1
|
Vendrov AE, Lozhkin A, Hayami T, Levin J, Silveira Fernandes Chamon J, Abdel-Latif A, Runge MS, Madamanchi NR. Mitochondrial dysfunction and metabolic reprogramming induce macrophage pro-inflammatory phenotype switch and atherosclerosis progression in aging. Front Immunol 2024; 15:1410832. [PMID: 38975335 PMCID: PMC11224442 DOI: 10.3389/fimmu.2024.1410832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Aging increases the risk of atherosclerotic vascular disease and its complications. Macrophages are pivotal in the pathogenesis of vascular aging, driving inflammation and atherosclerosis progression. NOX4 (NADPH oxidase 4) expression increases with age, correlating with mitochondrial dysfunction, inflammation, and atherosclerosis. We hypothesized that the NOX4-dependent mitochondrial oxidative stress promotes aging-associated atherosclerosis progression by causing metabolic dysfunction and inflammatory phenotype switch in macrophages. Methods We studied atherosclerotic lesion morphology and macrophage phenotype in young (5-month-old) and aged (16-month-old) Nox4 -/-/Apoe -/- and Apoe -/- mice fed Western diet. Results Young Nox4-/-/Apoe-/- and Apoe-/- mice had comparable aortic and brachiocephalic artery atherosclerotic lesion cross-sectional areas. Aged mice showed significantly increased lesion area compared with young mice. Aged Nox4-/-/Apoe-/- had significantly lower lesion areas than Apoe-/- mice. Compared with Apoe-/- mice, atherosclerotic lesions in aged Nox4-/-/Apoe-/- showed reduced cellular and mitochondrial ROS and oxidative DNA damage, lower necrotic core area, higher collagen content, and decreased inflammatory cytokine expression. Immunofluorescence and flow cytometry analysis revealed that aged Apoe-/- mice had a higher percentage of classically activated pro-inflammatory macrophages (CD38+CD80+) in the lesions. Aged Nox4-/-/Apoe-/- mice had a significantly higher proportion of alternatively activated pro-resolving macrophages (EGR2+/CD163+CD206+) in the lesions, with an increased CD38+/EGR2+ cell ratio compared with Apoe-/- mice. Mitochondrial respiration assessment revealed impaired oxidative phosphorylation and increased glycolytic ATP production in macrophages from aged Apoe-/- mice. In contrast, macrophages from Nox4-/-/Apoe-/- mice were less glycolytic and more aerobic, with preserved basal and maximal respiration and mitochondrial ATP production. Macrophages from Nox4-/-/Apoe-/- mice also had lower mitochondrial ROS levels and reduced IL1β secretion; flow cytometry analysis showed fewer CD38+ cells after IFNγ+LPS treatment and more EGR2+ cells after IL4 treatment than in Apoe-/- macrophages. In aged Apoe-/- mice, inhibition of NOX4 activity using GKT137831 significantly reduced macrophage mitochondrial ROS and improved mitochondrial function, resulting in decreased CD68+CD80+ and increased CD163+CD206+ lesion macrophage proportion and attenuated atherosclerosis. Discussion Our findings suggest that increased NOX4 in aging drives macrophage mitochondrial dysfunction, glycolytic metabolic switch, and pro-inflammatory phenotype, advancing atherosclerosis. Inhibiting NOX4 or mitochondrial dysfunction could alleviate vascular inflammation and atherosclerosis, preserving plaque integrity.
