1
|
Gao F, Guo J, Liu S, Zhang F, Zhang Y, Wang L. Empowering hydrophobic anticancer drugs by ultrashort peptides: General Co-assembly strategy for improved solubility, targeted efficacy, and clinical application. J Colloid Interface Sci 2024; 667:119-127. [PMID: 38631250 DOI: 10.1016/j.jcis.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The current state of drug delivery systems allows for the resolution of specific issues like inadequate solubility, limited targeting capabilities, and complex preparation processes, requiring tailored designs for different drugs. Yet, the major challenge in clinical application lies in surmounting these obstacles with a universal carrier that is effective for a variety of anticancer drugs. Herein, with the help of computer simulation, we rationally design ultrashort peptides GY and CCYRGD, which can co-assemble with hydrophobic anticancer drugs into nanoparticles with enhanced solubility, targeting ability and anticancer efficacy. Taking 7-ethyl-10-hydroxy camptothecin (SN38) as a model anticancer drug, the co-assembled SN38-GY-CCYRGD nanoparticles significantly enhance the water solubility of SN38 by more than three orders of magnitude. The as-prepared nanoparticles can effectively kill cancer cells, e.g., human small cell lung cancer (A549) cells with a notable cell mortality rate of 71%. Mice experimental results demonstrate the nanoparticles' efficient targeting capability, marked reducing the toxicity to normal tissues while improving antitumor efficacy. This work presents a novel drug delivery method, integrating effective, targeted, and safe strategies into a comprehensive carrier system, designed for the administration of hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Feng Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jun Guo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Shihao Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Feng Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Liping Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| |
Collapse
|
2
|
Meng S, Zhu N, Han D, Li B, Zhang X, Zhang J, Liu T. Synthesis and Biological Evaluation of Methoxypolyethylene-Glycol-Substituted Abiraterone Derivatives as Potential Antiprostate Cancer Agents. Mol Pharm 2024; 21:3186-3203. [PMID: 38815167 DOI: 10.1021/acs.molpharmaceut.3c01188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Globally, prostate cancer is the most commonly diagnosed tumor and a cause of death in older men. Abiraterone, an orally administered irreversible CYP17 inhibitor, is employed to treat prostate cancer. However, abiraterone has several clinical limitations, such as poor water solubility, low dissolution rate, low bioavailability, and toxic side effects in the liver and kidney. Therefore, there is a need to identify high-efficiency and low-toxicity water-soluble abiraterone derivatives. In this work, we aimed to design and synthesize a series of abiraterone derivatives by methoxypoly(ethylene glycol) (mPEG) modification. Their antitumor activities and toxicology were analyzed in vitro and in vivo. The most potent compound, 2e, retained the principle of action on the CYP17 enzyme target and significantly improved the abiraterone water solubility, cell permeability, and blood safety. No significant abnormalities were observed in toxicology. mPEG-modification significantly improved abiraterone's antitumor activity and efficiency while reducing the associated toxic effects. The finding will provide a theoretical basis for future clinical application of mPEG-modified abiraterone.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Na Zhu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- Institute of Traditional Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Di Han
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- Institute of Traditional Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Bole Li
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Xiaolong Zhang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Jie Zhang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
3
|
Yadav R, Bhawale R, Srivastava V, Pardhi E, Bhalerao HA, Sonti R, Mehra NK. Innovative Nanoparticulate Strategies in Colon Cancer Treatment: A Paradigm Shift. AAPS PharmSciTech 2024; 25:52. [PMID: 38429601 DOI: 10.1208/s12249-024-02759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
As a major public health issue, colorectal cancer causes 9.4% of total cancer-related deaths and comprises 10% of new cancer diagnoses worldwide. In the year 2023, an estimated 153,020 people are expected to receive an identification of colorectal cancer (CRC), resulting in roughly 52,550 fatalities anticipated as a result of this illness. Among those impacted, approximately 19,550 cases and 3750 deaths are projected to occur in individuals under the age of 50. Irinotecan (IRN) is a compound derived from the chemical structure of camptothecin, a compound known for its action in inhibiting DNA topoisomerase I. It is employed in the treatment strategy for CRC therapies. Comprehensive in vivo and in vitro studies have robustly substantiated the anticancer efficacy of these compounds against colon cancer cell lines. Blending irinotecan in conjunction with other therapeutic cancer agents such as oxaliplatin, imiquimod, and 5 fluorouracil enhanced cytotoxicity and improved chemotherapeutic efficacy. Nevertheless, it is linked to certain serious complications and side effects. Utilizing nano-formulated prodrugs within "all-in-one" carrier-free self-assemblies presents an effective method to modify the pharmacokinetics and safety portfolio of cytotoxic chemotherapeutics. This review focuses on elucidating the mechanism of action, exploring synergistic effects, and innovating novel delivery approaches to enhance the therapeutic efficacy of irinotecan.
Collapse
Affiliation(s)
- Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Harshada Anil Bhalerao
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
4
|
Magliulo D, Simoni M, Caserta C, Fracassi C, Belluschi S, Giannetti K, Pini R, Zapparoli E, Beretta S, Uggè M, Draghi E, Rossari F, Coltella N, Tresoldi C, Morelli MJ, Di Micco R, Gentner B, Vago L, Bernardi R. The transcription factor HIF2α partakes in the differentiation block of acute myeloid leukemia. EMBO Mol Med 2023; 15:e17810. [PMID: 37807875 PMCID: PMC10630882 DOI: 10.15252/emmm.202317810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
One of the defining features of acute myeloid leukemia (AML) is an arrest of myeloid differentiation whose molecular determinants are still poorly defined. Pharmacological removal of the differentiation block contributes to the cure of acute promyelocytic leukemia (APL) in the absence of cytotoxic chemotherapy, but this approach has not yet been translated to non-APL AMLs. Here, by investigating the function of hypoxia-inducible transcription factors HIF1α and HIF2α, we found that both genes exert oncogenic functions in AML and that HIF2α is a novel regulator of the AML differentiation block. Mechanistically, we found that HIF2α promotes the expression of transcriptional repressors that have been implicated in suppressing AML myeloid differentiation programs. Importantly, we positioned HIF2α under direct transcriptional control by the prodifferentiation agent all-trans retinoic acid (ATRA) and demonstrated that HIF2α blockade cooperates with ATRA to trigger AML cell differentiation. In conclusion, we propose that HIF2α inhibition may open new therapeutic avenues for AML treatment by licensing blasts maturation and leukemia debulking.
Collapse
Affiliation(s)
- Daniela Magliulo
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Matilde Simoni
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Carolina Caserta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Cristina Fracassi
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Serena Belluschi
- Vita Salute San Raffaele University School of MedicineMilanItaly
- Present address:
MogrifyCambridgeUK
| | - Kety Giannetti
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Raffaella Pini
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Ettore Zapparoli
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Martina Uggè
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Eleonora Draghi
- Unit of Immunogenetics, Leukemia Genomics and ImmunobiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Federico Rossari
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita Salute San Raffaele University School of MedicineMilanItaly
| | - Nadia Coltella
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Cristina Tresoldi
- Unit of Hematology and Bone Marrow TransplantationIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Marco J Morelli
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Present address:
Ludwig Institute for Cancer researchLausanne UniversityLausanneSwitzerland
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and ImmunobiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Rosa Bernardi
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
5
|
Ding M, Zhu Q, Lu W, Zhu S. Design and synthesis of multivalent drug delivery system with CA IX inhibitors as ligands. Bioorg Med Chem 2023; 93:117456. [PMID: 37678058 DOI: 10.1016/j.bmc.2023.117456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
A multivalent ligand delivery system holds tremendous potential in the field of tumor-targeted drug delivery. It addresses the challenges posed by the low affinity between small molecule ligand receptors and the rapid metabolism of small molecule drug conjugates (SMDCs) in vivo. Notably, existing multivalent ligand systems have demonstrated significant anti-tumor activity in various tumor models. In this study, we have developed a novel multivalent ligand delivery system for SN38, utilizing acetazolamide, a carbonic anhydrase IX (CA IX) inhibitor, as the target ligand. Our multivalent ligand delivery systems exhibited superior metabolic stability and enhanced targeting specificity compared to SMDC molecules. Furthermore, they demonstrated improved anti-proliferation activity, addressing the existing challenges associated with the low receptor affinity and rapid metabolism of SMDCs.
Collapse
Affiliation(s)
- Mengyuan Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Qiwen Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
6
|
Xiang L, Wang X, Jiao Q, Shao Y, Luo R, Zhang J, Zheng X, Zhou S, Chen Y. Selective inhibition of glycolysis in hepatic stellate cells and suppression of liver fibrogenesis with vitamin A-derivative decorated camptothecin micelles. Acta Biomater 2023; 168:497-514. [PMID: 37507035 DOI: 10.1016/j.actbio.2023.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
The persistent transformation of quiescent hepatic stellate cells (HSCs) into myofibroblasts (MFs) and the excessive proliferation of MF-HSCs in the liver contribute to the pathogenesis of liver fibrosis, cirrhosis, and liver cancer. Glycolysis inhibition of MF-HSCs can reverse their MF phenotype and suppress their abnormal expansion. Here, we have developed vitamin A-derivative (VA) decorated PEG-PCL polymeric micelles to encapsulate the labile and hydrophobic camptothecin (CPT) and direct its active attack on HSCs, selectively inhibiting of HIF-1α and cellular glycolysis, ultimately repressing hepatic fibrogenesis. The obtained micelles exhibited a good stability, biocompatibility, pH sensitivity, and exceptional HSC-targetability, allowing an efficient accumulation of their carried CPT in acutely and chronically injured livers. On their intracellular release of CPT specifically in MF-HSCs, these CPT micelles nicely inhibited the HIF-1α and a series of glycolytic players in MF-HSCs and prominently suppressed their proliferation and MF phenotypic characteristics. Accordingly, on in vitro administration to the mice challenged by CCl4 or subjected to bile duct ligation, these VA-decorated CPT micelles ameliorated the pathological symptoms of the livers, as evidenced by the significant reduction in serum levels of ALT and AST, infiltration of inflammatory cells, and collagen accumulation, the drastic down-regulation of multiple fibrotic genes, and the good recovery of attenuated hepatocyte CYP2E1 and lipogenesis regulator PPARγ. Overall, the CPT carried by VA-decorated PEG-PCL polymeric micelles can selectively inhibit the glycolysis and expansion of HSCs and thus suppress fibrogenesis, providing an original and effective approach for anti-fibrotic therapy. STATEMENT OF SIGNIFICANCE: Our work introduces an innovative antifibrotic drug system that is developed upon the active targeting of CPT and aims for the fate reversal of HSCs. Through HSC-targeted delivery achieved by PEG-PCL polymeric micelles decorated with vitamin A-derivatives, CPT significantly suppressed the expressions of HIF-1α and glycolytic enzymes in MF-HSCs, as well as their pathologic expansion in mouse livers. It effectively ameliorated chronic liver fibrosis in mice induced by CCl4 injection or BDL and restored the damaged liver structure and function. These compelling findings demonstrate the therapeutic potential of glycolytic HSC-targeting in combating fibrosis and related disorders and thus provide new promise for future clinical management of such prevalent and life-threatening conditions.
