1
|
Wang L, Qiu Q, Yang D, Cao C, Lu Y, Zeng Y, Jiang W, Shen Y, Ye Y. Clinical research progress of ridaforolimus (AP23573, MK8668) over the past decade: a systemic review. Front Pharmacol 2024; 15:1173240. [PMID: 38584599 PMCID: PMC10995224 DOI: 10.3389/fphar.2024.1173240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/19/2024] [Indexed: 04/09/2024] Open
Abstract
Rapamycin, an established mTOR inhibitor in clinical practice, is widely recognized for its therapeutic efficacy. Ridaforolimus, a non-prodrug rapalog, offers improved aqueous solubility, stability, and affinity compared to rapamycin. In recent years, there has been a surge in clinical trials involving ridaforolimus. We searched PubMed for ridaforolimus over the past decade and selected clinical trials of ridaforolimus to make a summary of the research progress of ridaforolimus in clinical trials. The majority of these trials explored the application of ridaforolimus in treating various tumors, including endometrial cancer, ovarian cancer, prostate cancer, breast cancer, renal cell carcinoma, and other solid tumors. These trials employed diverse drug combinations, incorporating agents such as ponatinib, bicalutamide, dalotuzumab, MK-2206, MK-0752, and taxanes. The outcomes of these trials unveiled the diverse potential applications of ridaforolimus in disease treatment. Our review encompassed analyses of signaling pathways, ridaforolimus as a single therapeutic agent, its compatibility in combination with other drugs, and an assessment of adverse events (AEs). We conclude by recommending further research to advance our understanding of ridaforolimus's clinical applications.
Collapse
Affiliation(s)
- Lumin Wang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Qining Qiu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dawei Yang
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang Cao
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Yanqin Lu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Yulan Zeng
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Weiwen Jiang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanrong Ye
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Moreno L, DuBois SG, Glade Bender J, Mauguen A, Bird N, Buenger V, Casanova M, Doz F, Fox E, Gore L, Hawkins DS, Izraeli S, Jones DT, Kearns PR, Molenaar JJ, Nysom K, Pfister S, Reaman G, Smith M, Weigel B, Vassal G, Zwaan CM, Paoletti X, Iasonos A, Pearson AD. Combination Early-Phase Trials of Anticancer Agents in Children and Adolescents. J Clin Oncol 2023; 41:3408-3422. [PMID: 37015036 PMCID: PMC10414747 DOI: 10.1200/jco.22.02430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/07/2023] [Indexed: 04/06/2023] Open
Abstract
PURPOSE There is an increasing need to evaluate innovative drugs for childhood cancer using combination strategies. Strong biological rationale and clinical experience suggest that multiple agents will be more efficacious than monotherapy for most diseases and may overcome resistance mechanisms and increase synergy. The process to evaluate these combination trials needs to maximize efficiency and should be agreed by all stakeholders. METHODS After a review of existing combination trial methodologies, regulatory requirements, and current results, a consensus among stakeholders was achieved. RESULTS Combinations of anticancer therapies should be developed on the basis of mechanism of action and robust preclinical evaluation, and may include data from adult clinical trials. The general principle for combination early-phase studies is that, when possible, clinical trials should be dose- and schedule-confirmatory rather than dose-exploratory, and every effort should be made to optimize doses early. Efficient early-phase combination trials should be seamless, including dose confirmation and randomized expansion. Dose evaluation designs for combinations depend on the extent of previous knowledge. If not previously evaluated, limited evaluation of monotherapy should be included in the same clinical trial as the combination. Randomized evaluation of a new agent plus standard therapy versus standard therapy is the most effective approach to isolate the effect and toxicity of the novel agent. Platform trials may be valuable in the evaluation of combination studies. Patient advocates and regulators should be engaged with investigators early in a proposed clinical development pathway and trial design must consider regulatory requirements. CONCLUSION An optimized, agreed approach to the design and evaluation of early-phase pediatric combination trials will accelerate drug development and benefit all stakeholders, most importantly children and adolescents with cancer.
Collapse
Affiliation(s)
- Lucas Moreno
- Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Steven G. DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | | | | | - Nick Bird
- Solving Kids' Cancer UK, London, United Kingdom
| | - Vickie Buenger
- Coalition Against Childhood Cancer (CAC2), Philadelphia, PA
| | | | - François Doz
- Université Paris Cité, Paris, France
- SIREDO Centre (Care, Innovation Research in Pediatric, Adolescent and Young Adults Oncology), Institut Curie, Paris, France
| | | | - Lia Gore
- Children's Hospital Colorado, Aurora, CO
- University of Colorado, Aurora, CO
| | | | - Shai Izraeli
- Rina Zaizov Pediatric Hematology Oncology Division, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Hematological Malignancies Centre of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David T.W. Jones
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Pamela R. Kearns
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pharmaceutical Sciences Utrecht University, Utrecht, the Netherlands
| | - Jan J. Molenaar
- Division of Pediatric Neurooncology, DKFZ, KiTZ
- Righospitalet, Copenhagen, Denmark
| | - Karsten Nysom
- Clinical Trial Unit and Childhood Brain Tumors, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | - Gilles Vassal
- Innovative Therapies for Children with Cancer, Paris, France
- ACCELERATE, Brussels, Belgium
- Gustave Roussy Cancer Centre, Paris, France
| | - Christian Michel Zwaan
- Righospitalet, Copenhagen, Denmark
- Department of Pediatric Oncology, Hematology, Erasmus MC, Sophia Children’s Hospital, the Netherlands
| | | | | | - Andrew D.J. Pearson
- Innovative Therapies for Children with Cancer, Paris, France
- ACCELERATE, Brussels, Belgium
| |
Collapse
|
3
|