Collapse
Affiliation(s)
- Aleksandr E. Vendrov
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Andrey Lozhkin
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Takayuki Hayami
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Julia Levin
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jamille Silveira Fernandes Chamon
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ahmed Abdel-Latif
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine - Cardiology, Ann Arbor VA Healthcare System, Ann Arbor, MI, United States
| | - Marschall S. Runge
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nageswara R. Madamanchi
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Ma S, Xie X, Yuan R, Xin Q, Miao Y, Leng SX, Chen K, Cong W. Vascular Aging and Atherosclerosis: A Perspective on Aging. Aging Dis 2024; 16:AD.2024.0201-1. [PMID: 38502584 PMCID: PMC11745439 DOI: 10.14336/ad.2024.0201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Vascular aging (VA) is recognized as a pivotal factor in the development and progression of atherosclerosis (AS). Although various epidemiological and clinical research has demonstrated an intimate connection between aging and AS, the candidate mechanisms still require thorough examination. This review adopts an aging-centric perspective to deepen the comprehension of the intricate relationship between biological aging, vascular cell senescence, and AS. Various aging-related physiological factors influence the physical system's reactions, including oxygen radicals, inflammation, lipids, angiotensin II, mechanical forces, glucose levels, and insulin resistance. These factors cause endothelial dysfunction, barrier damage, sclerosis, and inflammation for VA and promote AS via distinct or shared pathways. Furthermore, the increase of senescent cells inside the vascular tissues, caused by genetic damage, dysregulation, secretome changes, and epigenetic modifications, might be the primary cause of VA.
Collapse
Affiliation(s)
- Shudong Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xuena Xie
- School of Pharmacy, Macau University of Science and Technology, Macau, China.
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Sean Xiao Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | - Keji Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Weihong Cong
- School of Pharmacy, Macau University of Science and Technology, Macau, China.
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Ahn YJ, Wang L, Kim S, Eber MR, Salerno AG, Asmis R. Macrophage-restricted overexpression of glutaredoxin 1 protects against atherosclerosis by preventing nutrient stress-induced macrophage dysfunction and reprogramming. Atherosclerosis 2023; 387:117383. [PMID: 38061313 PMCID: PMC10872283 DOI: 10.1016/j.atherosclerosis.2023.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND AND AIMS Deficiency in the thiol transferase glutaredoxin 1 (Grx1) in aging mice promotes, in a sexually dimorphic manner, dysregulation of macrophages and atherogenesis. However, the underlying mechanisms are not known. Here we tested the hypothesis that macrophage-restricted overexpression of Grx1 protects atherosclerosis-prone mice against macrophage reprogramming and dysfunction induced by a high-calorie diet (HCD) and thereby reduces the severity of atherosclerosis. METHODS We generated lentiviral vectors carrying cluster of differentiation 68 (CD68) promoter-driven enhanced green fluorescent protein (EGFP) or Grx1 constructs and conducted bone marrow (BM) transplantation studies to overexpress Grx1 in a macrophage-specific manner in male and female atherosclerosis-prone LDLR-/- mice, and fed these mice a HCD to induce atherogenesis. Atherosclerotic lesion size was determined in both the aortic root and the aorta. We isolated BM-derived macrophages (BMDM) to assess protein S-glutathionylation levels and loss of mitogen-activated protein kinase phosphatase 1 (MKP-1) activity as measures of HCD-induced thiol oxidative stress. We also conducted gene profiling on these BMDM to determine the impact of Grx1 activity on HCD-induced macrophage reprogramming. RESULTS Overexpression of Grx1 protected macrophages against HCD-induced protein S-glutathionylation, reduced monocyte chemotaxis in vivo, limited macrophage recruitment into atherosclerotic lesions, and was sufficient to reduce the severity of atherogenesis in both male and female mice. Gene profiling revealed major sex differences in the transcriptional reprogramming of macrophages induced by HCD feeding, but Grx1 overexpression only partially reversed HCD-induced transcriptional reprogramming of macrophages. CONCLUSIONS Macrophage Grx1 plays a major role in protecting mice atherosclerosis mainly by maintaining the thiol redox state of the macrophage proteome and preventing macrophage dysfunction.
Collapse
Affiliation(s)
- Yong Joo Ahn
- Department of Convergence IT Engineering, School of Convergence Science and Technology, Medical Science and Engineering Program, Pohang University of Science and Technology (POSTECH), South Korea
| | - Luxi Wang
- Department of Physiology of the School of Basic Medical Science at Zhejiang University, China
| | - Seonwook Kim
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Matthew R Eber
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | | | - Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, USA.
