1
|
Abbas S, Shafik R, Soomro N, Heer R, Adhikari K. AI predicting recurrence in non-muscle-invasive bladder cancer: systematic review with study strengths and weaknesses. Front Oncol 2025; 14:1509362. [PMID: 39839785 PMCID: PMC11746116 DOI: 10.3389/fonc.2024.1509362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Background Non-muscle-invasive Bladder Cancer (NMIBC) is notorious for its high recurrence rate of 70-80%, imposing a significant human burden and making it one of the costliest cancers to manage. Current prediction tools for NMIBC recurrence rely on scoring systems that often overestimate risk and lack accuracy. Machine learning (ML) and artificial intelligence (AI) are transforming oncological urology by leveraging molecular and clinical data to enhance predictive precision. Methods This comprehensive review critically examines ML-based frameworks for predicting NMIBC recurrence. A systematic literature search was conducted, focusing on the statistical robustness and algorithmic efficacy of studies. These were categorised by data modalities (e.g., radiomics, clinical, histopathological, genomic) and types of ML models, such as neural networks, deep learning, and random forests. Each study was analysed for strengths, weaknesses, performance metrics, and limitations, with emphasis on generalisability, interpretability, and cost-effectiveness. Results ML algorithms demonstrate significant potential, with neural networks achieving accuracies of 65-97.5%, particularly with multi-modal datasets, and support vector machines averaging around 75%. Models combining multiple data types consistently outperformed single-modality approaches. However, challenges include limited generalisability due to small datasets and the "black-box" nature of advanced models. Efforts to enhance explainability, such as SHapley Additive ExPlanations (SHAP), show promise but require refinement for clinical use. Conclusion This review illuminates the nuances, complexities and contexts that influence the real-world advancement and adoption of these AI-driven techniques in precision oncology. It equips researchers with a deeper understanding of the intricacies of the ML algorithms employed. Actionable insights are provided for refining algorithms, optimising multimodal data utilisation, and bridging the gap between predictive accuracy and clinical utility. This rigorous analysis serves as a roadmap to advance real-world AI applications in oncological care, highlighting the collaborative efforts and robust datasets necessary to translate these advancements into tangible benefits for patient management.
Collapse
Affiliation(s)
- Saram Abbas
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Rishad Shafik
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Naeem Soomro
- Department of Urology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Rakesh Heer
- Division of Surgery, Imperial College London, London, United Kingdom
- Centre for Cancer, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kabita Adhikari
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
2
|
Yang J, Ji Z, Gao F, Wu J, Du M, Zhang Z, Yuan L, Zheng R, Wang M. Cigarette smoking combined with genetic variation regulates the m 6A methylation of CRNKL1 and is associated with bladder cancer risk. ENVIRONMENTAL TOXICOLOGY 2024; 39:2782-2793. [PMID: 38270278 DOI: 10.1002/tox.24138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
Cigarette smoking was known to accelerate the occurrence and development of bladder cancer by regulating RNA modification. However, the association between the combination of cigarette smoking and RNA modification-related single nucleotide polymorphisms (RNAm-SNPs) and bladder cancer risk remains unclear. In this study, 1681 participants, including 580 cases and 1101 controls, were recruited for genetic association analysis. In total, 1 287 990 RNAm-SNPs involving nine RNA modifications (m6A, m1A, m6Am, 2'-O-Me, m5C, m7G, A-to-I, m5U, and pseudouridine modification) were obtained from the RMVar database. The interactive effect of cigarette smoking and RNAm-SNPs on bladder cancer risk was assessed through joint analysis. The susceptibility analysis revealed that 89 RNAm-SNPs involving m6A, m1A, and A-to-I modifications were associated with bladder cancer risk. Among them, m6A-related rs2273058 in CRNKL1 was associated with bladder cancer risk (odds ratios (OR) = 1.35, padj = 1.78 × 10-4), and CRNKL1 expression was increased in bladder cancer patients (p = 0.035). Cigarette smoking combined with the A allele of rs2273058 increased bladder cancer risk compared with nonsmokers with the G allele of rs2273058 (OR = 2.40, padj = 3.11 × 10-9). Mechanistically, the A allele of rs2273058 endowed CRNKL1 with an additional m6A motif, facilitating recognition by m6A reader IGF2BP1, thereby promoting CRNKL1 expression under cigarette smoking (r = 0.142, p = 0.017). Moreover, elevated CRNKL1 expression may accelerate cell cycle and proliferation, thereby increasing bladder cancer risk. In summary, our study demonstrated that cigarette smoking combined with RNAm-SNPs contributes to bladder cancer risk, which provides a potential target for bladder cancer prevention.
Collapse
Affiliation(s)
- Jialei Yang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zihan Ji
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Gao
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jiajin Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Rui Zheng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
3
|
Liu T, Gu J, Li C, Guo M, Yuan L, Lv Q, Qin C, Du M, Chu H, Liu H, Zhang Z. Alternative polyadenylation-related genetic variants contribute to bladder cancer risk. J Biomed Res 2023; 37:405-417. [PMID: 37936490 PMCID: PMC10687529 DOI: 10.7555/jbr.37.20230063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 11/09/2023] Open
Abstract
Aberrant alternative polyadenylation (APA) events play an important role in cancers, but little is known about whether APA-related genetic variants contribute to the susceptibility to bladder cancer. Previous genome-wide association study performed APA quantitative trait loci (apaQTL) analyses in bladder cancer, and identified 17 955 single nucleotide polymorphisms (SNPs). We found that gene symbols of APA affected by apaQTL-associated SNPs were closely correlated with cancer signaling pathways, high mutational burden, and immune infiltration. Association analysis showed that apaQTL-associated SNPs rs34402449 C>A, rs2683524 C>T, and rs11540872 C>G were significantly associated with susceptibility to bladder cancer (rs34402449: OR = 1.355, 95% confidence interval [CI]: 1.159-1.583, P = 1.33 × 10 -4; rs2683524: OR = 1.378, 95% CI: 1.164-1.632, P = 2.03 × 10 -4; rs11540872: OR = 1.472, 95% CI: 1.193-1.815, P = 3.06 × 10 -4). Cumulative effect analysis showed that the number of risk genotypes and smoking status were significantly associated with an increased risk of bladder cancer ( P trend = 2.87 × 10 -12). We found that PRR13, being demonstrated the most significant effect on cell proliferation in bladder cancer cell lines, was more highly expressed in bladder cancer tissues than in adjacent normal tissues. Moreover, the rs2683524 T allele was correlated with shorter 3' untranslated regions of PRR13 and increased PRR13 expression levels. Collectively, our findings have provided informative apaQTL resources and insights into the regulatory mechanisms linking apaQTL-associated variants to bladder cancer risk.
