1
|
Armendáriz-Castillo I, García-Cárdenas J, Espinosa P, Hidalgo-Fernández K, Peña-Zúñiga L, Martínez R, Moromenacho J, Herrera-Yela A, Cruz-Varela J, Saucedo-Sariñana A, Cerdán ME, López-Cortés A, Guerrero S. Metabolic pathways of Alternative Lengthening of Telomeres in pan-carcinoma. PLoS One 2025; 20:e0314012. [PMID: 39982908 PMCID: PMC11845024 DOI: 10.1371/journal.pone.0314012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2024] [Accepted: 11/04/2024] [Indexed: 02/23/2025] Open
Abstract
Alternative Lengthening of Telomeres (ALT) is a telomerase-independent mechanism deployed by several aggressive cancers to maintain telomere length. This contributes to their malignancy and resistance to conventional therapies. In prior studies, we have identified key proteins linked to the ALT process using multi-omic data integration strategies. In this work, we combined metabolomic datasets with our earlier results to identify targetable metabolic pathways for ALT-positive tumors. 39 ALT-related proteins were found to interact with 42 different metabolites in our analysis. Additional networking analysis revealed a complex interaction between metabolites and ALT-related proteins, suggesting that pan-cancer oncogenes may have an impact on these pathways. Three metabolic pathways have been primarily related with the ALT mechanism: purine metabolism, cysteine and methionine metabolism, and nicotinate and nicotinamide metabolism. Lastly, we prioritized FDA-approved drugs (azathioprine, thioguanine, and mercaptopurine) that could target ALT-positive tumors through purine metabolism. This work provides a wide perspective of the metabolomic pathways associated with ALT and reveals potential therapeutic targets that require further experimental validation.
Collapse
Affiliation(s)
- Isaac Armendáriz-Castillo
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, A Coruña, Spain
| | - Jennyfer García-Cárdenas
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Pamela Espinosa
- Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Katherine Hidalgo-Fernández
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Lizbeth Peña-Zúñiga
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Ronie Martínez
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Facultad de Ciencias Técnicas, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Juan Moromenacho
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Facultad de Ciencias Técnicas, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Andrés Herrera-Yela
- Experimental and Applied Biomedicine Research Group, Health Sciences Faculty, Universidad Internacional SEK (UISEK), Quito, Ecuador
- Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Sciences Faculty, Universidad Internacional SEK, Quito, Ecuador
| | - Jonathan Cruz-Varela
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuqui, Ecuador
| | - Anilú Saucedo-Sariñana
- Departamento Académico de Aparatos y Sistemas I, Universidad Autónoma de Guadalajara, Zapopan, México
| | - María-Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), Campus de Elviña, Universidade da Coruña, A Coruña, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Santiago Guerrero
- Laboratorio de Ciencia de Datos Biomédicos, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| |
Collapse
|
2
|
Friker LL, Perwein T, Waha A, Dörner E, Klein R, Blattner-Johnson M, Layer JP, Sturm D, Nussbaumer G, Kwiecien R, Spier I, Aretz S, Kerl K, Hennewig U, Rohde M, Karow A, Bluemcke I, Schmitz AK, Reinhard H, Hernáiz Driever P, Wendt S, Weiser A, Guerreiro Stücklin AS, Gerber NU, von Bueren AO, Khurana C, Jorch N, Wiese M, Kratz CP, Eyrich M, Karremann M, Herrlinger U, Hölzel M, Jones DTW, Hoffmann M, Pietsch T, Gielen GH, Kramm CM. MSH2, MSH6, MLH1, and PMS2 immunohistochemistry as highly sensitive screening method for DNA mismatch repair deficiency syndromes in pediatric high-grade glioma. Acta Neuropathol 2025; 149:11. [PMID: 39894875 PMCID: PMC11788232 DOI: 10.1007/s00401-025-02846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025]
Abstract