Liu LY, Teng JMC, Spunt SL, Strelo JL, Kwong BY, Zaba LC. Dermatologic toxicities of targeted antineoplastic agents and immune checkpoint inhibitor therapy in pediatric patients: A systematic review. Pediatr Blood Cancer 2021; 68:e29346. [PMID: 34569142 DOI: 10.1002/pbc.29346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/09/2022]
Abstract
Cutaneous adverse events (cAEs) from targeted antineoplastic agents and immune checkpoint inhibitors are common in children with cancer and may lead to dose reduction or cessation of critical oncologic treatment. Timely diagnosis and proper management of cAEs in pediatric oncology patients is essential to optimize ongoing cancer-directed therapy and improve quality of life. This systematic review of published studies summarizes dermatologic toxicities to targeted anticancer treatments and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lucy Y Liu
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Joyce M C Teng
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.,Department of Dermatology, Division of Pediatric Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Sheri L Spunt
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Jenna L Strelo
- Cutaneous Oncology, Stanford University Medical Center and Cancer Institute, Stanford, California, USA
| | - Bernice Y Kwong
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.,Cutaneous Oncology, Stanford University Medical Center and Cancer Institute, Stanford, California, USA
| | - Lisa C Zaba
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.,Cutaneous Oncology, Stanford University Medical Center and Cancer Institute, Stanford, California, USA
| |
Collapse
|
4
|
Jannier S, Kemmel V, Sebastia Sancho C, Chammas A, Sabo AN, Pencreach E, Farace F, Chenard MP, Lhermitte B, Geoerger B, Aerts I, Frappaz D, Leblond P, André N, Ducassou S, Corradini N, Bertozzi AI, Guérin E, Vincent F, Velten M, Entz-Werle N. SFCE-RAPIRI Phase I Study of Rapamycin Plus Irinotecan: A New Way to Target Intra-Tumor Hypoxia in Pediatric Refractory Cancers. Cancers (Basel) 2020; 12:cancers12103051. [PMID: 33092063 PMCID: PMC7656302 DOI: 10.3390/cancers12103051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary More and more relapsing or refractory pediatric cancers are described to present hypoxic features linked to a worse outcome. Therefore, the aim of our phase I study RAPIRI was the targeting of the central node mTor/HIF-1α with rapamycin plus irinotecan and determine the appropriated dose of this combination. As expected, the tolerance was optimal across all dose levels and no maximum tolerated dose of both drugs was reached. The pharmacokinetics (PK) helped us to refine the doses to use in the future phase II trial and the importance of PK follow-up in such combination. We also confirmed in almost half of the interpretable patients for tumor response a non-progressive disease. All those observations additionally to the ancillary’s studies provide strong evidence to propose a next trial focusing on brain tumors and sarcomas and using biweekly 125 mg/m2 irinotecan dose with a PK follow-up and a rapamycin dose of 1.5 mg/m2/day, reaching a blood concentration above 10 µg/L. Abstract Hypoxic environment is a prognostic factor linked in pediatric cancers to a worse outcome, favoring tumor progression and resistance to treatments. The activation of mechanistic Target Of Rapamycin (mTor)/hypoxia inducible factor (HIF)-1α pathway can be targeted by rapamycin and irinotecan, respectively. Therefore, we designed a phase I trial associating both drugs in pediatric refractory/relapsing solid tumors. Patients were enrolled according to a 3 + 3 escalation design with ten levels, aiming to determine the MTD (maximum tolerated dose) of rapamycin plus irinotecan. Rapamycin was administered orally once daily in a 28-day cycle (1 to 2.5 mg/m2/day), associating biweekly intravenous irinotecan (125 to 240 mg/m2/dose). Toxicities, pharmacokinetics, efficacy analyses, and pharmacodynamics were evaluated. Forty-two patients, aged from 2 to 18 years, were included. No MTD was reached. Adverse events were mild to moderate. Only rapamycin doses of 1.5 mg/m2/day reached over time clinically active plasma concentrations. Tumor responses and prolonged stable disease were associated with a mean irinotecan area under the curve of more than 400 min.mg/L. Fourteen out of 31 (45.1%) patients had a non-progressive disease at 8 weeks. Most of them were sarcomas and brain tumors. For the phase II trial, we can then propose biweekly 125 mg/m2 irinotecan dose with a pharmacokinetic (PK) follow-up and a rapamycin dose of 1.5 mg/m2/day, reaching a blood concentration above 10 µg/L.
Collapse
Affiliation(s)
- Sarah Jannier
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (S.J.); (F.V.)
| | - Véronique Kemmel
- Laboratory of Biochemistry, University Hospital of Strasbourg, 67098 Strasbourg, France; (V.K.); (A.-N.S.); (E.G.)
- Laboratory of Pharmacology and Toxicology in Neurocardiology-EA7296, University of Strasbourg, 67000 Strasbourg, France
| | - Consuelo Sebastia Sancho
- Radiology Department, Pediatric Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (C.S.S.); (A.C.)
| | - Agathe Chammas
- Radiology Department, Pediatric Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (C.S.S.); (A.C.)
| | - Amelia-Naomie Sabo
- Laboratory of Biochemistry, University Hospital of Strasbourg, 67098 Strasbourg, France; (V.K.); (A.-N.S.); (E.G.)
- Laboratory of Pharmacology and Toxicology in Neurocardiology-EA7296, University of Strasbourg, 67000 Strasbourg, France
| | - Erwan Pencreach
- Oncobiology Platform, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67098 Strasbourg, France;
| | - Françoise Farace
- «Circulating Tumor Cells» Translational Platform, Gustave Roussy, University of Paris-Saclay, 94800 Villejuif, France;
| | - Marie Pierre Chenard
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France; (M.P.C.); (B.L.)
- Centre de Ressources Biologiques, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Benoit Lhermitte
- Pathology Department, University Hospital of Strasbourg, 67098 Strasbourg, France; (M.P.C.); (B.L.)
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, INSERM U1015, 94800 Villejuif, France;
| | - Isabelle Aerts
- Oncology Center SIREDO, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Didier Frappaz
- Pediatric Oncology Department, Léon Berard Institute, 69373 Lyon, France; (D.F.); (P.L.); (N.C.)
| | - Pierre Leblond
- Pediatric Oncology Department, Léon Berard Institute, 69373 Lyon, France; (D.F.); (P.L.); (N.C.)