Collapse
Affiliation(s)
- Li Xiang
- Hengyang Medical School, University of South China, Hengyang, Hunan, 410001, China
| | - Xin Wang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yaru Shao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Rui Luo
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Xiaotong Zheng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shaobing Zhou
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan, 410001, China; School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China.
| |
Collapse
|
7
|
Brignole C, Calarco E, Bensa V, Giusto E, Perri P, Ciampi E, Corrias MV, Astigiano S, Cilli M, Loo D, Bonvini E, Pastorino F, Ponzoni M. Antitumor activity of the investigational B7-H3 antibody-drug conjugate, vobramitamab duocarmazine, in preclinical models of neuroblastoma. J Immunother Cancer 2023; 11:e007174. [PMID: 37775116 PMCID: PMC10546160 DOI: 10.1136/jitc-2023-007174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION B7-H3 is a potential target for pediatric cancers, including neuroblastoma (NB). Vobramitamab duocarmazine (also referred to as MGC018 and herein referred to as vobra duo) is an investigational duocarmycin-based antibody-drug conjugate (ADC) directed against the B7-H3 antigen. It is composed of an anti-B7-H3 humanized IgG1/kappa monoclonal antibody chemically conjugated through a cleavable valine-citrulline linker to a duocarmycin-hydroxybenzamide azaindole (vc-seco-DUBA). Vobra duo has shown preliminary clinical activity in B7-H3-expressing tumors. METHODS B7-H3 expression was evaluated by flow-cytometry in a panel of human NB cell lines. Cytotoxicity was evaluated in monolayer and in multicellular tumor spheroid (MCTS) models by the water-soluble tetrazolium salt,MTS, proliferation assay and Cell Titer Glo 3D cell viability assay, respectively. Apoptotic cell death was investigated by annexin V staining. Orthotopic, pseudometastatic, and resected mouse NB models were developed to mimic disease conditions related to primary tumor growth, metastases, and circulating tumor cells with minimal residual disease, respectively. RESULTS All human NB cell lines expressed cell surface B7-H3 in a unimodal fashion. Vobra duo was cytotoxic in a dose-dependent and time-dependent manner against all cell lines (IC50 range 5.1-53.9 ng/mL) and NB MCTS (IC50 range 17.8-364 ng/mL). Vobra duo was inactive against a murine NB cell line (NX-S2) that did not express human B7-H3; however, NX-S2 cells were killed in the presence of vobra duo when co-cultured with human B7-H3-expressing cells, demonstrating bystander activity. In orthotopic and pseudometastatic mouse models, weekly intravenous treatments with 1 mg/kg vobra duo for 3 weeks delayed tumor growth compared with animals treated with an irrelevant (anti-CD20) duocarmycin-ADC. Vobra duo treatment for 4 weeks further increased survival in both orthotopic and resected NB models. Vobra duo compared favorably to TOpotecan-TEMozolomide (TOTEM), the standard-of-care therapy for NB relapsed disease, with tumor relapse delayed or arrested by two or three repeated 4-week vobra duo treatments, respectively. Further increased survival was observed in mice treated with vobra duo in combination with TOTEM. Vobra duo treatment was not associated with body weight loss, hematological toxicity, or clinical chemistry abnormalities. CONCLUSION Vobra duo exerts relevant antitumor activity in preclinical B7-H3-expressing NB models and represents a potential candidate for clinical translation.
Collapse
Affiliation(s)
- Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elena Giusto
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Eleonora Ciampi
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Michele Cilli
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Derik Loo
- MacroGenics Inc, Rockville, Maryland, USA
| | | | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
8
|
Ando H, Eshima K, Ishida T. A polyethylene glycol-conjugate of deoxycytidine analog, DFP-14927, produces potential antitumor effects on pancreatic tumor-xenograft murine models via inducing G2/M arrest. Eur J Pharmacol 2023; 950:175758. [PMID: 37121563 DOI: 10.1016/j.ejphar.2023.175758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/02/2023]
Abstract
A deoxycytidine analog is a potential agent for the treatment of several cancers, which includes poorly prognostic pancreatic cancer. We previously developed deoxycytidine analog DFP-10917, and long-term/low-dose infusions of this analog has produced antitumor effects in leukemia cancer- and ovarian cancer-xenograft models. DFP-10917 is now undergoing clinical Phase III study in the United States for the treatment of patients with relapsed or refractory acute myeloid leukemia. PEG-drug conjugation has become a promising technique to improve the pharmacokinetic and pharmacodynamic properties of anti-cancer drugs. In the present study, we synthesized a novel PEG-drug conjugate of DFP-10917, referred to hereafter as DFP-14927, using a 4-armed CTPEG system to endow the DFP-10917 drug with favorable long-circulating properties that maximize its utility and antitumor efficacy. Intravenous injection of the synthesized DFP-14927 returned encouraging antitumor effects in a Panc-1 human pancreatic tumor- and a BxPC-3 human pancreatic tumor-xenograft models. These effects were comparable to that of free DFP-10917 as well as to that of gemcitabine, which is considered a standard in the treatment of pancreatic cancer. In vitro studies revealed that DFP-14927 inhibits cell division on human pancreatic cancer cell lines via arrest of the G2/M phase in the cell cycle, which is consistent with the effects of free DFP-10917. Intravenous administration of the newly synthesized DFP-14927 has induced G2/M arrest in human pancreatic tumor-xenograft murine models, which represents an improvement in the pharmacokinetics of DFP-10917. DFP-14927 could be an alternative for patients who cannot accept prolonged or continuous infusions of DFP-10917.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | | | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
9
|
Ribatti D. The chick embryo chorioallantoic membrane patient-derived xenograft (PDX) model. Pathol Res Pract 2023; 243:154367. [PMID: 36774760 DOI: 10.1016/j.prp.2023.154367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
The chick embryo chorioallantoic membrane (CAM) CAM is an extraembryonic membrane generated by the fusion of the chorion with the vascularized allantoic membrane. It performs multiple functions during embryonic development, including respiration, calcium transport from the eggshell, acid-base homeostasis, and ion/water reabsorption from the allantoic fluid. The CAM is a widely used model for the study of angiogenesis, anti-angiogenesis, tumor growth, and metastasis as well as drug efficacy. Ethical approval is omitted if experiments are terminated at embryonic day 14 in most countries, facilitating screenings of pharmacological or physics-based therapies with high reproducibility at large scales supporting the 3Rs principle. Being naturally immunodeficient, the chick embryo accepts transplantation from various tissues and species without immune response. This review article is focused on the analysis of the literature and personal data concerning the effects of patient-derived xenografts (PDX) on the CAM.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
10
|
Feng Q, Xu J, Zhuang C, Xiong J, Wang H, Xiao K. Mitochondria-Targeting and Multiresponsive Nanoplatform Based on AIEgens for Synergistic Chemo-Photodynamic Therapy and Enhanced Immunotherapy. Biomacromolecules 2023; 24:977-990. [PMID: 36703538 DOI: 10.1021/acs.biomac.2c01416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although photodynamic therapy (PDT) has become an attractive strategy for cancer treatment, its clinical application still suffers from some limitations, including insufficient delivery of photosensitizers, hypoxic tumor environment, and the development of PDT resistance. To address these limitations, a new class of mitochondria-targeting and fluorinated polymer with aggregation-induced emission characteristics was fabricated to sensitize PDT and co-deliver chemotherapeutic drugs. The amphiphilic fluoropolymer was able to efficiently carry oxygen and SN-38 (the active metabolite of irinotecan) and self-assemble into multifunctional micellar nanoparticles (SN-38-TTCF@O2 NPs). Upon internalization into tumor cells, these NPs could successfully escape lysosomes, selectively target mitochondria, efficiently produce reactive oxygen species (ROS) under light irradiation, and release drugs in response to ROS. In the HCT116 tumor xenograft model, they preferentially accumulated in tumor tissue and significantly alleviated tumor hypoxia, resulting in synergistic chemo-PDT efficacy without distinct toxicity. Furthermore, the nanoscale chemo-PDT induced immunogenic cell death, promoted the recruitment and activation of cytotoxic T lymphocytes, and ultimately augmented the anti-tumor efficacy of anti-PD-1 antibody in the murine CT26 tumor model. These results may provide novel insights into the development of efficient chemo-PDT nanomedicine to improve the outcome of immunotherapy.
Collapse
Affiliation(s)
- Qiyi Feng
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Junhuai Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Cheng Zhuang
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Junjie Xiong
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kai Xiao
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.,Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
11
|
Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol 2022; 15:160. [PMID: 36319992 PMCID: PMC9628128 DOI: 10.1186/s13045-022-01358-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Countless CRC patients undergo disease progression. As a hallmark of cancer, Warburg effect promotes cancer metastasis and remodels the tumor microenvironment, including promoting angiogenesis, immune suppression, cancer-associated fibroblasts formation and drug resistance. Targeting Warburg metabolism would be a promising method for the treatment of CRC. In this review, we summarize information about the roles of Warburg effect in tumor microenvironment to elucidate the mechanisms governing Warburg effect in CRC and to identify novel targets for therapy.