| |
Collapse
|
4
|
Han S, Moon S, Chung YW, Ryu JH. NADPH Oxidase 4-mediated Alveolar Macrophage Recruitment to Lung Attenuates Neutrophilic Inflammation in Staphylococcus aureus Infection. Immune Netw 2023; 23:e42. [PMID: 37970233 PMCID: PMC10643333 DOI: 10.4110/in.2023.23.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023] Open
Abstract
When the lungs are infected with bacteria, alveolar macrophages (AMs) are recruited to the site and play a crucial role in protecting the host by reducing excessive lung inflammation. However, the regulatory mechanisms that trigger the recruitment of AMs to lung alveoli during an infection are still not fully understood. In this study, we identified a critical role for NADPH oxidase 4 (NOX4) in the recruitment of AMs during Staphylococcus aureus lung infection. We found that NOX4 knockout (KO) mice showed decreased recruitment of AMs and increased lung neutrophils and injury in response to S. aureus infection compared to wild-type (WT) mice. Interestingly, the burden of S. aureus in the lungs was not different between NOX4 KO and WT mice. Furthermore, we observed that depletion of AMs in WT mice during S. aureus infection increased the number of neutrophils and lung injury to a similar level as that observed in NOX4 KO mice. Additionally, we found that expression of intercellular adhesion molecule-1 (ICAM1) in NOX4 KO mice-derived lung endothelial cells was lower than that in WT mice-derived endothelial cells. Therefore, we conclude that NOX4 plays a crucial role in inducing the recruitment of AMs by controlling ICAM1 expression in lung endothelial cells, which is responsible for resolving lung inflammation during acute S. aureus infection.
Collapse
Affiliation(s)
- Seunghan Han
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sungmin Moon
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
5
|
Ahn YJ, Wang L, Tavakoli S, Nguyen HN, Short JD, Asmis R. Glutaredoxin 1 controls monocyte reprogramming during nutrient stress and protects mice against obesity and atherosclerosis in a sex-specific manner. Nat Commun 2022; 13:790. [PMID: 35145079 PMCID: PMC8831602 DOI: 10.1038/s41467-022-28433-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
High-calorie diet-induced nutrient stress promotes thiol oxidative stress and the reprogramming of blood monocytes, giving rise to dysregulated, obesogenic, proatherogenic monocyte-derived macrophages. We report that in chow-fed, reproductively senescent female mice but not in age-matched male mice, deficiency in the thiol transferase glutaredoxin 1 (Grx1) promotes dysregulated macrophage phenotypes as well as rapid weight gain and atherogenesis. Grx1 deficiency derepresses distinct expression patterns of reactive oxygen species and reactive nitrogen species generators in male versus female macrophages, poising female but not male macrophages for increased peroxynitrate production. Hematopoietic Grx1 deficiency recapitulates this sexual dimorphism in high-calorie diet-fed LDLR-/- mice, whereas macrophage-restricted overexpression of Grx1 eliminates the sex differences unmasked by high-calorie diet-feeding and protects both males and females against atherogenesis. We conclude that loss of monocytic Grx1 activity disrupts the immunometabolic balance in mice and derepresses sexually dimorphic oxidative stress responses in macrophages. This mechanism may contribute to the sex differences reported in cardiovascular disease and obesity in humans. High-calorie diet promotes thiol oxidative stress and the reprogramming of blood monocytes, giving rise to obesogenic and proatherogenic macrophages. Here the authors report that loss of monocytic thiol transferase glutaredoxin 1 results in the derepression of sex-specific oxidative stress responses in macrophages, promoting atherogenesis and obesity in female mice.