- Pediatric Oncology Unit, Oscar Lambret Center, 59020 Lille, France
| | - Nicolas André
- Pediatric Onco-Hematology Unit, CHU La Timone, 13005 Marseille, France;
| | - Stephane Ducassou
- Pediatric Onco-Hematology Department, University Hospital of Bordeaux, 33000 Bordeaux, France;
| | - Nadège Corradini
- Pediatric Oncology Department, Léon Berard Institute, 69373 Lyon, France; (D.F.); (P.L.); (N.C.)
- Pediatric Oncology Unit, University Hospital of Nantes, 44093 Nantes, France
| | - Anne Isabelle Bertozzi
- Pediatric Onco-Hematology Department, University Hospital of Toulouse, 31059 Toulouse, France;
| | - Eric Guérin
- Laboratory of Biochemistry, University Hospital of Strasbourg, 67098 Strasbourg, France; (V.K.); (A.-N.S.); (E.G.)
| | - Florence Vincent
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (S.J.); (F.V.)
| | - Michel Velten
- Clinical Research Department, ICANS, 67200 Strasbourg, France;
| | - Natacha Entz-Werle
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France; (S.J.); (F.V.)
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, 67401 Illkirch, France
- Correspondence: ; Tel.: +33-3-88-12-83-96
| |
Collapse
|
5
|
In vitro drug sensitivity (IDS) of patient-derived primary osteosarcoma cells as an early predictor of the clinical outcomes of osteosarcoma patients. Cancer Chemother Pharmacol 2020; 85:1165-1176. [PMID: 32476109 DOI: 10.1007/s00280-020-04081-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Early prediction of clinical response to conventional chemotherapy is a significant factor in determining an overall treatment strategy for osteosarcoma. METHODS Cells were extracted from treatment-naïve biopsies from 16 osteosarcoma patients who received a doxorubicin and cisplatin-based neoadjuvant chemotherapy regimen and their sensitivities to doxorubicin and cisplatin were measured as IC50 values. Associations of in vitro drug sensitivity (IDS) levels and clinical outcomes were examined. RESULTS Primary osteosarcoma cells responded to doxorubicin and cisplatin with IC50 values of 0.088 ± 0.032 µM and 16.7 ± 8.5 µM, respectively. The patients with a non-metastatic phenotype and surviving patients showed significantly lower IC50 values for both drugs. ROC analysis defined the optimal IC50 cut-off values for doxorubicin (IDSdox) and cisplatin (IDScpt) as 0.05 µM (AUC 0.82) and 14 µM (AUC 0.87), respectively. Survival analysis found significantly longer disease-free survival (DFS, n = 14) and overall survival (OS, n = 16) times in the patients with low IDSdox (p = 0.0064 for DFS and p = 0.0102 for OS) and low IDScpt (p = 0.0204 for DFS and p = 0.0021 for OS). Interestingly, when the patients with low IDScpt and those with low IDSdox were combined (Group 1), significant associations with prolonged DFS (p = 0.0042, C-statistic 0.78) and OS (p = 0.0010, C-statistic 0.79) were found. In this cohort, histological response to neoadjuvant chemotherapy could predict only OS. CONCLUSIONS This study indicates that IDS analysis could potentially be a practical, rapid, and reliable technique for predicting clinical outcomes. It could also be used to identify patients for whom conventional chemotherapy is most appropriate and, in the future, help advance personalized therapy.
Collapse
|
6
|
Belgrad J, De Pace R, Fields RD. Autophagy in Myelinating Glia. J Neurosci 2020; 40:256-266. [PMID: 31744863 PMCID: PMC6948934 DOI: 10.1523/jneurosci.1066-19.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is the cellular process involved in transportation and degradation of membrane, proteins, pathogens, and organelles. This fundamental cellular process is vital in development, plasticity, and response to disease and injury. Compared with neurons, little information is available on autophagy in glia, but it is paramount for glia to perform their critical responses to nervous system disease and injury, including active tissue remodeling and phagocytosis. In myelinating glia, autophagy has expanded roles, particularly in phagocytosis of mature myelin and in generating the vast amounts of membrane proteins and lipids that must be transported to form new myelin. Notably, autophagy plays important roles in removing excess cytoplasm to promote myelin compaction and development of oligodendrocytes, as well as in remyelination by Schwann cells after nerve trauma. This review summarizes the cell biology of autophagy, detailing the major pathways and proteins involved, as well as the roles of autophagy in Schwann cells and oligodendrocytes in development, plasticity, and diseases in which myelin is affected. This includes traumatic brain injury, Alexander's disease, Alzheimer's disease, hypoxia, multiple sclerosis, hereditary spastic paraplegia, and others. Promising areas for future research are highlighted.
Collapse
Affiliation(s)
| | - Raffaella De Pace
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
7
|
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48:214-241. [PMID: 29378002 DOI: 10.1093/jjco/hyx176] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | - Hideki Izumi
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | | | - Hiroko Inada
- Department of Pediatrics, Saga Medical Center Koseikan
| | - Masanori Nishi
- Department of Pediatrics, Saga University, Saga 849-8501, Japan
| |
Collapse
|
8
|
The therapeutic potential of targeting the PI3K pathway in pediatric brain tumors. Oncotarget 2018; 8:2083-2095. [PMID: 27926496 PMCID: PMC5356782 DOI: 10.18632/oncotarget.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/22/2016] [Indexed: 01/12/2023] Open
Abstract
Central nervous system tumors are the most common cancer type in children and the leading cause of cancer related deaths. There is therefore a need to develop novel treatments. Large scale profiling studies have begun to identify alterations that could be targeted therapeutically, including the phosphoinositide 3-kinase (PI3K) signaling pathway, which is one of the most commonly activated pathways in cancer with many inhibitors under clinical development. PI3K signaling has been shown to be aberrantly activated in many pediatric CNS neoplasms. Pre-clinical analysis supports a role for PI3K signaling in the control of tumor growth, survival and migration as well as enhancing the cytotoxic effects of current treatments. Based on this evidence agents targeting PI3K signaling have begun to be tested in clinical trials of pediatric cancer patients. Overall, targeting the PI3K pathway presents as a promising strategy for the treatment of pediatric CNS tumors. In this review we examine the genetic alterations found in the PI3K pathway in pediatric CNS tumors and the pathological role it plays, as well as summarizing the current pre-clinical and clinical data supporting the use of PI3K pathway inhibitors for the treatment of these tumors.