Collapse
|
12
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| |
Collapse
|
13
|
Alferiev IS, Guerrero DT, Guan P, Nguyen F, Kolla V, Soberman D, Pressly BB, Fishbein I, Brodeur GM, Chorny M. Poloxamer-linked prodrug of a topoisomerase I inhibitor SN22 shows efficacy in models of high-risk neuroblastoma with primary and acquired chemoresistance. FASEB J 2022; 36:e22213. [PMID: 35192728 PMCID: PMC8910785 DOI: 10.1096/fj.202101830rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
Abstract
High‐risk solid tumors continue to pose a tremendous therapeutic challenge due to multidrug resistance. Biological mechanisms driving chemoresistance in high‐risk primary and recurrent disease are distinct: in newly diagnosed patients, non‐response to therapy is often associated with a higher level of tumor “stemness” paralleled by overexpression of the ABCG2 drug efflux pump, whereas in tumors relapsing after non‐curative therapy, poor drug sensitivity is most commonly linked to the dysfunction of the tumor suppressor protein, p53. In this study, we used preclinical models of aggressive neuroblastoma featuring these characteristic mechanisms of primary and acquired drug resistance to experimentally evaluate a macromolecular prodrug of a structurally enhanced camptothecin analog, SN22, resisting ABCG2‐mediated export, and glucuronidation. Together with extended tumor exposure to therapeutically effective drug levels via reversible conjugation to Pluronic F‐108 (PF108), these features translated into rapid tumor regression and long‐term survival in models of both ABCG2‐overexpressing and p53‐mutant high‐risk neuroblastomas, in contrast to a marginal effect of the clinically used camptothecin derivative, irinotecan. Our results demonstrate that pharmacophore enhancement, increased tumor uptake, and optimally stable carrier‐drug association integrated into the design of the hydrolytically activatable PF108‐[SN22]2 have the potential to effectively combat multiple mechanisms governing chemoresistance in newly diagnosed (chemo‐naïve) and recurrent forms of aggressive malignancies. As a macromolecular carrier‐based delivery system exhibiting remarkable efficacy against two particularly challenging forms of high‐risk neuroblastoma, PF108‐[SN22]2 can pave the way to a robust and clinically viable therapeutic strategy urgently needed for patients with multidrug‐resistant disease presently lacking effective treatment options.
Collapse
Affiliation(s)
- Ivan S Alferiev
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David T Guerrero
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peng Guan
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ferro Nguyen
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Venkatadri Kolla
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Danielle Soberman
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin B Pressly
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ilia Fishbein
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Garrett M Brodeur
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael Chorny
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Alferiev IS, Guerrero DT, Soberman D, Guan P, Nguyen F, Kolla V, Fishbein I, Pressly BB, Brodeur GM, Chorny M. Nanocarrier-Based Delivery of SN22 as a Tocopheryl Oxamate Prodrug Achieves Rapid Tumor Regression and Extends Survival in High-Risk Neuroblastoma Models. Int J Mol Sci 2022; 23:ijms23031752. [PMID: 35163672 PMCID: PMC8836113 DOI: 10.3390/ijms23031752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the use of intensive multimodality therapy, the majority of high-risk neuroblastoma (NB) patients do not survive. Without significant improvements in delivery strategies, anticancer agents used as a first-line treatment for high-risk tumors often fail to provide clinically meaningful results in the settings of disseminated, recurrent, or refractory disease. By enhancing pharmacological selectivity, favorably shifting biodistribution, strengthening tumor cell killing potency, and overcoming drug resistance, nanocarrier-mediated delivery of topoisomerase I inhibitors of the camptothecin family has the potential to dramatically improve treatment efficacy and minimize side effects. In this study, a structurally enhanced camptothecin analog, SN22, reversibly coupled with a redox-silent tocol derivative (tocopheryl oxamate) to allow its optimally stable encapsulation and controlled release from PEGylated sub-100 nm nanoparticles (NP), exhibited strong NB cell growth inhibitory activity, translating into rapid regression and durably suppressed regrowth of orthotopic, MYCN-amplified NB tumors. The robust antitumor effects and markedly extended survival achieved in preclinical models recapitulating different phases of high-risk disease (at diagnosis vs. at relapse with an acquired loss of p53 function after intensive multiagent chemotherapy) demonstrate remarkable potential of SN22 delivered in the form of a hydrolytically cleavable superhydrophobic prodrug encapsulated in biodegradable nanocarriers as an experimental strategy for treating refractory solid tumors in high-risk cancer patients.
Collapse
|
15
|
Kheshtchin N, Hadjati J. Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy. J Cell Physiol 2021; 237:1285-1298. [PMID: 34796969 DOI: 10.1002/jcp.30643] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022]
Abstract
The development of new strategies of anticancer immunotherapies has provided promising approaches in the treatment of solid tumors. However, despite the improved survival in responders, most of the patients show incomplete responses with a lack of remarkable clinical improvement. Hypoxia has been identified as a common characteristic of solid tumors contributing to different aspects of tumor progression, including invasion, metastasis, and the creation of the immunosuppressive tumor microenvironment. Hypoxia, through its main mediator, hypoxia-inducible factor-1 (HIF-1) is also associated with the limited efficacy of immunotherapies. Therefore, designing new strategies for immunotherapy implicating therapeutic targeting of HIF-1 molecules may enhance the clinical effectiveness of immunotherapy. Here, we discuss the contribution of hypoxia to the development of the immunosuppressive tumor microenvironment. We will also outline different strategies for targeting hypoxia to provide insight into the therapeutic potential of the application of such strategies to improve the clinical benefit of cancer immunotherapy.
Collapse
Affiliation(s)
- Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ando H, Murakami Y, Eshima K, Ishida T. A novel polyethylene glycol (PEG)-drug conjugate of Venetoclax, a Bcl-2 inhibitor, for treatment of acute myeloid leukemia (AML). Cancer Rep (Hoboken) 2021; 5:e1485. [PMID: 34173723 PMCID: PMC8955075 DOI: 10.1002/cnr2.1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/16/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Background Venetoclax (VTX) is an anticancer drug. It is a selective Bcl‐2 inhibitor that is clinically used for the treatment of patients with lymphomas and leukemias. Treatment with VTX, however, is accompanied by severe adverse events such as tumor lysis syndrome and neutropenia, because VTX readily binds to serum proteins, which results in poor pharmacokinetics and poor tumor tissue concentration. To avoid such adverse events, VTX is administered using a daily or weekly ramp‐up schedule that is cumbersome in clinical situations. Aims To overcome these shortcomings, we prepared a novel polyethylene glycol (PEG)‐drug conjugate of VTX (PEG‐VTX) and evaluated its cytotoxic effects on acute myeloid leukemia (AML) both in vitro and in vivo. Methods and results VTX and 4‐armed PEG derivatives were covalently attached through an amide bond linker. In a series of in vitro studies, PEG‐VTX selectively induced potent growth inhibition of MV4‐11 human AML cells via the inducement of Bcl‐2‐mediated apoptosis. PEG‐VTX had the effect of free VTX, presumably due to the protease‐mediated release of VTX from the conjugates. In in vivo studies with AML tumor‐xenograft mice models, intravenous PEG‐VTX promoted sufficient tumor growth suppression. Compared with a regimen of oral free VTX, the intravenous regimen in those studies used a VTX dosage that was 15–30 times smaller for an OCI‐AML‐2 xenograft model and a dosing regimen that was less frequent for an MV4‐11 xenograft model. The most important development, however, was the absence of weight loss related to severe side effects throughout the treatments. An increase in water solubility and the resultant hydrodynamic size of VTX via PEGylation improved the pharmacokinetics of VTX by avoiding protein interactions and lessening the extravasation from blood. The result was an increase in tumor accumulation and a decrease in the nonspecific distribution of VTX. Conclusion The results of this study suggest that PEG‐VTX could be an alternative therapeutic option for the safe and effective treatment of patients with AML.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuta Murakami
- Biotechnology & Medical Division, Planning Department, Sanyo Chemical Industries, Ltd, Kyoto, Japan
| | | | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
17
|
Ozen Karakus O, Godugu K, Mousa SA. Discovery of dual targeting PEGylated BG-P 1600-TAT to norepinephrine transporter (NET) and thyrointegrin αvβ3 in the treatment of neuroblastoma. Bioorg Med Chem 2021; 43:116278. [PMID: 34157571 DOI: 10.1016/j.bmc.2021.116278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Polymer-drug conjugates are growing in interest as novel anticancer agents for targeted cancer therapy. The aim of this study was to synthesize a poly(ethylene glycol) (PEG) conjugated anticancer drug for neuroblastoma, which is the most common extracranial solid tumor of childhood and the deadliest tumor of infancy. In our previous studies, we designed and synthesized a dual targeting agent using benzylguanidine (BG) conjugated with the high affinity thyrointegrin αvβ3 antagonist TriAzole Tetraiodothyroacetic acid (TAT) via non-cleavable bonding to PEG400 to make BG-P400-TAT and its derivatives as agents against neuroblastoma. Here, we improved the pharmacodynamic properties and increased the solubility by changing the polymer length to 1600 molecular weight. The TAT group, which acts as an integrin αvβ3 antagonist, and the BG group, which can be taken up by neuroblastoma cells through the norepinephrine transporter (NET) system, are conjugated to PEG1600 to make BG-PEG1600-TAT. The binding affinity of BG-PEG1600-TAT was 40-fold higher to integrin αvβ3 versus BG-P400-TAT and was associated with greater anticancer activities against neuroblastoma cells (SK-N-F1 and SKNAS) implanted in SCID mice along with broad spectrum anti-angiogenesis activities versus the FDA approved anti-Vascular Endothelial Growth Factor (VEGF) monoclonal antibody Avastin (bevacizumab). In conclusion, our novel dual targeting of NET and αvβ3 receptor antagonist, BG-P1600-TAT demonstrated broad spectrum anti-angiogenesis and anti-cancer activities in suppressing neuroblastoma tumor progression and metastasis. Thus, BG-PEG1600-TAT represents a potential clinical candidate for targeted therapy in neuroblastoma management.
