. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Takakuni Maki
- Department of Neurology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| |
Collapse
|
27
|
Rajappa P, Cobb WS, Vartanian E, Huang Y, Daly L, Hoffman C, Zhang J, Shen B, Yanowitch R, Garg K, Cisse B, Haddock S, Huse J, Pisapia DJ, Chan TA, Lyden DC, Bromberg JF, Greenfield JP. Malignant Astrocytic Tumor Progression Potentiated by JAK-mediated Recruitment of Myeloid Cells. Clin Cancer Res 2016; 23:3109-3119. [PMID: 28039266 DOI: 10.1158/1078-0432.ccr-16-1508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022]
Abstract
Purpose: While the tumor microenvironment has been known to play an integral role in tumor progression, the function of nonresident bone marrow-derived cells (BMDC) remains to be determined in neurologic tumors. Here we identified the contribution of BMDC recruitment in mediating malignant transformation from low- to high-grade gliomas.Experimental Design: We analyzed human blood and tumor samples from patients with low- and high-grade gliomas. A spontaneous platelet-derived growth factor (PDGF) murine glioma model (RCAS) was utilized to recapitulate human disease progression. Levels of CD11b+/GR1+ BMDCs were analyzed at discrete stages of tumor progression. Using bone marrow transplantation, we determined the unique influence of BMDCs in the transition from low- to high-grade glioma. The functional role of these BMDCs was then examined using a JAK 1/2 inhibitor (AZD1480).Results: CD11b+ myeloid cells were significantly increased during tumor progression in peripheral blood and tumors of glioma patients. Increases in CD11b+/GR1+ cells were observed in murine peripheral blood, bone marrow, and tumors during low-grade to high-grade transformation. Transient blockade of CD11b+ cell expansion using a JAK 1/2 Inhibitor (AZD1480) impaired mobilization of these cells and was associated with a reduction in tumor volume, maintenance of a low-grade tumor phenotype, and prolongation in survival.Conclusions: We demonstrate that impaired recruitment of CD11b+ myeloid cells with a JAK1/2 inhibitor inhibits glioma progression in vivo and prolongs survival in a murine glioma model. Clin Cancer Res; 23(12); 3109-19. ©2016 AACR.
Collapse
Affiliation(s)
- Prajwal Rajappa
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - William S Cobb
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Emma Vartanian
- Weill Medical College of Cornell University, New York, New York
| | - Yujie Huang
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Laura Daly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Caitlin Hoffman
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Jane Zhang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Beiyi Shen
- Weill Medical College of Cornell University, New York, New York
| | - Rachel Yanowitch
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Kunal Garg
- Weill Medical College of Cornell University, New York, New York
| | - Babacar Cisse
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Sara Haddock
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Huse
- Department of Pathology and, Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David J Pisapia
- Weill Cornell Medical College, Department of Pathology, Division of Neuropathology, New York, New York
| | - Timothy A Chan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David C Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Jacqueline F Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Weill Cornell Medical College, New York, New York
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
28
|
Zhou XW, Dong H, Yang Y, Luo JW, Wang X, Liu YH, Mao Q. Significance of the prognostic nutritional index in patients with glioblastoma: A retrospective study. Clin Neurol Neurosurg 2016; 151:86-91. [DOI: 10.1016/j.clineuro.2016.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
|
29
|
Bowman RL, Klemm F, Akkari L, Pyonteck SM, Sevenich L, Quail DF, Dhara S, Simpson K, Gardner EE, Iacobuzio-Donahue CA, Brennan CW, Tabar V, Gutin PH, Joyce JA. Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Rep 2016; 17:2445-2459. [PMID: 27840052 DOI: 10.1016/j.celrep.2016.10.052] [Citation(s) in RCA: 414] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Extensive transcriptional and ontogenetic diversity exists among normal tissue-resident macrophages, with unique transcriptional profiles endowing the cells with tissue-specific functions. However, it is unknown whether the origins of different macrophage populations affect their roles in malignancy. Given potential artifacts associated with irradiation-based lineage tracing, it remains unclear if bone-marrow-derived macrophages (BMDMs) are present in tumors of the brain, a tissue with no homeostatic involvement of BMDMs. Here, we employed multiple models of murine brain malignancy and genetic lineage tracing to demonstrate that BMDMs are abundant in primary and metastatic brain tumors. Our data indicate that distinct transcriptional networks in brain-resident microglia and recruited BMDMs are associated with tumor-mediated education yet are also influenced by chromatin landscapes established before tumor initiation. Furthermore, we demonstrate that microglia specifically repress Itga4 (CD49D), enabling its utility as a discriminatory marker between microglia and BMDMs in primary and metastatic disease in mouse and human.