Pediatric high-grade glioma (pedHGG) can occur as first manifestation of cancer predisposition syndromes resulting from pathogenic germline variants in the DNA mismatch repair (MMR) genes MSH2, MSH6, MLH1, and PMS2. The aim of this study was to establish a generalized screening for Lynch syndrome and constitutional MMR deficiency (CMMRD) in pedHGG patients, as the detection of MMR deficiencies (MMRD) may enable the upfront therapeutic use of checkpoint inhibitors and identification of variant carriers in the patients' families. We prospectively enrolled 155 centrally reviewed primary pedHGG patients for MMR-immunohistochemistry (IHC) as part of the HIT-HGG-2013 trial protocol. MMR-IHC results were subsequently compared to independently collected germline sequencing data (whole exome sequencing or pan-cancer DNA panel next-generation sequencing) available in the HIT-HGG-2013, INFORM, and MNP2.0 trials. MMR-IHC could be successfully performed in 127/155 tumor tissues. The screening identified all present cases with Lynch syndrome or CMMRD (5.5%). In addition, MMR-IHC also detected cases with exclusive somatic MMR gene alterations (2.3%), including MSH2 hypermethylation as an alternative epigenetic silencing mechanism. Most of the identified pedHGG MMRD patients had no family history of MMRD, and thus, they represented index patients in their families. Cases with regular protein expression in MMR-IHC never showed evidence for MMRD in DNA sequencing. In conclusion, MMR-IHC presents a cost-effective, relatively widely available, and fast screening method for germline MMRD in pedHGG with high sensitivity (100%) and specificity (96%). Given the relatively high prevalence of previously undetected MMRD cases among pedHGG patients, we strongly recommend incorporating MMR-IHC into routine diagnostics.
Collapse
Affiliation(s)
- Lea L Friker
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.
| | - Thomas Perwein
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Styrian Children's Cancer Research, Research Unit for Cancer and Inborn Errors of the Blood and Immunity in Children, Medical University of Graz, Graz, Austria
| | - Andreas Waha
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Evelyn Dörner
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Rebecca Klein
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Julian P Layer
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gunther Nussbaumer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Robert Kwiecien
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ulrike Hennewig
- Department of Pediatric Hematology and Oncology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Marius Rohde
- Department of Pediatric Hematology and Oncology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Axel Karow
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Ingmar Bluemcke
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ann Kristin Schmitz
- Department of Pediatrics, Asklepios Kinderklinik Sankt Augustin, Sankt Augustin, Germany
| | - Harald Reinhard
- Department of Pediatrics, Asklepios Kinderklinik Sankt Augustin, Sankt Augustin, Germany
| | - Pablo Hernáiz Driever
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, German HIT-LOGGIC-Registry for pLGG in Children and Adolescents, Berlin, Germany
| | - Susanne Wendt
- Department of Pediatric Oncology and Hematology, University Hospital Leipzig, Leipzig, Germany
| | - Annette Weiser
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ana S Guerreiro Stücklin
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - André O von Bueren
- Department of Pediatrics, Gynecology and Obstetrics, Division of Pediatric Hematology and Oncology, Geneva University Hospital, Geneva, Switzerland
- Department of Pediatrics, Gynecology and Obstetrics, CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudia Khurana
- Department of Pediatric Hematology and Oncology, Children's Center Bethel, University Hospital Ostwestfalen-Lippe, Bielefeld, Germany
| | - Norbert Jorch
- Department of Pediatric Hematology and Oncology, Children's Center Bethel, University Hospital Ostwestfalen-Lippe, Bielefeld, Germany
| | - Maria Wiese
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Matthias Eyrich
- University Children's Hospital, University Hospital Würzburg, Würzburg, Germany
| | - Michael Karremann
- Department of Pediatric and Adolescent Medicine and Mannheim Cancer Center (MCC), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulrich Herrlinger
- Department of Neurooncology, Center for Neurology and CIO ABCD, University Hospital Bonn, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marion Hoffmann
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gerrit H Gielen
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
McCubrey JA, Follo MY, Ratti S, Martelli AM, Manzoli L, Augello G, Cervello M, Cocco L. TP53 gene status can promote sensitivity and resistance to chemotherapeutic drugs and small molecule signal transduction inhibitors. Adv Biol Regul 2025; 95:101073. [PMID: 39809662 DOI: 10.1016/j.jbior.2024.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
