1
|
Habibizadeh M, Lotfollahzadeh S, Mahdavi P, Mohammadi S, Tavallaei O. Nanoparticle-mediated gene delivery of TRAIL to resistant cancer cells: A review. Heliyon 2024; 10:e36057. [PMID: 39247341 PMCID: PMC11379606 DOI: 10.1016/j.heliyon.2024.e36057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as APO2L, has emerged as a highly potential anticancer agent because of its capacity to effectively trigger apoptosis in tumor cells by specifically binding to either of its death receptors (DR4 or DR5) while having no adverse effects on normal cells. Nevertheless, its practical use has been hindered by its inefficient pharmacokinetics characteristics, the challenges involved in its administration and delivery to targeted cells, and the resistance exhibited by most cancer cells towards TRAIL. Gene therapy, as a promising approach would be able to potentially circumvent TRAIL-based cancer therapy challenges mainly through localized TRAIL expression and generating a bystander impact. Among different strategies, using nanoparticles in TRAIL gene delivery allows for precise targeting, and overcoming TRAIL resistance by combination therapy. In this review, we go over potential mechanisms by which cancer cells achieve resistance to TRAIL and provide an overview of different carriers for delivering of the TRAIL gene to resistant cancer cells, focusing on different types of nanoparticles utilized in this context. We will also explore the challenges, and investigate future perspectives of this nanomedicine approach for cancer therapy.
Collapse
Affiliation(s)
- Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Lotfollahzadeh
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
3
|
Devi GR, Pai P, Lee S, Foster MW, Sannareddy DS, Bertucci F, Ueno N, Van Laere S. Altered ribosomal profile in acquired resistance and reversal associates with pathological response to chemotherapy in inflammatory breast cancer. NPJ Breast Cancer 2024; 10:65. [PMID: 39075068 PMCID: PMC11286775 DOI: 10.1038/s41523-024-00664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Therapeutic resistance presents a significant hurdle in combating inflammatory breast cancer (IBC), adding to the complexity of its management. To investigate these mechanisms, we conducted a comprehensive analysis using transcriptomic and proteomic profiling in a preclinical model alone with correlates of treatment response in IBC patients. This included SUM149 cell lines derived from treatment-naïve patients, along with acquired drug resistance (rSUM149) and others in a state of resistance reversal (rrSUM149), aiming to uncover drug resistance networks. We identified specific ribosomal proteins associated with acquiring resistance. These correlated with elevated levels of molecular markers such as pERK, CDK1, XIAP, and SOD2. While resistance reversal in rrSUM149 cells largely normalized the expression profile, VIPER analysis revealed persistent alterations in ribosomal process-related proteins (AGO2, Exportin 1, RPL5), suggesting their continued involvement in drug resistance. Moreover, genes linked to ribosomal processes were significantly enriched (P < 0.001) among overexpressed genes in IBC patients (n = 87) who exhibited a pathological complete response (pCR) to neoadjuvant chemotherapy. Given the common hyperactivation of MAPK in IBC tumors, including rSUM149, we evaluated Merestinib, a multikinase inhibitor in clinical trials. It effectively targeted pERK and peIF4E pathways, suppressed downstream targets, induced cell death in drug-resistant rSUM149 cells, and showed synergistic effects with another tyrosine kinase inhibitor (Lapatinib) in parental cells. This underscores its significant impact on protein synthesis signaling, crucial for combating translational dependence in cancer cells. In summary, our study elucidates adaptive changes in IBC cells in response to therapy and treatment pauses, guiding precision medicine approaches for this challenging cancer type.
Collapse
Affiliation(s)
- Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA.
| | - Pritha Pai
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
| | - Seayoung Lee
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Matthew W Foster
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Dorababu S Sannareddy
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
| | - Francois Bertucci
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
- Predictive Oncology team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Naoto Ueno
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Steven Van Laere
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA.
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Van Berckelaer C, Van Laere S, Lee S, Morse MA, Geradts J, Dirix L, Kockx M, Bertucci F, Van Dam P, Devi GR. XIAP overexpressing inflammatory breast cancer patients have high infiltration of immunosuppressive subsets and increased TNFR1 signaling targetable with Birinapant. Transl Oncol 2024; 43:101907. [PMID: 38412664 PMCID: PMC10907867 DOI: 10.1016/j.tranon.2024.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE To assess the expression pattern of X-linked inhibitor of apoptosis protein (XIAP), a cellular stress sensor, and delineate the associated changes in the tumor immune microenvironment (TiME) for prognostic value and new therapeutic targets in inflammatory breast cancer (IBC). METHODS Immunohistochemistry was conducted to assess the spatial localization of immune subsets, XIAP, and PDL1 expression in IBC and non-inflammatory breast cancer (nIBC) pretreatment tumors (n = 142). Validation and further exploration were performed by gene expression analysis of patient tumors along with signaling studies in a co-culture model. RESULTS High XIAP in 37/81 IBC patients correlated significantly with high PD-L1, increased infiltration of FOXP3+ Tregs, CD163+ tumor-associated macrophages (TAMs), low CD8/CD163 ratio in both tumor stroma (TS) and invasive margins (IM), and higher CD8+ T cells and CD79α+ B cells in the IM. Gene set enrichment analysis identified cellular stress response- and inflammation-related genes along with tumor necrosis factor receptor 1 (TNFR1) expression in high-XIAP IBC tumors. Induction of TNFR1 and XIAP was observed when patient-derived SUM149 IBC cells were co-cultured with human macrophage-conditioned media simulating TAMs, further demonstrating that the TNF-α signaling pathway is a likely candidate governing TAM-induced XIAP overexpression in IBC cells. Finally, addition of Birinapant, a pan IAP antagonist, induced cell death in the pro-survival cytokine-enriched conditions. CONCLUSION Using immunophenotyping and gene expression analysis in patient biospecimens along with in silico modeling and a preclinical model with a pan-IAP antagonist, this study revealed an interplay between increased TAMs, TNF-α signaling, and XIAP activation during (immune) stress in IBC. These data demonstrate the potential of IAP antagonists as immunomodulators for improving IBC therapeutic regimens.
Collapse
Affiliation(s)
- Christophe Van Berckelaer
- Multidisciplinary Breast Clinic, Antwerp University Hospital (UZA), Molecular Imaging, Pathology, Radiotherapy, Oncology (MIPRO); Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Seayoung Lee
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Morse
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - Joseph Geradts
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Department of Pathology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Luc Dirix
- Department of Oncology, GZA Hospitals, University of Antwerp, Antwerpen, Belgium
| | | | - François Bertucci
- Predictive Oncology team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Peter Van Dam
- Multidisciplinary Breast Clinic, Antwerp University Hospital (UZA), Molecular Imaging, Pathology, Radiotherapy, Oncology (MIPRO); Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Rypens C, Van Berckelaer C, Berditchevski F, van Dam P, Van Laere S. Deciphering the molecular biology of inflammatory breast cancer through molecular characterization of patient samples and preclinical models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:77-112. [PMID: 38637101 DOI: 10.1016/bs.ircmb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-β resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.
Collapse
Affiliation(s)
- Charlotte Rypens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; CellCarta N V, Wilrijk, Belgium
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Peter van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Multidisciplinary Oncological Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
6
|
Huang Q, Liu F. Ceramide Analog 5cc Overcomes TRAIL Resistance by Enhancing JNK Activation and Repressing XIAP Expression in Metastatic Colon Cancer Cells. Chemotherapy 2023; 68:210-218. [PMID: 37429260 DOI: 10.1159/000531757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered to be an effective apoptosis inducer due to its selectivity for tumor cells. However, many cancer cells, especially metastatic cancer cells, often exhibit resistance to TRAIL because their apoptotic pathway is impaired or their pro-survival pathway is overactivated. TRAIL resistance is the main obstacle to current TRAIL therapy. Nowadays, ceramide analogs represent a new class of potential anticancer agents. Therefore, we hypothesized that disrupting pro-survival signaling with ceramide analogs would increase TRAIL-mediated apoptosis. METHODS MTT assay and flow cytometry were conducted to evaluate the synergistic effect of ceramide analog 5cc on TRAIL in metastatic colon cancer cells. Western blot was used to detect signaling proteins affected by 5cc. RNA interference was performed to analyze the effects of specific gene on 5cc-enhanced apoptosis. RESULTS Ceramide analog 5cc markedly enhanced TRAIL-induced apoptosis evidenced by increased propidium iodide/annexin V double-positive cells and PARP cleavage in SW620 and LS411N cells. At the molecular level, 5cc significantly reduced the expression of anti-apoptotic protein X-linked inhibitor of apoptosis protein (XIAP) through the activation of the c-Jun n-terminal kinase (JNK) pathway which is critically involved in sensitizing tumor cells to TRAIL/5cc combination. JNK-silenced cells exhibited a significant reversal of TRAIL/5cc-mediated apoptosis. CONCLUSION Our data demonstrated that ceramide analog 5cc overcomes TRAIL resistance by enhancing JNK activation and repressing XIAP expression in metastatic colon cancer cells.
Collapse
Affiliation(s)
- Qiqian Huang
- Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- Joint Centre of Zhejiang University and the Chinese University of Hong Kong on Natural Products and Toxicology Research, Zhejiang University, Hangzhou, China
| | - Feiyan Liu
- Research Centre of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- Joint Centre of Zhejiang University and the Chinese University of Hong Kong on Natural Products and Toxicology Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Tang Q, Tang Y, Yang Q, Chen R, Zhang H, Luo H, Xiao Q, Liu K, Huang L, Chen J, Wang L, Song X, Chen S, Li G, Wang L, Li Y. Embelin attenuates lipopolysaccharide-induced acute kidney injury through the inhibition of M1 macrophage activation and NF-κB signaling in mice. Heliyon 2023; 9:e14006. [PMID: 36938407 PMCID: PMC10018479 DOI: 10.1016/j.heliyon.2023.e14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Septic acute kidney injury (AKI) is commonly associated with renal dysfunction and high mortality in patients. Owing to the rapid and violent occurrence of septic AKI with inflammation, there are no effective therapies to clinically treat it. Embelin, a natural product, has a potential regulatory role in immunocytes. However, the role and mechanism of embelin in septic AKI remains unknown. This study aimed to elucidate the role of embelin in macrophage regulation in lipopolysaccharide (LPS)-induced septic AKI. Embelin was intraperitoneally administered to mice after LPS injection. And bone marrow-derived macrophages (BMDMs) were subsequently isolated from the mice to explore the immunomodulatory role of embelin in macrophages. We found that embelin attenuated renal dysfunction and pathological renal damage in the LPS-induced sepsis mouse model. Molecular docking predicted that embelin could bind to phosphorylated NF-κB p65 at the ser536 site. Embelin inhibited the translocation of NF-κB p65 via phosphorylation at ser536 in LPS-induced AKI. It also reduced the secretion of IL-1β and IL-6 and increased the secretion of IL-10 and Arg-1 of BMDMs and mice after LPS stimulation, indicating that embelin suppressed macrophage M1 activation in LPS-induced AKI. Therefore, embelin attenuated LPS-induced septic AKI by suppressing NF-κB p65 at ser536 in activated macrophages. This study preclinically suggests a therapeutic role of embelin in septic AKI.