Collapse
Affiliation(s)
- Robert L Bowman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Science, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Florian Klemm
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Oncology, University of Lausanne, 1066 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1066 Lausanne, Switzerland
| | - Leila Akkari
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Oncology, University of Lausanne, 1066 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1066 Lausanne, Switzerland
| | - Stephanie M Pyonteck
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lisa Sevenich
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniela F Quail
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Surajit Dhara
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenishana Simpson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric E Gardner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christine A Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip H Gutin
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Oncology, University of Lausanne, 1066 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1066 Lausanne, Switzerland.
| |
Collapse
|
30
|
Seki T, Hosaka K, Lim S, Fischer C, Honek J, Yang Y, Andersson P, Nakamura M, Näslund E, Ylä-Herttuala S, Sun M, Iwamoto H, Li X, Liu Y, Samani NJ, Cao Y. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun 2016; 7:12152. [PMID: 27492130 PMCID: PMC4980448 DOI: 10.1038/ncomms12152] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022] Open
Abstract
Cold- and β3-adrenoceptor agonist-induced sympathetic activation leads to angiogenesis and UCP1-dependent thermogenesis in mouse brown and white adipose tissues. Here we show that endothelial production of PDGF-CC during white adipose tissue (WAT) angiogenesis regulates WAT browning. We find that genetic deletion of endothelial VEGFR2, knockout of the Pdgf-c gene or pharmacological blockade of PDGFR-α impair the WAT-beige transition. We further show that PDGF-CC stimulation upregulates UCP1 expression and acquisition of a beige phenotype in differentiated mouse WAT-PDGFR-α+ progenitor cells, as well as in human WAT-PDGFR-α+ adipocytes, supporting the physiological relevance of our findings. Our data reveal a paracrine mechanism by which angiogenic endothelial cells modulate adipocyte metabolism, which may provide new targets for the treatment of obesity and related metabolic diseases. Cold-induced activation of thermogenesis in white adipose tissue (WAT), or ‘beiging', is associated with WAT angiogenesis. Here the authors show that PDGF-CC is secreted from endothelial cells in the context of WAT angiogenesis and its paracrine action on adipocytes contributes to cold-induced beiging.
Collapse
Affiliation(s)
- Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Sharon Lim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Carina Fischer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Jennifer Honek
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Yunlong Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Patrik Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Masaki Nakamura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Erik Näslund
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm 182 88, Sweden
| | - Seppo Ylä-Herttuala
- Department of Molecular Medicine, A.I. Virtanen Institute, Molecular Sciences University of Eastern Finland, Kuopio 70211, Finland
| | - Meili Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Hideki Iwamoto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 171 77, Sweden.,Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
31
|