Collapse
Affiliation(s)
- Ting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jingjing Gu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chuning Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mengfan Guo
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Qiang Lv
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chao Qin
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
4
|
Zheng R, Gao F, Mao Z, Xiao Y, Yuan L, Huang Z, Lv Q, Qin C, Du M, Zhang Z, Wang M. LncRNA BCCE4 Genetically Enhances the PD-L1/PD-1 Interaction in Smoking-Related Bladder Cancer by Modulating miR-328-3p-USP18 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303473. [PMID: 37705121 PMCID: PMC10602555 DOI: 10.1002/advs.202303473] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Indexed: 09/15/2023]
Abstract
Identification of cancer-associated variants, especially those in functional regions of long noncoding RNAs (lncRNAs), has become an essential task in tumor etiology. However, the genetic function of lncRNA variants involved in bladder cancer susceptibility remains poorly understood. Herein, it is identified that the rs62483508 G > A variant in microRNA response elements (MREs) of lncRNA Bladder cancer Cell Cytoplasm-Enriched abundant transcript 4 (BCCE4) is significantly associated with decreased bladder cancer risk (odds ratio = 0.84, P = 7.33 × 10-8 ) in the Chinese population (3603 cases and 4986 controls) but not in the European population. The protective genetic effect of the rs62483508 A allele is found in smokers or cigarette smoke-related carcinogen 4-aminobiphenyl (4-ABP) exposure. Subsequent biological experiments reveal that the A allele of rs62483508 disrupts the binding affinity of miR-328-3p to facilitate USP18 from miRNA-mediated degradation and thus specifically attenuates the downstream PD-L1/PD-1 interaction. LncRNA BCCE4 is also enriched in exosomes from bladder cancer plasma, tissues, and cells. This comprehensive study clarifies the genetic mechanism of lncRNA BCCE4 in bladder cancer susceptibility and its role in the regulation of the immune response in tumorigenesis. The findings provide a valuable predictor of bladder cancer risk that can facilitate diagnosis and prevention.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Fang Gao
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Key Laboratory of Environmental Medicine EngineeringMinistry of Education of ChinaSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Zhenguang Mao
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Yanping Xiao
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Lin Yuan
- Department of UrologyJiangsu Province Hospital of TCMNanjing210029China
- Department of Integrated Traditional Chinese and Western Medicine Tumor Research LabNanjing210028China
| | - Zhengkai Huang
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qiang Lv
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Chao Qin
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Mulong Du
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Zhengdong Zhang
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Institute of Clinical ResearchThe Affiliated Taizhou People's Hospital of NanjingMedical UniversityTaizhou225300China
| | - Meilin Wang
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215008China
| |
Collapse
|
5
|
Koutros S, Kiemeney LA, Pal Choudhury P, Milne RL, Lopez de Maturana E, Ye Y, Joseph V, Florez-Vargas O, Dyrskjøt L, Figueroa J, Dutta D, Giles GG, Hildebrandt MAT, Offit K, Kogevinas M, Weiderpass E, McCullough ML, Freedman ND, Albanes D, Kooperberg C, Cortessis VK, Karagas MR, Johnson A, Schwenn MR, Baris D, Furberg H, Bajorin DF, Cussenot O, Cancel-Tassin G, Benhamou S, Kraft P, Porru S, Carta A, Bishop T, Southey MC, Matullo G, Fletcher T, Kumar R, Taylor JA, Lamy P, Prip F, Kalisz M, Weinstein SJ, Hengstler JG, Selinski S, Harland M, Teo M, Kiltie AE, Tardón A, Serra C, Carrato A, García-Closas R, Lloreta J, Schned A, Lenz P, Riboli E, Brennan P, Tjønneland A, Otto T, Ovsiannikov D, Volkert F, Vermeulen SH, Aben KK, Galesloot TE, Turman C, De Vivo I, Giovannucci E, Hunter DJ, Hohensee C, Hunt R, Patel AV, Huang WY, Thorleifsson G, Gago-Dominguez M, Amiano P, Golka K, Stern MC, Yan W, Liu J, Li SA, Katta S, Hutchinson A, Hicks B, Wheeler WA, Purdue MP, McGlynn KA, Kitahara CM, Haiman CA, Greene MH, Rafnar T, Chatterjee N, Chanock SJ, Wu X, Real FX, Silverman DT, Garcia-Closas M, Stefansson K, Prokunina-Olsson L, Malats N, Rothman N. Genome-wide Association Study of Bladder Cancer Reveals New Biological and Translational Insights. Eur Urol 2023; 84:127-137. [PMID: 37210288 PMCID: PMC10330197 DOI: 10.1016/j.eururo.2023.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Genomic regions identified by genome-wide association studies (GWAS) for bladder cancer risk provide new insights into etiology. OBJECTIVE To identify new susceptibility variants for bladder cancer in a meta-analysis of new and existing genome-wide genotype data. DESIGN, SETTING, AND PARTICIPANTS Data from 32 studies that includes 13,790 bladder cancer cases and 343,502 controls of European ancestry were used for meta-analysis. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSES Log-additive associations of genetic variants were assessed using logistic regression models. A fixed-effects model was used for meta-analysis of the results. Stratified analyses were conducted to evaluate effect modification by sex and smoking status. A polygenic risk score (PRS) was generated on the basis of known and novel susceptibility variants and tested for interaction with smoking. RESULTS AND LIMITATIONS Multiple novel bladder cancer susceptibility loci (6p.22.3, 7q36.3, 8q21.13, 9p21.3, 10q22.1, 19q13.33) as well as improved signals in three known regions (4p16.3, 5p15.33, 11p15.5) were identified, bringing the number of independent markers at genome-wide significance (p < 5 × 10-8) to 24. The 4p16.3 (FGFR3/TACC3) locus was associated with a stronger risk for women than for men (p-interaction = 0.002). Bladder cancer risk was increased by interactions between smoking status and genetic variants at 8p22 (NAT2; multiplicative p value for interaction [pM-I] = 0.004), 8q21.13 (PAG1; pM-I = 0.01), and 9p21.3 (LOC107987026/MTAP/CDKN2A; pM-I = 0.02). The PRS based on the 24 independent GWAS markers (odds ratio per standard deviation increase 1.49, 95% confidence interval 1.44-1.53), which also showed comparable results in two prospective cohorts (UK Biobank, PLCO trial), revealed an approximately fourfold difference in the lifetime risk of bladder cancer according to the PRS (e.g., 1st vs 10th decile) for both smokers and nonsmokers. CONCLUSIONS We report novel loci associated with risk of bladder cancer that provide clues to its biological underpinnings. Using 24 independent markers, we constructed a PRS to stratify lifetime risk. The PRS combined with smoking history, and other established risk factors, has the potential to inform future screening efforts for bladder cancer. PATIENT SUMMARY We identified new genetic markers that provide biological insights into the genetic causes of bladder cancer. These genetic risk factors combined with lifestyle risk factors, such as smoking, may inform future preventive and screening strategies for bladder cancer.
Collapse
Affiliation(s)
- Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Lambertus A Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Parichoy Pal Choudhury
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA; American Cancer Society, Atlanta, GA, USA
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Evangelina Lopez de Maturana
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | | | - Vijai Joseph
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lars Dyrskjøt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jonine Figueroa
- Usher Institute, University of Edinburgh, Edinburgh, UK; Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Diptavo Dutta
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | | | - Kenneth Offit
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Victoria K Cortessis
- Department of Population and Public Health Sciences, Epidemiology and Genetics, University of Southern California, Los Angeles, CA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | - Dalsu Baris
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Helena Furberg
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean F Bajorin
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Cussenot
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques, Paris, France
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques, Paris, France; GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
| | - Simone Benhamou
- INSERM U1018, Research Centre on Epidemiology and Population Health, Villejuif, France
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stefano Porru
- Department of Diagnostics and Public Health, Section of Occupational Medicine, University of Verona, Verona, Italy
| | - Angela Carta
- Department of Diagnostics and Public Health, Section of Occupational Medicine, University of Verona, Verona, Italy
| | - Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, UK
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Jack A Taylor
- Epidemiology Branch and Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Frederik Prip
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Silvia Selinski
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Mark Teo
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Anne E Kiltie
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Adonina Tardón
- Department of Preventive Medicine, Universidad de Oviedo, ISPA and CIBERESP, Spain
| | - Consol Serra
- Center for Research in Occupational Health, Universitat Pompeu Fabra, Hospital del Mar Medical Research Institut, CIBERESP, Barcelona, Spain
| | - Alfredo Carrato
- Department of Medicine, Alcalá University, IRYCIS, CIBERONC, Madrid, Spain
| | | | - Josep Lloreta
- Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alan Schned
- Department of Pathology, Dartmouth Medical School, Hanover, NH, USA
| | - Petra Lenz
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | | | - Thomas Otto
- Department of Urology, Rheinland Klinikum, Lukaskrankenhaus, Neuss, Germany
| | | | - Frank Volkert
- Department of Urology, Evangelic Hospital, Paul Gerhardt Foundation, Lutherstadt Wittenberg, Germany
| | - Sita H Vermeulen
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katja K Aben
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands; Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
| | - Tessel E Galesloot
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Chancellor Hohensee
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rebecca Hunt
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alpa V Patel
- Population Science, American Cancer Society, Atlanta, GA, USA
| | - Wen-Yi Huang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saude, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Klaus Golka
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wusheng Yan
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jia Liu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shengchao Alfred Li
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shilpa Katta
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katherine A McGlynn
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Stephen J Chanock
- Office of the Director, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Xifeng Wu
- Zhejiang University, Hangzhou, China
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Montserrat Garcia-Closas
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
6
|
An integrative approach for identification of smoking-related genes involving bladder cancer. Arch Toxicol 2023; 97:177-188. [PMID: 36220961 DOI: 10.1007/s00204-022-03380-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023]
Abstract
Tobacco smoking is one of the most important environmental risk factors involving bladder tumorigenesis. However, smoking-related genes in bladder carcinogenesis and corresponding genetic effects on bladder cancer risk remain unclear. Weighted correlation network analysis (WGCNA) underlying transcriptome of bladder cancer tissues was applied to identify smoking-related genes. The logistic regression model was utilized to estimate genetic effects of single nucleotide polymorphisms (SNPs) in smoking-related genes on bladder cancer risk in the Chinese and European populations with a total of 6510 cases and 6569 controls, as well as the interaction with smoking status. Transcriptome of cells and tissues was used to profile the expression pattern of candidate genes and their genetic variants. Our results demonstrated that a total of 24 SNPs in 14 smoking-related genes were associated with the risk of bladder cancer, of which rs9348451 in CDKAL1 exhibited an interaction with smoking status (ORinteraction = 1.38, Pinteraction = 1.08 × 10-2) and tobacco smoking might combine with CDKAL1 rs9348451 to increase the risk of bladder cancer (Ptrend = 4.27 × 10-4). Moreover, rs9348451 was associated with CDKAL1 expression in bladder cancer, especially in smokers (P < 0.001). Besides, CDKAL1 was upregulated in bladder cancer compared to normal adjacent tissues, as well as upregulated via treatment of cigarette smoke extracts. This study highlights the important role of nurture and nature, as well as their interaction on tumorigenesis, which provides a new way to decipher the etiology of bladder cancer with smoking status.