Collapse
Key Words
- AKI, acute kidney injury
- BMDMs, bone marrow-derived macrophages
- BUN, blood urea nitrogen
- DMEM, Dulbecco's modified eagle's medium
- Embelin
- FBS, fetal bovine serum
- HE, hematoxylin & eosin
- ICU, intensive care unit
- IHC, immunohistochemistry
- Inflammation
- LPS, lipopolysaccharide
- Macrophage
- PAS, periodic-acid Schiff
- Phosphorylated NF-κB p65 translocation
- Scr, serum creatinine
- Septic acute kidney injury
- mIF, multiplex immunofluorescent
Collapse
Affiliation(s)
- Qiao Tang
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Yun Tang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Qun Yang
- Department of Pathology, School of Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Rong Chen
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Hong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Haojun Luo
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Qiong Xiao
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Kaixiang Liu
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Liming Huang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Jie Chen
- Central Laboratory, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Lin Wang
- Institute of Laboratory Animal Sciences, School of Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Xinrou Song
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Sipei Chen
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Guisen Li
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Yi Li
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
- Corresponding author. Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
8
|
Habrowska-Górczyńska DE, Kowalska K, Urbanek KA, Domińska K, Kozieł MJ, Piastowska-Ciesielska AW. Effect of the mycotoxin deoxynivalenol in combinational therapy with TRAIL on prostate cancer cells. Toxicol Appl Pharmacol 2023; 461:116390. [PMID: 36690084 DOI: 10.1016/j.taap.2023.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is reported as a promising anti-cancer therapeutic target. Unfortunately, prostate cancer cells (PCa) are partially resistant to TRAIL-induced apoptosis limiting its therapeutic potential. The existing body of knowledge suggests that naturally produced compounds, such as mycotoxin deoxynivalenol (DON), might potentially sensitize cells to TRAIL treatment and improve the efficiency of therapy. Previously, we observed that DON induces oxidative stress and apoptosis in PCa cell lines. Thus we addressed here whether DON can sensitize PCa cells to TRAIL-induced apoptosis. Our data demonstrates that three out of four tested PCa cell lines pretreated with DON increased TRAIL-induced apoptosis detected with flow cytometry. This effect was associated with oxidative stress (LNCaP and DU-145 cell line) and elevated DNA damage (DU-145, LNCaP, and 22Rv1 cell lines). Next, in the animal model we inoculated PC tumor to SCKID mice followed by administration of DON intraperitoneally and/or TRIAL intravenously. During 21 days monitoring of tumor growth, the animals received 7 doses of DON, TRAIL, DON+TRAIL or control injections. No significant reduction in tumor mass was observed after combinational treatment of TRAIL and DON compared to 1 μg/kg of body weight DON treatment alone, which itself decreased the tumor growth. However, despite the lack of the TRAIL + DON effect, DON itself inducing apoptosis is an interesting compound worth investigating in the context of other combination therapies.
Collapse
Affiliation(s)
| | - Karolina Kowalska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Kinga Anna Urbanek
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Marta Justyna Kozieł
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | | |
Collapse
|
9
|
Al Abo M, Gearhart-Serna L, Van Laere S, Freedman JA, Patierno SR, Hwang ESS, Krishnamurthy S, Williams KP, Devi GR. Adaptive stress response genes associated with breast cancer subtypes and survival outcomes reveal race-related differences. NPJ Breast Cancer 2022; 8:73. [PMID: 35697736 PMCID: PMC9192737 DOI: 10.1038/s41523-022-00431-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/05/2022] [Indexed: 11/12/2022] Open
Abstract
Aggressive breast cancer variants, like triple negative and inflammatory breast cancer, contribute to disparities in survival and clinical outcomes among African American (AA) patients compared to White (W) patients. We previously identified the dominant role of anti-apoptotic protein XIAP in regulating tumor cell adaptive stress response (ASR) that promotes a hyperproliferative, drug resistant phenotype. Using The Cancer Genome Atlas (TCGA), we identified 46-88 ASR genes that are differentially expressed (2-fold-change and adjusted p-value < 0.05) depending on PAM50 breast cancer subtype. On average, 20% of all 226 ASR genes exhibited race-related differential expression. These genes were functionally relevant in cell cycle, DNA damage response, signal transduction, and regulation of cell death-related processes. Moreover, 23% of the differentially expressed ASR genes were associated with AA and/or W breast cancer patient survival. These identified genes represent potential therapeutic targets to improve breast cancer outcomes and mitigate associated health disparities.
Collapse
Affiliation(s)
- Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Steven Van Laere
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences-University of Antwerp, Campus Drie Eiken‑Universiteitsplein 1, 2610, Wilrijk‑Antwerp, Belgium
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Eun-Sil Shelley Hwang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Kevin P Williams
- Department of Pharmaceutical Sciences and BRITE, North Carolina Central University, Durham, NC, 27707, USA
| | - Gayathri R Devi
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Cetraro P, Plaza-Diaz J, MacKenzie A, Abadía-Molina F. A Review of the Current Impact of Inhibitors of Apoptosis Proteins and Their Repression in Cancer. Cancers (Basel) 2022; 14:1671. [PMID: 35406442 PMCID: PMC8996962 DOI: 10.3390/cancers14071671] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The Inhibitor of Apoptosis (IAP) family possesses the ability to inhibit programmed cell death through different mechanisms; additionally, some of its members have emerged as important regulators of the immune response. Both direct and indirect activity on caspases or the modulation of survival pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), have been implicated in mediating its effects. As a result, abnormal expression of inhibitor apoptosis proteins (IAPs) can lead to dysregulated apoptosis promoting the development of different pathologies. In several cancer types IAPs are overexpressed, while their natural antagonist, the second mitochondrial-derived activator of caspases (Smac), appears to be downregulated, potentially contributing to the acquisition of resistance to traditional therapy. Recently developed Smac mimetics counteract IAP activity and show promise in the re-sensitization to apoptosis in cancer cells. Given the modest impact of Smac mimetics when used as a monotherapy, pairing of these compounds with other treatment modalities is increasingly being explored. Modulation of molecules such as tumor necrosis factor-α (TNF-α) present in the tumor microenvironment have been suggested to contribute to putative therapeutic efficacy of IAP inhibition, although published results do not show this consistently underlining the complex interaction between IAPs and cancer.
Collapse
Affiliation(s)
- Pierina Cetraro
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Armilla, 18016 Granada, Spain;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Alex MacKenzie
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Armilla, 18016 Granada, Spain
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
11
|
Liang YH, Wu JM, Teng JW, Hung E, Wang HS. Embelin downregulated cFLIP in breast cancer cell lines facilitate anti-tumor effect of IL-1β-stimulated human umbilical cord mesenchymal stem cells. Sci Rep 2021; 11:14720. [PMID: 34282169 PMCID: PMC8289868 DOI: 10.1038/s41598-021-94006-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death for women. In breast cancer treatment, targeted therapy would be more effective and less harmful than radiotherapy or systemic chemotherapy. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in cancer cells but not in normal cells. Mesenchymal stem cells have shown great therapeutic potential in cancer therapy owing to their ability of homing to tumor sites and secreting many kinds of anti-tumor proteins including TRAIL. In this study, we found that IL-1β-stimulated human umbilical cord-derived mesenchymal stem cells (hUCMSCs) enhance the expression of membrane-bound and soluble TRAIL. Cellular FADD-like IL-1β-converting enzyme inhibitory protein (cFLIP) is an important regulator in TRAIL-mediated apoptosis and relates to TRAIL resistance in cancer cells. Previous studies have shown that embelin, which is extracted from Embelia ribes, can increase the TRAIL sensitivity of cancer cells by reducing cFLIP expression. Here we have demonstrated that cFLIPL is correlated with TRAIL-resistance and that embelin effectively downregulates cFLIPL in breast cancer cells. Moreover, co-culture of IL-1β-stimulated hUCMSCs with embelin-treated breast cancer cells could effectively induce apoptosis in breast cancer cells. The combined effects of embelin and IL-1β-stimulated hUCMSCs may provide a new therapeutic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Ya-Han Liang
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Jiann-Ming Wu
- General Surgery Division, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Jui-Wen Teng
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Eric Hung
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Hwai-Shi Wang
- Department of Anatomy, Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
12
|
Devi GR, Finetti P, Morse MA, Lee S, de Nonneville A, Van Laere S, Troy J, Geradts J, McCall S, Bertucci F. Expression of X-Linked Inhibitor of Apoptosis Protein (XIAP) in Breast Cancer Is Associated with Shorter Survival and Resistance to Chemotherapy. Cancers (Basel) 2021; 13:2807. [PMID: 34199946 PMCID: PMC8200223 DOI: 10.3390/cancers13112807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
XIAP, the most potent inhibitor of cell death pathways, is linked to chemotherapy resistance and tumor aggressiveness. Currently, multiple XIAP-targeting agents are in clinical trials. However, the characterization of XIAP expression in relation to clinicopathological variables in large clinical series of breast cancer is lacking. We retrospectively analyzed non-metastatic, non-inflammatory, primary, invasive breast cancer samples for XIAP mRNA (n = 2341) and protein (n = 367) expression. XIAP expression was analyzed as a continuous value and correlated with clinicopathological variables. XIAP mRNA expression was heterogeneous across samples and significantly associated with younger patients' age (≤50 years), pathological ductal type, lower tumor grade, node-positive status, HR+/HER2- status, and PAM50 luminal B subtype. Higher XIAP expression was associated with shorter DFS in uni- and multivariate analyses in 909 informative patients. Very similar correlations were observed at the protein level. This prognostic impact was significant in the HR+/HER2- but not in the TN subtype. Finally, XIAP mRNA expression was associated with lower pCR rate to anthracycline-based neoadjuvant chemotherapy in both uni- and multivariate analyses in 1203 informative patients. Higher XIAP expression in invasive breast cancer is independently associated with poorer prognosis and resistance to chemotherapy, suggesting the potential therapeutic benefit of targeting XIAP.