Shankar A, Jain M, Lim MJ, Angara K, Zeng P, Arbab SA, Iskander A, Ara R, Arbab AS, Achyut BR. Anti-VEGFR2 driven nuclear translocation of VEGFR2 and acquired malignant hallmarks are mutation dependent in glioblastoma. ACTA ACUST UNITED AC 2016; 8:172-178. [PMID: 28149448 DOI: 10.4172/1948-5956.1000410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Anti-angiogenic therapies (AATs), targeting VEGF-VEGFR pathways, are being used as an adjuvant to normalize glioblastoma (GBM) vasculature. Unexpectedly, clinical trials have witnessed transient therapeutic effect followed by aggressive tumor recurrence. In pre-clinical studies, targeting VEGFR2 with vatalanib, increased GBM growth under hypoxic microenvironment. There is limited understanding of these unanticipated results. Here, we investigated tumor cell associated phenotypes in response to VEGFR2 blockade. METHODS Human U251 cells were orthotopically implanted in mice (day 0) and were treated with vehicle or vatalanib on day 8. Tumor specimens were collected for immunohistochemistry and protein array. Nuclear translocation of VEGFR2 was analyzed through IHC and western blot. In vitro studies were performed in U251 (p53 and EGFR mutated) and U87 (p53 and EGFR wildtype) cells following vehicle or vatalanib treatments under normoxia (21% O2) and hypoxia (1% O2). Proliferation, cell cycle and apoptosis assays were done to analyze tumor cell phenotypes after treatments. RESULTS Vatalanib treated animals displayed distinct patterns of VEGFR2 translocation into nuclear compartment of U251 tumor cells. In vitro studies suggest that vatalanib significantly induced nuclear translocation of VEGFR2, characterized in chromatin bound fraction, especially in U251 tumor cells grown under normoxia and hypoxia. Anti-VEGFR2 driven nuclear translocation of VEGFR2 was associated with increased cell cycle and proliferation, decreased apoptosis, and displayed increased invasiveness in U251 compared to U87 cells. CONCLUSIONS Study suggests that AAT- induced molecular and phenotypic alterations in tumor cells are associated with mutation status and are responsible for aggressive tumor growth. Therefore, mutation status of the tumor in GBM patients should be taken in to consideration before applying targeted therapy to overcome unwanted effects.
Collapse
Affiliation(s)
- Adarsh Shankar
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Meenu Jain
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Mei Jing Lim
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Kartik Angara
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Peng Zeng
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Syed A Arbab
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Asm Iskander
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Roxan Ara
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Ali S Arbab
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| | - Bhagelu R Achyut
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, 1410 Laney Walker Blvd, CN3124A, Augusta, GA 30912, USA
| |
Collapse
|
32
|
Lin C, Liu Z, Lu Y, Yao Y, Zhang Y, Ma Z, Kuai M, Sun X, Sun S, Jing Y, Yu L, Li Y, Zhang Q, Bian H. Cardioprotective effect of Salvianolic acid B on acute myocardial infarction by promoting autophagy and neovascularization and inhibiting apoptosis. ACTA ACUST UNITED AC 2016; 68:941-52. [PMID: 27139338 DOI: 10.1111/jphp.12567] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/10/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the cardioprotective effect of salvianolic acid B (Sal B) on acute myocardial infarction (AMI) in rats and its potential mechanisms. METHODS The AMI model was established in rats to study the effect of Sal B on AMI. Haematoxylin-eosin (HE) staining was used to evaluate the pathological change in AMI rats. Immunofluorescence and TUNEL staining were used to detect autophagy and apoptosis of myocardial cells in hearts of AMI rats, respectively. Protein expression of apoptosis-related, autophagy-related and angiogenesis-related proteins were examined by Western blot. KEY FINDINGS Sal B attenuated myocardial infarction significantly compared with that of the model group. Rats administered with Sal B showed higher inhibition rate of infarction and lower infarct size than those of the model group. Moreover, Sal B decreased the serum levels of creatine kinase, lactate dehydrogenase and malondialdehyde, while increased such level of superoxide dismutase significantly compared with those of the model group. Sal B inhibited the expression of Bax, cleaved caspase-9 and cleaved PARP, while promoted the expression of Bcl-2, LC3-II, Beclin1 and VEGF. CONCLUSIONS Sal B has cardioprotective effect on AMI and Sal B may be a promising candidate for AMI treatment.