Collapse
|
9
|
Pearson ADJ, Federico SM, Aerts I, Hargrave DR, DuBois SG, Iannone R, Geschwindt RD, Wang R, Haluska FG, Trippett TM, Geoerger B. A phase 1 study of oral ridaforolimus in pediatric patients with advanced solid tumors. Oncotarget 2018; 7:84736-84747. [PMID: 27713169 PMCID: PMC5356695 DOI: 10.18632/oncotarget.12450] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/16/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose Ridaforolimus is an investigational, potent, selective mTOR inhibitor. This study was conducted to determine the recommended phase 2 dose (RP2D), maximum tolerated dose, safety, pharmacokinetics, and antitumor activity of oral ridaforolimus in children with advanced solid tumors. Experimental Design In this phase 1, multicenter, open-label study in children aged 6 to <18 years with advanced solid tumors, ridaforolimus was administered orally for 5 consecutive days/week in 28-day cycles until progression, unacceptable toxicity, or consent withdrawal. Dose started at 22 mg/m2 and increased to 28 mg/m2 and 33 mg/m2, followed by expansion at the RP2D. Results Twenty patients were treated; 18 were evaluable for dose-limiting toxicities. One dose-limiting toxicity (grade 3 increased alanine aminotransferase) occurred in 1 patient at 33 mg/m2. Dose escalation concluded at 33 mg/m2; the maximum tolerated dose was not determined. The most common treatment-related adverse events (frequency ≥40%) were manageable grade 1–2 stomatitis, thrombocytopenia, hypertriglyceridemia, increased alanine aminotransferase, fatigue, hypercholesterolemia, anemia, and increased aspartate aminotransferase. Ridaforolimus exposure at 28 mg/m2 and 33 mg/m2 exceeded adult target levels. The RP2D for oral ridaforolimus in children was defined as 33 mg/m2. Four patients received at least 4 cycles; 2 with pineoblastoma and diffuse intrinsic pontine glioma had stable disease for 12 and 46 cycles, respectively. Conclusions Ridaforolimus is orally bioavailable and well tolerated in children with advanced solid tumors. The RP2D (33 mg/m2, 5 days/week) exceeds the adult RP2D. The favorable toxicity and pharmacokinetic profiles may allow for combination therapy, a promising therapeutic option in pediatric malignancies.
Collapse
Affiliation(s)
- Andrew D J Pearson
- Paediatric Drug Development Unit, Children and Young People's Unit, Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Sara M Federico
- Department of Pediatric Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Isabelle Aerts
- Department of Pediatric, Adolescent and Young Adult Oncology, Institut Curie, Paris, France
| | - Darren R Hargrave
- Haematology and Oncology Department, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Steven G DuBois
- Department of Pediatrics, University of California San Francisco School of Medicine, and Benioff Children's Hospital, San Francisco, CA, USA.,Current affiliation: Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Robert Iannone
- Clinical Research, Merck & Co., Inc., North Wales, PA, USA
| | | | - Ruixue Wang
- BARDS, MSD R&D (China) Co. Ltd., Beijing, China
| | - Frank G Haluska
- Clinical Research & Development, ARIAD Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Tanya M Trippett
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Birgit Geoerger
- Department of Childhood and Adolescent Oncology, Gustave Roussy, University Paris-Sud, Villejuif, France
| |
Collapse
|
10
|
Moreno L, Caron H, Geoerger B, Eggert A, Schleiermacher G, Brock P, Valteau-Couanet D, Chesler L, Schulte JH, De Preter K, Molenaar J, Schramm A, Eilers M, Van Maerken T, Johnsen JI, Garrett M, George SL, Tweddle DA, Kogner P, Berthold F, Koster J, Barone G, Tucker ER, Marshall L, Herold R, Sterba J, Norga K, Vassal G, Pearson AD. Accelerating drug development for neuroblastoma - New Drug Development Strategy: an Innovative Therapies for Children with Cancer, European Network for Cancer Research in Children and Adolescents and International Society of Paediatric Oncology Europe Neuroblastoma project. Expert Opin Drug Discov 2017; 12:801-811. [PMID: 28604107 DOI: 10.1080/17460441.2017.1340269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Neuroblastoma, the commonest paediatric extra-cranial tumour, remains a leading cause of death from cancer in children. There is an urgent need to develop new drugs to improve cure rates and reduce long-term toxicity and to incorporate molecularly targeted therapies into treatment. Many potential drugs are becoming available, but have to be prioritised for clinical trials due to the relatively small numbers of patients. Areas covered: The current drug development model has been slow, associated with significant attrition, and few new drugs have been developed for neuroblastoma. The Neuroblastoma New Drug Development Strategy (NDDS) has: 1) established a group with expertise in drug development; 2) prioritised targets and drugs according to tumour biology (target expression, dependency, pre-clinical data; potential combinations; biomarkers), identifying as priority targets ALK, MEK, CDK4/6, MDM2, MYCN (druggable by BET bromodomain, aurora kinase, mTORC1/2) BIRC5 and checkpoint kinase 1; 3) promoted clinical trials with target-prioritised drugs. Drugs showing activity can be rapidly transitioned via parallel randomised trials into front-line studies. Expert opinion: The Neuroblastoma NDDS is based on the premise that optimal drug development is reliant on knowledge of tumour biology and prioritisation. This approach will accelerate neuroblastoma drug development and other poor prognosis childhood malignancies.