Collapse
Affiliation(s)
- Yong Joo Ahn
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Luxi Wang
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sina Tavakoli
- Departments of Radiology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huynh Nga Nguyen
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - John D Short
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Jiang S, Luo M, Bai X, Nie P, Zhu Y, Cai H, Li B, Luo P. Cellular crosstalk of glomerular endothelial cells and podocytes in diabetic kidney disease. J Cell Commun Signal 2022; 16:313-331. [PMID: 35041192 DOI: 10.1007/s12079-021-00664-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes and is the leading cause of end-stage renal disease (ESRD). Persistent proteinuria is an important feature of DKD, which is caused by the destruction of the glomerular filtration barrier (GFB). Glomerular endothelial cells (GECs) and podocytes are important components of the GFB, and their damage can be observed in the early stages of DKD. Recently, studies have found that crosstalk between cells directly affects DKD progression, which has prospective research significance. However, the pathways involved are complex and largely unexplored. Here, we review the literature on cellular crosstalk of GECs and podocytes in the context of DKD, and highlight specific gaps in the field to propose future research directions. Elucidating the intricates of such complex processes will help to further understand the pathogenesis of DKD and develop better prevention and treatment options.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Hangxi Cai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
7
|
Bassoy EY, Walch M, Martinvalet D. Reactive Oxygen Species: Do They Play a Role in Adaptive Immunity? Front Immunol 2021; 12:755856. [PMID: 34899706 PMCID: PMC8653250 DOI: 10.3389/fimmu.2021.755856] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system protects the host from a plethora of microorganisms and toxins through its unique ability to distinguish self from non-self. To perform this delicate but essential task, the immune system relies on two lines of defense. The innate immune system, which is by nature fast acting, represents the first line of defense. It involves anatomical barriers, physiological factors as well as a subset of haematopoietically-derived cells generically call leukocytes. Activation of the innate immune response leads to a state of inflammation that serves to both warn about and combat the ongoing infection and delivers the antigenic information of the invading pathogens to initiate the slower but highly potent and specific second line of defense, the adaptive immune system. The adaptive immune response calls on T lymphocytes as well as the B lymphocytes essential for the elimination of pathogens and the establishment of the immunological memory. Reactive oxygen species (ROS) have been implicated in many aspects of the immune responses to pathogens, mostly in innate immune functions, such as the respiratory burst and inflammasome activation. Here in this mini review, we focus on the role of ROS in adaptive immunity. We examine how ROS contribute to T-cell biology and discuss whether this activity can be extrapolated to B cells.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- International Society of Liver Surgeons (ISLS), Cankaya Ankara, Turkey.,Departments of Immunology and Cancer Biology, College of Medicine and Science, Mayo Clinic, Scottsdale, AZ, United States
| | - Michael Walch
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, Fribourg, Switzerland
| | - Denis Martinvalet
- Department of Biomedical Sciences, University of Padua, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
8
|
Fetuin-A regulates adipose tissue macrophage content and activation in insulin resistant mice through MCP-1 and iNOS: involvement of IFNγ-JAK2-STAT1 pathway. Biochem J 2021; 478:4027-4043. [PMID: 34724561 DOI: 10.1042/bcj20210442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
In the context of obesity-induced adipose tissue (AT) inflammation, migration of macrophages and their polarization from predominantly anti-inflammatory to proinflammatory subtype is considered a pivotal event in the loss of adipose insulin sensitivity. Two major chemoattractants, monocyte chemoattractant protein-1 (MCP-1) and Fetuin-A (FetA), have been reported to stimulate macrophage migration into inflamed AT instigating inflammation. Moreover, FetA could notably modulate macrophage polarization, yet the mechanism(s) is unknown. The present study was undertaken to elucidate the mechanistic pathway involved in the actions of FetA and MCP-1 in obese AT. We found that FetA knockdown in high fat diet (HFD) fed mice could significantly subdue the augmented MCP-1 expression and reduce adipose tissue macrophage (ATM) content thereby indicating that MCP-1 is being regulated by FetA. Additionally, knockdown of FetA in HFD mice impeded the expression of inducible nitric oxide synthase (iNOS) reverting macrophage activation from mostly proinflammatory to anti-inflammatory state. It was observed that the stimulating effect of FetA on MCP-1 and iNOS was mediated through interferon γ (IFNγ) induced activation of JAK2-STAT1-NOX4 pathway. Furthermore, we detected that the enhanced IFNγ expression was accounted by the stimulatory effect of FetA upon the activities of both cJun and JNK. Taken together, our findings revealed that obesity-induced FetA acts as a master upstream regulator of AT inflammation by regulating MCP-1 and iNOS expression through JNK-cJun-IFNγ-JAK2-STAT1 signaling pathway. This study opened a new horizon in understanding the regulation of ATM content and activation in conditions of obesity-induced insulin resistance.