Collapse
Affiliation(s)
- Chao Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaoguo Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yayun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meiyu Kuai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuaijun Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Jing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lizhen Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- Department of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, Nanjing, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, Nanjing, China
| |
Collapse
|
33
|
Zheng Y, Yamamoto S, Ishii Y, Sang Y, Hamashima T, Van De N, Nishizono H, Inoue R, Mori H, Sasahara M. Glioma-Derived Platelet-Derived Growth Factor-BB Recruits Oligodendrocyte Progenitor Cells via Platelet-Derived Growth Factor Receptor-α and Remodels Cancer Stroma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1081-91. [DOI: 10.1016/j.ajpath.2015.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/09/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022]
|
34
|
Irvin DM, McNeill RS, Bash RE, Miller CR. Intrinsic Astrocyte Heterogeneity Influences Tumor Growth in Glioma Mouse Models. Brain Pathol 2016; 27:36-50. [PMID: 26762242 DOI: 10.1111/bpa.12348] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
The influence of cellular origin on glioma pathogenesis remains elusive. We previously showed that mutations inactivating Rb and Pten and activating Kras transform astrocytes and induce tumorigenesis throughout the adult mouse brain. However, it remained unclear whether astrocyte subpopulations were susceptible to these mutations. We therefore used genetic lineage tracing and fate mapping in adult conditional, inducible genetically engineered mice to monitor transformation of glial fibrillary acidic protein (GFAP) and glutamate aspartate transporter (GLAST) astrocytes and immunofluorescence to monitor cellular composition of the tumor microenvironment over time. Because considerable regional heterogeneity exists among astrocytes, we also examined the influence of brain region on tumor growth. GFAP astrocyte transformation induced uniformly rapid, regionally independent tumor growth, but transformation of GLAST astrocytes induced slowly growing tumors with significant regional bias. Transformed GLAST astrocytes had reduced proliferative response in culture and in vivo and malignant progression was delayed in these tumors. Recruited glial cells, including proliferating astrocytes, oligodendrocyte progenitors and microglia, were the majority of GLAST, but not GFAP astrocyte-derived tumors and their abundance dynamically changed over time. These results suggest that intrinsic astrocyte heterogeneity, and perhaps regional brain microenvironment, significantly contributes to glioma pathogenesis.
Collapse
Affiliation(s)
- David M Irvin
- Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Robert S McNeill
- Pathobiology and Translational Science Graduate Program, University of North Carolina School of Medicine, Chapel Hill, NC.,Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Ryan E Bash
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| | - C Ryan Miller
- Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, Chapel Hill, NC.,Pathobiology and Translational Science Graduate Program, University of North Carolina School of Medicine, Chapel Hill, NC.,Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC.,Department of Neurology and Neurosciences Center, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
35
|
Shi J, Wang B, Chen Z, Liu W, Pan J, Hou L, Zhang Z. A Multi-Functional Tumor Theranostic Nanoplatform for MRI Guided Photothermal-Chemotherapy. Pharm Res 2016; 33:1472-85. [PMID: 26984128 DOI: 10.1007/s11095-016-1891-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/22/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop a multi-functional theranostic nanoplatform with increased tumor retention, improving antitumor efficacy and decreased side effects of chemotherapy drugs. METHODS GO@Gd nanocomposites was synthesized via decorating gadolinium (Gd) nanoparticles (GdNP) onto graphene oxide (GO), and then functionalized by polyethylene glycol (PEG2000), folic acid (FA), a widely used tumor targeting molecule, was linked to GO@Gd-PEG, finally, doxorubicin (DOX) was loaded onto GO@Gd-PEG-FA and obtained a tumor-targeting drug delivery system (GO@Gd-PEG-FA/DOX). GO@Gd-PEG-FA/DOX was characterized and explored its theranostic applications both in a cultured MCF-7 cells and tumor-bearing mice. RESULTS GO@Gd-PEG-FA/DOX could efficiently cross the cell membranes, lead to more apoptosis and afford higher antitumor efficacy without obvious toxic effects to normal organs owing to its prolonged blood circulation and 7.6-fold higher DOX uptake of tumor than DOX. Besides, GO@Gd-PEG-FA/DOX also served as a powerful photothermal therapy (PTT) agent for thermal ablation of tumor and a strong T1-weighted contrast agent for tumor MRI diagnosis. The multi-functional nanoplatform also could selectively kill cancer cells in highly localized regions via the excellent tumor-targeting and MRI guided PTT abilities. CONCLUSIONS GO@Gd-PEG-FA/DOX exhibited excellent photothermal-chemotherapeutic efficacy, tumor-targeting property and tumor diagnostic ability.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China
| | - Binghua Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China
| | - Zhaoyang Chen
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China
| | - Jingjing Pan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China. .,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China. .,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China.
| |
Collapse
|
36
|
Domingues P, González-Tablas M, Otero Á, Pascual D, Miranda D, Ruiz L, Sousa P, Ciudad J, Gonçalves JM, Lopes MC, Orfao A, Tabernero MD. Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun 2016. [PMID: 26216710 DOI: 10.1016/j.bbi.2015.07.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control.