Collapse
|
7
|
SARS-CoV-2 Pattern Provides a New Scoring System and Predicts the Prognosis and Immune Therapeutic Response in Glioma. Cells 2022; 11:cells11243997. [PMID: 36552760 PMCID: PMC9777143 DOI: 10.3390/cells11243997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Glioma is the most common primary malignancy of the adult central nervous system (CNS), with a poor prognosis and no effective prognostic signature. Since late 2019, the world has been affected by the rapid spread of SARS-CoV-2 infection. Research on SARS-CoV-2 is flourishing; however, its potential mechanistic association with glioma has rarely been reported. The aim of this study was to investigate the potential correlation of SARS-CoV-2-related genes with the occurrence, progression, prognosis, and immunotherapy of gliomas. METHODS SARS-CoV-2-related genes were obtained from the human protein atlas (HPA), while transcriptional data and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Glioma samples were collected from surgeries with the knowledge of patients. Differentially expressed genes were then identified and screened, and seven SARS-CoV-2 related genes were generated by LASSO regression analysis and uni/multi-variate COX analysis. A prognostic SARS-CoV-2-related gene signature (SCRGS) was then constructed based on these seven genes and validated in the TCGA validation cohort and CGGA cohort. Next, a nomogram was established by combining critical clinicopathological data. The correlation between SCRGS and glioma related biological processes was clarified by Gene set enrichment analysis (GSEA). In addition, immune infiltration and immune score, as well as immune checkpoint expression and immune escape, were further analyzed to assess the role of SCRGS in glioma-associated immune landscape and the responsiveness of immunotherapy. Finally, the reliability of SCRGS was verified by quantitative real-time polymerase chain reaction (qRT-PCR) on glioma samples. RESULTS The prognostic SCRGS contained seven genes, REEP6, CEP112, LARP4B, CWC27, GOLGA2, ATP6AP1, and ERO1B. Patients were divided into high- and low-risk groups according to the median SARS-CoV-2 Index. Overall survival was significantly worse in the high-risk group than in the low-risk group. COX analysis and receiver operating characteristic (ROC) curves demonstrated excellent predictive power for SCRGS for glioma prognosis. In addition, GSEA, immune infiltration, and immune scores indicated that SCRGS could potentially predict the tumor microenvironment, immune infiltration, and immune response in glioma patients. CONCLUSIONS The SCRGS established here can effectively predict the prognosis of glioma patients and provide a potential direction for immunotherapy.
Collapse
|
8
|
Wu P, Guo Y. Susceptibility Loci in SLC15A1, UGT1A3, and CWC27 Genes Associated with Bladder Cancer in the Northeast Chinese Population. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2988159. [PMID: 36124064 PMCID: PMC9482523 DOI: 10.1155/2022/2988159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
Abstract
Bladder cancer (BCa) is an increasingly severe clinical and public health issue. Therefore, we aim to investigate BCa susceptibility loci in the Chinese population. In this study, 487 BCa patients and 563 controls were recruited from the First Affiliated Hospital of China Medical University from July 2015 to September 2020. A total of ten single-nucleotide polymorphisms (SNPs) in solute carrier family 15 member 1 (SLC15A1), CWC27 spliceosome associated cyclophilin (CWC27), or UDP glucuronosyltransferase family 1 member A3 (UGT1A3) genes were genotyped. The associations between the candidate SNPs and BCa were analyzed using genotype and haplotype analysis. The results demonstrated that Rs4646227 of SLC15A1 has a significant association with BCa. The patients with CG (OR =2.513, p < 0.05) and GG (OR =2.859, p < 0.05) genotypes had an increasing risk of BCa compared with the CC genotype. For the CWC27 gene, genotypic frequency analysis revealed that the GT or TT genotype of rs2042329 and the CT or TT genotype of rs1870437 were more frequent in BCa patients than those in the control group, indicating that these genotypes were associated with a higher risk of BCa (all p < 0.05). Haplotypes of SLC15A1, UGT1A3, and CWC27 genes found that the C-C-C haplotype of SLC15A1 was associated with a lower risk of BCa while the C-G-C haplotype was associated with a higher risk. For the UGT1A3 gene, a moderate protective effect was observed with the most frequent T-T-C haplotype, and for the CWC27 gene, most of the haplotypes showed no association with BCa, except the G-G-C-T haplotype (order of SNPs: rs2042329-rs7735338-rs1870437-rs2278351, OR =0.81, p =0.038). In sum, this study indicated that rs2042329 and rs1870437 in the CWC27 gene and rs4646227 in the SLC15A1 gene are independent indicators for BCa risk in Chinese people. Further large-scale studies are required to validate these findings. Also, this study provided the theoretical basis for developing new therapeutic drug targeting of BCa.
Collapse
Affiliation(s)
- Peihong Wu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Yaoxing Guo
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| |
Collapse
|
9
|
Lim LM, Chung WY, Hwang DY, Yu CC, Ke HL, Liang PI, Lin TW, Cheng SM, Huang AM, Kuo HT. Whole-exome sequencing identified mutational profiles of urothelial carcinoma post kidney transplantation. J Transl Med 2022; 20:324. [PMID: 35864526 PMCID: PMC9301867 DOI: 10.1186/s12967-022-03522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Kidney transplantation is a lifesaving option for patients with end-stage kidney disease. In Taiwan, urothelial carcinoma (UC) is the most common de novo cancer after kidney transplantation (KT). UC has a greater degree of molecular heterogeneity than do other solid tumors. Few studies have explored genomic alterations in UC after KT. We performed whole-exome sequencing to compare the genetic alterations in UC developed after kidney transplantation (UCKT) and in UC in patients on hemodialysis (UCHD). After mapping and variant calling, 18,733 and 11,093 variants were identified in patients with UCKT and UCHD, respectively. We excluded known single-nucleotide polymorphisms (SNPs) and retained genes that were annotated in the Catalogue of Somatic Mutations in Cancer (COSMIC), in the Integrative Onco Genomic cancer mutations browser (IntOGen), and in the Cancer Genome Atlas (TCGA) database of genes associated with bladder cancer. A total of 14 UCKT-specific genes with SNPs identified in more than two patients were included in further analyses. The single-base substitution (SBS) profile and signatures showed a relative high T > A pattern compared to COMSIC UC mutations. Ingenuity pathway analysis was used to explore the connections among these genes. GNAQ, IKZF1, and NTRK3 were identified as potentially involved in the signaling network of UCKT. The genetic analysis of posttransplant malignancies may elucidate a fundamental aspect of the molecular pathogenesis of UCKT.
Collapse
Affiliation(s)
- Lee-Moay Lim
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yu Chung
- Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - Chih-Chuan Yu
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan
| | - A-Mei Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Ph.D. Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hung-Tien Kuo
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Genetic variants in choline metabolism pathway are associated with the risk of bladder cancer in the Chinese population. Arch Toxicol 2022; 96:1729-1737. [PMID: 35237847 DOI: 10.1007/s00204-022-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 11/02/2022]
Abstract
Choline metabolism alteration is considered as a metabolic hallmark in cancer, reflecting the complex interactions between carcinogenic signaling pathways and cancer metabolism, but little is known about whether genetic variants in the metabolism pathway contribute to the susceptibility of bladder cancer. Herein, a case-control study comprising 580 patients and 1,101 controls was carried out to analyze the association of bladder cancer with genetic variants on candidate genes involved in the choline metabolism pathway using unconditional logistic regression. Gene expression data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were applied for differential gene expression analysis. Cox regression was also applied to estimate the role of candidate genes on bladder cancer prognosis. Our results demonstrated that C allele of rs6810830 in ENPP6 was a significant protective allele of bladder cancer, compared to the T allele [Odds ratio (OR) = 0.74, 95% confidence interval (CI) = 0.64-0.86, P = 7.14 × 10-5 in additive model]. Besides, we also found that the expression of ENPP6 remarkably decreased in bladder tumors compared with normal tissues. Moreover, high expression of ENPP6 was associated with worse overall survival (OS) in bladder cancer patients [hazard ratio (HR) with their 95% CI 1.39 (1.02-1.90), P = 0.039]. In conclusion, our results suggested that SNP rs6810830 (T > C) in ENPP6 might be a potential susceptibility loci for bladder cancer, and these findings provided novel insights into the underlying mechanism of choline metabolism in cancers.