Collapse
Affiliation(s)
- Lucas Moreno
- a Paediatric Phase I-II Clinical Trials Unit, Paediatric Haematology & Oncology , Hospital Niño Jesus , Madrid , Spain
- b Instituto de Investigación Sanitaria La Princesa , Madrid , Spain
- c Paediatric Drug Development, Children and Young People's Unit , Royal Marsden Hospital , London , UK
| | - Hubert Caron
- d Emma Children's Hospital , Amsterdam , Netherlands
- e Hoffman-La Roche , Basel , Switzerland
| | - Birgit Geoerger
- f Department of Paediatric and Adolescent Oncology , Institut Gustave Roussy , Villejuif , France
| | - Angelika Eggert
- g Department of Pediatric Oncology and Hematology , Charite University Hospital , Berlin , Germany
| | - Gudrun Schleiermacher
- h Department of Paediatric, Adolescents and Young Adults Oncology and INSERM U830 , Institut Curie , Paris , France
| | - Penelope Brock
- i Department Paediatric Oncology , Great Ormond Street Hospital , London , UK
| | | | - Louis Chesler
- c Paediatric Drug Development, Children and Young People's Unit , Royal Marsden Hospital , London , UK
- j Division of Clinical Studies , Institute of Cancer Research , London , UK
| | - Johannes H Schulte
- g Department of Pediatric Oncology and Hematology , Charite University Hospital , Berlin , Germany
| | | | - Jan Molenaar
- l Princess Maxima Center for Pediatric Oncology , University of Amsterdam , Amsterdam , Netherlands
| | - Alexander Schramm
- m Department of Pediatric Oncology , University of Essen , Essen , Germany
| | - Martin Eilers
- n Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter , University of Wurzburg , Wurzburg , Germany
| | - Tom Van Maerken
- k Centre for Medical Genetic , Ghent University , Ghent , Belgium
| | - John Inge Johnsen
- o Department of Women's and Children's Health , Karolinska Institute , Stockholm , Sweden
| | | | - Sally L George
- c Paediatric Drug Development, Children and Young People's Unit , Royal Marsden Hospital , London , UK
- j Division of Clinical Studies , Institute of Cancer Research , London , UK
| | - Deborah A Tweddle
- q Wolfson Childhood Cancer Research Centre , Newcastle University , Newcastle , UK
| | - Per Kogner
- o Department of Women's and Children's Health , Karolinska Institute , Stockholm , Sweden
| | - Frank Berthold
- r Department of Pediatric Oncology and Hematology , University of Cologne , Cologne , Germany
| | - Jan Koster
- l Princess Maxima Center for Pediatric Oncology , University of Amsterdam , Amsterdam , Netherlands
| | - Giuseppe Barone
- c Paediatric Drug Development, Children and Young People's Unit , Royal Marsden Hospital , London , UK
- j Division of Clinical Studies , Institute of Cancer Research , London , UK
| | - Elizabeth R Tucker
- c Paediatric Drug Development, Children and Young People's Unit , Royal Marsden Hospital , London , UK
- j Division of Clinical Studies , Institute of Cancer Research , London , UK
| | - Lynley Marshall
- c Paediatric Drug Development, Children and Young People's Unit , Royal Marsden Hospital , London , UK
- j Division of Clinical Studies , Institute of Cancer Research , London , UK
| | | | - Jaroslav Sterba
- t Masaryk University, University Hospital , Brno , Czech Republic
- u Department of Pediatric Oncology , International Clinical Research Center, St. Anne's University Hospital , Brno , Czech Republic
- v RECAMO, Masaryk Memorial Cancer Centre , Brno , Czech Republic
| | - Koen Norga
- w Pediatric Hematology/Oncology Unit , Antwerp University Hospital , Antwerp , Belgium
| | - Gilles Vassal
- x Department of Clinical Research, Gustave Roussy , Paris-Sud University , Paris , France
| | - Andrew Dj Pearson
- c Paediatric Drug Development, Children and Young People's Unit , Royal Marsden Hospital , London , UK
- j Division of Clinical Studies , Institute of Cancer Research , London , UK
| |
Collapse
|
11
|
Dorris K, Liu C, Li D, Hummel TR, Wang X, Perentesis J, Kim MO, Fouladi M. A comparison of safety and efficacy of cytotoxic versus molecularly targeted drugs in pediatric phase I solid tumor oncology trials. Pediatr Blood Cancer 2017; 64. [PMID: 27654490 DOI: 10.1002/pbc.26258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prior reviews of phase I pediatric oncology trials involving primarily cytotoxic agents have reported objective response rates (ORRs) and toxic death rates of 7.9-9.6% and 0.5%, respectively. These data may not reflect safety and efficacy in phase I trials of molecularly targeted (targeted) drugs. METHODS A systematic review of pediatric phase I solid tumor trials published in 1990-2013 was performed. The published reports were evaluated for patient characteristics, toxicity information, and response numbers. RESULTS A total of 143 phase I pediatric clinical trials enrolling 3,896 children involving 53 targeted and 48 cytotoxic drugs were identified. A meta-analysis demonstrated that the ORR is 2.1-fold higher with cytotoxic drugs (0.066 vs. 0.031 per subject; P = 0.007). By contrast, the pooled estimate of the stable disease rate (SDR) is similar for cytotoxic and targeted drugs (0.2 vs. 0.23 per subject; P = 0.27). The pooled estimate of the dose-limiting toxicity rate is 1.8-fold larger with cytotoxic drugs (0.24 vs. 0.13 per subject; P = 0.0003). The hematologic grade 3-4 (G3/4) toxicity rate is 3.6-fold larger with cytotoxic drugs (0.43 vs. 0.12 per treatment course; P = 0.0001); however, the nonhematologic G3/4 toxicities and toxic deaths occur at similar rates for cytotoxic and targeted drugs. CONCLUSIONS In phase I pediatric solid tumor trials, ORRs were significantly higher for cytotoxic versus targeted agents. SDRs were similar in targeted and cytotoxic drug trials. Patients treated with cytotoxic agents were more likely to experience hematologic G3/4 toxicities than those patients receiving targeted drugs.