TP53 is normally a tumor suppressor. However, it is mutated in at least 50% of human cancers. Usually, we assume that mutation of the TP53 is associated with loss of sensitivity to various drugs as in most cases wild type (WT) TP53 activity is lost. This type of mutations is often dominant-negative (DN) mutations as they can interfere with the normal functions of WT-TP53 which acts as a tetramer. These mutations can result in altered gene expression patterns. There are some TP53 mutations which may lack some of the normal functions of TP53 but have additional functions; these types of mutations are called gain of function (GOF) mutations. There is another class of TP53 mutations, they are TP53 null mutations as the cells have deleted the TP53 gene (TP53-null). Although TP53 mutations were initially considered undruggable, other approaches have been developed to increase TP53 activity. One approach was to develop mouse double minute 2 homolog (MDM2) inhibitors as MDM2 suppresses TP53 activity. In addition, there have been mutant TP53 reactivators created, which will at least partially restore some of the critical growth suppressing effects of TP53. Some of these mutant TP53 reactivators have shown promise in clinical trial in certain types of cancer patients, especially myelodysplastic syndrome (MDS). In this review, we summarize the development of novel TP53 reactivators and MDM2 inhibitors. Both approaches are aimed at increasing or restoring TP53 activity. Attempts to increase TP53 activity in various TP53 mutant tumors could increase therapy of multiple deadly diseases.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Sadr Z, Ghasemi M, Jafarpour S, Seyfi R, Ghasemi A, Boustanipour E, Khorshid HRK, Ehtesham N. Beginning at the ends: telomere and telomere-based cancer therapeutics. Mol Genet Genomics 2024; 300:1. [PMID: 39638969 DOI: 10.1007/s00438-024-02206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthening of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been developed to inhibit telomerase activation in 85-95% of cancers, including the use of antisense oligonucleotides such as small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators, immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex structures, and gene therapy approaches. Conversely, in the remaining 5-15% of human cancers that rely on ALT, mechanisms involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements in TMM-based cancer therapies.
Collapse
Affiliation(s)
- Zahra Sadr
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soheyla Jafarpour
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Seyfi
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Boustanipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Naeim Ehtesham
- Department of Medical Genetics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
5
|
Yasinzai AQK, Lee KT, Khan I, Tareen B, Sohail AH, Iqbal A, Khan I, Waheed A, Ramamoorthy BU, Ullah A, Blakely AM. Colorectal Leiomyosarcoma: Demographics Patterns, Treatment Characteristics, and Survival Analysis in the U.S. Population. J Gastrointest Cancer 2024; 55:1588-1597. [PMID: 39190114 PMCID: PMC11464608 DOI: 10.1007/s12029-024-01110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Colorectal leiomyosarcoma (CR-LMS) is a rare neoplasm arising from smooth muscle cells. It accounts for less than 0.1% of all colorectal malignancies. In this population-based study, we aim to understand the demographics, treatment characteristics, and pathologic factors associated with survival in CR-LMS. METHODS Data from the SEER Program (2000-2018) were analyzed using SEER*Stat and SPSS. Statistical methods included descriptive analysis, Kaplan-Meier survival curves, log-rank tests, and Cox proportional hazards regression to assess the impact of various factors on disease-specific and overall survival. RESULTS A total of 191 cases of CR-LMS were identified. Most patients were 60-69 years of age (median: 64 years) and Caucasian (78%). There was nearly the same distribution in sex (M:F ratio; 1:1.2). The overall 5-year observed survival was 50.3% (95% C.I., 46.3-54.2). The 5-year disease-specific survival (DSS) was 66.1% (95% C.I., 62.0-70.1). The 5-year overall survival after resection was 60.8% (95% C.I., 56.3-65.3). Multivariable analysis identified grades III and IV (p = 0.028) as negative predictors of overall survival. Regional spread and distant stage are negative predictors of overall survival (p < 0.01). CONCLUSION Our data reveals that colorectal leiomyosarcoma (CR-LMS) often presents in patients around 64 years old with advanced stages and poor differentiation. Key adverse prognostic factors include older age, high tumor grade, large tumor size, and distant metastases, with surgical resection showing the best survival outcomes. To improve outcomes, further research and consolidation of data are essential for developing targeted therapies and comprehensive guidelines.