Collapse
Affiliation(s)
- Gayathri R. Devi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 13009 Marseille, France; (P.F.); (A.d.N.)
| | - Michael A. Morse
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA;
| | - Seayoung Lee
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| | - Alexandre de Nonneville
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 13009 Marseille, France; (P.F.); (A.d.N.)
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| | | | - Jesse Troy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA;
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, East Carolina University Brody School of Medicine, Greenville, NC 27858, USA;
| | - Shannon McCall
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Francois Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 13009 Marseille, France; (P.F.); (A.d.N.)
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| |
Collapse
|
13
|
Gearhart-Serna LM, Davis JB, Jolly MK, Jayasundara N, Sauer SJ, Di Giulio RT, Devi GR. A polycyclic aromatic hydrocarbon-enriched environmental chemical mixture enhances AhR, antiapoptotic signaling and a proliferative phenotype in breast cancer cells. Carcinogenesis 2020; 41:1648-1659. [PMID: 32747956 PMCID: PMC7791619 DOI: 10.1093/carcin/bgaa047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
Emerging evidence suggests the role of environmental chemicals, in particular endocrine-disrupting chemicals (EDCs), in progression of breast cancer and treatment resistance, which can impact survival outcomes. However, most research tends to focus on tumor etiology and the effect of single chemicals, offering little insight into the effects of realistic complex mixture exposures on tumor progression. Herein, we investigated the effect of a polycyclic aromatic hydrocarbon (PAH)-enriched EDC mixture in a panel of normal and breast cancer cells and in a tumor organoid model. Cells or organoids in culture were treated with EDC mixture at doses estimated from US adult intake of the top four PAH compounds within the mixture from the National Health and Nutrition Examination Survey database. We demonstrate that low-dose PAH mixture (6, 30 and 300 nM) increased aryl hydrocarbon receptor (AhR) expression and CYP activity in estrogen receptor (ER) positive but not normal mammary or ER-negative breast cancer cells, and that upregulated AhR signaling corresponded with increased cell proliferation and expression of antiapoptotic and antioxidant proteins XIAP and SOD1. We employed a mathematical model to validate PAH-mediated increases in AhR and XIAP expression in the MCF-7 ER-positive cell line. Furthermore, the PAH mixture caused significant growth increases in ER-negative breast cancer cell derived 3D tumor organoids, providing further evidence for the role of a natural-derived PAH mixture in enhancing a tumor proliferative phenotype. Together, our integrated cell signaling, computational and phenotype analysis reveals the underlying mechanisms of EDC mixtures in breast cancer progression and survival.
Collapse
Affiliation(s)
- Larisa M Gearhart-Serna
- Department of Surgery, Division of Surgical Sciences, Durham, NC, USA
- Department of Pathology, Durham, NC, USA
- Nicholas School of the Environment, Durham, NC, USA
| | - John B Davis
- Department of Biology, Trinity School of Arts and Sciences, Duke University, Durham, NC, USA
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Nishad Jayasundara
- Nicholas School of the Environment, Durham, NC, USA
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Scott J Sauer
- Department of Surgery, Division of Surgical Sciences, Durham, NC, USA
| | | | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Durham, NC, USA
- Department of Pathology, Durham, NC, USA
- Women’s Cancer Program, Duke Cancer Institute, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Caruso F, Rossi M, Pedersen JZ, Incerpi S. Computational studies reveal mechanism by which quinone derivatives can inhibit SARS-CoV-2. Study of embelin and two therapeutic compounds of interest, methyl prednisolone and dexamethasone. J Infect Public Health 2020; 13:1868-1877. [PMID: 33109497 PMCID: PMC7556809 DOI: 10.1016/j.jiph.2020.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Quinones are reactive to proteins containing cysteine residues and the main protease in Covid-19 contains an active site that includes Cys145. Embelin, a quinone natural product, is known to have antiviral activity against influenza and hepatitis B. Preliminary studies by our group also indicate its ability to inhibit HSV-1 in cultured cells. METHODS Docking and DFT methods applied to the protease target. RESULTS a mechanism for this inhibition of the SARS-CoV-2 Mpro protease is described, specifically due to formation of a covalent bond between S(Cys145) and an embelin C(carbonyl). This is assisted by two protein amino acids (1) N(imidazole-His41) which is able to capture H[S(Cys145)] and (2) HN(His163), which donates a proton to embelin O(carbonyl) forming an OH moiety that results in inhibition of the viral protease. A similar process is also seen with the anti-inflammatory drugs methyl prednisolone and dexamethasone, used for Covid-19 patients. Methyl prednisolone and dexamethasone are methide quinones, and possess only one carbonyl moiety, instead of two for embelin. Additional consideration was given to another natural product, emodin, recently patented against Covid-19, as well as some therapeutic quinones, vitamin K, suspected to be involved in Covid-19 action, and coenzyme Q10. All show structural similarities with embelin, dexamethasone and methyl prednisolone results. CONCLUSIONS Our data on embelin and related quinones indicate that these natural compounds may represent a feasible, strategic tool against Covid-19.
Collapse
Affiliation(s)
- Francesco Caruso
- Vassar College, Department of Chemistry, Poughkeepsie NY 12604, USA.
| | - Miriam Rossi
- Vassar College, Department of Chemistry, Poughkeepsie NY 12604, USA
| | - Jens Z Pedersen
- Department of Biology, University Tor Vergata, 00133 Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, 00146 Rome, Italy
| |
Collapse
|
15
|
Wang P, Wu Y, Yang C, Zhao G, Liu Y, Cheng G, Wang S. Embelin Promotes Oncolytic Vaccinia Virus-Mediated Antitumor Immunity Through Disruption of IL-6/STAT3 Signaling in Lymphoma. Onco Targets Ther 2020; 13:1421-1429. [PMID: 32110041 PMCID: PMC7034962 DOI: 10.2147/ott.s209312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/29/2019] [Indexed: 12/16/2022] Open
Abstract
Objective Oncolytic virotherapy is a promising alternative to conventional treatment, yet limited viral replication and immune-negative feedback are the major hurdles to effective viro-immunotherapy. Methods In this study, we found that use of an adjuvant of embelin, a small molecular inhibitor of XIAP, increased the replication of oncolytic vaccinia virus (OVV) by mitigating antiviral innate immunity. Moreover, embelin suppresses constitutive STAT3 phosphorylation and mitigates OVV-induced activation of STAT3 in lymphoma. In the subcutaneous lymphoma model, embelin significantly enhanced the therapeutic efficacy of OVV and prolonged the survival. In addition, embelin significantly increased the OVV-induced infiltration of T cells and NK cells and decreased the number of OVV-induced myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. Results Our results explored the ability of OVV and embelin in combination to enhance lymphoma cell lysis, revealing a beneficial combinatorial effect wherein both lymphoma cell lysis and OVV replication were enhanced both in vitro and in an in vivo murine model system. Conclusion Our findings indicate the utility of embelin as an adjuvant for oncolytic viro-immunotherapy.
Collapse
Affiliation(s)
- Peng Wang
- Medical Laboratory Center, Lishui City People's Hospital, Lishui, People's Republic of China
| | - Yi Wu
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Chen Yang
- Department of Clinical Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Guanan Zhao
- Department of General Surgery, Lishui City People's Hospital, Lishui, People's Republic of China
| | - Yonghua Liu
- Department of Hematology, Lishui City People's Hospital, Lishui, People's Republic of China
| | - Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
16
|
Future Therapeutic Directions for Smac-Mimetics. Cells 2020; 9:cells9020406. [PMID: 32053868 PMCID: PMC7072318 DOI: 10.3390/cells9020406] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy.
Collapse
|
17
|
Matveeva A, Fichtner M, McAllister K, McCann C, Sturrock M, Longley DB, Prehn JHM. Heterogeneous responses to low level death receptor activation are explained by random molecular assembly of the Caspase-8 activation platform. PLoS Comput Biol 2019; 15:e1007374. [PMID: 31553717 PMCID: PMC6779275 DOI: 10.1371/journal.pcbi.1007374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/07/2019] [Accepted: 09/03/2019] [Indexed: 01/29/2023] Open
Abstract
Ligand binding to death receptors activates apoptosis in cancer cells. Stimulation of death receptors results in the formation of intracellular multiprotein platforms that either activate the apoptotic initiator Caspase-8 to trigger cell death, or signal through kinases to initiate inflammatory and cell survival signalling. Two of these platforms, the Death-Inducing Signalling Complex (DISC) and the RIPoptosome, also initiate necroptosis by building filamentous scaffolds that lead to the activation of mixed lineage kinase domain-like pseudokinase. To explain cell decision making downstream of death receptor activation, we developed a semi-stochastic model of DISC/RIPoptosome formation. The model is a hybrid of a direct Gillespie stochastic simulation algorithm for slow assembly of the RIPoptosome and a deterministic model of downstream caspase activation. The model explains how alterations in the level of death receptor-ligand complexes, their clustering properties and intrinsic molecular fluctuations in RIPoptosome assembly drive heterogeneous dynamics of Caspase-8 activation. The model highlights how kinetic proofreading leads to heterogeneous cell responses and results in fractional cell killing at low levels of receptor stimulation. It reveals that the noise in Caspase-8 activation-exclusively caused by the stochastic molecular assembly of the DISC/RIPoptosome platform-has a key function in extrinsic apoptotic stimuli recognition.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Fichtner
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine McAllister
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Christopher McCann
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Marc Sturrock
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel B. Longley
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Jochen H. M. Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
18
|
Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, Ngai SC. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019; 143:81-94. [PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
19
|
Kong WY, Yee ZY, Mai CW, Fang CM, Abdullah S, Ngai SC. Zebularine and trichostatin A sensitized human breast adenocarcinoma cells towards tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis. Heliyon 2019; 5:e02468. [PMID: 31687564 PMCID: PMC6819948 DOI: 10.1016/j.heliyon.2019.e02468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/12/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent due to its selective killing on cancer cells while sparing the normal cells. Nevertheless, breast adenocarcinoma cells can develop TRAIL resistance. Therefore, this project investigated the anti-cancer effects of the combination of epigenetic drugs zebularine and trichostatin A (ZT) with TRAIL (TZT) on the human breast adenocarcinoma cells. This treatment regimen was compared with the natural anti-cancer compound curcumin (Cur) and standard chemotherapeutic drug doxorubicin (Dox). As compared to TRAIL treatment, TZT treatment hampered the cell viability of human breast adenocarcinoma cells MDA-MB-231 significantly but not MCF-7 and immortalized non-cancerous human breast epithelial cells MCF10A. Unlike TZT, Cur and Dox treatments reduced cell viability in both human breast adenocarcinoma and epithelial cells significantly. Nevertheless, there were no changes in cell cycle in both TRAIL and TZT treatments in breast adenocarcinoma and normal epithelial cells. Intriguingly, Cur and Dox treatment generally induced G2/M arrest in MDA-MB-231, MCF-7 and MCF10A but Cur induced S phase arrest in MCF10A. The features of apoptosis such as morphological changes, apoptotic activity and the expression of cleaved poly (ADP) ribose polymerase (PARP) protein were more prominent in TRAIL and TZT-treated MDA-MB-231 as compared to MCF10A at 24 h post-treatment. Compared to TZT treatment, Cur and Dox treatments exhibited lesser apoptotic features in MDA-MB-231. Collectively, the sensitization using Zeb and TSA to augment TRAIL-induced apoptosis might be an alternative therapy towards human breast adenocarcinoma cells, without harming the normal human breast epithelial cells.