Collapse
Affiliation(s)
- Kathleen Dorris
- Section of Pediatric Hematology, Oncology, Bone Marrow Transplantation, Children's Hospital Colorado, Aurora, Colorado
| | - Chunyan Liu
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dandan Li
- Consumer Credit Risk Management, Fifth Third Bank, Cincinnati, Ohio
| | - Trent R Hummel
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xia Wang
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio
| | - John Perentesis
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mi-Ok Kim
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Maryam Fouladi
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
12
|
Frappaz D, Federico SM, Pearson ADJ, Gore L, Macy ME, DuBois SG, Aerts I, Iannone R, Geschwindt R, Van Schanke A, Wang R, Geoerger B. Phase 1 study of dalotuzumab monotherapy and ridaforolimus-dalotuzumab combination therapy in paediatric patients with advanced solid tumours. Eur J Cancer 2016; 62:9-17. [PMID: 27185573 DOI: 10.1016/j.ejca.2016.03.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/28/2016] [Indexed: 10/21/2022]
Abstract
AIM Dalotuzumab is a highly specific, humanised immunoglobulin G1 monoclonal antibody against insulin-like growth factor receptor 1. This multicenter phase 1 study (NCT01431547) explored the safety and pharmacokinetics of dalotuzumab monotherapy (part 1) and the combination of dalotuzumab with the mammalian target of rapamycin inhibitor ridaforolimus (part 2) in paediatric patients with advanced solid tumours. METHODS Dalotuzumab was administered intravenously every 3 weeks starting at 900 mg/m(2) and escalating to 1200 and 1500 mg/m(2). Combination therapy included intravenous dalotuzumab at the defined single-agent recommended phase 2 dose (RP2D) and oral ridaforolimus 28 mg/m(2) daily (days 1-5), repeated weekly. Pharmacokinetic studies were performed to evaluate the mean serum trough dalotuzumab concentration, which guided the RP2D. RESULTS Twenty-four patients were enrolled (part 1, n = 20; part 2, n = 4). No dose-limiting toxicities were observed in patients receiving dalotuzumab alone. One patient experienced dose-limiting stomatitis in the combination arm. Pharmacokinetic data showed dose-dependent increases in exposure (area under the curve from zero to infinity [AUC0-∞]) (87,900, 164,000, and 186,000 h*mg/ml for the 900, 1200, and 1500 mg/m(2) dose levels, respectively), maximum serum concentration (Cmax) (392, 643, and 870 mg/ml), and serum trough concentration (Ctrough) (67.1, 71.6, and 101 mg/ml). The mean half-life was 265, 394, and 310 h, respectively. Dalotuzumab pharmacokinetics were not affected by coadministration with ridaforolimus. One of six patients with Ewing sarcoma had confirmed partial response to dalotuzumab monotherapy at 900 mg/m(2). Time to response was 41 d, and progression occurred at 126 d. CONCLUSION Dalotuzumab was well tolerated in paediatric patients with advanced solid malignancies. The RP2D of dalotuzumab is 900 mg/m(2) (ClinicalTrials.gov identifier: NCT01431547, Protocol PN062).
Collapse
Affiliation(s)
- Didier Frappaz
- Institut d'Hématologie et d'Oncologie pédiatrique, Place Professeur Joseph Renaut, 69008 Lyon, France
| | - Sara M Federico
- Department of Oncology, MS 260, Room C6067, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Andrew D J Pearson
- The Institute of Cancer Research, The Royal Marsden Hospital, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Lia Gore
- Department of Pediatrics, University of Colorado School of Medicine, 13001 East 17th Place, Aurora, CO 80045, USA; Childrens Hospital of Colorado, 13123 East 16th Avenue, B115, Aurora, CO 80045-7106, USA
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado School of Medicine, 13001 East 17th Place, Aurora, CO 80045, USA; Childrens Hospital of Colorado, 13123 East 16th Avenue, B115, Aurora, CO 80045-7106, USA
| | - Steven G DuBois
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Isabelle Aerts
- Department of Pediatric Oncology, Institut Curie, 26, rue d'Ulm, 75248 Paris cedex 05, France
| | - Robert Iannone
- Clinical Research, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Ryan Geschwindt
- Clinical Research, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Arne Van Schanke
- Quantitative Solutions B.V., Pivot Park Molenweg 79, 5349 AC Oss, The Netherlands
| | - Rui Wang
- BARDS, MSD R&D (China) Co. Ltd., Universal Business Park, No. 10 Jiu Xianqiao Road, Chao Yang District, Beijing 100015, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Univ. Paris-Sud, 114, rue Edouard Vaillant, 94805 Villejuif, France.
| |
Collapse
|
13
|
Smith JR, Moreno L, Heaton SP, Chesler L, Pearson ADJ, Garrett MD. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma. Mol Oncol 2016; 10:538-52. [PMID: 26686971 PMCID: PMC5423144 DOI: 10.1016/j.molonc.2015.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/11/2015] [Indexed: 11/22/2022] Open
Abstract
There is an urgent need for improved therapies for children with high-risk neuroblastoma where survival rates remain low. MYCN amplification is the most common genomic change associated with aggressive neuroblastoma and drugs targeting PI3K/AKT/mTOR, to activate MYCN oncoprotein degradation, are entering clinical evaluation. Our aim was to develop and validate pharmacodynamic (PD) biomarkers to evaluate both proof of mechanism and proof of concept for drugs that block PI3K/AKT/mTOR pathway activity in children with neuroblastoma. We have addressed the issue of limited access to tumor biopsies for quantitative detection of protein biomarkers by optimizing a three-color fluorescence activated cell sorting (FACS) method to purify CD45-/GD2+/CD56+ neuroblastoma cells from bone marrow. We then developed a novel quantitative measurement of MYCN protein in these isolated neuroblastoma cells, providing the potential to demonstrate proof of concept for drugs that inhibit PI3K/AKT/mTOR signaling in this disease. In addition we have established quantitative detection of three biomarkers for AKT pathway activity (phosphorylated and total AKT, GSK3β and P70S6K) in surrogate platelet-rich plasma (PRP) from pediatric patients. Together our new approach to neuroblastoma cell isolation for protein detection and suite of PD assays provides for the first time the opportunity for robust, quantitative measurement of protein-based PD biomarkers in this pediatric patient population. These will be ideal tools to support clinical evaluation of PI3K/AKT/mTOR pathway drugs and their ability to target MYCN oncoprotein in upcoming clinical trials in neuroblastoma.