Collapse
Affiliation(s)
| | | | - Imran Khan
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Bisma Tareen
- Department of Medicine, Bolan Medical College, Quetta, 83700, Pakistan
| | - Amir Humza Sohail
- Department of Surgical Oncology, University of New Mexico, Albuquerque, NM, USA
| | - Asif Iqbal
- Department of Medicine, Northeastern Health System, Tahlequah, OK, USA
| | - Israr Khan
- Insight Hospital and Medical Center, Chicago, USA
| | - Abdul Waheed
- Department of Surgery, Baycare Health System, Clearwater, Fl, USA
| | | | - Asad Ullah
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Andrew M Blakely
- Surgical Oncology Program, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Zhang J, Gao Z, Yang Y, Li Z, Wu B, Fan C, Zheng Y, Yang R, Zhang F, Lin X, Zheng D. SNF2L maintains glutathione homeostasis by initiating SLC7A11 transcription through chromatin remodeling. Cell Death Dis 2024; 15:820. [PMID: 39532848 PMCID: PMC11557580 DOI: 10.1038/s41419-024-07221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
SNF2L encodes an ISWI chromatin remodeling factor that promotes gene transcription and is consistently elevated in cancers. Previous studies have shown that inhibiting SNF2L expression in cancer cells leads to significant growth suppression, DNA damage, and cell death. However, the underlying mechanisms remain poorly understood. In this study, we demonstrated that cancer cells lacking SNF2L show significantly decreased glutathione (GSH) levels, leading to elevated reactive oxygen species (ROS) and increased oxidative stress. SNF2L deficiency also heightened the sensitivity of cancer cells to APR-246, a drug that depletes GSH and induces oxidative stress, consequently decreasing cell viability and increasing ROS levels, regardless of p53 status. Mechanistically, we found that NRF2 recruits SNF2L to the SLC7A11 promoter, leading to increased chromatin accessibility and facilitating SLC7A11 transcription. This results in decreased cystine uptake and impaired GSH biosynthesis. These findings suggest that targeting the SNF2L/SLC7A11 axis could enhance the effectiveness of APR-246 by depleting GSH and increasing ROS level in cancer cells, highlighting SNF2L as a promising therapeutic target.
Collapse
Affiliation(s)
- Jiaguan Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeshou Gao
- Department of Urology, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhenhao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Binjie Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunxin Fan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuyan Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ruohan Yang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fangrong Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaohuang Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Daoshan Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
7
|
Burrow TA, Koneru B, Macha SJ, Sun W, Barr FG, Triche TJ, Reynolds CP. Prevalence of alternative lengthening of telomeres in pediatric sarcomas determined by the telomeric DNA C-circle assay. Front Oncol 2024; 14:1399442. [PMID: 39224814 PMCID: PMC11366626 DOI: 10.3389/fonc.2024.1399442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Alternative lengthening of telomeres (ALT) occurs in sarcomas and ALT cancers share common mechanisms of therapy resistance or sensitivity. Telomeric DNA C-circles are self-primed circular telomeric repeats detected with a PCR assay that provide a sensitive and specific biomarker exclusive to ALT cancers. We have previously shown that 23% of high-risk neuroblastomas are of the ALT phenotype. Here, we investigate the frequency of ALT in Ewing's family sarcoma (EFS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) by analyzing DNA from fresh frozen primary tumor samples utilizing the real-time PCR C-circle Assay (CCA). Methods We reviewed prior publications on ALT detection in pediatric sarcomas. DNA was extracted from fresh frozen primary tumors, fluorometrically quantified, C-circles were selectively enriched by isothermal rolling cycle amplification and detected by real-time PCR. Results The sample cohort consisted of DNA from 95 EFS, 191 RMS, and 87 OS primary tumors. One EFS and 4 RMS samples were inevaluable. Using C-circle positive (CC+) cutoffs previously defined for high-risk neuroblastoma, we observed 0 of 94 EFS, 5 of 187 RMS, and 62 of 87 OS CC+ tumors. Conclusions Utilizing the ALT-specific CCA we observed ALT in 0% of EFS, 2.7% of RMS, and 71% of OS. These data are comparable to prior studies in EFS and OS using less specific ALT markers. The CCA can provide a robust and sensitive means of identifying ALT in sarcomas and has potential as a companion diagnostic for ALT targeted therapeutics.