Collapse
Affiliation(s)
- Patrícia Domingues
- Centre for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María González-Tablas
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Álvaro Otero
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Daniel Pascual
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - David Miranda
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Laura Ruiz
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Pablo Sousa
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Juana Ciudad
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | | | - María Celeste Lopes
- Centre for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Alberto Orfao
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Dolores Tabernero
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain; Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain; Instituto de Estudios de Ciencias de la salud de Castilla y León (IECSCYL-IBSAL) and Research Unit of the University Hospital of Salamanca, Salamanca, Spain.
| |
Collapse
|
37
|
Sridharan V, Urbanski LM, Bi WL, Thistle K, Miller MB, Ramkissoon S, Reardon DA, Dunn IF. Multicentric Low-Grade Gliomas. World Neurosurg 2015; 84:1045-50. [DOI: 10.1016/j.wneu.2015.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
38
|
Shevtsov MA, Nikolaev BP, Yakovleva LY, Dobrodumov AV, Zhakhov AV, Mikhrina AL, Pitkin E, Parr MA, Rolich VI, Simbircev AS, Ischenko AM. Recombinant interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles for theranostic targeting of experimental glioblastoma. Neoplasia 2015; 17:32-42. [PMID: 25622897 PMCID: PMC4309733 DOI: 10.1016/j.neo.2014.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022] Open
Abstract
Cerebral edema commonly accompanies brain tumors and contributes to neurologic symptoms. The role of the interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles (SPION-IL-1Ra) was assessed to analyze its anti-edemal effect and its possible application as a negative contrast enhancing agent for magnetic resonance imaging (MRI). Rats with intracranial C6 glioma were intravenously administered at various concentrations of IL-1Ra or SPION-IL-1Ra. Brain peritumoral edema following treatment with receptor antagonist was assessed with high-field MRI. IL-1Ra administered at later stages of tumor progression significantly reduced peritumoral edema (as measured by MRI) and prolonged two-fold the life span of comorbid animals in a dose-dependent manner in comparison to control and corticosteroid-treated animals (P < .001). Synthesized SPION-IL-1Ra conjugates had the properties of negative contrast agent with high coefficients of relaxation efficiency. In vitro studies of SPION-IL-1Ra nanoparticles demonstrated high intracellular incorporation and absence of toxic influence on C6 cells and lymphocyte viability and proliferation. Retention of the nanoparticles in the tumor resulted in enhanced hypotensive T2-weighted images of glioma, proving the application of the conjugates as negative magnetic resonance contrast agents. Moreover, nanoparticles reduced the peritumoral edema confirming the therapeutic potency of synthesized conjugates. SPION-IL-1Ra nanoparticles have an anti-edemal effect when administered through a clinically relevant route in animals with glioma. The SPION-IL-1Ra could be a candidate for theranostic approach in neuro-oncology both for diagnosis of brain tumors and management of peritumoral edema.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia; A.L. Polenov Russian Research Scientific Institute of Neurosurgery, St. Petersburg, Russia.