Collapse
Affiliation(s)
- Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Malaysia
| | - Zong Yang Yee
- School of Post-Graduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Chun Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Malaysia
| |
Collapse
|
20
|
Coyle R, Slattery K, Ennis L, O'sullivan M, Zisterer D. The XIAP inhibitor embelin sensitises malignant rhabdoid tumour cells to TRAIL treatment via enhanced activation of the extrinsic apoptotic pathway. Int J Oncol 2019; 55:191-202. [DOI: 10.3892/ijo.2019.4804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/13/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Rachel Coyle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin�2, Ireland
| | - Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Leanne Ennis
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Maureen O'sullivan
- The National Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
21
|
Kretz AL, Trauzold A, Hillenbrand A, Knippschild U, Henne-Bruns D, von Karstedt S, Lemke J. TRAILblazing Strategies for Cancer Treatment. Cancers (Basel) 2019; 11:cancers11040456. [PMID: 30935038 PMCID: PMC6521007 DOI: 10.3390/cancers11040456] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023] Open
Abstract
In the late 1990s, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-family, started receiving much attention for its potential in cancer therapy, due to its capacity to induce apoptosis selectively in tumour cells in vivo. TRAIL binds to its membrane-bound death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5) inducing the formation of a death-inducing signalling complex (DISC) thereby activating the apoptotic cascade. The ability of TRAIL to also induce apoptosis independently of p53 makes TRAIL a promising anticancer agent, especially in p53-mutated tumour entities. Thus, several so-called TRAIL receptor agonists (TRAs) were developed. Unfortunately, clinical testing of these TRAs did not reveal any significant anticancer activity, presumably due to inherent or acquired TRAIL resistance of most primary tumour cells. Since the potential power of TRAIL-based therapies still lies in TRAIL's explicit cancer cell-selectivity, a desirable approach going forward for TRAIL-based cancer therapy is the identification of substances that sensitise tumour cells for TRAIL-induced apoptosis while sparing normal cells. Numerous of such TRAIL-sensitising strategies have been identified within the last decades. However, many of these approaches have not been verified in animal models, and therefore potential toxicity of these approaches has not been taken into consideration. Here, we critically summarise and discuss the status quo of TRAIL signalling in cancer cells and strategies to force tumour cells into undergoing apoptosis triggered by TRAIL as a cancer therapeutic approach. Moreover, we provide an overview and outlook on innovative and promising future TRAIL-based therapeutic strategies.
Collapse
Affiliation(s)
- Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Anna Trauzold
- Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany.
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany.
| | - Andreas Hillenbrand
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Silvia von Karstedt
- Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann Straße 26, 50931 Cologne, Germany.
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
22
|
Chung AH, Leisner TM, Dardis GJ, Bivins MM, Keller AL, Parise LV. CIB1 depletion with docetaxel or TRAIL enhances triple-negative breast cancer cell death. Cancer Cell Int 2019; 19:26. [PMID: 30740034 PMCID: PMC6360800 DOI: 10.1186/s12935-019-0740-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Background Patients diagnosed with triple negative breast cancer (TNBC) have limited treatment options and often suffer from resistance and toxicity due to chemotherapy. We previously found that depleting calcium and integrin-binding protein 1 (CIB1) induces cell death selectively in TNBC cells, while sparing normal cells. Therefore, we asked whether CIB1 depletion further enhances tumor-specific killing when combined with either the commonly used chemotherapeutic, docetaxel, or the cell death-inducing ligand, TRAIL. Methods We targeted CIB1 by RNA interference in MDA-MB-436, MDA-MB-231, MDA-MB-468, docetaxel-resistant MDA-MB-436 TNBC cells and ME16C normal breast epithelial cells alone or combination with docetaxel or TRAIL. Cell death was quantified via trypan blue exclusion using flow cytometry and cell death mechanisms were analyzed by Western blotting. Cell surface levels of TRAIL receptors were measured by flow cytometry analysis. Results CIB1 depletion combined with docetaxel significantly enhanced tumor-specific cell death relative to each treatment alone. The enhanced cell death strongly correlated with caspase-8 activation, a hallmark of death receptor-mediated apoptosis. The death receptor TRAIL-R2 was upregulated in response to CIB1 depletion, which sensitized TNBC cells to the ligand TRAIL, resulting in a synergistic increase in cell death. In addition to death receptor-mediated apoptosis, both combination treatments activated a non-apoptotic mechanism, called paraptosis. Interestingly, these combination treatments also induced nearly complete death of docetaxel-resistant MDA-MB-436 cells, again via apoptosis and paraptosis. In contrast, neither combination treatment induced cell death in normal ME16C cells. Conclusion Novel combinations of CIB1 depletion with docetaxel or TRAIL selectively enhance naive and docetaxel-resistant TNBC cell death while sparing normal cell. Therefore, combination therapies that target CIB1 could prove to be a safe and durable strategy for treatment of TNBC and potentially other cancers. Electronic supplementary material The online version of this article (10.1186/s12935-019-0740-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander H Chung
- 1Department of Pharmacology, University of North Carolina at Chapel Hill, CB #7365, Chapel Hill, NC 27599 USA
| | - Tina M Leisner
- 2Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, CB #7260, Chapel Hill, NC 27599 USA
| | - Gabrielle J Dardis
- 2Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, CB #7260, Chapel Hill, NC 27599 USA
| | - Marissa M Bivins
- 1Department of Pharmacology, University of North Carolina at Chapel Hill, CB #7365, Chapel Hill, NC 27599 USA
| | - Alana L Keller
- 2Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, CB #7260, Chapel Hill, NC 27599 USA
| | - Leslie V Parise
- 2Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, CB #7260, Chapel Hill, NC 27599 USA.,3Lineberger Comprehensive Cancer Center, Chapel Hill, NC USA
| |
Collapse
|
23
|
Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci U S A 2019; 116:148-157. [PMID: 30587589 PMCID: PMC6320545 DOI: 10.1073/pnas.1815345116] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation are two paramount processes driving tumor progression, therapy resistance, and cancer metastasis. Recent experiments show that cells with varying EMT and CSC phenotypes are spatially segregated in the primary tumor. The underlying mechanisms generating such spatiotemporal dynamics in the tumor microenvironment, however, remain largely unexplored. Here, we show through a mechanism-based dynamical model that the diffusion of EMT-inducing signals such as TGF-β, together with noncell autonomous control of EMT and CSC decision making via the Notch signaling pathway, can explain experimentally observed disparate localization of subsets of CSCs with varying EMT phenotypes in the tumor. Our simulations show that the more mesenchymal CSCs lie at the invasive edge, while the hybrid epithelial/mesenchymal (E/M) CSCs reside in the tumor interior. Further, motivated by the role of Notch-Jagged signaling in mediating EMT and stemness, we investigated the microenvironmental factors that promote Notch-Jagged signaling. We show that many inflammatory cytokines such as IL-6 that can promote Notch-Jagged signaling can (i) stabilize a hybrid E/M phenotype, (ii) increase the likelihood of spatial proximity of hybrid E/M cells, and (iii) expand the fraction of CSCs. To validate the predicted connection between Notch-Jagged signaling and stemness, we knocked down JAG1 in hybrid E/M SUM149 human breast cancer cells in vitro. JAG1 knockdown significantly restricted tumor organoid formation, confirming the key role that Notch-Jagged signaling can play in tumor progression. Together, our integrated computational-experimental framework reveals the underlying principles of spatiotemporal dynamics of EMT and CSCs.
Collapse
|
24
|
Avisetti DR, Amireddy N, Kalivendi SV. The mitochondrial effects of embelin are independent of its MAP kinase regulation: Role of p53 in conferring selectivity towards cancer cells. Mitochondrion 2018; 46:158-163. [PMID: 29715507 DOI: 10.1016/j.mito.2018.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/11/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
Amongst various therapeutic properties of the natural product embelin, its anti-cancer effects are being extensively studied. We observed that, embelin induced apoptosis in A549 cells lacking functional mitochondria (ρ0 cells) indicating that its mitochondrial effects are not primarily responsible for its anti-cancer activity. However, p38 mediated activation of p53 was found to play a pivotal role in governing the apoptotic activity of embelin due to the following observations: a time-dependent activation of p53 and apoptosis by embelin; selective inhibition of p38 inhibited embelin-induced p53 levels. Overall, therapeutic strategies involving embelin and activators of p38 MAP kinase may improve the selective targeting of cancer cells.