Collapse
|
9
|
Canton M, Sánchez-Rodríguez R, Spera I, Venegas FC, Favia M, Viola A, Castegna A. Reactive Oxygen Species in Macrophages: Sources and Targets. Front Immunol 2021; 12:734229. [PMID: 34659222 PMCID: PMC8515906 DOI: 10.3389/fimmu.2021.734229] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Reactive oxygen species (ROS) are fundamental for macrophages to eliminate invasive microorganisms. However, as observed in nonphagocytic cells, ROS play essential roles in processes that are different from pathogen killing, as signal transduction, differentiation, and gene expression. The different outcomes of these events are likely to depend on the specific subcellular site of ROS formation, as well as the duration and extent of ROS production. While excessive accumulation of ROS has long been appreciated for its detrimental effects, there is now a deeper understanding of their roles as signaling molecules. This could explain the failure of the “all or none” pharmacologic approach with global antioxidants to treat several diseases. NADPH oxidase is the first source of ROS that has been identified in macrophages. However, growing evidence highlights mitochondria as a crucial site of ROS formation in these cells, mainly due to electron leakage of the respiratory chain or to enzymes, such as monoamine oxidases. Their role in redox signaling, together with their exact site of formation is only partially elucidated. Hence, it is essential to identify the specific intracellular sources of ROS and how they influence cellular processes in both physiological and pathological conditions to develop therapies targeting oxidative signaling networks. In this review, we will focus on the different sites of ROS formation in macrophages and how they impact on metabolic processes and inflammatory signaling, highlighting the role of mitochondrial as compared to non-mitochondrial ROS sources.
Collapse
Affiliation(s)
- Marcella Canton
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Iolanda Spera
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francisca C Venegas
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy
| | - Alessandra Castegna
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza - IRP, Padova, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
10
|
Barrett TJ, Corr EM, van Solingen C, Schlamp F, Brown EJ, Koelwyn GJ, Lee AH, Shanley LC, Spruill TM, Bozal F, de Jong A, Newman AAC, Drenkova K, Silvestro M, Ramkhelawon B, Reynolds HR, Hochman JS, Nahrendorf M, Swirski FK, Fisher EA, Berger JS, Moore KJ. Chronic stress primes innate immune responses in mice and humans. Cell Rep 2021; 36:109595. [PMID: 34496250 PMCID: PMC8493594 DOI: 10.1016/j.celrep.2021.109595] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/24/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Psychological stress (PS) is associated with systemic inflammation and accelerates inflammatory disease progression (e.g., atherosclerosis). The mechanisms underlying stress-mediated inflammation and future health risk are poorly understood. Monocytes are key in sustaining systemic inflammation, and recent studies demonstrate that they maintain the memory of inflammatory insults, leading to a heightened inflammatory response upon rechallenge. We show that PS induces remodeling of the chromatin landscape and transcriptomic reprogramming of monocytes, skewing them to a primed hyperinflammatory phenotype. Monocytes from stressed mice and humans exhibit a characteristic inflammatory transcriptomic signature and are hyperresponsive upon stimulation with Toll-like receptor ligands. RNA and ATAC sequencing reveal that monocytes from stressed mice and humans exhibit activation of metabolic pathways (mTOR and PI3K) and reduced chromatin accessibility at mitochondrial respiration-associated loci. Collectively, our findings suggest that PS primes the reprogramming of myeloid cells to a hyperresponsive inflammatory state, which may explain how PS confers inflammatory disease risk.