Collapse
|
11
|
Genome-Wide Association Study Adjusted for Occupational and Environmental Factors for Bladder Cancer Susceptibility. Genes (Basel) 2022; 13:genes13030448. [PMID: 35328002 PMCID: PMC8950368 DOI: 10.3390/genes13030448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
This study examined the effects of single-nucleotide polymorphisms (SNPs) on the development of bladder cancer, adding longest-held occupational and industrial history as regulators. The genome purified from blood was genotyped, followed by SNP imputation. In the genome-wide association study (GWAS), several patterns of industrial/occupational classifications were added to logistic regression models. The association test between bladder cancer development and the calculated genetic score for each gene region was evaluated (gene-wise analysis). In the GWAS and gene-wise analysis, the gliomedin gene satisfied both suggestive association levels of 10−5 in the GWAS and 10−4 in the gene-wise analysis for male bladder cancer. The expression of the gliomedin protein in the nucleus of bladder cancer cells decreased in cancers with a tendency to infiltrate and those with strong cell atypia. It is hypothesized that gliomedin is involved in the development of bladder cancer.
Collapse
|
12
|
Wang X, Guo Z, Zhu H, Xin J, Yuan L, Qin C, Wang M, Zhang Z, Wang Y, Chu H. Genetic variants in splicing factor genes and susceptibility to bladder cancer. Gene 2022; 809:146022. [PMID: 34673209 DOI: 10.1016/j.gene.2021.146022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 10/14/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Genome-wide association studies have demonstrated that genetic variants are closely related to tumorigenesis and progression of cancer. However, the correlation between genetic variants in splicing factor genes and bladder cancer susceptibility remains unclear. METHOD A case-control study with 580 cases of bladder cancer and 1,101 controls was conducted to explore the association of single-nucleotide polymorphisms (SNPs) in splicing factors with bladder cancer susceptibility by logistic regression models, and multiple testing errors were justified by the false discovery rate (FDR) method. Next, we used the Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) datasets to further analyze the differential expression of candidate genes. RESULTS We found that rs978416 G>A in RBFOX3 contributed to a reduced risk of bladder cancer [adjusted odds ratio (OR) = 0.72, 95% confidence internal (CI) = 0.62-0.84, P = 3.54 × 10-5], especially in individuals who never smoked (P = 7.83 × 10-5). Stratified analysis showed that the protective effect of rs978416 was more significant in the subgroup of low grade and non-muscle invasive bladder cancer. Furthermore, the RBFOX3 mRNA expression was decreased in bladder tumor tissues. However, the relatively high expression of RBFOX3 was related to a higher bladder cancer stage. CONCLUSIONS Our findings indicated that SNP rs978416 G>A in RBFOX3 may be related to bladder cancer predisposition in Chinese population and might serve as a novel biomarker for bladder cancer risk.
Collapse
Affiliation(s)
- Xi Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Guo
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Xuzhou Center for Disease Control and Prevention, Xuzhou, China
| | - Huanhuan Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medicial University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yunyan Wang
- Department of Urology, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, China.
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Ma L, Zhang D, Huang Z, Zheng R, Du M, Lv Q, Qin C, Chu H, Yuan L, Zhang Z. Functional variants of RPS6KB1 and PIK3R1 in the autophagy pathway genes and risk of bladder cancer. Arch Toxicol 2021; 96:367-375. [PMID: 34668023 DOI: 10.1007/s00204-021-03173-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Autophagy plays a critical role in cancer, since it can either suppress tumorigenesis by inhibiting cancer cell survival, or facilitate tumorigenesis by promoting cancer cell proliferation and tumor growth. However, the role of genetic variants of autophagy-regulated key genes for bladder cancer risk remained unclear. Here, we aimed to explore the association of bladder cancer with genetic variants on genes involved in autophagy pathway. Gene-based analysis was performed with multi-marker analysis of genomic annotation (MAGMA) in 580 bladder cancer cases and 1101 controls. The logistic regression model was used to calculate the SNP effects on bladder cancer susceptibility. Expression quantitative trait loci (eQTL) analysis was conducted by the genotype-tissue expression (GTEx) project. Gene expression was evaluated based on the Cancer Genome Atlas (TCGA) database. Three potentially functional SNPs RPS6KB1 rs1292038, PIK3R1 rs34303, and rs56352616 were demonstrated to be associated with risk of bladder cancer (OR = 0.71, 95% CI = 0.61-0.82, P = 7.88 × 10-6 for rs1292038; OR = 1.25, 95% CI = 1.09-1.45, P = 2.11 × 10-3 for rs34303; OR = 0.74, 95% CI = 0.62-0.90, P = 2.47 × 10-3 for rs56352616). An increasing number of risk genotypes of these three SNPs were associated with a higher risk of developing bladder cancer. Besides, rs1292038 exhibited an eQTL effect for RPS6KB1 in whole blood (P = 3.90 × 10-7). Furthermore, the higher expression of RPS6KB1 and lower expression of PIK3R1 were both significantly associated with bladder cancer risk. Our findings indicated that genetic variants in autophagy pathway genes RPS6KB1 and PIK3R1 confer bladder cancer susceptibility.
Collapse
Affiliation(s)
- Lan Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongjian Zhang
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Zhengkai Huang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Souaid T, Hindy JR, Diab E, Kourie HR. Are there monogenic hereditary forms of bladder cancer or only genetic susceptibilities? Pharmacogenomics 2021; 22:619-628. [PMID: 34044612 DOI: 10.2217/pgs-2020-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bladder cancer (BC) is the most common cancer involving the urinary system and the ninth most common cancer worldwide. Tobacco smoking is the most important environmental risk factor of BC. Several single nucleotide polymorphisms have been validated by genome-wide association studies as genetic risk factors for BC. However, the identification of DNA mismatch-repair genes, including MSH2 in Lynch syndrome and MUTYH in MUTYH-associated polyposis, raises the possibility of monogenic hereditary forms of BC. Moreover, other genetic mutations may play a key role in familial and hereditary transmissions of BC. Therefore, the aim of this review is to focus on the major hereditary syndromes involved in the development of BC and to report BC genetic susceptibilities established with genome-wide significance level.