Collapse
Affiliation(s)
- Ozlem Ozen Karakus
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States.
| |
Collapse
|
18
|
Hydrolytic stabilization of irinotecan active metabolite (SN38) against physiologic pH through self-assembly of conjugated poly (2-oxazoline) - poly (l-amino acid) block copolymer: A-synthesis and physicochemical characterization. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Chang WH, Lai AG. The hypoxic tumour microenvironment: A safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Lett 2020; 487:34-44. [PMID: 32470490 DOI: 10.1016/j.canlet.2020.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Dating back to the seminal work of Paul Ehrlich, the idea of harnessing our immune system to eliminate cancerous cells is now over a century old. In the presence of a functional immune system that so efficiently guards the host against developing neoplasms, tumour cells must evolve sophisticated strategies to escape immune destruction in order to give rise to clinically detectable cancers. A new way of treating cancer would thus be to target the immune system itself rather than the tumour, and extensive studies in randomised trials have cemented the possibility of using immunotherapy for treating advanced-stage cancers. Immunotherapy, however, is only tolerated in a minority of patients and in many cases, patients suffer from adverse immune-related reactions when the immune system goes into overdrive. A primary barrier thwarting the development of effective immunotherapy seems to coalesce into the peculiarities of the tumour microenvironment for which hypoxia is a key feature. Here, we review emerging themes on how hypoxia contributes to immune suppression and obstructs anti-tumour effector cell functions. We discuss the challenges and opportunities relating to the potential for dually targeting hypoxia and the immune system to promote durable and favourable responses in cancer patients.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, United Kingdom
| | - Alvina G Lai
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, United Kingdom.
| |
Collapse
|
20
|
Avramović N, Mandić B, Savić-Radojević A, Simić T. Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics 2020; 12:E298. [PMID: 32218326 PMCID: PMC7238125 DOI: 10.3390/pharmaceutics12040298] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/10/2023] Open
Abstract
Conventional chemotherapy is the most common therapeutic method for treating cancer by the application of small toxic molecules thatinteract with DNA and causecell death. Unfortunately, these chemotherapeutic agents are non-selective and can damage both cancer and healthy tissues,producing diverse side effects, andthey can have a short circulation half-life and limited targeting. Many synthetic polymers have found application as nanocarriers of intelligent drug delivery systems (DDSs). Their unique physicochemical properties allow them to carry drugs with high efficiency,specificallytarget cancer tissue and control drug release. In recent years, considerable efforts have been made to design smart nanoplatforms, including amphiphilic block copolymers, polymer-drug conjugates and in particular pH- and redox-stimuli-responsive nanoparticles (NPs). This review is focused on a new generation of polymer-based DDSs with specific chemical functionalities that improve their hydrophilicity, drug loading and cellular interactions.Recentlydesigned multifunctional DDSs used in cancer therapy are highlighted in this review.
Collapse
Affiliation(s)
- Nataša Avramović
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Boris Mandić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Ana Savić-Radojević
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.S.-R.); (T.S.)
| | - Tatjana Simić
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.S.-R.); (T.S.)
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
21
|
Parveen S, Arjmand F, Tabassum S. Clinical developments of antitumor polymer therapeutics. RSC Adv 2019; 9:24699-24721. [PMID: 35528643 PMCID: PMC9069890 DOI: 10.1039/c9ra04358f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023] Open
Abstract
Polymer therapeutics encompasses polymer-drug conjugates that are nano-sized, multicomponent constructs already in the clinic as antitumor compounds, either as single agents or in combination with other organic drug scaffolds. Nanoparticle-based polymer-conjugated therapeutics are poised to become a leading delivery strategy for cancer treatments as they exhibit prolonged half-life, higher stability and selectivity, water solubility, longer clearance time, lower immunogenicity and antigenicity and often also specific targeting to tissues or cells. Compared to free drugs, polymer-tethered drugs preferentially accumulate in the tumor sites unlike conventional chemotherapy which does not discriminate between the cancer cells and healthy cells, thereby causing severe side-effects. It is also desirable that the drug reaches its site of action at a particular concentration and the therapeutic dose remains constant over a sufficiently long period of time. This can be achieved by opting for new formulations possessing polymeric systems of drug carriers. However, many challenges still remain unanswered in polymeric drug conjugates which need to be readdressed and therefore, can broaden the scope of this field. This review highlights some of the antitumor polymer therapeutics including polymer-drug conjugates, polymeric micelles, polymeric liposomes and other polymeric nanoparticles that are currently under investigation.
Collapse
Affiliation(s)
- Shazia Parveen
- Chemistry Department, Faculty of Science, Taibah University Yanbu Branch 46423 Yanbu Saudi Arabia +966 504522069
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 India
| |
Collapse
|
22
|
Gao C, Bhattarai P, Chen M, Zhang N, Hameed S, Yue X, Dai Z. Amphiphilic Drug Conjugates as Nanomedicines for Combined Cancer Therapy. Bioconjug Chem 2018; 29:3967-3981. [DOI: 10.1021/acs.bioconjchem.8b00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chuang Gao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Min Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Nisi Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin 150080, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
23
|
Ponzoni M, Curnis F, Brignole C, Bruno S, Guarnieri D, Sitia L, Marotta R, Sacchi A, Bauckneht M, Buschiazzo A, Rossi A, Di Paolo D, Perri P, Gori A, Sementa AR, Emionite L, Cilli M, Tamma R, Ribatti D, Pompa PP, Marini C, Sambuceti G, Corti A, Pastorino F. Enhancement of Tumor Homing by Chemotherapy-Loaded Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802886. [PMID: 30294852 DOI: 10.1002/smll.201802886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Targeted delivery of anticancer drugs with nanocarriers can reduce side effects and ameliorate therapeutic efficacy. However, poorly perfused and dysfunctional tumor vessels limit the transport of the payload into solid tumors. The use of tumor-penetrating nanocarriers might enhance tumor uptake and antitumor effects. A peptide containing a tissue-penetrating (TP) consensus motif, capable of recognizing neuropilin-1, is here fused to a neuroblastoma-targeting peptide (pep) previously developed. Neuroblastoma cell lines and cells derived from both xenografts and high-risk neuroblastoma patients show overexpression of neuropilin-1. In vitro studies reveal that TP-pep binds cell lines and cells derived from neuroblastoma patients more efficiently than pep. TP-pep, after coupling to doxorubicin-containing stealth liposomes (TP-pep-SL[doxorubicin]), enhances their uptake by cells and cytotoxic effects in vitro, while increasing tumor-binding capability and homing in vivo. TP-pep-SL[doxorubicin] treatment enhances the Evans Blue dye accumulation in tumors but not in nontumor tissues, pointing to selective increase of vascular permeability in tumor tissues. Compared to pep-SL[doxorubicin], TP-pep-SL[doxorubicin] shows an increased antineuroblastoma activity in three neuroblastoma animal models mimicking the growth of neuroblastoma in humans. The enhancement of drug penetration in tumors by TP-pep-targeted nanoparticles may represent an innovative strategy for neuroblastoma.
Collapse
Affiliation(s)
- Mirco Ponzoni
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Flavio Curnis
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Leopoldo Sitia
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Roberto Marotta
- Electron Microscopy Laboratory, Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Angelina Sacchi
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
| | - Andrea Rossi
- Department of Pathology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Daniela Di Paolo
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Alessandro Gori
- Dipartimento di Scienze Chimiche e Tecnologie dei Materiali, Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, 20131, Milan, Italy
| | - Angela R Sementa
- Department of Pathology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCSS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCSS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124, Bari, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16131, Genoa, Italy
- CNR Institute of Molecular Bioimaging and Physiology, 20133, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16131, Genoa, Italy
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Fabio Pastorino
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| |
Collapse
|
24
|
Wang Y, Yang P, Zhao X, Gao D, Sun N, Tian Z, Ma T, Yang Z. Multifunctional Cargo-Free Nanomedicine for Cancer Therapy. Int J Mol Sci 2018; 19:E2963. [PMID: 30274177 PMCID: PMC6213727 DOI: 10.3390/ijms19102963] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 01/06/2023] Open
Abstract
Nanocarriers encapsulating multiple chemotherapeutics are a promising strategy to achieve combinational chemotherapy for cancer therapy; however, they generally use exotic new carriers without therapeutic effect, which usually suffer from carrier-related toxicity issues, as well as having to pass extensive clinical trials to be drug excipients before any clinical applications. Cargo-free nanomedicines, which are fabricated by drugs themselves without new excipients and possess nanoscale characteristics to realize favorable pharmacokinetics and intracellular delivery, have been rapidly developed and drawn much attention to cancer treatment. Herein, we discuss recent advances of cargo-free nanomedicines for cancer treatment. After a brief introduction to the major types of carrier-free nanomedicine, some representative applications of these cargo-free nanomedicines are discussed, including combination therapy, immunotherapy, as well as self-monitoring of drug release. More importantly, this review draws a brief conclusion and discusses the future challenges of cargo-free nanomedicines from our perspective.