Collapse
Affiliation(s)
- Tessa J Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Emma M Corr
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Coen van Solingen
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Florencia Schlamp
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Emily J Brown
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Graeme J Koelwyn
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Angela H Lee
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Lianne C Shanley
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Tanya M Spruill
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Sarah Ross Soter Center for Women's Cardiovascular Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Fazli Bozal
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Annika de Jong
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexandra A C Newman
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Kamelia Drenkova
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Michele Silvestro
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Bhama Ramkhelawon
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA; Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Harmony R Reynolds
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Sarah Ross Soter Center for Women's Cardiovascular Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Judith S Hochman
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Sarah Ross Soter Center for Women's Cardiovascular Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Filip K Swirski
- Cardiovascular Research Institute & Department of Medicine (Cardiology), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Fisher
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA; Center for the Prevention of Cardiovascular Disease, New York University Langone Health, New York, NY, USA
| | - Jeffrey S Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA; Sarah Ross Soter Center for Women's Cardiovascular Research, New York University Grossman School of Medicine, New York, NY, USA; Center for the Prevention of Cardiovascular Disease, New York University Langone Health, New York, NY, USA
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Ho MH, Yen CH, Hsieh TH, Kao TJ, Chiu JY, Chiang YH, Hoffer BJ, Chang WC, Chou SY. CCL5 via GPX1 activation protects hippocampal memory function after mild traumatic brain injury. Redox Biol 2021; 46:102067. [PMID: 34315111 PMCID: PMC8327355 DOI: 10.1016/j.redox.2021.102067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/12/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) is a prevalent head injury worldwide which increases the risk of neurodegenerative diseases. Increased reactive oxygen species (ROS) and inflammatory chemokines after TBI induces secondary effects which damage neurons. Targeting NADPH oxidase or increasing redox systems are ways to reduce ROS and damage. Earlier studies show that C–C motif chemokine ligand 5 (CCL5) has neurotrophic functions such as promoting neurite outgrowth as well as reducing apoptosis. Although CCL5 levels in blood are associated with severity in TBI patients, the function of CCL5 after brain injury is unclear. In the current study, we induced mild brain injury in C57BL/6 (wildtype, WT) mice and CCL5 knockout (CCL5-KO) mice using a weight-drop model. Cognitive and memory functions in mice were analyzed by Novel-object-recognition and Barnes Maze tests. The memory performance of both WT and KO mice were impaired after mild injury. Cognition and memory function in WT mice quickly recovered after 7 days but recovery took more than 14 days in CCL5-KO mice. FJC, NeuN and Hypoxyprobe staining revealed large numbers of neurons damaged by oxidative stress in CCL5-KO mice after mTBI. NADPH oxidase activity show increased ROS generation together with reduced glutathione peroxidase-1 (GPX1) and glutathione (GSH) activity in CCL5-KO mice; this was opposite to that seen in WT mice. CCL5 increased GPX1 expression and reduced intracellular ROS levels which subsequently increased cell survival both in primary neuron cultures and in an overexpression model using SHSY5Y cell. Memory impairment in CCL5-KO mice induced by TBI could be rescued by i.p. injection of the GSH precursor – N-acetylcysteine (NAC) or intranasal delivery of recombinant CCL5 into mice after injury. We conclude that CCL5 is an important molecule for GPX1 antioxidant activation during post-injury day 1–3, and protects hippocampal neurons from ROS as well as improves memory function after trauma.
Collapse
Affiliation(s)
- Man-Hau Ho
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung, 91201, Taiwan
| | - Chia-Hung Yen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung, 91201, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tzu-Jen Kao
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jing-Yuan Chiu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, 11031, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 11031, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, 11031, Taiwan
| | - Barry J Hoffer
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, 11031, Taiwan; Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Scientist Emeritus, National Institutes of Health, USA
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Szu-Yi Chou
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Wang L, Ahn YJ, Asmis R. Inhibition of myeloid HDAC2 upregulates glutaredoxin 1 expression, improves protein thiol redox state and protects against high-calorie diet-induced monocyte dysfunction and atherosclerosis. Atherosclerosis 2021; 328:23-32. [PMID: 34077868 DOI: 10.1016/j.atherosclerosis.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS The thiol transferase glutaredoxin 1 controls redox signaling and cellular functions by regulating the S-glutathionylation status of critical protein thiols. Here we tested the hypothesis that by derepressing the expression of glutaredoxin 1, inhibition of histone deacetylase 2 prevents nutrient stress-induced protein S-glutathionylation and monocyte dysfunction and protects against atherosclerosis. METHODS Using both a pharmacological inhibitor and shRNA-mediated knockdown of histone deacetylase 2, we determine the role of this deacetylase on glutaredoxin 1 expression and nutrient stress-induced inactivation of mitogen-activated protein kinase phosphatase 1 activity and monocyte and macrophage dysfunction. To assess whether histone deacetylase 2 inhibition in myeloid cells protects against atherosclerosis, we fed eight-week-old female and male HDAC2-/-MyeloidLDLR-/- mice and age and sex-matched LysMcretg/wtLDLR-/- control mice a high-calorie diet for 12 weeks and assessed monocyte function and atherosclerotic lesion size. RESULTS Myeloid histone deacetylase 2 deficiency in high-calorie diet-fed LDLR-/- mice reduced atherosclerosis in males by 39% without affecting plasma lipid and lipoprotein profiles or blood glucose levels but had no effect on atherogenesis in female mice. Macrophage content in plaques of male mice was reduced by 31%. Histone deacetylase 2-deficient blood monocytes from male mice showed increased acetylation on histone 3, and increased Grx1 expression, and was associated with increased MKP-1 activity and reduced recruitment of monocyte-derived macrophages, whereas in females, myeloid HDAC2 deficiency had no effect on Grx1 expression, did not prevent nutrient stress-induced loss of MKP-1 activity in monocytes and was not atheroprotective. CONCLUSIONS Specific histone deacetylase 2 inhibitors may represent a potential novel therapeutic strategy for the prevention and treatment of atherosclerosis, but any benefits may be sexually dimorphic.