Collapse
Affiliation(s)
- Tarek Souaid
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joya-Rita Hindy
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Ernest Diab
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Hampig Raphael Kourie
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Oncology department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
15
|
Corpas M, Megy K, Mistry V, Metastasio A, Lehmann E. Whole Genome Interpretation for a Family of Five. Front Genet 2021; 12:535123. [PMID: 33763108 PMCID: PMC7982663 DOI: 10.3389/fgene.2021.535123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Although best practices have emerged on how to analyse and interpret personal genomes, the utility of whole genome screening remains underdeveloped. A large amount of information can be gathered from various types of analyses via whole genome sequencing including pathogenicity screening, genetic risk scoring, fitness, nutrition, and pharmacogenomic analysis. We recognize different levels of confidence when assessing the validity of genetic markers and apply rigorous standards for evaluation of phenotype associations. We illustrate the application of this approach on a family of five. By applying analyses of whole genomes from different methodological perspectives, we are able to build a more comprehensive picture to assist decision making in preventative healthcare and well-being management. Our interpretation and reporting outputs provide input for a clinician to develop a healthcare plan for the individual, based on genetic and other healthcare data.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Institute of Continuing Education Madingley Hall Madingley, University of Cambridge, Cambridge, United Kingdom.,Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, Madrid, Spain
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge & National Health Service (NHS) Blood and Transplant, Cambridge, United Kingdom
| | | | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Camden and Islington NHS Foundation Trust, London, United Kingdom
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom
| |
Collapse
|
16
|
Zheng R, Du M, Ge Y, Gao F, Xin J, Lv Q, Qin C, Zhu Y, Gu C, Wang M, Zhu Q, Guo Z, Ben S, Chu H, Ye D, Zhang Z, Wang M. Identification of low-frequency variants of UGT1A3 associated with bladder cancer risk by next-generation sequencing. Oncogene 2021; 40:2382-2394. [PMID: 33658628 DOI: 10.1038/s41388-021-01672-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Although genome-wide association studies (GWASs) have successfully revealed many common risk variants for bladder cancer, the heritability is still largely unexplained. We hypothesized that low-frequency variants involved in bladder cancer risk could reveal the unexplained heritability. Next-generation sequencing of 113 patients and 118 controls was conducted on 81 genes/regions of known bladder cancer GWAS loci. A two-stage validation comprising 3,350 cases and 4,005 controls was performed to evaluate the effects of low-frequency variants on bladder cancer risk. Biological experiments and techniques, including electrophoretic mobility shift assays, CRISPR/Cas9, RNA-Seq, and bioinformatics approaches, were performed to assess the potential functions of low-frequency variants. The low-frequency variant rs28898617 was located in the first exon of UGT1A3 and was significantly associated with increased bladder cancer risk (odds ratio = 1.50, P = 3.10 × 10-6). Intriguingly, rs28898617 was only observed in the Asian population, but monomorphism was observed in the European population. The risk-associated G allele of rs28898617 increased UGT1A3 expression, facilitated UGT1A3 transcriptional activity, and enhanced the binding activity. In addition, UGT1A3 deletion significantly inhibited the proliferation, invasion, and migration of bladder cancer cells and xenograft tumor growth. Mechanistically, UGT1A3 induced LAMC2 expression by binding CBP and promoting histone acetylation, which remarkably promoted the progression of bladder cancer. This is the first targeted sequencing study to reveal that the novel low-frequency variant rs28898617 and its associated gene UGT1A3 are involved in bladder cancer development, providing new insights into the genetic architecture of bladder cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Gao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chengyuan Gu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengyun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiuyuan Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Guo
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China. .,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Chu H, Xin J, Yuan Q, Wu Y, Du M, Zheng R, Liu H, Wu S, Zhang Z, Wang M. A prospective study of the associations among fine particulate matter, genetic variants, and the risk of colorectal cancer. ENVIRONMENT INTERNATIONAL 2021; 147:106309. [PMID: 33338681 DOI: 10.1016/j.envint.2020.106309] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) is suspected to increase the risk of colorectal cancer, but the mechanism remains unknown. We aimed to investigate the association between PM2.5 exposure, genetic variants and colorectal cancer risk in the Prostate, Lung, Colon and Ovarian (PLCO) Cancer Screening trial. METHODS We included a prospective cohort of 139,534 cancer-free individuals from 10 United States research centers with over ten years of follow-up. We used a Cox regression model to assess the association between PM2.5 exposure and colorectal cancer incidence by calculating the hazard ratio (HR) and 95% confidence interval (CI) with adjustment for potential confounders. The polygenic risk score (PRS) and genome-wide interaction analysis (GWIA) were used to evaluate the multiplicative interaction between PM2.5 exposure and genetic variants in regard to colorectal cancer risk. RESULTS After a median of 10.43 years of follow-up, 1,666 participants had been diagnosed with colorectal cancer. PM2.5 exposure was significantly associated with an increased risk of colorectal cancer (HR = 1.27; 95% CI = 1.17-1.37 per 5 μg/m3 increase). Five independent susceptibility loci reached statistical significance at P < 1.22 × 10-8 in the interaction analysis. Furthermore, a joint interaction was observed between PM2.5 exposure and the PRS based on these five loci with colorectal cancer risk (P = 3.11 × 10-29). The Gene Ontology analysis showed that the vascular endothelial growth factor (VEGF) receptor signaling pathway was involved in the biological process of colorectal cancer. CONCLUSIONS Our large-scale analysis has shown for the first time that long-term PM2.5 exposure potential increases colorectal cancer risk, which might be modified by genetic variants.
Collapse
Affiliation(s)
- Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Yanling Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Robles-Espinoza CD, Mohammadi P, Bonilla X, Gutierrez-Arcelus M. Allele-specific expression: applications in cancer and technical considerations. Curr Opin Genet Dev 2021; 66:10-19. [PMID: 33383480 PMCID: PMC7985293 DOI: 10.1016/j.gde.2020.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 11/18/2022]
Abstract
Allele-specific gene expression can influence disease traits. Non-coding germline genetic variants that alter regulatory elements can cause allele-specific gene expression and contribute to cancer susceptibility. In tumors, both somatic copy number alterations and somatic single nucleotide variants have been shown to lead to allele-specific expression of genes, many of which are considered drivers of tumor growth. Here, we review recent studies revealing the pervasive presence of this phenomenon in cancer susceptibility and progression. Furthermore, we underscore the importance of careful experimental design and computational analysis for accurate allelic expression quantification and avoidance of false positives. Finally, we discuss additional methodological challenges encountered in cancer studies and in the burgeoning field of single-cell transcriptomics.
Collapse
Affiliation(s)
- Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico; Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA; Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Ximena Bonilla
- Department of Computer Science, ETH Zurich, Universitätsstr. 6, 8092 Zürich, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Lausanne 1015, Switzerland; University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Maria Gutierrez-Arcelus
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
CTLA-4 +49A/G Polymorphism Increases the Susceptibility to Bladder Cancer in Chinese Han Participants: A Case-Control Study. DISEASE MARKERS 2020; 2020:8143158. [PMID: 33335608 PMCID: PMC7723475 DOI: 10.1155/2020/8143158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/01/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Cytotoxic T cell antigen-4 (CTLA-4) is reportedly involved in the development of bladder cancer (BC). This research was designed to address the potential link between the +49A/G polymorphism in CTLA-4 gene and BC susceptibility. In total, 355 BC cases and 435 match controls from Chinese Han individuals were included eventually. The PCR-RFLR method was utilized to screen for this polymorphism. The +49A/G polymorphism was shown to increase the risk of BC. Subgroup analyses showed that this polymorphism was linked to an increased susceptibility to BC among individuals aged < 60 years, smokers and drinkers. Additionally, this polymorphism significantly correlated with tumor node metastasis and tumor size (≥3 cm). To sum up, this study reveals that the CTLA-4 +49A/G polymorphism could increase the risk of BC in Chinese Han people. Further large cohort studies with enough sample sizes are urgently warranted to verify the findings of this present study.
Collapse
|
20
|
Liu H, Gu J, Jin Y, Yuan Q, Ma G, Du M, Ge Y, Qin C, Lv Q, Fu G, Wang M, Chu H, Yuan L, Zhang Z. Genetic variants in N6-methyladenosine are associated with bladder cancer risk in the Chinese population. Arch Toxicol 2020; 95:299-309. [PMID: 32964246 DOI: 10.1007/s00204-020-02911-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
Recently N6-Methyladenosine (m6A) has been identified to guide the interaction of RNA-binding protein hnRNP C and their target RNAs, which is termed as m6A-switches. We systematically investigated the association between genetic variants in m6A-switches and bladder cancer risk. A two-stage case-control study was performed to systematically calculate the association of single nucleotide polymorphisms (SNPs) in 2798 m6A-switches with bladder cancer risk in 3,997 subjects. A logistic regression model was used to assess the effects of SNPs on bladder cancer risk. A series of experiments were adopted to explore the role of genetic variants of m6A-switches. We identified that rs5746136 (G > A) of SOD2 in m6A-switches was significantly associated with the reduced risk of bladder cancer (additive model in discovery stage: OR = 0.80, 95% CI 0.69-0.93, P = 3.6 × 10-3; validation stage: adjusted OR = 0.88, 95% CI 0.79-0.99, P = 3.0 × 10-2; combined analysis: adjusted OR = 0.85, 95% CI 0.78-0.93, P = 4.0 × 10-4). The mRNA level of SOD2 was remarkably lower in bladder cancer tissues than the paired adjacent samples. SNP rs5746136 may affect m6A modification and regulate SOD2 expression by guiding the binding of hnRNP C to SOD2, which played a critical tumor suppressor role in bladder cancer cells by promoting cell apoptosis and inhibiting proliferation, migration and invasion. In conclusion, our findings suggest the important role of genetic variants in m6A modification. SOD2 polymorphisms may influence the expression of SOD2 via an m6A-hnRNP C-dependent mechanism and be promising predictors of bladder cancer risk.