Collapse
Affiliation(s)
- Jennifer R Smith
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, United Kingdom; Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Lucas Moreno
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, United Kingdom; Children's and Young People's Unit, Royal Marsden NHS Foundation Trust, Sutton, SM2 5PT, United Kingdom; CNIO, Spanish National Cancer Research Centre, Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Simon P Heaton
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, United Kingdom; Children's and Young People's Unit, Royal Marsden NHS Foundation Trust, Sutton, SM2 5PT, United Kingdom
| | - Andrew D J Pearson
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, United Kingdom; Children's and Young People's Unit, Royal Marsden NHS Foundation Trust, Sutton, SM2 5PT, United Kingdom
| | - Michelle D Garrett
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, United Kingdom; School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom.
| |
Collapse
|
14
|
Stafman LL, Beierle EA. Cell Proliferation in Neuroblastoma. Cancers (Basel) 2016; 8:E13. [PMID: 26771642 PMCID: PMC4728460 DOI: 10.3390/cancers8010013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.
Collapse
Affiliation(s)
- Laura L Stafman
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
15
|
Rivera-Valentin RK, Zhu L, Hughes DPM. Bone Sarcomas in Pediatrics: Progress in Our Understanding of Tumor Biology and Implications for Therapy. Paediatr Drugs 2015; 17:257-71. [PMID: 26002157 PMCID: PMC4516866 DOI: 10.1007/s40272-015-0134-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pediatric bone sarcomas osteosarcoma and Ewing sarcoma represent a tremendous challenge for the clinician. Though less common than acute lymphoblastic leukemia or brain tumors, these aggressive cancers account for a disproportionate amount of the cancer morbidity and mortality in children, and have seen few advances in survival in the past decade, despite many large, complicated, and expensive trials of various chemotherapy combinations. To improve the outcomes of children with bone sarcomas, a better understanding of the biology of these cancers is needed, together with informed use of targeted therapies that exploit the unique biology of each disease. Here we summarize the current state of knowledge regarding the contribution of receptor tyrosine kinases, intracellular signaling pathways, bone biology and physiology, the immune system, and the tumor microenvironment in promoting and maintaining the malignant phenotype. These observations are coupled with a review of the therapies that target each of these mechanisms, focusing on recent or ongoing clinical trials if such information is available. It is our hope that, by better understanding the biology of osteosarcoma and Ewing sarcoma, rational combination therapies can be designed and systematically tested, leading to improved outcomes for a group of children who desperately need them.
Collapse
Affiliation(s)
- Rocio K. Rivera-Valentin
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Limin Zhu
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Dennis P. M. Hughes
- Department of Pediatrics-Research, The Children’s Cancer Hospital at MD Anderson Cancer Center, Unit 853, MOD 1.021d, 1515 Holcombe Blvd, Houston, TX 77030 USA
| |
Collapse
|
16
|
Piha-Paul SA, Munster PN, Hollebecque A, Argilés G, Dajani O, Cheng JD, Wang R, Swift A, Tosolini A, Gupta S. Results of a phase 1 trial combining ridaforolimus and MK-0752 in patients with advanced solid tumours. Eur J Cancer 2015. [PMID: 26199039 DOI: 10.1016/j.ejca.2015.06.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K-AKT-mTOR) signalling pathway is aberrantly activated in several cancers. Notch signalling maintains cell proliferation, growth and metabolism in part by driving the PI3K pathway. Combining the mTOR inhibitor ridaforolimus with the Notch inhibitor MK-0752 may increase blockade of the PI3K pathway. METHODS This phase I dose-escalation study (NCT01295632) aimed to define the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of combination oral ridaforolimus (rising doses starting at 20 mg, 5 days/week) and oral MK-0752 (1800 mg once weekly) in patients with solid tumours. No intrapatient dose escalation was permitted. RESULTS Twenty eight patients were treated on study. Ridaforolimus doses were escalated from 20 to 30 mg/day. Among 14 evaluable patients receiving ridaforolimus 20 mg, one DLT (grade 2 stomatitis, second episode) was reported. Among eight evaluable patients receiving ridaforolimus 30 mg, three DLTs were reported (one each grade 3 stomatitis, grade 3 diarrhoea, and grade 3 asthenia). The MTD was 20 mg daily ridaforolimus 5 days/week+1800 mg weekly MK-0752. The most common drug-related adverse events included stomatitis, diarrhoea, decreased appetite, hyperglycaemia, thrombocytopenia, asthenia and rash. Two of 15 (13%) patients with head and neck squamous cell carcinoma (HNSCC) had responses: one with complete response and one with partial response. In addition, one patient experienced stable disease ⩾6 months. CONCLUSIONS Combined ridaforolimus and MK-0752 showed activity in HNSCC. However, a high number of adverse events were reported at the MTD, which would require careful management during future clinical development.
Collapse
Affiliation(s)
- S A Piha-Paul
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - P N Munster
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - A Hollebecque
- DITEP, Gustave Roussy, Cancer Campus, Grand Paris, Villejuif, France
| | - G Argilés
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology VHIO, Barcelona, Spain
| | - O Dajani
- Oslo University Hospital, Oslo, Norway
| | - J D Cheng
- Merck & Co., Inc., Kenilworth, NJ and North Wales, PA, USA
| | - R Wang
- Merck & Co., Inc., Kenilworth, NJ and North Wales, PA, USA
| | - A Swift
- Merck & Co., Inc., Kenilworth, NJ and North Wales, PA, USA
| | - A Tosolini
- Merck & Co., Inc., Kenilworth, NJ and North Wales, PA, USA
| | - S Gupta
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
17
|
Gupta S, Argilés G, Munster PN, Hollebecque A, Dajani O, Cheng JD, Wang R, Swift A, Tosolini A, Piha-Paul SA. A Phase I Trial of Combined Ridaforolimus and MK-2206 in Patients with Advanced Malignancies. Clin Cancer Res 2015; 21:5235-44. [PMID: 26187616 DOI: 10.1158/1078-0432.ccr-15-0180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/22/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The PI3K/Akt/mTOR signaling pathway is aberrantly activated in many cancers. Combining ridaforolimus, an mTOR inhibitor, with MK-2206, an Akt inhibitor, may more completely block the PI3K pathway and inhibit tumor growth. EXPERIMENTAL DESIGN This phase I study assessed dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) for the combination of oral ridaforolimus plus oral MK-2206 in patients with advanced solid tumors. Efficacy was evaluated in patients with biomarker-identified estrogen receptor-positive breast cancer (low RAS gene signature and high Ki67 index) or castration-resistant prostate cancer (PTEN deficiency) with PI3K pathway addiction. RESULTS Thirty-five patients were enrolled: 11 patients in part A (three breast cancer) and 24 biomarker-eligible patients in part B (16 breast cancer, eight prostate cancer). One patient with breast cancer from part A was also found to be biomarker-eligible when tested after she had clinical response. The MTD was 10 mg/d ridaforolimus 5 d/wk + 90 mg/wk MK-2206; 1 of 17 patients experienced DLT (grade 3 rash) at this dose. The most common adverse events at MTD were rash (44.4%), stomatitis (38.9%), diarrhea (27.8%), and decreased appetite (27.8%). By investigator assessment, 2 of 16 (12.5%) evaluable patients with breast cancer had partial response; by central assessment, 2 of 14 (14.3%) evaluable patients had complete response. Two patients had durable stable disease (SD) for 416 and 285 days, respectively. No patients with prostate cancer responded; one patient had SD for ≥ 6 months. CONCLUSIONS Combination ridaforolimus and MK-2206 showed promising activity and good tolerability in heavily pretreated patients with hormone-positive and -negative breast cancer exhibiting PI3K pathway dependence.