Collapse
Affiliation(s)
- Deepa R Avisetti
- Biochemistry Laboratory, Department of Applied Biology and Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, , Uppal Road, Hyderabad 500007, T.S., India
| | - Niharika Amireddy
- Biochemistry Laboratory, Department of Applied Biology and Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, , Uppal Road, Hyderabad 500007, T.S., India
| | - Shasi V Kalivendi
- Biochemistry Laboratory, Department of Applied Biology and Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, , Uppal Road, Hyderabad 500007, T.S., India.
| |
Collapse
|
25
|
Prabhu KS, Achkar IW, Kuttikrishnan S, Akhtar S, Khan AQ, Siveen KS, Uddin S. Embelin: a benzoquinone possesses therapeutic potential for the treatment of human cancer. Future Med Chem 2018; 10:961-976. [PMID: 29620447 DOI: 10.4155/fmc-2017-0198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Natural products have been gaining recognition and are becoming a significant part of research in the area of drug development and discovery. Phytochemicals derived from these sources have been comprehensively studied and have displayed a wide range of activities against many fatal diseases including cancer. One such product that has gained recognition from its pharmacological properties and nontoxic nature is embelin, obtained from Embelia ribes. Amid all the vivid pharmacological activities, embelin has gained its prominence in the area of cancer research. Embelin binds to the BIR3 domain of XIAP, preventing the association of XIAP and caspase-9 resulting in the suppression of cell growth, proliferation and migration of various types of cancer cells. Furthermore, embelin modulates anti-apoptotic pathways by suppressing the activity of NF-κB, PI3-kinase/AKT, JAK/STAT pathway - among others. The present review summarizes the various reported effects of embelin on different types of cancer cells and highlights the cellular mechanisms of action.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodapully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
26
|
Ko JH, Lee SG, Yang WM, Um JY, Sethi G, Mishra S, Shanmugam MK, Ahn KS. The Application of Embelin for Cancer Prevention and Therapy. Molecules 2018. [PMID: 29522451 PMCID: PMC6017120 DOI: 10.3390/molecules23030621] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Embelin is a naturally-occurring benzoquinone compound that has been shown to possess many biological properties relevant to human cancer prevention and treatment, and increasing evidence indicates that embelin may modulate various characteristic hallmarks of tumor cells. This review summarizes the information related to the various oncogenic pathways that mediate embelin-induced cell death in multiple cancer cells. The mechanisms of the action of embelin are numerous, and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and modulate the NF-κB, p53, PI3K/AKT, and STAT3 signaling pathways. Embelin also induces autophagy in cancer cells; however, these autophagic cell-death mechanisms of embelin have been less reported than the apoptotic ones. Recently, several autophagy-inducing agents have been used in the treatment of different human cancers, although they require further exploration before being transferred from the bench to the clinic. Therefore, embelin could be used as a potential agent for cancer therapy.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Seok-Geun Lee
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Woong Mo Yang
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
27
|
Qian H, Chen Y, Huang T, Liu T, Li X, Jiang G, Zhang W, Cheng S, Li P. Combined application of Embelin and tumor necrosis factor-related apoptosis-inducing ligand inhibits proliferation and invasion in osteosarcoma cells via caspase-induced apoptosis. Oncol Lett 2018; 15:6931-6940. [PMID: 29731867 PMCID: PMC5921233 DOI: 10.3892/ol.2018.8209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Embelin, as an inhibitor of the X-linked inhibitor of apoptosis protein (XIAP), may induce apoptosis in various types of cancer cells. The present study aimed to determine the effect of Embelin on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of osteosarcoma cells. Embelin and TRAIL were applied to U2OS and MG63 cells, respectively or in combination. MTT was initially used to detect the difference in survival rates between the group receiving combined application of 100 ng/ml TRAIL and 20 µmol/l Embelin and the individual application groups. Light microscopic quantification was used to detect the morphology of the osteosarcoma cells in each group. Determination of cell apoptosis was subsequently performed using flow cytometry. The invasive ability of the cells was detected by a Transwell assay, prior to relative protein expression being determined by western blot analysis. Based on all the test data, it was revealed that the survival rates and the invasive ability were significantly lower following the combined application of 100 ng/ml TRAIL and 20 µmol/l Embelin than following the individual application of either (P<0.01). Additionally, upregulating expression of caspases, as well as death receptor 5, and downregulating expression of XIAP and matrix metalloproteinase 9 (MMP-9), had more significant effects in the combined group compared with the individual group and the control group. All these results suggested that Embelin may enhance TRAIL-induced apoptosis and inhibit the invasion of human osteosarcoma cells.
Collapse
Affiliation(s)
- Hao Qian
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yao Chen
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Huang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tiemin Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiucheng Li
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guangjian Jiang
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuo Cheng
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Pengcheng Li
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
28
|
Arora J, Sauer SJ, Tarpley M, Vermeulen P, Rypens C, Van Laere S, Williams KP, Devi GR, Dewhirst MW. Inflammatory breast cancer tumor emboli express high levels of anti-apoptotic proteins: use of a quantitative high content and high-throughput 3D IBC spheroid assay to identify targeting strategies. Oncotarget 2018; 8:25848-25863. [PMID: 28460441 PMCID: PMC5432221 DOI: 10.18632/oncotarget.15667] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/19/2017] [Indexed: 11/25/2022] Open
Abstract
Inflammatory breast cancer (IBC) is one of the most lethal breast cancer variants; with existing therapy, 5-yr survival rate is only 35%. Current barriers to successful treatment of IBC include frequent infiltration and the presence of tumor cell clusters, termed tumor emboli, within the breast parenchyma and lymphatics. Prior studies have identified the role of anti-apoptotic signaling, in particular hyperactivation of NFκB and its target genes, in IBC pathobiology and therapeutic resistance. The objectives of this study were to: (1) determine if IBC tumor emboli express anti-apoptotic proteins and (2) develop a high content, multiparametric assay to assess the morphology of the IBC 3D spheroids and to optimize a high throughput format to screen for compounds that can inhibit the formation of the IBC tumor clusters/embolic structures. Immunohistochemical analysis of IBC patient tumor samples with documented tumor emboli revealed high NFκB (p65) staining along with expression of XIAP, a potent anti-apoptotic protein known to interact with NFκB signaling in enhancing survival of malignant cells. Subsequently, the high content assay developed allowed for simultaneous imaging and morphometric analysis, including count and viability of spheroids derived from SUM149, rSUM149 and SUM190 cells and its application to evaluate XIAP and NFκB inhibitory agents. We demonstrate the efficacy of the off-patent drug disulfiram when chelated with copper, which we had previously reported to inhibit NFκB signaling, was highly effective in disrupting both IBC spheroids and emboli grown in vitro. Taken together, these results identify a high-throughput approach to target tumor spheroid formation for drug discovery. Finally, disulfiram is a safe and approved drug for management of alcohol abuse, warranting its evaluation for repurposing in IBC therapy.
Collapse
Affiliation(s)
- Jay Arora
- Duke Cancer Institute, Duke University, Durham, NC, USA.,Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Scott J Sauer
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Michael Tarpley
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Peter Vermeulen
- Translational Cancer Research Unit, Oncology Center, General Hospital Sint Augustinus, Center for Oncological Research (CORE), University of Antwerp, Antwerp, Wilrijk, Belgium
| | - Charlotte Rypens
- Translational Cancer Research Unit, Oncology Center, General Hospital Sint Augustinus, Center for Oncological Research (CORE), University of Antwerp, Antwerp, Wilrijk, Belgium
| | - Steven Van Laere
- Translational Cancer Research Unit, Oncology Center, General Hospital Sint Augustinus, Center for Oncological Research (CORE), University of Antwerp, Antwerp, Wilrijk, Belgium
| | - Kevin P Williams
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Gayathri R Devi
- Duke Cancer Institute, Duke University, Durham, NC, USA.,Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Mark W Dewhirst
- Duke Cancer Institute, Duke University, Durham, NC, USA.,Department of Radiation Oncology and Imaging Program, Duke University, Durham, NC, USA
| |
Collapse
|
29
|
Wang S, Shao M, Zhong Z, Wang A, Cao J, Lu Y, Wang Y, Zhang J. Co-delivery of gambogic acid and TRAIL plasmid by hyaluronic acid grafted PEI-PLGA nanoparticles for the treatment of triple negative breast cancer. Drug Deliv 2018; 24:1791-1800. [PMID: 29172759 PMCID: PMC8240989 DOI: 10.1080/10717544.2017.1406558] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based combination therapy and gene therapy are new strategies to potentially overcome the limitations of TRAIL, however, the lack of efficient and low toxic vectors remains the major obstacle. In this study, we developed a hyaluronic acid (HA)-decorated polyethylenimine-poly(d,l-lactide-co-glycolide) (PEI-PLGA) nanoparticle (NP) system for targeted co-delivery of TRAIL plasmid (pTRAIL) and gambogic acid (GA) in triple-negative breast cancer (TNBC) therapy. GA was encapsulated into the core of the PEI-PLGA NPs while pTRAIL was adsorbed onto the positive NP surface via charge adsorption. The coating of HA on PEI-PLGA NPs functions as a targeting ligand by binding to CD44 receptor of TNBC cells and a shell to neutralize the excess positive charge of inner NPs. The resultant pTRAIL and GA co-loaded HA-coated PEI-PLGA NPs exhibited spherical shape (121.5 nm) and could promote the internalization of loaded cargoes into TNBC cells through the CD44-dependent endocytic pathway. The dual drug-loaded NPs significantly augmented apoptotic cell death in vitro and inhibited TNBC tumor growth in vivo. This multifunctional NP system efficiently co-delivered GA and pTRAIL, thus representing a promising strategy to treat TNBC and bringing forth a platform strategy for co-delivery of therapeutic DNA and chemotherapeutic agents in combinatorial TNBC therapy.
Collapse
Affiliation(s)
- Shengpeng Wang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Min Shao
- b Department of Bioengineering , Zunyi Medical University Zhuhai Campus , Zhuhai , Guangdong , China
| | - Zhangfeng Zhong
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Anqi Wang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Jiliang Cao
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Yucong Lu
- b Department of Bioengineering , Zunyi Medical University Zhuhai Campus , Zhuhai , Guangdong , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Jinming Zhang
- a State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences, University of Macau , Macau , China.,c College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , Sichuan , China
| |
Collapse
|
30
|
Evans MK, Brown MC, Geradts J, Bao X, Robinson TJ, Jolly MK, Vermeulen PB, Palmer GM, Gromeier M, Levine H, Morse MA, Van Laere SJ, Devi GR. XIAP Regulation by MNK Links MAPK and NFκB Signaling to Determine an Aggressive Breast Cancer Phenotype. Cancer Res 2018; 78:1726-1738. [PMID: 29351901 DOI: 10.1158/0008-5472.can-17-1667] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/07/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Abstract
Hyperactivation of the NFκB pathway is a distinct feature of inflammatory breast cancer (IBC), a highly proliferative and lethal disease. Gene expression studies in IBC patient tissue have linked EGFR (EGFR/HER2)-mediated MAPK signaling to NFκB hyperactivity, but the mechanism(s) by which this occurs remain unclear. Here, we report that the X-linked inhibitor of apoptosis protein (XIAP) plays a central role in linking these two pathways. XIAP overexpression correlated with poor prognoses in breast cancer patients and was frequently observed in untreated IBC patient primary tumors. XIAP drove constitutive NFκB transcriptional activity, which mediated ALDH positivity (a marker of stem-like cells), in vivo tumor growth, and an IBC expression signature in patient-derived IBC cells. Using pathway inhibitors and mathematical models, we defined a new role for the MAPK interacting (Ser/Thr)-kinase (MNK) in enhancing XIAP expression and downstream NFκB signaling. Furthermore, targeted XIAP knockdown and treatment with a MNK inhibitor decreased tumor cell migration in a dorsal skin fold window chamber murine model that allowed for intravital imaging of local tumor growth and migration. Together, our results indicate a novel role for XIAP in the molecular cross-talk between MAPK and NFκB pathways in aggressive tumor growth, which has the potential to be therapeutically exploited.Significance: Signaling by the MNK kinase is essential in inflammatory breast cancer, and it can be targeted to inhibit XIAP-NFκB signaling and the aggressive phenotype of this malignancy. Cancer Res; 78(7); 1726-38. ©2018 AACR.