Collapse
Affiliation(s)
- Trevor A. Burrow
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
- Department of Translational Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Balakrishna Koneru
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
| | - Shawn J. Macha
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center Graduate School of Biomedical Sciences, Lubbock, TX, United States
| | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, United States
| | - Frederic G. Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, United States
| | - Timothy J. Triche
- Children’s Hospital Los Angles, Department of Pathology and Laboratory Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - C. Patrick Reynolds
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine Cancer Center, Lubbock, TX, United States
- Department of Translational Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center Graduate School of Biomedical Sciences, Lubbock, TX, United States
| |
Collapse
|
8
|
Huang J, Feng Y, Shi Y, Shao W, Li G, Chen G, Li Y, Yang Z, Yao Z. Telomeres and telomerase in Sarcoma disease and therapy. Int J Med Sci 2024; 21:2065-2080. [PMID: 39239547 PMCID: PMC11373546 DOI: 10.7150/ijms.97485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Sarcoma is a rare tumor derived from the mesenchymal tissue and mainly found in children and adolescents. The outcome for patients with sarcoma is relatively poor compared with that for many other solid malignant tumors. Sarcomas have a highly heterogeneous pathogenesis, histopathology and biological behavior. Dysregulated signaling pathways and various gene mutations are frequently observed in sarcomas. The telomere maintenance mechanism (TMM) has recently been considered as a prognostic factor for patients with sarcomas, and alternative lengthening of telomeres (ALT) positivity has been correlated with poor outcomes in patients with several types of sarcomas. Therefore, telomeres and telomerases may be useful targets for treating sarcomas. This review aims to provide an overview of telomere and telomerase biology in sarcomas.
Collapse
Affiliation(s)
- Jin Huang
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Yan Feng
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - YangJing Shi
- Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Weilin Shao
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Genshan Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Gangxian Chen
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Ying Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| |
Collapse
|
9
|
Barr EK, Naranjo A, Twist CJ, Tenney SC, Schmidt ML, London WB, Gastier-Foster J, Adkins ES, Mattei P, Handler MH, Matthay KK, Park JR, Maris JM, Desai AV, Cohn SL. Long-term follow-up of patients with intermediate-risk neuroblastoma treated with response- and biology-based therapy: A report from the Children's Oncology Group study ANBL0531. Pediatr Blood Cancer 2024; 71:e31089. [PMID: 38822537 DOI: 10.1002/pbc.31089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND We previously reported excellent three-year overall survival (OS) for patients with newly diagnosed intermediate-risk neuroblastoma treated with a biology- and response-based algorithm on the Children's Oncology Group study ANBL0531. We now present the long-term follow-up results. METHODS All patients who met the age, stage, and tumor biology criteria for intermediate-risk neuroblastoma were eligible. Treatment was based on prognostic biomarkers and overall response. Event-free survival (EFS) and OS were estimated by the Kaplan-Meier method. RESULTS The 10-year EFS and OS for the entire study cohort (n = 404) were 82.0% (95% confidence interval (CI), 77.2%-86.9%) and 94.7% (95% CI, 91.8%-97.5%), respectively. International Neuroblastoma Staging System stage 4 patients (n = 133) had inferior OS compared with non-stage 4 patients (n = 271; 10-year OS: 90.8% [95% CI, 84.5%-97.0%] vs 96.6% [95% CI, 93.9%-99.4%], p = .02). Infants with stage 4 tumors with ≥1 unfavorable biological feature (n = 47) had inferior EFS compared with those with favorable biology (n = 61; 10-year EFS: 66.8% [95% CI, 50.4%-83.3%] vs 86.9% [95% CI, 76.0%-97.8%], p = .02); OS did not differ (10-year OS: 84.4% [95% CI, 71.8%-97.0%] vs 95.0% [95% CI, 87.7%-100.0%], p = .08). Inferior EFS but not OS was observed among patients with tumors with (n = 26) versus without (n = 314) 11q loss of heterozygosity (10-year EFS: 68.4% [95% CI, 44.5%-92.2%] vs 83.9% [95% CI, 78.7%-89.2%], p = .03; 10-year OS: 88.0% [95% CI, 72.0%-100.0%] vs 95.7% [95% CI, 92.8%-98.6%], p = .09). CONCLUSIONS The ANBL0531 trial treatment algorithm resulted in excellent long-term survival. More effective treatments are needed for subsets of patients with unfavorable biology tumors.