Collapse
Affiliation(s)
- Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Gu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Jin
- Department of Laboratory Medicine, School of Public Health, Nantong University, Nantong, China
| | - Qi Yuan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangbo Fu
- Department of Urology, The Affiliated Huai'an First People's Hospital of Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
21
|
Mao F, Niu XB, Gu S, Ji L, Wei BJ, Wang HB. Investigation of Leptin G19A polymorphism with bladder cancer risk: A case-control study. J Clin Lab Anal 2020; 34:e23351. [PMID: 32363657 PMCID: PMC7439434 DOI: 10.1002/jcla.23351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background A host of studies show Leptin (LEP) G19A polymorphism is correlated with the risk of various cancers, but the connection of this polymorphism with bladder cancer (BC) risk has not been reported. Materials and methods This association was in explored in a case‐control study involving 355 BC cases and 435 controls (all Chinese Han). Polymerase chain reaction‐restriction fragment length polymorphism was conducted to genotype LEP G19A polymorphism. Analyses of allele and genotype distribution were evaluated using chi‐square test. Continuous data were assessed by an independent samples t test or one‐way ANOVA test. Odds ratio (OR) and 95% confidence interval (CI) were determined by logistic regression. Results LEP G19A polymorphism was significantly associated with a lower risk of BC (AA vs GG: adjusted OR, 0.40, 95% CI, 0.20‐0.83, P = .013; AA + GA vs GG: adjusted OR, 0.70, 95% CI, 0.52‐0.93, P = .015; AA vs GA + GG: adjusted OR, 0.45, 95% CI, 0.22‐0.91, P = .026). In addition, A allele was associated with decreased risk for BC (A vs G: OR, 0.70, 95% CI, 0.55‐0.89, P = .003). Stratified analyses by females, non‐drinkers, and non‐smokers all returned considerable relations. Furthermore, LEP G19A polymorphism was correlated with tumor size, tumor node metastasis, and distant metastasis in BC patients. Conclusions LEP G19A polymorphism is associated with a less risk of BC.
Collapse
Affiliation(s)
- Fei Mao
- Department of Urology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiao-Bing Niu
- Department of Urology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Shuo Gu
- Department of Urology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Lu Ji
- Department of Urology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Bing-Jian Wei
- Department of Urology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Heng-Bing Wang
- Department of Urology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
22
|
Huang Z, Wang X, Ma L, Guo Z, Liu H, Du M, Chu H, Wang M, Wang Z, Zhang Z. Genetic variations in Hippo pathway genes influence bladder cancer risk in a Chinese population. Arch Toxicol 2020; 94:785-794. [DOI: 10.1007/s00204-020-02663-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/03/2020] [Indexed: 12/01/2022]
|
23
|
Wu J, Wang M, Chen H, Xu J, Zhang G, Gu C, Ding Q, Wei Q, Zhu Y, Ye D. The Rare Variant rs35356162 in UHRF1BP1 Increases Bladder Cancer Risk in Han Chinese Population. Front Oncol 2020; 10:134. [PMID: 32117775 PMCID: PMC7026461 DOI: 10.3389/fonc.2020.00134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Seventeen loci have been found to be associated with bladder cancer risk by genome-wide association studies (GWAS) in European population. However, little is known about contribution of low-frequency and rare variants to bladder cancer susceptibility, especially in Eastern population. Methods: We performed a three-stage case-control study including 3,399 bladder cancer patients and 4,647 controls to identify low-frequency and rare variants associated with bladder cancer risk in Han Chinese. We examined exome-array data in 1,019 bladder cancer patients and 1,008 controls in discovery stage. Two replication stages were included to validate variants identified. Bonferroni adjustment was performed to define statistical significance. Logistic regression was conducted to evaluate single marker association with bladder cancer risk. We used SKAT-O method to perform gene level-based analysis. We also conduct additional experiments to explore the underlying mechanism of filtered gene(s). Results: We identified a novel rare coding variant (rs35356162 in UHRF1BP1: G > T, OR = 4.332, P = 3.62E-07 < 7.93E-07, Bonferroni cutoff) that increased bladder cancer risk in Han Chinese. Gene-level analysis showed a significant association of UHRF1BP1 (P = 4.47E-03) with bladder cancer risk. Experiments indicated down-regulation of UHRF1BP1 promoted migration and invasion through epithelial-mesenchymal transition in bladder cancer cell lines. Conclusion: The rare variant of UHRF1BP1, rs35356162, increases bladder cancer risk in Han Chinese and UHRF1BP1 might act as a tumor suppressor in bladder cancer development and progression. Summary: Little is known about potential contribution of low-frequency and rare variants to bladder cancer susceptibility. We performed a three-stage case-control study and identified a new rare variant, rs35356162 in UHRF1BP1, which increased bladder cancer risk in Han Chinese.
Collapse
Affiliation(s)
- Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Xu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Center for Cancer Genomics, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengyuan Gu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Ding
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Luo A, Jung J, Longley M, Rosoff DB, Charlet K, Muench C, Lee J, Hodgkinson CA, Goldman D, Horvath S, Kaminsky ZA, Lohoff FW. Epigenetic aging is accelerated in alcohol use disorder and regulated by genetic variation in APOL2. Neuropsychopharmacology 2020; 45:327-336. [PMID: 31466081 PMCID: PMC6901591 DOI: 10.1038/s41386-019-0500-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
To investigate the potential role of alcohol use disorder (AUD) in aging processes, we employed Levine's epigenetic clock (DNAm PhenoAge) to estimate DNA methylation age in 331 individuals with AUD and 201 healthy controls (HC). We evaluated the effects of heavy, chronic alcohol consumption on epigenetic age acceleration (EAA) using clinical biomarkers, including liver function test enzymes (LFTs) and clinical measures. To characterize potential underlying genetic variation contributing to EAA in AUD, we performed genome-wide association studies (GWAS) on EAA, including pathway analyses. We followed up on relevant top findings with in silico expression quantitative trait loci (eQTL) analyses for biological function using the BRAINEAC database. There was a 2.22-year age acceleration in AUD compared to controls after adjusting for gender and blood cell composition (p = 1.85 × 10-5). This association remained significant after adjusting for race, body mass index, and smoking status (1.38 years, p = 0.02). Secondary analyses showed more pronounced EAA in individuals with more severe AUD-associated phenotypes, including elevated gamma-glutamyl transferase (GGT) and alanine aminotransferase (ALT), and higher number of heavy drinking days (all ps < 0.05). The genome-wide meta-analysis of EAA in AUD revealed a significant single nucleotide polymorphism (SNP), rs916264 (p = 5.43 × 10-8), in apolipoprotein L2 (APOL2) at the genome-wide level. The minor allele A of rs916264 was associated with EAA and with increased mRNA expression in hippocampus (p = 0.0015). Our data demonstrate EAA in AUD and suggest that disease severity further accelerates epigenetic aging. EAA was associated with genetic variation in APOL2, suggesting potential novel biological mechanisms for age acceleration in AUD.
Collapse
Affiliation(s)
- Audrey Luo
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Jeesun Jung
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Martha Longley
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Daniel B. Rosoff
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Katrin Charlet
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA ,0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charite – Universitaetsmedizin Berlin, Berlin, Germany
| | - Christine Muench
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Jisoo Lee
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Colin A. Hodgkinson
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - David Goldman
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Steve Horvath
- 0000 0000 9632 6718grid.19006.3eDepartment of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA ,0000 0000 9632 6718grid.19006.3eDepartment of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA USA
| | - Zachary A. Kaminsky
- 0000 0001 2182 2255grid.28046.38The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Falk W. Lohoff
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
25
|
Shen Y, Lu Q, Ye H, Deng Z, Ma L, Zhang Q, Tang J, Yuan L. Genetic variant of MAML2 in the NOTCH signaling pathway and the risk of bladder cancer: A STROBE-compliant study. Medicine (Baltimore) 2020; 99:e18725. [PMID: 31914088 PMCID: PMC6959859 DOI: 10.1097/md.0000000000018725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The NOTCH signaling pathway plays a crucial role in cell phenotype and transformation. Single nucleotide polymorphisms (SNPs) may regulate gene expression to trigger bladder cancer susceptibility. Here, we aimed to explore the relationships between genetic variants in the NOTCH pathway and bladder cancer progression.We screened SNPs located in NOTCH pathway genes using the 1000 Genomes Project dataset (CHB). A case-control cohort study including 580 bladder cancer cases and 1101 controls was conducted to genotype the candidate SNPs. The expression quantitative trait locus (eQTL) and bioinformatics analyses were performed to explore the biological function of the SNPs' host gene and their relationship. Kaplan-Meier analysis was performed to assess the association between host gene expression and bladder cancer patient prognosis.The rs7944701 in the intron of mastermind-like 2 (MAML2) had the strongest signal and was related to bladder cancer risk (OR = 1.329, 95% CI = 1.115-1.583, P = .001). eQTL analysis showed that rs7944701 with a C allele was negatively associated with mastermind-like 2 (MAML2) expression (TT versus TC/CC). Bioinformatics analysis indicated that MAML2expression was lower in bladder cancer tissues than in non-tumor tissues (P = 5.46 × 10). Additionally, bladder cancer patients with high MAML2 expression had a significantly poorer prognosis (HR = 1.53, 95% CI = 1.29-1.82, P = .010).The rs7944701 in MAML2 was strongly associated with bladder cancer susceptibility in a Chinese population. This genetic variant and its host gene could be a potential novel biomarker for individuals suffering from bladder cancer.