Collapse
Affiliation(s)
- Shilpa Gupta
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Guillem Argilés
- Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pamela N Munster
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | | | | | - Jonathan D Cheng
- Merck & Co., Inc., Kenilworth, New Jersey and North Wales, Pennsylvania
| | - Ruixue Wang
- Merck & Co., Inc., Kenilworth, New Jersey and North Wales, Pennsylvania
| | - Ann Swift
- Merck & Co., Inc., Kenilworth, New Jersey and North Wales, Pennsylvania
| | | | | |
Collapse
|
18
|
Abstract
Four out of five children diagnosed with cancer can be cured with contemporary cancer therapy. This represents a dramatic improvement since 50 years ago when the cure rate of childhood cancer was <25% in the pre-chemotherapy era. Over the past ten years, while improvement in overall survival (OS) has been marginal, progress in pediatric oncology lies with adopting risk-adapted therapeutic approach. This has been made possible through identifying clinical and biologic prognostic factors with rigorous research and stratifying patients using these risk factors, and subsequently modifying therapy according to risk group assignment. This review provides a perspective for eight distinct pediatric malignancies, in which significant advances in treatment were made in the last decade and are leading to changes in standard of care. This includes four hematologic malignancies [acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), non-Hodgkin lymphoma (NHL) and Hodgkin lymphoma (HL)] and four solid tumors [medulloblastoma (MB), low grade glioma (LGG), neuroblastoma (NB) and Ewing sarcoma (ES)]. Together, they comprise 60% of childhood cancer. Improved patient outcome is not limited to better survival, but encompasses reducing both short and long-term treatment-related complications which is as important as cure, given the majority of childhood cancer patients will become long-term survivors. Risk-adapted approach allows treatment intensification in the high-risk cohort while therapy can be de-escalated in the low-risk to minimize toxicity and late sequelae without compromising survival. Advances in medical research technology have also led to a rapid increase in the understanding of the genetics of childhood cancer in the last decade, facilitating identification of molecular targets that can potentially be exploited for therapeutic benefits. As we move into the era of targeted therapeutics, searching for novel agents that target specific genetic lesions becomes a major research focus. We provide an overview of seven novel agents (bevacizumab, bortezomib, vorinostat, sorafenib, tipifarnib, erlotinib and mTOR inhibitors), which have been most frequently pursued in childhood cancers in the last decade, as well as reporting the progress of clinical trials involving these agents.
Collapse
Affiliation(s)
- Federica Saletta
- 1 Children's Cancer Research Unit, Kid's Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia ; 2 Oncology Department, The Children's Hospital at Westmead, Westmead, NSW, Australia ; 3 Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Michaela S Seng
- 1 Children's Cancer Research Unit, Kid's Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia ; 2 Oncology Department, The Children's Hospital at Westmead, Westmead, NSW, Australia ; 3 Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Loretta M S Lau
- 1 Children's Cancer Research Unit, Kid's Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia ; 2 Oncology Department, The Children's Hospital at Westmead, Westmead, NSW, Australia ; 3 Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Barone G, Anderson J, Pearson ADJ, Petrie K, Chesler L. New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK. Clin Cancer Res 2013; 19:5814-21. [PMID: 23965898 PMCID: PMC3818140 DOI: 10.1158/1078-0432.ccr-13-0680] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical outcome remains poor in patients with high-risk neuroblastoma, in which chemoresistant relapse is common following high-intensity conventional multimodal therapy. Novel treatment approaches are required. Although recent genomic profiling initiatives have not revealed a high frequency of mutations in any significant number of therapeutically targeted genes, two exceptions, amplification of the MYCN oncogene and somatically acquired tyrosine kinase domain point mutations in anaplastic lymphoma kinase (ALK), present exciting possibilities for targeted therapy. In contrast with the situation with ALK, in which a robust pipeline of pharmacologic agents is available from early clinical use in adult malignancy, therapeutic targeting of MYCN (and MYC oncoproteins in general) represents a significant medicinal chemistry challenge that has remained unsolved for two decades. We review the latest approaches envisioned for blockade of ALK activity in neuroblastoma, present a classification of potential approaches for therapeutic targeting of MYCN, and discuss how recent developments in targeting of MYC proteins seem to make therapeutic inhibition of MYCN a reality in the clinic.
Collapse
Affiliation(s)
- Giuseppe Barone
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
- Children’s and Young People’s Unit Royal Marsden NHS Trust, Sutton, United Kingdom
| | - John Anderson
- Unit of Molecular Haematology and Cancer Biology, Institute of Child Health, London, United Kingdom
| | - Andrew D. J. Pearson
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
- Children’s and Young People’s Unit Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Kevin Petrie
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
| | - Louis Chesler
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
- Children’s and Young People’s Unit Royal Marsden NHS Trust, Sutton, United Kingdom
| |
Collapse
|
20
|
Spreafico A, Mackay HJ. Current Phase II clinical data for ridaforolimus in cancer. Expert Opin Investig Drugs 2013; 22:1485-93. [DOI: 10.1517/13543784.2013.831404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|