Collapse
Affiliation(s)
- Erin K Barr
- Department of Pediatrics, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Arlene Naranjo
- Department of Biostatistics, University of Florida Children's Oncology Group Statistics and Data Center, Gainesville, Florida, USA
| | - Clare J Twist
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sheena C Tenney
- Department of Biostatistics, University of Florida Children's Oncology Group Statistics and Data Center, Gainesville, Florida, USA
| | - Mary Lou Schmidt
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie Gastier-Foster
- Department of Pediatrics and Pathology/Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - E Stanton Adkins
- Department of Pediatrics, Palmetto Health-USC Medical Group, Columbia, South Carolina, USA
| | - Peter Mattei
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael H Handler
- Department of Neurosurgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Katherine K Matthay
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Julie R Park
- Department of Oncology, St.Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John M Maris
- Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ami V Desai
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Khan R, Sunthankar KI, Yasinzai AQK, Tareen B, Zarak MS, Khan J, Nasir H, Nakasaki M, Jahangir E, Heneidi S, Ullah A. Primary cardiac sarcoma: demographics, genomic study correlation, and survival benefits of surgery with adjuvant therapy in U.S. population. Clin Res Cardiol 2024; 113:694-705. [PMID: 37246988 DOI: 10.1007/s00392-023-02236-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/16/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Cardiac sarcomas are rare and aggressive tumors with little known about the demographics, genetics, or treatment outcomes. OBJECTIVES The objectives of this study were to characterize the demographics, treatment modality, and survival associated with cardiac sarcomas and evaluate the potential for mutation-directed therapies. METHODS All cases from 2000 to 2018 of cardiac sarcoma were extracted from the SEER database. Genomic comparison utilized The Cancer Genome Atlas (TCGA) database, as well as reviews and re-analysis of past applicable genomic studies. RESULTS Cardiac sarcomas occurred most often in White patients, compared with national census data cardiac sarcomas occurred at a significantly higher rate in Asians. The majority of cases were undifferentiated (61.7%) and without distant metastases (71%). Surgery was the most common primary treatment modality and offered survival benefit (HR 0.391 (p = 0.001) that was most pronounced and sustained as compared to patients who received chemotherapy (HR 0.423 (p = 0.001) or radiation (HR 0.826 (p = 0.241) monotherapy. There was no difference in survival when stratified by race or sex; however, younger patients (< 50) had better survival. Genomics data on histologically undifferentiated cardiac sarcomas revealed a significant number were likely poorly differentiated pulmonary intimal sarcomas and angiosarcomas. CONCLUSIONS Cardiac sarcoma is a rare disease with surgery continuing to be a cornerstone of therapy followed by traditional chemotherapy. Case studies have indicated the potential for therapies directed to specific genetic aberrations to improve survival for these patients and utilization of next-generation sequencing (NGS) will help improve both classification and these therapies for cardiac sarcoma patients.