Collapse
Affiliation(s)
- Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Pengfei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xinrui Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Na Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tianyou Ma
- Institute of Endemic Diseases, Environment and Diseases-Related Gene of Key Laboratory of Education Ministry, Medical School of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- Department of Ophthalmology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Ribatti D, Tamma R. The chick embryo chorioallantoic membrane as an in vivo experimental model to study human neuroblastoma. J Cell Physiol 2018; 234:152-157. [DOI: 10.1002/jcp.26773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/27/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs University of Bari Medical School Bari Italy
- National Cancer Institute “Giovanni Paolo II” Bari Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs University of Bari Medical School Bari Italy
| |
Collapse
|
26
|
Befani C, Liakos P. The role of hypoxia‐inducible factor‐2 alpha in angiogenesis. J Cell Physiol 2018; 233:9087-9098. [DOI: 10.1002/jcp.26805] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/30/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Christina Befani
- Laboratory of Biochemistry Faculty of Medicine, University of Thessaly Larissa Greece
| | - Panagiotis Liakos
- Laboratory of Biochemistry Faculty of Medicine, University of Thessaly Larissa Greece
| |
Collapse
|
27
|
Nguyen F, Alferiev I, Guan P, Guerrero DT, Kolla V, Moorthy GS, Chorny M, Brodeur GM. Enhanced Intratumoral Delivery of SN38 as a Tocopherol Oxyacetate Prodrug Using Nanoparticles in a Neuroblastoma Xenograft Model. Clin Cancer Res 2018. [PMID: 29514842 DOI: 10.1158/1078-0432.ccr-17-3811] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purpose: Currently, <50% of high-risk pediatric solid tumors like neuroblastoma can be cured, and many survivors experience serious or life-threatening toxicities, so more effective, less toxic therapy is needed. One approach is to target drugs to tumors using nanoparticles, which take advantage of the enhanced permeability of tumor vasculature.Experimental Design: SN38, the active metabolite of irinotecan (CPT-11), is a potent therapeutic agent that is readily encapsulated in polymeric nanoparticles. Tocopherol oxyacetate (TOA) is a hydrophobic mitocan that was linked to SN38 to significantly increase hydrophobicity and enhance nanoparticle retention. We treated neuroblastomas with SN38-TOA nanoparticles and compared the efficacy with the parent prodrug CPT-11 using a mouse xenograft model.Results: Nanoparticle treatment induced prolonged event-free survival (EFS) in most mice, compared with CPT-11. This was shown for both SH-SY5Y and IMR-32 neuroblastoma xenografts. Enhanced efficacy was likely due to increased and sustained drug levels of SN38 in the tumor compared with conventional CPT-11 delivery. Interestingly, when recurrent CPT-11-treated tumors were re-treated with SN38-TOA nanoparticles, the tumors transformed from undifferentiated neuroblastomas to maturing ganglioneuroblastomas. Furthermore, these tumors were infiltrated with Schwann cells of mouse origin, which may have contributed to the differentiated histology.Conclusions: Nanoparticle delivery of SN38-TOA produced increased drug delivery and prolonged EFS compared to conventional delivery of CPT-11. Also, lower total dose and drug entrapment in nanoparticles during circulation should decrease toxicity. We propose that nanoparticle-based delivery of a rationally designed prodrug is an attractive approach to enhance chemotherapeutic efficacy in pediatric and adult tumors. Clin Cancer Res; 24(11); 2585-93. ©2018 AACR.
Collapse
Affiliation(s)
- Ferro Nguyen
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ivan Alferiev
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Peng Guan
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David T Guerrero
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Venkatadri Kolla
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ganesh S Moorthy
- Department of Anesthesiology and Critical Care, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael Chorny
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Garrett M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
28
|
Merk D, Schubert-Zsilavecz M. The Linker Approach. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527674381.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel Merk
- Goethe University Frankfurt; Institute of Pharmaceutical Chemistry; Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Manfred Schubert-Zsilavecz
- Goethe University Frankfurt; Institute of Pharmaceutical Chemistry; Max-von-Laue-Str. 9 60438 Frankfurt Germany
| |
Collapse
|
29
|
Chernov L, Deyell RJ, Anantha M, Dos Santos N, Gilabert‐Oriol R, Bally MB. Optimization of liposomal topotecan for use in treating neuroblastoma. Cancer Med 2017; 6:1240-1254. [PMID: 28544814 PMCID: PMC5463073 DOI: 10.1002/cam4.1083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
The purpose of this work was to develop an optimized liposomal formulation of topotecan for use in the treatment of patients with neuroblastoma. Drug exposure time studies were used to determine that topotecan (Hycamtin) exhibited great cytotoxic activity against SK-N-SH, IMR-32 and LAN-1 neuroblastoma human cell lines. Sphingomyelin (SM)/cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/Chol liposomes were prepared using extrusion methods and then loaded with topotecan by pH gradient and copper-drug complexation. In vitro studies showed that SM/Chol liposomes retained topotecan significantly better than DSPC/Chol liposomes. Decreasing the drug-to-lipid ratio engendered significant increases in drug retention. Dose-range finding studies on NRG mice indicated that an optimized SM/Chol liposomal formulation of topotecan prepared with a final drug-to-lipid ratio of 0.025 (mol: mol) was better tolerated than the previously described DSPC/Chol topotecan formulation. Pharmacokinetic studies showed that the optimized SM/Chol liposomal topotecan exhibited a 10-fold increase in plasma half-life and a 1000-fold increase in AUC0-24 h when compared with Hycamtin administered at equivalent doses (5 mg/kg). In contrast to the great extension in exposure time, SM/Chol liposomal topotecan increased the life span of mice with established LAN-1 neuroblastoma tumors only modestly in a subcutaneous and systemic model. The extension in exposure time may still not be sufficient and the formulation may require further optimization. In the future, liposomal topotecan will be assessed in combination with high-dose radiotherapy such as 131 I-metaiodobenzylguanidine, and immunotherapy treatment modalities currently used in neuroblastoma therapy.
Collapse
Affiliation(s)
- Lina Chernov
- Experimental TherapeuticsBC Cancer Agency675 West 10 AvenueVancouverBritish ColumbiaV5Z 1L3Canada
- Department of Pathology and Laboratory MedicineUniversity of British Columbia2211 Wesbrook MallVancouverBritish ColumbiaV6T 2B5Canada
| | - Rebecca J. Deyell
- Division of Pediatric Hematology/OncologyBritish Columbia Children's Hospital and the University of British Columbia4480 Oak StreetVancouverBritish ColumbiaV6H 3V4Canada
- Michael Cuccione Childhood Cancer Research ProgramBritish Columbia Children's Hospital Research Institute950 West 28 AvenueVancouverBritish ColumbiaV5Z 4H4Canada
| | - Malathi Anantha
- Experimental TherapeuticsBC Cancer Agency675 West 10 AvenueVancouverBritish ColumbiaV5Z 1L3Canada
| | - Nancy Dos Santos
- Experimental TherapeuticsBC Cancer Agency675 West 10 AvenueVancouverBritish ColumbiaV5Z 1L3Canada
| | - Roger Gilabert‐Oriol
- Experimental TherapeuticsBC Cancer Agency675 West 10 AvenueVancouverBritish ColumbiaV5Z 1L3Canada
| | - Marcel B. Bally
- Experimental TherapeuticsBC Cancer Agency675 West 10 AvenueVancouverBritish ColumbiaV5Z 1L3Canada
- Department of Pathology and Laboratory MedicineUniversity of British Columbia2211 Wesbrook MallVancouverBritish ColumbiaV6T 2B5Canada
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBritish ColumbiaV6T 1Z3Canada
- Centre for Drug Research and Development4‐2405 Wesbrook MallVancouverBritish ColumbiaV6T 1Z3Canada
| |
Collapse
|
30
|
Targeted drug distribution in tumor extracellular fluid of GD2-expressing neuroblastoma patient-derived xenografts using SN-38-loaded nanoparticles conjugated to the monoclonal antibody 3F8. J Control Release 2017; 255:108-119. [PMID: 28412222 DOI: 10.1016/j.jconrel.2017.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023]
Abstract
Neuroblastoma is a pediatric solid tumor with high expression of the tumor associated antigen disialoganglioside GD2. Despite initial response to induction therapy, nearly 50% of high-risk neuroblastomas recur because of chemoresistance. Here we encapsulated the topoisomerase-I inhibitor SN-38 in polymeric nanoparticles (NPs) surface-decorated with the anti-GD2 mouse mAb 3F8 at a mean density of seven antibody molecules per NP. The accumulation of drug-loaded NPs targeted with 3F8 versus with control antibody was monitored by microdialysis in patient-derived GD2-expressing neuroblastoma xenografts. We showed that the extent of tumor penetration by SN-38 was significantly higher in mice receiving the targeted nano-drug delivery system when compared to non-targeted system or free drug. This selective penetration of the tumor extracellular fluid translated into a strong anti-tumor effect prolonging survival of mice bearing GD2-high neuroblastomas in vivo.
Collapse
|
31
|
Abstract
SIGNIFICANCE There are a number of redox-active anticancer agents currently in development based on the premise that altered redox homeostasis is necessary for cancer cell's survival. Recent Advances: This review focuses on the relatively few agents that target cellular redox homeostasis to have entered clinical trial as anticancer drugs. CRITICAL ISSUES The success rate of redox anticancer drugs has been disappointing compared to other classes of anticancer agents. This is due, in part, to our incomplete understanding of the functions of the redox targets in normal and cancer tissues, leading to off-target toxicities and low therapeutic indexes of the drugs. The field also lags behind in the use biomarkers and other means to select patients who are most likely to respond to redox-targeted therapy. FUTURE DIRECTIONS If we wish to derive clinical benefit from agents that attack redox targets, then the future will require a more sophisticated understanding of the role of redox targets in cancer and the increased application of personalized medicine principles for their use. Antioxid. Redox Signal. 26, 262-273.
Collapse
Affiliation(s)
| | - Garth Powis
- 2 Sanford Burnham Prebys Medical Discovery Institute Cancer Center , La Jolla, California
| |
Collapse
|
32
|
Manaspon C, Nasongkla N, Chaimongkolnukul K, Nittayacharn P, Vejjasilpa K, Kengkoom K, Boongird A, Hongeng S. Injectable SN-38-loaded Polymeric Depots for Cancer Chemotherapy of Glioblastoma Multiforme. Pharm Res 2016; 33:2891-2903. [DOI: 10.1007/s11095-016-2011-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/29/2016] [Indexed: 01/19/2023]
|
33
|
Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 2016; 164:152-69. [PMID: 27139518 DOI: 10.1016/j.pharmthera.2016.04.009] [Citation(s) in RCA: 473] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insufficient tissue oxygenation, or hypoxia, contributes to tumor aggressiveness and has a profound impact on clinical outcomes in cancer patients. At decreased oxygen tensions, hypoxia-inducible factors (HIFs) 1 and 2 are stabilized and mediate a hypoxic response, primarily by acting as transcription factors. HIFs exert differential effects on tumor growth and affect important cancer hallmarks including cell proliferation, apoptosis, differentiation, vascularization/angiogenesis, genetic instability, tumor metabolism, tumor immune responses, and invasion and metastasis. As a consequence, HIFs mediate resistance to chemo- and radiotherapy and are associated with poor prognosis in cancer patients. Intriguingly, perivascular tumor cells can also express HIF-2α, thereby forming a "pseudohypoxic" phenotype that further contributes to tumor aggressiveness. Therefore, therapeutic targeting of HIFs in cancer has the potential to improve treatment efficacy. Different strategies to target hypoxic cancer cells and/or HIFs include hypoxia-activated prodrugs and inhibition of HIF dimerization, mRNA or protein expression, DNA binding capacity, and transcriptional activity. Here we review the functions of HIFs in the progression and treatment of malignant solid tumors. We also highlight how HIFs may be targeted to improve the management of patients with therapy-resistant and metastatic cancer.