| | - Boris P Nikolaev
- Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
| | | | - Anatolii V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | | | - Anastasiy L Mikhrina
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina A Parr
- V.F. Fock Institute of Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Valerii I Rolich
- V.F. Fock Institute of Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Andrei S Simbircev
- Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
| | | |
Collapse
|
39
|
Achyut BR, Shankar A, Iskander ASM, Ara R, Angara K, Zeng P, Knight RA, Scicli AG, Arbab AS. Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Cancer Lett 2015; 369:416-26. [PMID: 26404753 DOI: 10.1016/j.canlet.2015.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/29/2015] [Accepted: 09/09/2015] [Indexed: 12/29/2022]
Abstract
Glioblastoma (GBM) is a hypervascular and malignant form of brain tumors. Anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in clinical and preclinical studies, which resulted into marked hypoxia and recruited bone marrow derived cells (BMDCs) to the tumor microenvironment (TME). In vivo animal models to track BMDCs and investigate molecular mechanisms in AAT resistance are rare. We exploited recently established chimeric mouse to develop orthotopic U251 tumor, which uses as low as 5 × 10(6) GFP+ BM cells in athymic nude mice and engrafted >70% GFP+ cells within 14 days. Our unpublished data and published studies have indicated the involvement of immunosuppressive myeloid cells in therapeutic resistance in glioma. Similarly, in the present study, vatalanib significantly increased CD68+ myeloid cells, and CD133+, CD34+ and Tie2+ endothelial cell signatures. Therefore, we tested inhibition of CSF1R+ myeloid cells using GW2580 that reduced tumor growth by decreasing myeloid (Gr1+ CD11b+ and F4/80+) and angiogenic (CD202b+ and VEGFR2+) cell signatures in TME. CSF1R blockade significantly decreased inflammatory, proangiogenic and immunosuppressive molecular signatures compared to vehicle, vatalanib or combination. TCK1 or CXCL7, a potent chemoattractant and activator of neutrophils, was observed as most significantly decreased cytokine in CSF1R blockade. ERK MAPK pathway was involved in cytokine network regulation. In conclusion, present study confirmed the contribution of myeloid cells in GBM development and therapeutic resistance using chimeric mouse model. We identified novel molecular networks including CXCL7 chemokine as a promising target for future studies. Nonetheless, survival studies are required to assess the beneficial effect of CSF1R blockade.
Collapse
Affiliation(s)
- B R Achyut
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Adarsh Shankar
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - A S M Iskander
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Roxan Ara
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Kartik Angara
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Peng Zeng
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | | | - Alfonso G Scicli
- Cellular and Molecular Imaging Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Ali S Arbab
- Tumor Angiogenesis Laboratory, Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
40
|
Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T, Holtman IR, Wang X, Eggen BJL, Boddeke HWGM, Hambardzumyan D, Wolf SA, Kettenmann H. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One 2015; 10:e0116644. [PMID: 25658639 PMCID: PMC4320099 DOI: 10.1371/journal.pone.0116644] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 12/11/2014] [Indexed: 01/02/2023] Open
Abstract
Malignant glioma belong to the most aggressive neoplasms in humans with no successful treatment available. Patients suffering from glioblastoma multiforme (GBM), the highest-grade glioma, have an average survival time of only around one year after diagnosis. Both microglia and peripheral macrophages/monocytes accumulate within and around glioma, but fail to exert effective anti-tumor activity and even support tumor growth. Here we use microarray analysis to compare the expression profiles of glioma-associated microglia/macrophages and naive control cells. Samples were generated from CD11b+ MACS-isolated cells from naïve and GL261-implanted C57BL/6 mouse brains. Around 1000 genes were more than 2-fold up- or downregulated in glioma-associated microglia/macrophages when compared to control cells. A comparison with published data sets of M1, M2a,b,c-polarized macrophages revealed a gene expression pattern that has only partial overlap with any of the M1 or M2 gene expression patterns. Samples for the qRT-PCR validation of selected M1 and M2a,b,c-specific genes were generated from two different glioma mouse models and isolated by flow cytometry to distinguish between resident microglia and invading macrophages. We confirmed in both models the unique glioma-associated microglia/macrophage phenotype including a mixture of M1 and M2a,b,c-specific genes. To validate the expression of these genes in human we MACS-isolated CD11b+ microglia/macrophages from GBM, lower grade brain tumors and control specimens. Apart from the M1/M2 gene analysis, we demonstrate that the expression of Gpnmb and Spp1 is highly upregulated in both murine and human glioma-associated microglia/macrophages. High expression of these genes has been associated with poor prognosis in human GBM, as indicated by patient survival data linked to gene expression data. We also show that microglia/macrophages are the predominant source of these transcripts in murine and human GBM. Our findings provide new potential targets for future anti-glioma therapy.