Collapse
Affiliation(s)
- Yang Shen
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
- Urological Tumor Department, Jiangsu Provincial Institute of Clinical Research
| | - Qian Lu
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
- Urological Tumor Department, Jiangsu Provincial Institute of Clinical Research
| | - Hesong Ye
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, China
| | - Zhonglei Deng
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
- Urological Tumor Department, Jiangsu Provincial Institute of Clinical Research
| | - Long Ma
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
- Urological Tumor Department, Jiangsu Provincial Institute of Clinical Research
| | - Qingling Zhang
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
- Urological Tumor Department, Jiangsu Provincial Institute of Clinical Research
| | - Jingyuan Tang
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
- Urological Tumor Department, Jiangsu Provincial Institute of Clinical Research
| | - Lin Yuan
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine
- Urological Tumor Department, Jiangsu Provincial Institute of Clinical Research
| |
Collapse
|
26
|
Lipunova N, Wesselius A, Cheng KK, van Schooten FJ, Cazier JB, Bryan RT, Zeegers MP. Systematic Review: Genetic Associations for Prognostic Factors of Urinary Bladder Cancer. BIOMARKERS IN CANCER 2019; 11:1179299X19897255. [PMID: 31908559 PMCID: PMC6937527 DOI: 10.1177/1179299x19897255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Many germline associations have been reported for urinary bladder cancer (UBC) outcomes and prognostic characteristics. It is unclear whether there are overlapping genetic patterns for various prognostic endpoints. We aimed to review contemporary literature on genetic associations with UBC prognostic outcomes and to identify potential overlap in reported genes. METHODS EMBASE, MEDLINE, and PubMed databases were queried for relevant articles in English language without date restrictions. The initial search identified 1346 articles. After exclusions, 112 studies have been summarized. Cumulatively, 316 single-nucleotide polymorphisms (SNPs) were reported across prognostic outcomes (recurrence, progression, death) and characteristics (tumor stage, grade, size, age, risk group). There were considerable differences between studied outcomes in the context of genetic associations. The most commonly reported SNPs were located in OGG1, TP53, and MDM2. For outcomes with the highest number of reported associations (ie, recurrence and death), functional enrichment annotation yields different terms, potentially indicating separate biological mechanisms. CONCLUSIONS Our study suggests that all UBC prognostic outcomes may have different biological origins with limited overlap. Further validation of these observations is essential to target a phenotype that could best predict patient outcome and advance current management practices.
Collapse
Affiliation(s)
- Nadezda Lipunova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Department of Complex Genetics, Maastricht University, Maastricht, The Netherlands
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Anke Wesselius
- Department of Complex Genetics, Maastricht University, Maastricht, The Netherlands
| | - Kar K Cheng
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | | | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Richard T Bryan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Maurice P Zeegers
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Department of Complex Genetics, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
27
|
Lipunova N, Wesselius A, Cheng KK, van Schooten FJ, Cazier JB, Bryan RT, Zeegers MP. External Replication of Urinary Bladder Cancer Prognostic Polymorphisms in the UK Biobank. Front Oncol 2019; 9:1082. [PMID: 31681611 PMCID: PMC6813571 DOI: 10.3389/fonc.2019.01082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction: Multiple studies have reported genetic associations with prognostic outcomes of urinary bladder cancer. However, the lack of replication of these associations prohibits establishing further evidence-based research directions. Moreover, there is a lack of independent bladder cancer patient samples that contain prognostic measures, making genetic replication analyses even more challenging. Materials and Methods: We have identified 1,534 eligible patients and used data on Hospital Episode Statistics in the UK Biobank to model variables of otherwise non-collected events on bladder cancer recurrence and progression. Data on survival was extracted from the Death Registry. We have used SNPTEST software to replicate previously reported genetic associations with bladder cancer recurrence (N = 69), progression (N = 23), survival (N = 53), and age at the time of diagnosis (N = 20). Results: Using our algorithm, we have identified 618 recurrence and 58 UBC progression events. In total, there were 209 deaths (106 UBC-specific). In replication analyses, eight SNPs have reached nominal statistical significance (p < 0.05). Rs2042329 (CWC27) for UBC recurrence; rs804256, rs4639, and rs804276 (in/close to NEIL2) for NMIBC recurrence; rs2293347 (EGFR) for UBC OS; rs3756712 (PDCD6) for NMIBC OS; rs2344673 (RGS5) for MIBC OS, and rs2297518 (NOS2) for UBC progression. However, none have remained significant after adjustments for multiple comparisons. Discussion: External replication in genetic epidemiology is an essential step to identify credible findings. In our study, we identify potential genetic targets of higher interest for UBC prognosis. In addition, we propose an algorithm for identifying UBC recurrence and progression using routinely-collected data on patient interventions.
Collapse
Affiliation(s)
- Nadezda Lipunova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Complex Genetics, Maastricht University, Maastricht, Netherlands.,Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Anke Wesselius
- Department of Complex Genetics, Maastricht University, Maastricht, Netherlands
| | - Kar K Cheng
- Institute for Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | | | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
| | - Richard T Bryan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maurice P Zeegers
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Complex Genetics, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
28
|
Rakhshan A, Omrani MD, Noroozi R, Taheri M, Ghafouri-Fard S. Retinoic Acid Related Orphan Receptor A (RORA) gene variants and risk of bladder cancer. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Molecular Basics on Genitourinary Malignancies. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Zhang Q, Wang W, Xu W, Du` M, Ma G, Liu H, Chu H, Tong NA, Wang M, Shao J, Zhang Z, Yuan L, Qian J. Genetic Variations in the 3'-untranslated Regions of Genes Involved in the Cell Cycle and Apoptosis Pathways Affect Bladder Cancer Risk. Cancer Genomics Proteomics 2018; 15:67-72. [PMID: 29275364 DOI: 10.21873/cgp.20066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Key genes related to cell cycle and apoptosis pathways play critical roles in bladder cancer. Single nucleotide polymorphisms (SNPs) in the 3'-untranslated regions (3'-UTR) of genes may impact microRNA (miRNA)-messenger RNA (mRNA) binding capacity and alter gene expression to contribute to the susceptibility of cancers. However, an association of genetic variations in cell cycle and apoptosis pathways with bladder cancer risk, has not been reported. MATERIALS AND METHODS We selected SNPs in the 3'-UTR of cell cycle and apoptosis pathways genes and genotyped them with a case-control study consisting of 578 bladder cancer patients and 1,006 cancer-free subjects. Dual luciferase reporter gene assay was performed to validate the biological function of important SNPs. RESULTS We found that 5 SNPs might change the binding ability of miRNA to their target genes, among which PPP3CC rs7431 A>G located in the 3'-untranslated regions with the minimum p-value (p=5.75×10-4). Analysis revealed that the rs7431 disrupted miR-212 and miR-132 targeting sites. Logistic regression revealed a significantly decreased risk of bladder cancer associated with the PPP3CC rs7431 A>G polymorphism with an odds ratio (OR) of 0.76 [95% confidence interval (CI)=0.66-0.89, p=5.75×10-4]. Luciferase report assay showed that both miR-212 and miR-132 could lead to significantly increased PPP3CC expression levels in the construct with the G allele compared to the A allele. CONCLUSION PPP3CC rs7431 may alter miRNA binding ability of miR-212 and miR-132, and thus decrease bladder cancer risk.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Wenying Wang
- Department of Urology, Beijing Friendship Hospital affiliated to Capital Medical University, Beijing, P.R. China
| | - Weidong Xu
- Department of Urology, Yizheng Hospital, Drum Tower Hospital Group of Nanjing, Yizheng, P.R. China
| | - Mulong Du`
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - N A Tong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Jianfeng Shao
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, P.R. China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of TCM, Nanjing, P.R. China .,Department of Integrated Traditional Chinese and Western Medicine Tumor Research Lab, Nanjing, P.R. China
| | - Jing Qian
- Department of General surgery, Yizheng Hospital, Drum Tower Hospital Group of Nanjing, Yizheng, P.R. China
| |
Collapse
|
31
|
Tagging SNPs in the HOTAIR gene are associated with bladder cancer risk in a Chinese population. Gene 2018; 664:22-26. [DOI: 10.1016/j.gene.2018.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
|
32
|