Collapse
Affiliation(s)
- Luxi Wang
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Yong Joo Ahn
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, USA.
| |
Collapse
|
13
|
The Impact of the Ca 2+-Independent Phospholipase A 2β (iPLA 2β) on Immune Cells. Biomolecules 2021; 11:biom11040577. [PMID: 33920898 PMCID: PMC8071342 DOI: 10.3390/biom11040577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
The Ca2+-independent phospholipase A2β (iPLA2β) is a member of the PLA2 family that has been proposed to have roles in multiple biological processes including membrane remodeling, cell proliferation, bone formation, male fertility, cell death, and signaling. Such involvement has led to the identification of iPLA2β activation in several diseases such as cancer, cardiovascular abnormalities, glaucoma, periodontitis, neurological disorders, diabetes, and other metabolic disorders. More recently, there has been heightened interest in the role that iPLA2β plays in promoting inflammation. Recognizing the potential contribution of iPLA2β in the development of autoimmune diseases, we review this issue in the context of an iPLA2β link with macrophages and T-cells.
Collapse
|
14
|
Gene expression profile of CD14 + blood monocytes following lifestyle-induced weight loss in individuals with metabolic syndrome. Sci Rep 2020; 10:17855. [PMID: 33082492 PMCID: PMC7576128 DOI: 10.1038/s41598-020-74973-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/06/2020] [Indexed: 11/08/2022] Open
Abstract
Lifestyle-induced weight loss is regarded as an efficient therapy to reverse metabolic syndrome (MetS) and to prevent disease progression. The objective of this study was to investigate whether lifestyle-induced weight loss modulates gene expression in circulating monocytes. We analyzed and compared gene expression in monocytes (CD14+ cells) and subcutaneous adipose tissue biopsies by unbiased mRNA profiling. Samples were obtained before and after diet-induced weight loss in well-defined male individuals in a prospective controlled clinical trial (ICTRP Trial Number: U1111-1158-3672). The BMI declined significantly (− 12.6%) in the treatment arm (N = 39) during the 6-month weight loss intervention. This was associated with a significant reduction in hsCRP (− 45.84%) and circulating CD14+ cells (− 21.0%). Four genes were differentially expressed (DEG’s) in CD14+ cells following weight loss (ZRANB1, RNF25, RB1CC1 and KMT2C). Comparative analyses of paired CD14+ monocytes and subcutaneous adipose tissue samples before and after weight loss did not identify common genes differentially regulated in both sample types. Lifestyle-induced weight loss is associated with specific changes in gene expression in circulating CD14+ monocytes, which may affect ubiquitination, histone methylation and autophagy.