Collapse
Affiliation(s)
| | - Andreas Pelz
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Department of Experimental Neurology, Charité–University Medicine Berlin, Berlin, Germany
| | - Xi Feng
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Michael Synowitz
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Department of Neurosurgery, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Darko Markovic
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Department of Neurosurgery, Helios Clinics, Berlin, Germany
| | - Thomas Langmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Inge R. Holtman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Xi Wang
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Bart J. L. Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hendrikus W. G. M. Boddeke
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dolores Hambardzumyan
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Susanne A. Wolf
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Helmut Kettenmann
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- * E-mail:
| |
Collapse
|
41
|
Hayes J, Thygesen H, Droop A, Hughes TA, Westhead D, Lawler SE, Wurdak H, Short SC. Prognostic microRNAs in high-grade glioma reveal a link to oligodendrocyte precursor differentiation. Oncoscience 2014; 2:252-62. [PMID: 25897422 PMCID: PMC4394131 DOI: 10.18632/oncoscience.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
MicroRNA expression can be exploited to define tumor prognosis and stratification for precision medicine. It remains unclear whether prognostic microRNA signatures are exclusively tumor grade and/or molecular subtype-specific, or whether common signatures of aggressive clinical behavior can be identified. Here, we defined microRNAs that are associated with good and poor prognosis in grade III and IV gliomas using data from The Cancer Genome Atlas. Pathway analysis of microRNA targets that are differentially expressed in good and poor prognosis glioma identified a link to oligodendrocyte development. Notably, a microRNA expression profile that is characteristic of a specific oligodendrocyte precursor cell type (OP1) correlates with microRNA expression from 597 of these tumors and is consistently associated with poor patient outcome in grade III and IV gliomas. Our study reveals grade-independent and subtype-independent prognostic molecular signatures in high-grade glioma and provides a framework for investigating the mechanisms of brain tumor aggressiveness.
Collapse
Affiliation(s)
- Josie Hayes
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Helene Thygesen
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Alastair Droop
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Thomas A Hughes
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, UK
| | - David Westhead
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heiko Wurdak
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| | - Susan C Short
- Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, UK
| |
Collapse
|
42
|
Clark AJ, Safaee M, Oh T, Ivan ME, Parimi V, Hashizume R, Ozawa T, James CD, Bloch O, Parsa AT. Stable luciferase expression does not alter immunologic or in vivo growth properties of GL261 murine glioma cells. J Transl Med 2014; 12:345. [PMID: 25464980 PMCID: PMC4258256 DOI: 10.1186/s12967-014-0345-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/24/2014] [Indexed: 11/17/2022] Open
Abstract
Background GL261 cells are murine glioma cells that demonstrate proliferation, invasion, and angiogenesis when implanted in syngeneic C57BL/6 mice, providing a highly useful immunocompetent animal model of glioblastoma. Modification of tumor cells for luciferase expression enables non-invasive monitoring of orthotopic tumor growth, and has proven useful for studying glioblastoma response to novel therapeutics. However, tumor modification for luciferase has the potential for evoking host immune response against otherwise syngeneic tumor cells, thereby mitigating the tumor cells’ value for tumor immunology and immunotherapy studies. Methods GL261 cells were infected with lentivirus containing a gene encoding firefly luciferase (GL261.luc). In vitro proliferation of parental (unmodified) GL261 and GL261.luc was measured on days 0, 1, 2, 4, and 7 following plating, and the expression of 82 mouse cytokines and chemokines were analyzed by RT-PCR array. Cell lines were also evaluated for differences in invasion and migration in modified Boyden chambers. GL261 and GL261.luc cells were then implanted intracranially in C57BL/6 mice, with GL261.luc tumor growth monitored by quantitative bioluminescence imaging, and all mice were followed for survival to compare relative malignancy of tumor cells. Results No difference in proliferation was indicated for GL261 vs. GL261.luc cells (p>0.05). Of the 82 genes examined by RT-PCR array, seven (9%) exhibited statistically significant change after luciferase modification. Of these, only three changed by greater than 2-fold: BMP-2, IL-13, and TGF-β2. No difference in invasion (p=0.67) or migration (p=0.26) was evident between modified vs. unmodified cells. GL261.luc cell luminescence was detectable in the brains of C57BL/6 mice at day 5 post-implantation, and tumor bioluminescence increased exponentially to day 19. Median overall survival was 20.2 days versus 19.7 days for mice receiving implantation with GL261 and GL261.luc, respectively (p=0.62). Histopathologic analysis revealed no morphological difference between tumors, and immunohistochemical analysis showed no significant difference for staining of CD3, Ki67, or CD31 (p>0.05 for all). Conclusions Luciferase expression in GL261 murine glioma cells does not affect GL261 proliferation, invasion, cytokine expression, or in vivo growth. Luciferase modification increases their utility for studying tumor immunology and immunotherapeutic approaches for treating glioblastoma.