Collapse
Affiliation(s)
- Rozi Khan
- Department of Medicine, Medical University of South Carolina, Florence, SC, USA
| | - Kathryn I Sunthankar
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Jaffar Khan
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hassan Nasir
- St. George's University, School of Medicine, University Centre Grenada, West Indies, Grenada
| | - Manando Nakasaki
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eiman Jahangir
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saleh Heneidi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Asad Ullah
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
11
|
Vaid R, Thombare K, Mendez A, Burgos-Panadero R, Djos A, Jachimowicz D, Lundberg K, Bartenhagen C, Kumar N, Tümmler C, Sihlbom C, Fransson S, Johnsen J, Kogner P, Martinsson T, Fischer M, Mondal T. METTL3 drives telomere targeting of TERRA lncRNA through m6A-dependent R-loop formation: a therapeutic target for ALT-positive neuroblastoma. Nucleic Acids Res 2024; 52:2648-2671. [PMID: 38180812 PMCID: PMC10954483 DOI: 10.1093/nar/gkad1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2022] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N6 position of internal adenosine (m6A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m6A/METTL3 results in telomere damage. We observed that m6A modification is abundant in R-loop enriched TERRA, and the m6A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m6A drives telomere targeting of TERRA via R-loops, and this m6A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB.
Collapse
Affiliation(s)
- Roshan Vaid
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Akram Mendez
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rebeca Burgos-Panadero
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jachimowicz
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristina Ihrmark Lundberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Navinder Kumar
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Conny Tümmler
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, 41345 Sweden
| |
Collapse
|
12
|
Stundon JL, Ijaz H, Gaonkar KS, Kaufman RS, Jin R, Karras A, Vaksman Z, Kim J, Corbett RJ, Lueder MR, Miller DP, Guo Y, Santi M, Li M, Lopez G, Storm PB, Resnick AC, Waanders AJ, MacFarland SP, Stewart DR, Diskin SJ, Rokita JL, Cole KA. Alternative lengthening of telomeres (ALT) in pediatric high-grade gliomas can occur without ATRX mutation and is enriched in patients with pathogenic germline mismatch repair (MMR) variants. Neuro Oncol 2023; 25:1331-1342. [PMID: 36541551 PMCID: PMC10326481 DOI: 10.1093/neuonc/noac278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To achieve replicative immortality, most cancers develop a telomere maintenance mechanism, such as reactivation of telomerase or alternative lengthening of telomeres (ALT). There are limited data on the prevalence and clinical significance of ALT in pediatric brain tumors, and ALT-directed therapy is not available. METHODS We performed C-circle analysis (CCA) on 579 pediatric brain tumors that had corresponding tumor/normal whole genome sequencing through the Open Pediatric Brain Tumor Atlas (OpenPBTA). We detected ALT in 6.9% (n = 40/579) of these tumors and completed additional validation by ultrabright telomeric foci in situ on a subset of these tumors. We used CCA to validate TelomereHunter for computational prediction of ALT status and focus subsequent analyses on pediatric high-grade gliomas (pHGGs) Finally, we examined whether ALT is associated with recurrent somatic or germline alterations. RESULTS ALT is common in pHGGs (n = 24/63, 38.1%), but occurs infrequently in other pediatric brain tumors (<3%). Somatic ATRX mutations occur in 50% of ALT+ pHGGs and in 30% of ALT- pHGGs. Rare pathogenic germline variants in mismatch repair (MMR) genes are significantly associated with an increased occurrence of ALT. CONCLUSIONS We demonstrate that ATRX is mutated in only a subset of ALT+ pHGGs, suggesting other mechanisms of ATRX loss of function or alterations in other genes may be associated with the development of ALT in these patients. We show that germline variants in MMR are associated with the development of ALT in patients with pHGG.