Collapse
Affiliation(s)
- Myron K Evans
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Michael C Brown
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Joseph Geradts
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Xuhui Bao
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Timothy J Robinson
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Peter B Vermeulen
- Translational Cancer Research Unit, Oncology Center, General Hospital Sint-Augustinus, Antwerp, Belgium
| | - Gregory M Palmer
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Michael A Morse
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina.,Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Steven J Van Laere
- Translational Cancer Research Unit, Oncology Center, General Hospital Sint-Augustinus, Antwerp, Belgium.,Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina. .,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
31
|
Wang X, Wang X, Gu J, Zhou M, He Z, Wang X, Ferrone S. Overexpression of miR-489 enhances efficacy of 5-fluorouracil-based treatment in breast cancer stem cells by targeting XIAP. Oncotarget 2017; 8:113837-113846. [PMID: 29371950 PMCID: PMC5768367 DOI: 10.18632/oncotarget.22985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/17/2017] [Indexed: 12/03/2022] Open
Abstract
Population of cancer stem cells (CSCs) in breast cancer is reported to be resistant to chemotherapy. Furthermore, many cases of treatment failure are induced by the chemoresistance of CSCs in breast cancer patients. Therefore, novel strategies should be explored urgently to reverse drug-resistance in breast cancer stem cells (BCSCs). In this study, we isolated and cultured the BCSCs from the T-47D and SKBR3 breast cancer cell lines. We observed significant resistance to 5-fluorouracil in BCSCs. Mechanically, we found that expression of miR-489 was decreased in BCSCs. Furthermore, overexpression of miR-489 was found to increase the cytotoxicity of 5-fluorouracil to BCSCs. XIAP, a key anti-apoptotic protein, was proved to be the target of miR-489. We found that enforced expression of XIAP through its recombinant expression vector abolished the effect of miR-489 on reversing the 5-fluorouracil resistance. On the contrary, embelin, a XIAP specific inhibitor, was found to sensitize BCSCs to 5-fluorouracil similarly with miR-489. In summary, our data demonstrate that introduction with miR-489 represents a novel strategy to enhance efficacy of 5-fluorouracil-based treatment in BCSCs.
Collapse
Affiliation(s)
- Xuedong Wang
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, The Medical School of Jiangnan University, Wuxi, Jiangsu 214005, China.,Department of Pathology, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, Jiangsu 214005, China.,Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xinguo Wang
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, The Medical School of Jiangnan University, Wuxi, Jiangsu 214005, China.,Department of Pathology, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, Jiangsu 214005, China
| | - Juan Gu
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, The Medical School of Jiangnan University, Wuxi, Jiangsu 214005, China.,Department of Pathology, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, Jiangsu 214005, China
| | - Ming Zhou
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Zhimin He
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Xinhui Wang
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Soldano Ferrone
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
32
|
Thapa B, Bahadur KC R, Uludağ H. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery. Int J Cancer 2017; 142:597-606. [DOI: 10.1002/ijc.31079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/09/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton AB Canada
| | - Remant Bahadur KC
- Department of Chemical and Material Engineering, Faculty of Engineering; University of Alberta; Edmonton AB Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton AB Canada
- Department of Chemical and Material Engineering, Faculty of Engineering; University of Alberta; Edmonton AB Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry; University of Alberta; Edmonton AB Canada
| |
Collapse
|
33
|
Sauer SJ, Tarpley M, Shah I, Save AV, Lyerly HK, Patierno SR, Williams KP, Devi GR. Bisphenol A activates EGFR and ERK promoting proliferation, tumor spheroid formation and resistance to EGFR pathway inhibition in estrogen receptor-negative inflammatory breast cancer cells. Carcinogenesis 2017; 38:252-260. [PMID: 28426875 DOI: 10.1093/carcin/bgx003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence from epidemiological studies suggests a link between environmental chemical exposure and progression of aggressive breast cancer subtypes. Of all clinically distinct types of breast cancers, the most lethal phenotypic variant is inflammatory breast cancer (IBC). Overexpression of epidermal growth factor receptors (EGFR/HER2) along with estrogen receptor (ER) negativity is common in IBC tumor cells, which instead of a solid mass present as rapidly proliferating diffuse tumor cell clusters. Our previous studies have demonstrated a role of an adaptive response of increased antioxidants in acquired resistance to EGFR-targeting drugs in IBC. Environmental chemicals are known to induce oxidative stress resulting in perturbations in signal transduction pathways. It is therefore of interest to identify chemicals that can potentiate EGFR mitogenic effects in IBC. Herein, we assessed in ER-negative IBC cells a subset of chemicals from the EPA ToxCast set for their effect on EGFR activation and in multiple cancer phenotypic assays. We demonstrated that endocrine-disrupting chemicals such as bisphenol A (BPA) and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane can increase EGFR/ERK signaling. BPA also caused a corresponding increase in expression of SOD1 and anti-apoptotic Bcl-2, key markers of antioxidant and anti-apoptotic processes. BPA potentiated clonogenic growth and tumor spheroid formation in vitro, reflecting IBC-specific pathological characteristics. Furthermore, we identified that BPA was able to attenuate the inhibitory effect of an EGFR targeted drug in a longer-term anchorage-independent growth assay. These findings provide a potential mechanistic basis for environmental chemicals such as BPA in potentiating a hyperproliferative and death-resistant phenotype in cancer cells by activating mitogenic pathways to which the tumor cells are addicted for survival.
Collapse
Affiliation(s)
- Scott J Sauer
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Sciences, Durham, NC 27710, USA
| | - Michael Tarpley
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Imran Shah
- National Center for Computational Toxicology, Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Akshay V Save
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - H Kim Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Sciences, Durham, NC 27710, USA.,Women's Cancer Program and
| | - Steven R Patierno
- Cancer Control and Population Sciences Program, Duke Cancer Institute, Durham, NC 27710, USA
| | - Kevin P Williams
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Sciences, Durham, NC 27710, USA.,Women's Cancer Program and
| |
Collapse
|
34
|
Lee HY, Parkinson EI, Granchi C, Paterni I, Panigrahy D, Seth P, Minutolo F, Hergenrother PJ. Reactive Oxygen Species Synergize To Potently and Selectively Induce Cancer Cell Death. ACS Chem Biol 2017; 12:1416-1424. [PMID: 28345875 DOI: 10.1021/acschembio.7b00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A distinctive feature of cancer cells is their elevated levels of reactive oxygen species (ROS), a trait that can cause cancer cells to be more sensitive to ROS-inducing agents than normal cells. ROS take several forms, each with different reactivity and downstream consequence. Here we show that simultaneous generation of superoxide and hydrogen peroxide within cancer cells results in significant synergy, potently and selectively causing cancer cell death. In these experiments superoxide is generated using the NAD(P)H quinone oxidoreductase 1 (NQO1) substrate deoxynyboquinone (DNQ), and hydrogen peroxide is generated using the lactate dehydrogenase A (LDH-A) inhibitor NHI-Glc-2. This combination reduces tumor burden and prolongs survival in a mouse model of lung cancer. These data suggest that simultaneous induction of superoxide and hydrogen peroxide can be a powerful and selective anticancer strategy.
Collapse
Affiliation(s)
- Hyang Yeon Lee
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Elizabeth I. Parkinson
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Carlotta Granchi
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ilaria Paterni
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | | | | | - Filippo Minutolo
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Paul J. Hergenrother
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
35
|
Strekalova E, Malin D, Rajanala H, Cryns VL. Metformin sensitizes triple-negative breast cancer to proapoptotic TRAIL receptor agonists by suppressing XIAP expression. Breast Cancer Res Treat 2017; 163:435-447. [PMID: 28324269 DOI: 10.1007/s10549-017-4201-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Despite robust antitumor activity in diverse preclinical models, TNF-related apoptosis-inducing ligand (TRAIL) receptor agonists have not demonstrated efficacy in clinical trials, underscoring the need to identify agents that enhance their activity. We postulated that the metabolic stress induced by the diabetes drug metformin would sensitize breast cancer cells to TRAIL receptor agonists. METHODS Human triple (estrogen receptor, progesterone receptor, and HER2)-negative breast cancer (TNBC) cell lines were treated with TRAIL receptor agonists (monoclonal antibodies or TRAIL peptide), metformin, or the combination. The effects on cell survival, caspase activation, and expression of TRAIL receptors and the antiapoptotic protein XIAP were determined. In addition, XIAP was silenced by RNAi in TNBC cells and the effects on sensitivity to TRAIL were determined. The antitumor effects of metformin, TRAIL, or the combination were evaluated in an orthotopic model of metastatic TNBC. RESULTS Metformin sensitized diverse TNBC cells to TRAIL receptor agonists. Metformin selectively enhanced the sensitivity of transformed breast epithelial cells to TRAIL receptor agonist-induced caspase activation and apoptosis with little effect on untransformed breast epithelial cells. These effects of metformin were accompanied by robust reductions in the protein levels of XIAP, a negative regulator of TRAIL-induced apoptosis. Silencing XIAP in TNBC cells mimicked the TRAIL-sensitizing effects of metformin. Metformin also enhanced the antitumor effects of TRAIL in a metastatic murine TNBC model. CONCLUSIONS Our findings indicate that metformin enhances the activity of TRAIL receptor agonists, thereby supporting the rationale for additional translational studies combining these agents.