Collapse
Affiliation(s)
- Caroline Wigerup
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden
| | - Sven Påhlman
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden.
| | - Daniel Bexell
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden
| |
Collapse
|
34
|
HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood 2016; 127:1987-97. [PMID: 26825709 DOI: 10.1182/blood-2015-07-657056] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible transcription factors (HIFs) regulate a wide array of adaptive responses to hypoxia and are often activated in solid tumors and hematologic malignancies due to intratumoral hypoxia and emerging new layers of regulation. We found that in chronic lymphocytic leukemia (CLL), HIF-1α is a novel regulator of the interaction of CLL cells with protective leukemia microenvironments and, in turn, is regulated by this interaction in a positive feedback loop that promotes leukemia survival and propagation. Through unbiased microarray analysis, we found that in CLL cells, HIF-1α regulates the expression of important chemokine receptors and cell adhesion molecules that control the interaction of leukemic cells with bone marrow and spleen microenvironments. Inactivation of HIF-1α impairs chemotaxis and cell adhesion to stroma, reduces bone marrow and spleen colonization in xenograft and allograft CLL mouse models, and prolongs survival in mice. Of interest, we found that in CLL cells, HIF-1α is transcriptionally regulated after coculture with stromal cells. Furthermore, HIF-1α messenger RNA levels vary significantly within CLL patients and correlate with the expression of HIF-1α target genes, including CXCR4, thus further emphasizing the relevance of HIF-1α expression to CLL pathogenesis.
Collapse
|
35
|
Dai L, Liu J, Luo Z, Li M, Cai K. Tumor therapy: targeted drug delivery systems. J Mater Chem B 2016; 4:6758-6772. [DOI: 10.1039/c6tb01743f] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the main targeted drug delivery systems for tumor therapy, including the targeting sites, strategies, mechanisms and preclinical/clinical trials.
Collapse
Affiliation(s)
- Liangliang Dai
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Junjie Liu
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Menghuan Li
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College of Bioengineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
36
|
Musumeci G, Castorina A, Magro G, Cardile V, Castorina S, Ribatti D. Enhanced expression of CD31/platelet endothelial cell adhesion molecule 1 (PECAM1) correlates with hypoxia inducible factor-1 alpha (HIF-1α) in human glioblastoma multiforme. Exp Cell Res 2015; 339:407-16. [PMID: 26376118 DOI: 10.1016/j.yexcr.2015.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM) is characterized by numerous abnormal blood vessels, which rapidly proliferate and invade brain tissue and express different angiogenic factors. In this study we have investigated whether the expression levels of CD31/ PECAM1 are deregulated in human GBM tissue specimens and we have also correlated the expression levels of CD31/PECAM1 with those of HIF-1α. Finally, we have established a correlation between the expression levels of CD31/PECAM1 and HIF-1α, and those of two other biomarkers, namely N-cadherin and ADAM-10, of aggressiveness in the same tumors. Results have shown an increased expression of CD31/PECAM1 correlated to HIF-1α expression, confirming evidence demonstrating that different types of tumor are able to trigger aberrant angiogenesis through HIF-1α. Moreover, we also established a further correlation among CD31/PECAM1 and HIF-1α and N-cadherin and ADAM-10, two other markers of aggressiveness in the same tumors.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Alessandro Castorina
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", Section of Anatomic Pathology, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Vera Cardile
- Department of Biomedical Sciences and Biotechnologies, Section of Physiology, University of Catania, Via S. Sofia 87, 95125 Catania, Italy
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, School of Medicine, University of Catania, 95123 Catania, Italy; Neurosurgery Unit, Fondazione Mediterranea "G.B. Morgagni", Catania, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Medical School, Policlinico - Piazza G. Cesare, 11, 70124 Bari, Italy; National Cancer Institute "Giovanni Paolo II", 70124 Bari, Italy.
| |
Collapse
|
37
|
Wagner LM. Fifteen years of irinotecan therapy for pediatric sarcoma: where to next? Clin Sarcoma Res 2015; 5:20. [PMID: 26322224 PMCID: PMC4552408 DOI: 10.1186/s13569-015-0035-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/22/2015] [Indexed: 12/31/2022] Open
Abstract
Over the past 15 years, irinotecan has emerged as an important agent for treating pediatric sarcoma patients. This review summarizes the activity noted in previous studies, and outlines current issues regarding scheduling, route of administration, and amelioration of side effects. Also discussed are new pegylated and nanoliposomal formulations of irinotecan and its active metabolite, SN-38, as well as future plans for how irinotecan may be used in combination with other conventional cytotoxic as well as targeted agents.
Collapse
Affiliation(s)
- Lars M Wagner
- Division of Pediatric Hematology/Oncology, Kentucky Clinic Suite, University of Kentucky, J-457, Lexington, KY 40536 USA
| |
Collapse
|
38
|
Cossu I, Bottoni G, Loi M, Emionite L, Bartolini A, Di Paolo D, Brignole C, Piaggio F, Perri P, Sacchi A, Curnis F, Gagliani MC, Bruno S, Marini C, Gori A, Longhi R, Murgia D, Sementa AR, Cilli M, Tacchetti C, Corti A, Sambuceti G, Marchiò S, Ponzoni M, Pastorino F. Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials 2015; 68:89-99. [PMID: 26276694 DOI: 10.1016/j.biomaterials.2015.07.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022]
Abstract
Selective tumor targeting is expected to enhance drug delivery and to decrease toxicity, resulting in an improved therapeutic index. We have recently identified the HSYWLRS peptide sequence as a specific ligand for aggressive neuroblastoma, a childhood tumor mostly refractory to current therapies. Here we validated the specific binding of HSYWLRS to neuroblastoma cell suspensions obtained either from cell lines, animal models, or Schwannian-stroma poor, stage IV neuroblastoma patients. Binding of the biotinylated peptide and of HSYWLRS-functionalized fluorescent quantum dots or liposomal nanoparticles was dose-dependent and inhibited by an excess of free peptide. In animal models obtained by the orthotopic implant of either MYCN-amplified or MYCN single copy human neuroblastoma cell lines, treatment with HSYWLRS-targeted, doxorubicin-loaded Stealth Liposomes increased tumor vascular permeability and perfusion, enhancing tumor penetration of the drug. This formulation proved to exert a potent antitumor efficacy, as evaluated by bioluminescence imaging and micro-PET, leading to (i) delay of tumor growth paralleled by decreased tumor glucose consumption, and (ii) abrogation of metastatic spreading, accompanied by absence of systemic toxicity and significant increase in the animal life span. Our findings are functional to the design of targeted nanocarriers with potentiated therapeutic efficacy towards the clinical translation.
Collapse
Affiliation(s)
- Irene Cossu
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy
| | - Gianluca Bottoni
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Monica Loi
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Alice Bartolini
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute-IRCCS, Candiolo, Italy
| | | | | | | | - Patrizia Perri
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy
| | - Angelina Sacchi
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Flavio Curnis
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Cecilia Marini
- Genoa Section, CNR Institute of Bioimages and Molecular Physiology, Milan, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Renato Longhi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Daniele Murgia
- Department of Pathology, Istituto G. Gaslini, Genoa, Italy
| | | | - Michele Cilli
- Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Carlo Tacchetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Experimental Imaging Center, Scientific Institute San Raffaele, Milan, Italy
| | - Angelo Corti
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Serena Marchiò
- Laboratory of Tumor Microenvironment, Candiolo Cancer Institute-IRCCS, Candiolo, Italy; Department of Oncology, University of Torino, Italy
| | - Mirco Ponzoni
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy.
| | - Fabio Pastorino
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy.