Na R, Wu Y, Jiang G, Yu H, Lin X, Wang M, Conran CA, Fantus RJ, Zhang N, Liu S, Helfand BT, Zheng SL, Isaacs WB, Ding Q, Shen Z, Xu J. Germline mutations in DNA repair genes are associated with bladder cancer risk and unfavourable prognosis. BJU Int 2018; 122:808-813. [PMID: 29727914 DOI: 10.1111/bju.14370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rong Na
- Fudan Institute of Urology; Huashan Hospital; Fudan University; Shanghai China
- Program for Personalized Cancer Care; NorthShore University HealthSystem; Evanston IL USA
- Department of Urology; Ruijin Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Yishuo Wu
- Fudan Institute of Urology; Huashan Hospital; Fudan University; Shanghai China
- Program for Personalized Cancer Care; NorthShore University HealthSystem; Evanston IL USA
| | - Guangliang Jiang
- Fudan Institute of Urology; Huashan Hospital; Fudan University; Shanghai China
| | - Hongjie Yu
- Program for Personalized Cancer Care; NorthShore University HealthSystem; Evanston IL USA
| | - Xiaoling Lin
- Fudan Institute of Urology; Huashan Hospital; Fudan University; Shanghai China
| | - Meilin Wang
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing China
| | - Carly A. Conran
- Program for Personalized Cancer Care; NorthShore University HealthSystem; Evanston IL USA
| | - Richard J. Fantus
- Program for Personalized Cancer Care; NorthShore University HealthSystem; Evanston IL USA
- Division of Urology; Department of Surgery; University of Chicago Medical Center; Chicago IL USA
| | - Ning Zhang
- Fudan Institute of Urology; Huashan Hospital; Fudan University; Shanghai China
| | - Shenghua Liu
- Fudan Institute of Urology; Huashan Hospital; Fudan University; Shanghai China
| | - Brian T. Helfand
- Program for Personalized Cancer Care; NorthShore University HealthSystem; Evanston IL USA
| | - Siqun L. Zheng
- Program for Personalized Cancer Care; NorthShore University HealthSystem; Evanston IL USA
| | - William B. Isaacs
- Department of Urology; James Buchanan Brady Urologic Institute; Johns Hopkins University School of Medicine; Baltimore MD USA
- Sidney Kimmel Comprehensive Cancer Center; Johns Hopkins Medical Institutions; Baltimore MD USA
| | - Qiang Ding
- Fudan Institute of Urology; Huashan Hospital; Fudan University; Shanghai China
| | - Zhoujun Shen
- Fudan Institute of Urology; Huashan Hospital; Fudan University; Shanghai China
| | - Jianfeng Xu
- Fudan Institute of Urology; Huashan Hospital; Fudan University; Shanghai China
- Program for Personalized Cancer Care; NorthShore University HealthSystem; Evanston IL USA
| |
Collapse
|
33
|
López de Maturana E, Malats N. Genetic Testing, Genetic Variation, and Genetic Susceptibility. Bladder Cancer 2018. [DOI: 10.1016/b978-0-12-809939-1.00033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Cheng THT, Lam W, Teoh JYC. Molecular Basics on Genitourinary Malignancies. Urol Oncol 2018. [DOI: 10.1007/978-3-319-42603-7_45-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
van der Ven LT, Jelinek J, Hodemaekers HM, Zwart EP, Ruiter S, van den Brandhof EJ, Issa JPJ, Pennings JL, Luijten M. An Adverse Outcome Pathway Analysis Employing DNA Methylation Effects in Arsenic-Exposed Zebrafish Embryos Supports a Role of Epigenetic Events in Arsenic-Induced Chronic Disease. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Leo T.M. van der Ven
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Hennie M. Hodemaekers
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Edwin P. Zwart
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Sander Ruiter
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Evert-Jan van den Brandhof
- Center for Environmental Quality, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jean-Pierre J. Issa
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeroen L.A. Pennings
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mirjam Luijten
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
36
|
Pinto R, Assis J, Nogueira A, Pereira C, Pereira D, Medeiros R. Rethinking ovarian cancer genomics: where genome-wide association studies stand? Pharmacogenomics 2017; 18:1611-1625. [DOI: 10.2217/pgs-2017-0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWAS) allow the finding of genetic variants associated with several traits. Regarding ovarian cancer (OC), 15 GWAS have been conducted since 2009, with the discovery of 49 SNPs associated with disease susceptibility and 46 with impact in the clinical outcome of patients (p < 5.00 × 10-2). Among them, 14 variants reached the genome-wide significance (p < 5.00 × 10−8). Despite the results obtained, they should be validated in independent sets. So far, five validation studies have been conducted which could confirm the association of 12 OC susceptibility SNPs. Consequently, post-GWAS studies are crucial unravel the biological plausibility of GWAS’ findings and the allelic spectrum of OC.
Collapse
Affiliation(s)
- Ricardo Pinto
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr. António Bernardino de Almeida, 4200–4072, Porto, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana Assis
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr. António Bernardino de Almeida, 4200–4072, Porto, Portugal
- FMUP, Faculty of Medicine, Porto University, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Augusto Nogueira
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr. António Bernardino de Almeida, 4200–4072, Porto, Portugal
- FMUP, Faculty of Medicine, Porto University, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Carina Pereira
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr. António Bernardino de Almeida, 4200–4072, Porto, Portugal
- CINTESIS, Center for Health technology and Services Research, Faculty of Medicine, Porto University, Rua Dr. Plácido da Costa, 4200-450, Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edifício Laboratórios. 4° piso, Rua Dr. António Bernardino de Almeida, 4200–4072, Porto, Portugal
- Research Department, Portuguese League AgainstCancer (NRNorte), Estrada Interior da Circunvalação, 6657, 4200-172, Porto, Portugal
- CEBIMED, Faculty of Health Sciences, FernandoPessoa University, Praça 9 de Abril, 349, 4249-004, Porto, Portugal
| |
Collapse
|
37
|
Park SL, Cheng I, Haiman CA. Genome-Wide Association Studies of Cancer in Diverse Populations. Cancer Epidemiol Biomarkers Prev 2017. [PMID: 28637795 DOI: 10.1158/1055-9965.epi-17-0169] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWAS) of cancer have identified more than 700 risk loci, of which approximately 80% were first discovered in European ancestry populations, approximately 15% in East Asians, 3% in multiethnic scans, and less than 1% in African and Latin American populations. These percentages closely mirror the distribution of samples included in the discovery phase of cancer GWAS to date (84% European, 11% East Asian, 4% African, and 1% Latin American ancestry). GWAS in non-European ancestry populations have provided insight into ancestry-specific variation in cancer and have pointed to regions of susceptibility that are of particular importance in certain populations. Uncovering and characterizing cancer risk loci in diverse populations is critical for understanding underlying biological mechanisms and developing future genetic risk prediction models in non-European ancestry populations. New GWAS and continued collaborations will be required to eliminate population inequalities in the number of studies, sample sizes, and variant content on GWAS arrays, and to better align genetic research in cancer to the global distribution of race/ethnicity Cancer Epidemiol Biomarkers Prev; 27(4); 405-17. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Sungshim L Park
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, California.,Stanford Cancer Institute, Palo Alto, California
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
38
|
Lin Y, Ge Y, Wang Y, Ma G, Wang X, Liu H, Wang M, Zhang Z, Chu H. The association of rs710886 in lncRNA PCAT1 with bladder cancer risk in a Chinese population. Gene 2017. [PMID: 28627442 DOI: 10.1016/j.gene.2017.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The long noncoding RNA PCAT1 is an important gene involved in urinary tumors. In this study, we aimed to explore the association between polymorphisms in PCAT1 and bladder cancer susceptibility. METHODS A two-stage case-control study was conducted to assess the association between four tagging SNPs (i.e., rs4871771, rs1902432, rs16901904 and rs710886) and bladder cancer risk. Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated with unconditional univariate and multivariate logistic regression. RESULTS At the first stage of discovery, we identified that SNP rs710886A>G was significantly associated with bladder cancer risk (OR=0.86, 95% CI=0.74-0.99, P=0.046). At the following stage of validation, individuals with GG genotype were found to have a significant reduction in bladder cancer risk compared with those carrying AA genotype (adjusted OR=0.83, 95% CI=0.74-0.93, P=0.001). Furthermore, stratified analyses showed that protective effect of rs710886 was more pronounced in subgroup of age>60 and never smoking, and had little to do with sex. Besides, rs710886 was identified as an eQTL for PCAT1. G allele was consistent with lower PCAT1 expression. CONCLUSION This study indicates that genetic variants in lncRNA PCAT1 were associated with bladder cancer susceptibility and the SNP rs710886 may act as a potential biomarker for bladder cancer risk.
Collapse
Affiliation(s)
- Yadi Lin
- Department of Environmental Genomics, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yunyan Wang
- Department of Urology, Huai-An First People's Hospital, Nanjing Medical University, Huai-an, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaowei Wang
- Department of Environmental Genomics, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Haiyan Chu
- Department of Environmental Genomics, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|