Collapse
Affiliation(s)
- Elena Strekalova
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, MFCB 4144, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - Dmitry Malin
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, MFCB 4144, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - Harisha Rajanala
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, MFCB 4144, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, MFCB 4144, 1685 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
36
|
Kundap UP, Bhuvanendran S, Kumari Y, Othman I, Shaikh MF. Plant Derived Phytocompound, Embelin in CNS Disorders: A Systematic Review. Front Pharmacol 2017; 8:76. [PMID: 28289385 PMCID: PMC5326771 DOI: 10.3389/fphar.2017.00076] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/07/2017] [Indexed: 01/02/2023] Open
Abstract
A Central nervous system (CNS) disease is the one which affects either the spinal cord or brain and causing neurological or psychiatric complications. During the nineteenth century, modern medicines have occupied the therapy for many ailments and are widely used these days. Herbal medicines have often maintained popularity for historical and cultural reasons and also considered safer as they originate from natural sources. Embelin is a plant-based benzoquinone which is the major active constituent of the fruits of Embelia ribes Burm. It is an Indo-Malaysian species, extensively used in various traditional medicine systems for treating various diseases. Several natural products including quinone derivatives, which are considered to possess better safety and efficacy profile, are known for their CNS related activity. The bright orange hydroxybenzoquinone embelin-rich fruits of E. ribes have become popular in ethnomedicine. The present systematic review summarizes the effects of embelin on central nervous system and related diseases. A PRISMA model for systematic review was utilized for search. Various electronic databases such as Pubmed, Springer, Scopus, ScienceDirect, and Google Scholar were searched between January 2000 and February 2016. Based on the search criteria for the literature, 13 qualified articles were selected and discussed in this review. The results of the report showed that there is a lack of translational research and not a single study was found in human. This report gives embelin a further way to be explored in clinical trials for its safety and efficacy.
Collapse
Affiliation(s)
- Uday P Kundap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| |
Collapse
|
37
|
Ren M, Wang Z, Gao G, Gu X, Wu L, Chen L. Impact of X-linked inhibitor of apoptosis protein on survival of nasopharyngeal carcinoma patients following radiotherapy. Tumour Biol 2016; 37:11825-11833. [PMID: 27048285 DOI: 10.1007/s13277-016-5029-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/18/2016] [Indexed: 11/26/2022] Open
Abstract
This study aims to investigate CNE1 and CNE2 cell proliferation and apoptosis of nasopharyngeal cancer (NPC) and X-linked inhibitor of apoptosis protein (XIAP) expression in NPC patients after radiotherapy. Quantitative real-time quantitative polymerase chain reaction (qRT-PCR) and Western Blot detected XIAP and XIAP-associated factor1 (XAF1) messenger RNA (mRNA) and protein expression of CNE1 and CNE2 in NPC cells irradiated by γ-ray; MTT and flow cytometry assays detected CNE2 cells proliferation and apoptotic rate, respectively. With a retrospective analysis of 109 NPC patients in Xinxiang Central Hospital, immunohistochemistry (IHC) method detected XIAP expression, followed by a 5-year clinical analysis of the prognosis relevance after radiotherapy. In vitro, the inhibition and apoptotic rates of cells increased with the growth of radiation dose. qRT-PCR and Western blot detection declared that XIAP mRNA and protein expression increased, whereas XAF1 mRNA and protein expression decreased with the growth of radiation dose and exposure time. And XIAP mRNA and protein expression were negatively correlated with proliferation and apoptotic rates of the cells. In vivo, positive XIAP expression rate was negatively correlated with pathological tumor-node-metastasis (p-TNM) staging and tumor differentiation. Further, high XIAP expression, high p-TNM staging, and lower degree of differentiation were significantly correlated with the decrease of NPC patients' survival rate. Additionally, XIAP expression, p-TNM staging, and degrees of differentiation were independent risk factors for the survival of the NPC patients after radiotherapy. Increased XIAP expression and decreased XAF1 expression may be one reason for the apoptosis delays of CNE1 and CNE2 cells after irradiation, and the XIAP expression or the p-TNM staging and degree of differentiation are independent risk factors for NPC patients' survival after radiotherapy, providing a molecular rationale for radiotherapy and prognosis of NPC.
Collapse
Affiliation(s)
- Minzhu Ren
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China.
| | - Zhenhua Wang
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China
| | - Guowei Gao
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China
| | - Xiaohua Gu
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China
| | - Liping Wu
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China
| | - Lijun Chen
- Department of Radiotherapy, Xinxiang Central Hospital, Weibin District, No. 56, Jinsui Road, Xinxiang, 453000, Henan Province, People's Republic of China
| |
Collapse
|
38
|
Evans MK, Sauer SJ, Nath S, Robinson TJ, Morse MA, Devi GR. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity. Cell Death Dis 2016; 7:e2073. [PMID: 26821068 PMCID: PMC4816185 DOI: 10.1038/cddis.2015.412] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/29/2023]
Abstract
Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy.
Collapse
Affiliation(s)
- M K Evans
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - S J Sauer
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - S Nath
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - T J Robinson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - M A Morse
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - G R Devi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
39
|
Lim B, Allen JE, Prabhu VV, Talekar MK, Finnberg NK, El-Deiry WS. Targeting TRAIL in the treatment of cancer: new developments. Expert Opin Ther Targets 2015; 19:1171-85. [DOI: 10.1517/14728222.2015.1049838] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Allensworth JL, Evans MK, Bertucci F, Aldrich AJ, Festa RA, Finetti P, Ueno NT, Safi R, McDonnell DP, Thiele DJ, Van Laere S, Devi GR. Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer. Mol Oncol 2015; 9:1155-68. [PMID: 25769405 DOI: 10.1016/j.molonc.2015.02.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/20/2022] Open
Abstract
Cancer cells often have increased levels of reactive oxygen species (ROS); however, acquisition of redox adaptive mechanisms allows for evasion of ROS-mediated death. Inflammatory breast cancer (IBC) is a distinct, advanced BC subtype characterized by high rates of residual disease and recurrence despite advances in multimodality treatment. Using a cellular model of IBC, we identified an oxidative stress response (OSR) signature in surviving IBC cells after administration of an acute dose of an ROS inducer. Metagene analysis of patient samples revealed significantly higher OSR scores in IBC tumor samples compared to normal or non-IBC tissues, which may contribute to the poor response of IBC tumors to common treatment strategies, which often rely heavily on ROS induction. To combat this adaptation, we utilized a potent redox modulator, the FDA-approved small molecule Disulfiram (DSF), alone and in combination with copper. DSF forms a complex with copper (DSF-Cu) increasing intracellular copper concentration both in vitro and in vivo, bypassing the need for membrane transporters. DSF-Cu antagonized NFκB signaling, aldehyde dehydrogenase activity and antioxidant levels, inducing oxidative stress-mediated apoptosis in multiple IBC cellular models. In vivo, DSF-Cu significantly inhibited tumor growth without significant toxicity, causing apoptosis only in tumor cells. These results indicate that IBC tumors are highly redox adapted, which may render them resistant to ROS-inducing therapies. DSF, through redox modulation, may be a useful approach to enhance chemo- and/or radio-sensitivity for advanced BC subtypes where therapeutic resistance is an impediment to durable responses to current standard of care.
Collapse
Affiliation(s)
- Jennifer L Allensworth
- Department of Surgery, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Myron K Evans
- Department of Surgery, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - François Bertucci
- Department of Medical Oncology and Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Amy J Aldrich
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Richard A Festa
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Pascal Finetti
- Department of Medical Oncology and Molecular Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, USA
| | - Rachid Safi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Donald P McDonnell
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Steven Van Laere
- Translational Cancer Research Unit, Oncology Center, General Hospital Sint-Augustinus, Antwerp, Wilrijk, Belgium
| | - Gayathri R Devi
- Department of Surgery, Duke University Medical Center, Durham, NC, USA; Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
41
|
Coutelle O, Hornig-Do HT, Witt A, Andree M, Schiffmann LM, Piekarek M, Brinkmann K, Seeger JM, Liwschitz M, Miwa S, Hallek M, Krönke M, Trifunovic A, Eming SA, Wiesner RJ, Hacker UT, Kashkar H. Embelin inhibits endothelial mitochondrial respiration and impairs neoangiogenesis during tumor growth and wound healing. EMBO Mol Med 2014; 6:624-39. [PMID: 24648500 PMCID: PMC4023885 DOI: 10.1002/emmm.201303016] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In the normal quiescent vasculature, only 0.01% of endothelial cells (ECs) are proliferating. However, this proportion increases dramatically following the angiogenic switch during tumor growth or wound healing. Recent evidence suggests that this angiogenic switch is accompanied by a metabolic switch. Here, we show that proliferating ECs increasingly depend on mitochondrial oxidative phosphorylation (OxPhos) for their increased energy demand. Under growth conditions, ECs consume three times more oxygen than quiescent ECs and work close to their respiratory limit. The increased utilization of the proton motif force leads to a reduced mitochondrial membrane potential in proliferating ECs and sensitizes to mitochondrial uncoupling. The benzoquinone embelin is a weak mitochondrial uncoupler that prevents neoangiogenesis during tumor growth and wound healing by exhausting the low respiratory reserve of proliferating ECs without adversely affecting quiescent ECs. We demonstrate that this can be exploited therapeutically by attenuating tumor growth in syngenic and xenograft mouse models. This novel metabolic targeting approach might be clinically valuable in controlling pathological neoangiogenesis while sparing normal vasculature and complementing cytostatic drugs in cancer treatment.
Collapse
Affiliation(s)
- Oliver Coutelle
- Department I for Internal Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang S, Qiu J, Shi Z, Wang Y, Chen M. Nanoscale drug delivery for taxanes based on the mechanism of multidrug resistance of cancer. Biotechnol Adv 2014; 33:224-241. [PMID: 25447422 DOI: 10.1016/j.biotechadv.2014.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023]
Abstract
Taxanes are one type of the most extensively used chemotherapeutic agents to treat cancers. However, their clinical use is severely limited by intrinsic and acquired resistance. A diverse variety of mechanisms has been implicated about taxane resistance, such as alterations of drug targets, overexpression of efflux transporters, defective apoptotic machineries, and barriers in drug transport. The deepening understanding of molecular mechanisms of taxane resistance has spawned a number of targets for reversing resistance. However, circumvention of taxane resistance would not only possess therapeutic potential, but also face with clinical challenge, which accelerates the development of optimal nanoscale delivery systems. This review highlights the current understanding on the mechanisms of taxane resistance, and provides a comprehensive analysis of various nanoscale delivery systems to reverse taxane resistance.