| |
Collapse
|
39
|
Dondero A, Pastorino F, Della Chiesa M, Corrias MV, Morandi F, Pistoia V, Olive D, Bellora F, Locatelli F, Castellano A, Moretta L, Moretta A, Bottino C, Castriconi R. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Oncoimmunology 2015; 5:e1064578. [PMID: 26942080 DOI: 10.1080/2162402x.2015.1064578] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 01/24/2023] Open
Abstract
The prognosis of high-risk neuroblastoma (NB) remains poor, although immunotherapies with anti-GD2 antibodies have been reported to provide some benefit. Immunotherapies can be associated with an IFNγ storm that induces in tumor cells the "adaptive immune resistance" characterized by the de-novo expression of Programmed Death Ligands (PD-Ls). Tumor cells can also constitutively express PD-Ls in response to oncogenic signaling. Here, we analyze the constitutive and the inducible surface expression of PD-Ls in NB cells. We show that virtually all HLA class Ipos NB cell lines constitutively express PD-L1, whereas PD-L2 is rarely detected. IFNγ upregulates or induces PD-L1 both in NB cell lines in vitro and in NB engrafted nude/nude mice. Importantly, after IFNγ stimulation PD-L1 can be acquired by NB cell lines, as well as by metastatic neuroblasts isolated from bone marrow aspirates of high-risk NB patients, characterized by different MYCN amplification status. Interestingly, in one patient NB cells were poorly responsive to IFNγ stimulation, pointing out that responsiveness to IFNγ might represent a further element of heterogeneity in metastatic neuroblasts. Finally, we document the presence of lymphocytes expressing the PD-1 receptor in NB-infiltrated bone marrow of patients. PD-1pos cells are mainly represented by αβ T cells, but also include small populations of γδ T cells and NK cells. Moreover, PD-1pos T cells have a higher expression of activation markers. Overall, our data show that a PD-L1-mediated immune resistance mechanism occurs in metastatic neuroblasts and provide a biological rationale for blocking the PD-1/PD-Ls axis in future combined immunotherapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Dondero
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Italy
| | - Fabio Pastorino
- Istituto Giannina Gaslini, Laboratorio di Oncologia , Genova, Italy
| | | | | | - Fabio Morandi
- Istituto Giannina Gaslini, Laboratorio di Oncologia , Genova, Italy
| | - Vito Pistoia
- Istituto Giannina Gaslini, Laboratorio di Oncologia , Genova, Italy
| | - Daniel Olive
- CRCM, Team Immunity and Cancer, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS , UM 105, U1068, UMR7258 , Marseille, France
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Italy
| | - Franco Locatelli
- Università di Pavia and Dipartimento di Onco-Ematologia Pediatrica, Ospedale Bambino Gesù , Roma, Italy
| | - Aurora Castellano
- Università di Pavia and Dipartimento di Onco-Ematologia Pediatrica, Ospedale Bambino Gesù , Roma, Italy
| | - Lorenzo Moretta
- Istituto Giannina Gaslini, Laboratorio di Oncologia , Genova, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Viale Benedetto XV, Genova, Italy
| | - Cristina Bottino
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Italy; Istituto Giannina Gaslini, Laboratorio di Oncologia, Genova, Italy
| | - Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Viale Benedetto XV, Genova, Italy
| |
Collapse
|
40
|
Coltella N, Valsecchi R, Ponente M, Ponzoni M, Bernardi R. Synergistic Leukemia Eradication by Combined Treatment with Retinoic Acid and HIF Inhibition by EZN-2208 (PEG-SN38) in Preclinical Models of PML-RARα and PLZF-RARα-Driven Leukemia. Clin Cancer Res 2015; 21:3685-94. [PMID: 25931453 DOI: 10.1158/1078-0432.ccr-14-3022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/24/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Retinoic acid-arsenic trioxide (ATRA-ATO) combination therapy is the current standard of care for patients with acute promyelocytic leukemia (APL) carrying the oncogenic fusion protein PML-RARα. Despite the high cure rates obtained with this drug combination, resistance to arsenic is recently emerging. Moreover, patients with APL carrying the PLZF-RARα fusion protein are partially resistant to ATRA treatment. Hypoxia-inducible factor-1α (HIF-1α) activation has been recently reported in APL, and EZN-2208 (PEG-SN38) is a compound with HIF-1α inhibitory function currently tested in clinical trials. This study investigates the effect of EZN-2208 in different preclinical APL models, either alone or in combination with ATRA. EXPERIMENTAL DESIGN Efficacy of EZN-2208 in APL was measured in vitro by assessing expression of HIF-1α target genes, cell migration, clonogenicity, and differentiation, vis a vis the cytotoxic and cytostatic effects of this compound. In vivo, EZN-2208 was used in mouse models of APL driven by PML-RARα or PLZF-RARα, either alone or in combination with ATRA. RESULTS Treatment of APL cell lines with noncytotoxic doses of EZN-2208 causes dose-dependent downregulation of HIF-1α bona fide target genes and affects cell migration and clonogenicity in methylcellulose. In vivo, EZN-2208 impairs leukemia progression and prolongs mice survival in APL mouse models. More importantly, when used in combination with ATRA, EZN-2208 synergizes in debulking leukemia and eradicating leukemia-initiating cells. CONCLUSIONS Our preclinical data suggest that the combination ATRA-EZN-2208 may be tested to treat patients with APL who develop resistance to ATO or patients carrying the PLZF-RARα fusion protein.
Collapse
Affiliation(s)
- Nadia Coltella
- Laboratory of Pre-clinical Models of Cancer, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy. Leukemia Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Roberta Valsecchi
- Laboratory of Pre-clinical Models of Cancer, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy. Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Manfredi Ponente
- Laboratory of Pre-clinical Models of Cancer, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy. Vita-Salute San Raffaele University, Milan, Italy
| | - Maurilio Ponzoni
- Leukemia Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. Vita-Salute San Raffaele University, Milan, Italy. Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosa Bernardi
- Laboratory of Pre-clinical Models of Cancer, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy. Leukemia Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
41
|
Alferiev IS, Iyer R, Croucher JL, Adamo RF, Zhang K, Mangino JL, Kolla V, Fishbein I, Brodeur GM, Levy RJ, Chorny M. Nanoparticle-mediated delivery of a rapidly activatable prodrug of SN-38 for neuroblastoma therapy. Biomaterials 2015; 51:22-29. [PMID: 25770994 DOI: 10.1016/j.biomaterials.2015.01.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 12/12/2022]
Abstract
Nanomedicine-based strategies have the potential to improve therapeutic performance of a wide range of anticancer agents. However, the successful implementation of nanoparticulate delivery systems requires the development of adequately sized nanocarriers delivering their therapeutic cargo to the target in a protected, pharmacologically active form. The present studies focused on a novel nanocarrier-based formulation strategy for SN-38, a topoisomerase I inhibitor with proven anticancer potential, whose clinical application is compromised by toxicity, poor stability and incompatibility with conventional delivery vehicles. SN-38 encapsulated in biodegradable sub-100 nm sized nanoparticles (NP) in the form of its rapidly activatable prodrug derivative with tocopherol succinate potently inhibited the growth of neuroblastoma cells in a dose- and exposure time-dependent manner, exhibiting a delayed response pattern distinct from that of free SN-38. In a xenograft model of neuroblastoma, prodrug-loaded NP caused rapid regression of established large tumors, significantly delayed tumor regrowth after treatment cessation and markedly extended animal survival. The NP formulation strategy enabled by a reversible chemical modification of the drug molecule offers a viable means for SN-38 delivery achieving sustained intratumoral drug levels and contributing to the potency and extended duration of antitumor activity, both prerequisites for effective treatment of neuroblastoma and other cancers.
Collapse
Affiliation(s)
- Ivan S Alferiev
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Radhika Iyer
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jamie L Croucher
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Richard F Adamo
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kehan Zhang
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer L Mangino
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Venkatadri Kolla
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ilia Fishbein
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Garrett M Brodeur
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Robert J Levy
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael Chorny
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Iyer R, Croucher JL, Chorny M, Mangino JL, Alferiev IS, Levy RJ, Kolla V, Brodeur GM. Nanoparticle delivery of an SN38 conjugate is more effective than irinotecan in a mouse model of neuroblastoma. Cancer Lett 2015; 360:205-12. [PMID: 25684664 DOI: 10.1016/j.canlet.2015.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common and deadly solid tumor in children. The majority of NB patients have advanced stage disease with poor prognosis, so more effective, less toxic therapy is needed. We developed a novel nanocarrier-based strategy for tumor-targeted delivery of a prodrug of SN38, the active metabolite of irinotecan. We formulated ultrasmall-sized (<100 nm) biodegradable poly(lactide)-poly(ethylene glycol) based nanoparticles (NPs) containing SN38 conjugated to tocopherol succinate (SN38-TS). Alternative dosing schedules of SN38-TS NPs were compared to irinotecan. Comparison of SN38-TS NPs (2 doses) with irinotecan (20 doses) showed equivalent efficacy but no cures. Comparison of SN38-TS NPs (8, 8, and 16 doses, respectively) to irinotecan (40 doses) showed that all SN38-TS NP regimens were far superior to irinotecan, and "cures" were obtained in all NP arms. SN38-TS NP delivery resulted in 200× the amount of SN38 in NB tumors at 4 hr post-treatment, compared to SN38 detected for the irinotecan arm; no toxicity was seen with NPs. We conclude that this SN38-TS NP formulation improved delivery, retention, and efficacy, without causing systemic toxicity.
Collapse
Affiliation(s)
- Radhika Iyer
- Division of Oncology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Jamie L Croucher
- Division of Oncology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Michael Chorny
- Division of Cardiology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer L Mangino
- Division of Oncology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Ivan S Alferiev
- Division of Cardiology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert J Levy
- Division of Cardiology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Venkatadri Kolla
- Division of Oncology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Norris RE, Shusterman S, Gore L, Muscal JA, Macy ME, Fox E, Berkowitz N, Buchbinder A, Bagatell R. Phase 1 evaluation of EZN-2208, a polyethylene glycol conjugate of SN38, in children adolescents and young adults with relapsed or refractory solid tumors. Pediatr Blood Cancer 2014; 61:1792-7. [PMID: 24962521 DOI: 10.1002/pbc.25105] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND EZN-2208 is a water-soluble PEGylated conjugate of the topoisomerase inhibitor SN38, the active metabolite of irinotecan. Compared to irinotecan, EZN-2208 has a prolonged half-life permitting extended exposure to SN38. EZN-2208 has demonstrated clinical tolerability and antitumor activity in adults with advanced solid tumors. This Phase 1 study evaluated the safety, pharmacokinetics, and preliminary antitumor activity of EZN-2208 in children with relapsed or refractory solid tumors. PROCEDURE EZN-2208 was administered as a 1-hour intravenous infusion once every 21 days at five dose levels (12-30 mg/m(2) ). Filgrastim or pegfilgrastim was administered 24-48 hours after treatment with EZN-2208. The rolling-six design was used for dose determination. RESULTS Thirty eligible patients (15 females; median [range] age 11.5 years [2-21 years]) were treated with EZN-2208. Dose-limiting diarrhea occurred in one patient receiving 16 mg/m(2) and dose-limiting dehydration was seen in one patient receiving 24 mg/m(2) . At dose levels above 16 mg/m(2) , Grade ≥3 myelosuppression was demonstrated in the majority of patients. Additional adverse events included nausea, vomiting, and fatigue. The maximum tolerated dose was identified as 24 mg/m(2) due to dose-limiting thrombocytopenia in two patients receiving 30 mg/m(2) . Two of nine patients with neuroblastoma who were evaluable for response had partial responses. Five patients (four with neuroblastoma) remained on study for ≥8 cycles. CONCLUSIONS EZN-2208 was generally well-tolerated and was associated with clinical benefit in patients with neuroblastoma.