Collapse
Affiliation(s)
- Jennifer L Stundon
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
| | - Heba Ijaz
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania,USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Rebecca S Kaufman
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Anastasios Karras
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Zalman Vaksman
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland,USA
| | - Ryan J Corbett
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Matthew R Lueder
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Daniel P Miller
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Marilyn Li
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Gonzalo Lopez
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Angela J Waanders
- Division of Hematology, Oncology, NeuroOncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Illinois,USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,USA
| | - Suzanne P MacFarland
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland,USA
| | - Sharon J Diskin
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
| | - Kristina A Cole
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania,USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania,USA
| |
Collapse
|
13
|
Carson LM, Flynn RL. Highlighting vulnerabilities in the alternative lengthening of telomeres pathway. Curr Opin Pharmacol 2023; 70:102380. [PMID: 37149932 PMCID: PMC10247456 DOI: 10.1016/j.coph.2023.102380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2022] [Revised: 02/03/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
The alternative lengthening of telomeres (ALT) pathway is a telomere elongation mechanism found in a small but often aggressive subset of cancers. Dependent on break-induced replication, telomere extension in ALT-positive cells relies on a baseline level of DNA replication stress to initiate elongation events. This results in an elevated level of DNA damage and presents a possible vulnerability to be exploited in the development of ALT-targeted cancer therapies. Currently, there are no treatment options that target the ALT mechanism or that are specific for ALT-positive tumors. Here, we review recent developments and promising directions in the development of ALT-targeted therapeutics, many of which involve tipping the balance towards inhibition or exacerbation of ALT activity to selectively target these cells.
Collapse
Affiliation(s)
- Lisa M Carson
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Rachel L Flynn
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
14
|
Cope BM, Traweek RS, Lazcano R, Keung EZ, Lazar AJ, Roland CL, Nassif EF. Targeting the Molecular and Immunologic Features of Leiomyosarcoma. Cancers (Basel) 2023; 15:2099. [PMID: 37046760 PMCID: PMC10093078 DOI: 10.3390/cancers15072099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Leiomyosarcoma (LMS) is a rare, aggressive mesenchymal tumor with smooth muscle differentiation. LMS is one of the most common histologic subtypes of soft tissue sarcoma; it most frequently occurs in the extremities, retroperitoneum, or uterus. LMS often demonstrates aggressive tumor biology, with a higher risk of developing distant metastatic disease than most sarcoma histologic types. The prognosis is poor, particularly in patients with uterine disease, and there is a need for the development of more effective therapies. Genetically, LMS is karyotypically complex and characterized by a low tumor mutational burden, with frequent alterations in TP53, RB1, PTEN, and DNA damage response pathways that may contribute to resistance against immune-checkpoint blockade monotherapy. The LMS immune microenvironment is highly infiltrated with tumor-associated macrophages and tumor-infiltrating lymphocytes, which may represent promising biomarkers. This review provides an overview of the clinical and pathologic behavior of both soft tissue and uterine LMS and summarizes the genomic and immune characteristics of these tumors and how they may provide opportunities for the development of biomarker-based immune therapies.
Collapse
Affiliation(s)
- Brandon M. Cope
- Department of Surgery, Keesler Medical Center, Biloxi, MS 39534, USA
| | - Raymond S. Traweek
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rossana Lazcano
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christina L. Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elise F. Nassif
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Sohn EJ, Goralsky JA, Shay JW, Min J. The Molecular Mechanisms and Therapeutic Prospects of Alternative Lengthening of Telomeres (ALT). Cancers (Basel) 2023; 15:cancers15071945. [PMID: 37046606 PMCID: PMC10093677 DOI: 10.3390/cancers15071945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
As detailed by the end replication problem, the linear ends of a cell's chromosomes, known as telomeres, shorten with each successive round of replication until a cell enters into a state of growth arrest referred to as senescence. To maintain their immortal proliferation capacity, cancer cells must employ a telomere maintenance mechanism, such as telomerase activation or the Alternative Lengthening of Telomeres pathway (ALT). With only 10-15% of cancers utilizing the ALT mechanism, progress towards understanding its molecular components and associated hallmarks has only recently been made. This review analyzes the advances towards understanding the ALT pathway by: (1) detailing the mechanisms associated with engaging the ALT pathway as well as (2) identifying potential therapeutic targets of ALT that may lead to novel cancer therapeutic treatments. Collectively, these studies indicate that the ALT molecular mechanisms involve at least two distinct pathways induced by replication stress and damage at telomeres. We suggest exploiting tumor dependency on ALT is a promising field of study because it suggests new approaches to ALT-specific therapies for cancers with poorer prognosis. While substantial progress has been made in the ALT research field, additional progress will be required to realize these advances into clinical practices to treat ALT cancers and improve patient prognoses.
Collapse
Affiliation(s)
- Eric J Sohn
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia A Goralsky
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|