Collapse
Affiliation(s)
- Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jiange Qiu
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
43
|
Differential response of head and neck cancer cell lines to TRAIL or Smac mimetics is associated with the cellular levels and activity of caspase-8 and caspase-10. Br J Cancer 2014; 111:1955-64. [PMID: 25314064 PMCID: PMC4229641 DOI: 10.1038/bjc.2014.521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/17/2014] [Accepted: 09/02/2014] [Indexed: 11/09/2022] Open
Abstract
Background: Current treatment strategies for head and neck cancer are associated with significant morbidity and up to 50% of patients relapse, highlighting the need for more specific and effective therapeutics. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Smac mimetics (SMs) are promising anticancer agents, but their effect on head and neck squamous cell carcinoma (HNSCC) remains unknown. Methods: We examined the response of a panel of nine HNSCC cell lines to TRAIL and SMs and investigated the mechanism of cell type-specific response by functional analysis. Results: Head and neck cancer cell lines revealed a converse response pattern with three cell lines being highly sensitive to Smac-164 (SM) but resistant to TRAIL, whereas the other six were sensitive to TRAIL but resistant to SM. Distinct protein expression and activation patterns were found to be associated with susceptibility of HNSCC cell lines to TRAIL and SM. Tumour necrosis factor-related apoptosis-inducing ligand sensitivity was associated with high caspase-8 and Bid protein levels, and TRAIL-sensitive cell lines were killed via the type II extrinsic apoptotic pathway. Smac mimetic-sensitive cells expressed low levels of caspase-8 and Bid but had high TNF-α expression. Smac mimetic-induced cell death was associated with caspase-10 activation, suggesting that in the absence of caspase-8, caspase-10 mediates response to SM. Cotreatment with TNF-α sensitised the resistant cells to SM, demonstrating a decisive role for TNF-α-driven feedback loop in SM sensitivity. Conclusions: Tumour necrosis factor-related apoptosis-inducing ligand and SMs effectively kill HNSCC cell lines and therefore represent potential targeted therapeutics for head and neck cancer. Distinct molecular mechanisms determine the sensitivity to each agent, with levels of TNF-α, caspase-8, Bid and caspase-10 providing important predictive biomarkers of response to these agents.
Collapse
|
44
|
The XIAP inhibitor Embelin enhances TRAIL-induced apoptosis in human leukemia cells by DR4 and DR5 upregulation. Tumour Biol 2014; 36:769-77. [PMID: 25293521 DOI: 10.1007/s13277-014-2702-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022] Open
Abstract
The present study was designed to explore the effects of low-toxicity Embelin on TRAIL-induced apoptosis and its possible mechanism in human leukemia cells. Our study showed that low-toxicity Embelin enhanced TRAIL-induced apoptosis through DR4 and DR5 upregulation and caspase activation in HL-60 cells. Pan-caspase inhibitor Z-VAD-FMK inhibited cell apoptosis induced by TRAIL alone or combined with low-toxicity Embelin, which indicated the cytotoxic effect is mediated by caspase-dependent apoptosis. Although Embelin is an X chromosome-linked inhibitor-of-apoptosis protein (XIAP) inhibitor, an XIAP independent effect on cell death was detected in HL-60 cells exposed to low-toxicity Embelin and TRAIL. Low-toxicity Embelin upregulated DR4 and DR5 expression to enhance TRAIL-induced apoptosis. The sensitizing effects of Embelin on TRAIL-induced apoptosis were markedly attenuated when DR4/DR5 was knocked down. These data suggested that low-toxicity Embelin enhanced TRAIL-induced cell apoptosis through DR4 and DR5 upregulation, indicating that combination of low-toxicity Embelin and TRAIL may become as a potential antileukemia strategy.
Collapse
|
45
|
Peng M, Huang B, Zhang Q, Fu S, Wang D, Cheng X, Wu X, Xue Z, Zhang L, Zhang D, Da Y, Dai Y, Yang Q, Yao Z, Qiao L, Zhang R. Embelin inhibits pancreatic cancer progression by directly inducing cancer cell apoptosis and indirectly restricting IL-6 associated inflammatory and immune suppressive cells. Cancer Lett 2014; 354:407-16. [PMID: 25128650 DOI: 10.1016/j.canlet.2014.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/15/2014] [Accepted: 08/07/2014] [Indexed: 01/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy and unresponsive to conventional chemotherapies. Here, the anti-inflammatory and anti-tumor effects of embelin on pancreatic cancer were investigated. Embelin significantly attenuated cells invasion, proliferation and induced apoptosis through inhibition of STAT3 and activation of p53 signaling pathways. Embelin substantially reduced the tumorigenicity of pancreatic cancer cells in vivo, which was associated with reduced inflammatory cells and immune suppressive cells, IL-17A(+) Th17, GM-CSF(+) Th, MDSCs and Treg, through inhibition of IL-6 secretion. Moreover, embelin decrease IL-6-induced STAT3 phosphorylation. In summary, embelin represents a novel therapeutic drug candidate for the clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Meiyu Peng
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Weifang Medical University, Weifang, China
| | - Bingqing Huang
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuyu Fu
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Dan Wang
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Xixi Cheng
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Xi Wu
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Zhenyi Xue
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Lijuan Zhang
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Da Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Yurong Da
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Qing Yang
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhi Yao
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Liang Qiao
- Storr Liver Unit, Westmead Millennium Institute, The Western Clinical School of the University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Immunology, Basic Medical College, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
46
|
Peng M, Xu S, Zhang Y, Zhang L, Huang B, Fu S, Xue Z, Da Y, Dai Y, Qiao L, Dong A, Zhang R, Meng W. Thermosensitive Injectable Hydrogel Enhances the Antitumor Effect of Embelin in Mouse Hepatocellular Carcinoma. J Pharm Sci 2014; 103:965-73. [DOI: 10.1002/jps.23885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/25/2022]
|
47
|
Evans MK, Tovmasyan A, Batinic-Haberle I, Devi GR. Mn porphyrin in combination with ascorbate acts as a pro-oxidant and mediates caspase-independent cancer cell death. Free Radic Biol Med 2014; 68:302-14. [PMID: 24334253 PMCID: PMC4404036 DOI: 10.1016/j.freeradbiomed.2013.11.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 01/13/2023]
Abstract
Resistance to therapy-mediated apoptosis in inflammatory breast cancer, an aggressive and distinct subtype of breast cancer, was recently attributed to increased superoxide dismutase (SOD) expression, glutathione (GSH) content, and decreased accumulation of reactive species. In this study, we demonstrate the unique ability of two Mn(III) N-substituted pyridylporphyrin (MnP)-based SOD mimics (MnTE-2-PyP(5+) and MnTnBuOE-2-PyP(5+)) to catalyze oxidation of ascorbate, leading to the production of excessive levels of peroxide, and in turn cell death. The accumulation of peroxide, as a consequence of MnP+ascorbate treatment, was fully reversed by the administration of exogenous catalase, showing that hydrogen peroxide is essential for cell death. Cell death as a consequence of the action of MnP+ascorbate corresponded to decreases in GSH levels, prosurvival signaling (p-NF-κB, p-ERK1/2), and in expression of X-linked inhibitor of apoptosis protein, the most potent caspase inhibitor. Although markers of classical apoptosis were observed, including PARP cleavage and annexin V staining, administration of a pan-caspase inhibitor, Q-VD-OPh, did not reverse the observed cytotoxicity. MnP+ascorbate-treated cells showed nuclear translocation of apoptosis-inducing factor, suggesting the possibility of a mechanism of caspase-independent cell death. Pharmacological ascorbate has already shown promise in recently completed phase I clinical trials, in which its oxidation and subsequent peroxide formation was catalyzed by endogenous metalloproteins. The catalysis of ascorbate oxidation by an optimized metal-based catalyst (such as MnP) carries a large therapeutic potential as an anticancer agent by itself or in combination with other modalities such as radio- and chemotherapy.
Collapse
Affiliation(s)
- Myron K Evans
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - Gayathri R Devi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
48
|
Abstract
Clinical application of anticancer drugs is limited by problems such as low water solubility, lack of tissue-specificity and toxicity. Formulation development represents an important approach to these problems. Among the many delivery systems studied, polymeric micelles have gained considerable attention owing to ease in preparation, small sizes (10-100 nm), and ability to solubilize water-insoluble anticancer drugs and accumulate specifically at the tumors. This article provides a brief review of several promising micellar systems and their applications in tumor therapy. The emphasis is placed on the discussion of the authors' recent work on several nanomicellar systems that have both a delivery function and antitumor activity, named dual-function drug carriers.
Collapse
|
49
|
Avisetti DR, Babu KS, Kalivendi SV. Activation of p38/JNK pathway is responsible for embelin induced apoptosis in lung cancer cells: transitional role of reactive oxygen species. PLoS One 2014; 9:e87050. [PMID: 24466324 PMCID: PMC3899364 DOI: 10.1371/journal.pone.0087050] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/17/2013] [Indexed: 02/02/2023] Open
Abstract
The natural product embelin has been demonstrated to possess a wide range of therapeutic properties, however, the mechanisms by which it exerts anticancer effects are not yet clear. By monitoring the molecular changes associated during early apoptotic phase, we have identified the crucial role of oxidative stress induced MAP kinase signalling as a predominant mechanism for its anticancer effects. Treatment of A549 lung cancer cells with embelin resulted in the enhancement of phospho-p38 and phospho-JNK levels as early as 4h. Pretreatment of cells with specific inhibitors of p38 (PD169316) and JNK (SP600125) abrogated embelin-induced caspase-3 activation. Studies employing embelin in the presence or absence of specific MAP kinase inhibitors indicated that the observed changes in phosphorylation levels of p38, JNK and ERK 1/2 are solely due to embelin and not because of cross-talk between MAP kinases. Reactive oxygen species (ROS) play a crucial role in embelin induced alterations in MAP kinase phosphorylation and apoptosis as pretreatment of cells with FeTMPyP mitigated this effect. The observed changes are not due to the inhibitory effect of embelin on XIAP as cells treated with SMAC-N7-Ant peptide, a specific inhibitor of XIAP’s BIR3 domain did not mimic embelin induced apoptotic effects. The findings of the present study clearly indicate the crucial role of p38 and JNK pathways in embelin induced apoptosis and provide us with new clues for improving its therapeutic efficacy.
Collapse
Affiliation(s)
- Deepa R. Avisetti
- Centre for Academy of Scientific & Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Andhra Pradesh, India
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Andhra Pradesh, India
| | - K. Suresh Babu
- Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Andhra Pradesh, India
| | - Shasi V. Kalivendi
- Centre for Academy of Scientific & Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Andhra Pradesh, India
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Andhra Pradesh, India
- * E-mail:
| |
Collapse
|
50
|
Poojari R. Embelin – a drug of antiquity: shifting the paradigm towards modern medicine. Expert Opin Investig Drugs 2014; 23:427-44. [DOI: 10.1517/13543784.2014.867016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|