Collapse
Affiliation(s)
- Robin E Norris
- Division of Pediatric Hematology/Oncology, University Hospitals Case Medical Center Rainbow Babies & Children's Hospital, Cleveland, Ohio
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Alemany C. Etirinotecan pegol: development of a novel conjugated topoisomerase I inhibitor. Curr Oncol Rep 2014; 16:367. [PMID: 24445499 DOI: 10.1007/s11912-013-0367-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Irinotecan is a very active chemotherapeutic agent used for the treatment of several malignancies, including colorectal cancer, gastroesophageal tumors, lung cancer, breast cancer, ovarian cancer, and primary brain tumors. Irinotecan exerts its antineoplastic effects through its active metabolite 7-ethyl-10-hydroxycamptothecin. This metabolite is also responsible for the classic side effects associated with irinotecan that include diarrhea and neutropenia. A pegylated form of this agent, etirinotecan pegol, is undergoing clinical development with the main goal of increasing its therapeutic efficacy and its safety. This agent decreases the maximal exposure to 7-ethyl-10-hydroxycamptothecin while providing continuous exposure to the treated tumor. The half-life of etirinotecan pegol is 50 days and it has been studied in different schedules: weekly, every other week, and once every 3 weeks. The maximum tolerated dose of etirinotecan pegol was found to be 145 mg/m(2). There have already been two phase II clinical trials published showing the efficacy of this novel agent in the treatment of metastatic ovarian and breast cancer. The side effect profile was acceptable for most patients, with a number of patients experiencing diarrhea and even neutropenia.
Collapse
Affiliation(s)
- Carlos Alemany
- Department of Hematology and Oncology, Florida Hospital Cancer Institute, 2501 N. Orange Avenue, Suite 689, Orlando, FL, 32804, USA,
| |
Collapse
|
45
|
Sosnik A, Carcaboso AM. Nanomedicines in the future of pediatric therapy. Adv Drug Deliv Rev 2014; 73:140-61. [PMID: 24819219 DOI: 10.1016/j.addr.2014.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 01/02/2023]
Abstract
Nanotechnology has become a key tool to overcome the main (bio)pharmaceutical drawbacks of drugs and to enable their passive or active targeting to specific cells and tissues. Pediatric therapies usually rely on the previous clinical experience in adults. However, there exists scientific evidence that drug pharmacokinetics and pharmacodynamics in children differ from those in adults. For example, the interaction of specific drugs with their target receptors undergoes changes over the maturation of the different organs and systems. A similar phenomenon is observed for toxicity and adverse effects. Thus, it is clear that the treatment of disease in children cannot be simplified to the direct adjustment of the dose to the body weight/surface. In this context, the implementation of innovative technologies (e.g., nanotechnology) in the pediatric population becomes extremely challenging. The present article overviews the different attempts to use nanotechnology to treat diseases in the pediatric population. Due to the relevance, though limited available literature on the matter, we initially describe from preliminary in vitro studies to preclinical and clinical trials aiming to treat pediatric infectious diseases and pediatric solid tumors by means of nanotechnology. Then, the perspectives of pediatric nanomedicine are discussed.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Angel M Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona 08950, Spain
| |
Collapse
|
46
|
Saletta F, Wadham C, Ziegler DS, Marshall GM, Haber M, McCowage G, Norris MD, Byrne JA. Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA CLINICAL 2014; 1:59-77. [PMID: 26675306 PMCID: PMC4633945 DOI: 10.1016/j.bbacli.2014.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. SCOPE OF REVIEW This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. MAJOR CONCLUSIONS There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. GENERAL SIGNIFICANCE The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- ARMS, alveolar rhabdomyosarcoma
- AT/RT, atypical teratoid/rhabdoid tumor
- AURKA, aurora kinase A
- AURKB, aurora kinase B
- BET, bromodomain and extra terminal
- Biomarkers
- CAR, chimeric antigen receptor
- CML, chronic myeloid leukemia
- Childhood cancer
- DFMO, difluoromethylornithine
- DIPG, diffuse intrinsic pontine glioma
- EGFR, epidermal growth factor receptor
- ERMS, embryonal rhabdomyosarcoma
- HDAC, histone deacetylases
- Hsp90, heat shock protein 90
- IGF-1R, insulin-like growth factor type 1 receptor
- IGF/IGFR, insulin-like growth factor/receptor
- Molecular diagnostics
- NSCLC, non-small cell lung cancer
- ODC1, ornithine decarboxylase 1
- PARP, poly(ADP-ribose) polymerase
- PDGFRA/B, platelet derived growth factor alpha/beta
- PI3K, phosphatidylinositol 3′-kinase
- PLK1, polo-like kinase 1
- Ph +, Philadelphia chromosome-positive
- RMS, rhabdomyosarcoma
- SHH, sonic hedgehog
- SMO, smoothened
- SYK, spleen tyrosine kinase
- TOP1/TOP2, DNA topoisomerase 1/2
- TRAIL, TNF-related apoptosis-inducing ligand
- Targeted therapy
- VEGF/VEGFR, vascular endothelial growth factor/receptor
- mAb, monoclonal antibody
- mAbs, monoclonal antibodies
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Federica Saletta
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Geoffrey McCowage
- The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| | - Murray D. Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Jennifer A. Byrne
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
- The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| |
Collapse
|
47
|
Clas SD, Sanchez RI, Nofsinger R. Chemistry-enabled drug delivery (prodrugs): recent progress and challenges. Drug Discov Today 2014; 19:79-87. [DOI: 10.1016/j.drudis.2013.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/31/2013] [Accepted: 08/19/2013] [Indexed: 01/01/2023]
|
48
|
Ikeda Y, Nagasaki Y. Impacts of PEGylation on the gene and oligonucleotide delivery system. J Appl Polym Sci 2013. [DOI: 10.1002/app.40293] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yutaka Ikeda
- Department of Materials Sciences; Graduate School of Pure and Applied Sciences, University of Tsukuba; Ibaraki 305-8573 Japan
| | - Yukio Nagasaki
- Department of Materials Sciences; Graduate School of Pure and Applied Sciences, University of Tsukuba; Ibaraki 305-8573 Japan
- Master's School of Medical Sciences; Graduate School of Comprehensive Human Sciences, University of Tsukuba; Ibaraki 305-8573 Japan
- Satellite Laboratory; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute of Materials Science (NIMS); Tennodai 1-1-1, Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
49
|
Garrett CR, Bekaii-Saab TS, Ryan T, Fisher GA, Clive S, Kavan P, Shacham-Shmueli E, Buchbinder A, Goldberg RM. Randomized phase 2 study of pegylated SN-38 (EZN-2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer. Cancer 2013; 119:4223-30. [PMID: 24105075 DOI: 10.1002/cncr.28358] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/08/2013] [Accepted: 07/26/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Irinotecan is cytotoxic in patients with advanced colorectal cancer (CRC). SN-38 (10-hydroxy-7-ethyl-camptothecin) is the active metabolite of irinotecan. Attachment of polyethylene glycol (PEG) polymer chains (pegylation) to SN-38 (EZN-2208) increases the solubility, exposure, and half-life of SN-38. Preclinical studies demonstrated superior in vitro efficacy of EZN-2208 when it was tested in irinotecan-refractory human CRC cell lines. METHODS Patients with metastatic or locally recurrent CRC who had previously received 5-flurouracil (5-FU), oxaliplatin, and irinotecan were assigned to receive EZN-2208 monotherapy (9 mg/m(2) on days 1, 8, and 15 every 28 days for patients with KRAS-mutant tumors only [arm A]), and patients with KRAS wild-type tumors were randomized (2:1) to receive either EZN-2208 plus cetuximab (400 mg/m(2) loading dose on day 1 followed by 250 mg/m(2) weekly starting on day 8 [arm B]) or irinotecan 125 mg/m(2) on days 1 and 8 every 21 days plus cetuximab at the same doses indicated above (arm C). RESULTS The overall response rate and progression-free survival were 0% and 1.8 months, respectively, in arm A; 10.7% and 4.9 months (95% confidence interval [CI], 3.2-5.8 months), respectively, in arm B; and 14.3% and 3.7 months (95% CI, 2.1-5.8 months), respectively, in arm C. EZN-2208 was well tolerated in combination with cetuximab. No statistically significant difference in survival was observed between arm B (9.8 months; 95% CI, 7.2-11.2 months) and arm C (9.1 months; 95% CI, 6.0-13.0 months). CONCLUSIONS EZN-2208, either as monotherapy or in combination with cetuximab, was well tolerated in patients with refractory CRC. Overall survival and progression-free survival were similar in the cetuximab plus irinotecan arm and the EZN-2208 arm.
Collapse
Affiliation(s)
- Christopher R Garrett
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rizzi M, Pittarella P, Sabbatini M, Renò F. Epiregulin induces human SK-N-BE cell differentiation through ERK1/2 signaling pathway. Growth Factors 2013; 31:90-7. [PMID: 23734838 DOI: 10.3109/08977194.2013.795958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epidermal growth factor (EGF) and other EGF-related growth factors, such as transforming growth factor-α, are able to stimulate neuroblastoma (NB) cell proliferation. Epiregulin (Epi) is a growth factor belonging to the EGF family known to be more potent than EGF in mediating mitogenic signals. In this study, we tested the ability of Epi to stimulate a human NB cell line (SK-N-BE) proliferation. Surprisingly, Epi (50-1000 ng/ml) induced a reduction in SK-N-BE proliferation along with a morphological differentiation, associated with an increase in MMP-9 expression. Moreover, Epi-induced differentiation was inhibited by ERK1/2 phosphorilation inhibition. In conclusion, Epi could represent a novel and useful tool to oppose NB cell proliferation.
Collapse
Affiliation(s)
- Manuela Rizzi
- Health Sciences Department, University of Eastern Piedmont A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | | | | | | |
Collapse
|