Collapse
Affiliation(s)
- Aaron J Clark
- The Brain Tumor Research Center, Department of Neurological Surgery, University of California, San Francisco, CA 505 Parnassus Ave., Room 779 M, San Francisco, CA, 94143-0112, USA. .,Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., M779, Box 0112, San Francisco, CA, 94117, USA.
| | - Michael Safaee
- The Brain Tumor Research Center, Department of Neurological Surgery, University of California, San Francisco, CA 505 Parnassus Ave., Room 779 M, San Francisco, CA, 94143-0112, USA.
| | - Taemin Oh
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 N. St. Clair St., Suite 2210, Chicago, IL, 60611-2922, USA.
| | - Michael E Ivan
- The Brain Tumor Research Center, Department of Neurological Surgery, University of California, San Francisco, CA 505 Parnassus Ave., Room 779 M, San Francisco, CA, 94143-0112, USA.
| | - Vamsi Parimi
- Pathology Core Facility, Feinberg School of Medicine, Northwestern University, 710 N. Fairbanks Court, Room 8-419, Chicago, IL, USA.
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 N. St. Clair St., Suite 2210, Chicago, IL, 60611-2922, USA.
| | - Tomoko Ozawa
- The Brain Tumor Research Center, Department of Neurological Surgery, University of California, San Francisco, CA 505 Parnassus Ave., Room 779 M, San Francisco, CA, 94143-0112, USA.
| | - Charles D James
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 N. St. Clair St., Suite 2210, Chicago, IL, 60611-2922, USA.
| | - Orin Bloch
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 N. St. Clair St., Suite 2210, Chicago, IL, 60611-2922, USA.
| | - Andrew T Parsa
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 N. St. Clair St., Suite 2210, Chicago, IL, 60611-2922, USA.
| |
Collapse
|
43
|
Ajaz M, Jefferies S, Brazil L, Watts C, Chalmers A. Current and investigational drug strategies for glioblastoma. Clin Oncol (R Coll Radiol) 2014; 26:419-30. [PMID: 24768122 DOI: 10.1016/j.clon.2014.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 11/21/2022]
Abstract
Medical treatments for glioblastoma face several challenges. Lipophilic alkylators remain the mainstay of treatment, emphasising the primacy of good blood-brain barrier penetration. Temozolomide has emerged as a major contributor to improved patient survival. The roles of procarbazine and vincristine in the procarbazine, lomustine and vincristine (PCV) schedule have attracted scrutiny and several lines of evidence now support the use of lomustine as effective single-agent therapy. Bevacizumab has had a convoluted development history, but clearly now has no major role in first-line treatment, and may even be detrimental to quality of life in this setting. In later disease, clinically meaningful benefits are achievable in some patients, but more impressively the combination of bevacizumab and lomustine shows early promise. Over the last decade, investigational strategies in glioblastoma have largely subscribed to the targeted kinase inhibitor paradigm and have mostly failed. Low prevalence dominant driver lesions such as the FGFR-TACC fusion may represent a niche role for this agent class. Immunological, metabolic and radiosensitising approaches are being pursued and offer more generalised efficacy. Finally, trial design is a crucial consideration. Progress in clinical glioblastoma research would be greatly facilitated by improved methodologies incorporating: (i) routine pharmacokinetic and pharmacodynamic assessments by preoperative dosing; and (ii) multi-stage, multi-arm protocols incorporating new therapy approaches and high-resolution biology in order to guide necessary improvements in science.
Collapse
Affiliation(s)
- M Ajaz
- Surrey Cancer Research Institute, University of Surrey, Guildford, UK.
| | - S Jefferies
- Oncology Centre, Addenbrooke's Hospital, Cambridge, UK
| | - L Brazil
- Guy's, St Thomas' and King's College Hospitals, London, UK
| | - C Watts
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - A Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|