Collapse
|
15
|
Dietary 23-hydroxy ursolic acid protects against diet-induced weight gain and hyperglycemia by protecting monocytes and macrophages against nutrient stress-triggered reprogramming and dysfunction and preventing adipose tissue inflammation. J Nutr Biochem 2020; 86:108483. [PMID: 32860922 DOI: 10.1016/j.jnutbio.2020.108483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to determine whether the atheroprotective phytochemical 23-hydroxy ursolic acid protects against diet-induced obesity and hyperglycemia by preventing nutrient stress-induced monocyte reprogramming. After a two week run-in period on a defined, phytochemical-free low-fat maintenance diet, 12-week old female C57BL/6J mice were either kept on the maintenance diet for additional 13 weeks or switched to either a high-calorie diet, a high-calorie diet supplemented with either 0.05% 23-hydroxy ursolic acid or a high-calorie diet supplemented with 0.2% 23-hydroxy ursolic acid. Dietary supplementation with 23-hydroxy ursolic acid reduced weight gain and adipose tissue mass, prevented hyperglycemia, hyperleptinemia and adipose tissue inflammation, and preserved glucose tolerance. 23-Hydroxy ursolic acid also preserved blood monocyte mitogen-activated protein kinase phosphatase-1 activity, a biomarker of monocyte health, and reduced macrophage content in the adipose tissue. Targeted gene profiling by qRT-PCR using custom-designed TaqMan® Array Cards revealed that dietary 23-hydroxy ursolic acid converts macrophages into a transcriptionally hyperactive phenotype with enhanced antioxidant defenses and anti-inflammatory potential. In conclusion, our findings show that dietary 23-hydroxy ursolic acid exerts both anti-obesogenic effects through multiple mechanisms. These include improving glucose tolerance, preventing hyperleptinemia, maintaining blood monocyte function, reducing recruitment of monocyte-derived macrophages into adipose tissues during nutrient stress, and converting these macrophages into an anti-inflammatory, potentially inflammation-resolving phenotype, all contributing to reduced adipose tissue inflammation. Our data suggest that 23-hydroxy ursolic acid may serve as an oral therapeutic and dietary supplement suited for patients at risk for obesity, impaired glucose tolerance and cardiovascular disease.
Collapse
|
16
|
Matsui R, Ferran B, Oh A, Croteau D, Shao D, Han J, Pimentel DR, Bachschmid MM. Redox Regulation via Glutaredoxin-1 and Protein S-Glutathionylation. Antioxid Redox Signal 2020; 32:677-700. [PMID: 31813265 PMCID: PMC7047114 DOI: 10.1089/ars.2019.7963] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Over the past several years, oxidative post-translational modifications of protein cysteines have been recognized for their critical roles in physiology and pathophysiology. Cells have harnessed thiol modifications involving both oxidative and reductive steps for signaling and protein processing. One of these stages requires oxidation of cysteine to sulfenic acid, followed by two reduction reactions. First, glutathione (reduced glutathione [GSH]) forms a S-glutathionylated protein, and second, enzymatic or chemical reduction removes the modification. Under physiological conditions, these steps confer redox signaling and protect cysteines from irreversible oxidation. However, oxidative stress can overwhelm protein S-glutathionylation and irreversibly modify cysteine residues, disrupting redox signaling. Critical Issues: Glutaredoxins mainly catalyze the removal of protein-bound GSH and help maintain protein thiols in a highly reduced state without exerting direct antioxidant properties. Conversely, glutathione S-transferase (GST), peroxiredoxins, and occasionally glutaredoxins can also catalyze protein S-glutathionylation, thus promoting a dynamic redox environment. Recent Advances: The latest studies of glutaredoxin-1 (Glrx) transgenic or knockout mice demonstrate important distinct roles of Glrx in a variety of pathologies. Endogenous Glrx is essential to maintain normal hepatic lipid homeostasis and prevent fatty liver disease. Further, in vivo deletion of Glrx protects lungs from inflammation and bacterial pneumonia-induced damage, attenuates angiotensin II-induced cardiovascular hypertrophy, and improves ischemic limb vascularization. Meanwhile, exogenous Glrx administration can reverse pathological lung fibrosis. Future Directions: Although S-glutathionylation modifies many proteins, these studies suggest that S-glutathionylation and Glrx regulate specific pathways in vivo, and they implicate Glrx as a potential novel therapeutic target to treat diverse disease conditions. Antioxid. Redox Signal. 32, 677-700.
Collapse
Affiliation(s)
- Reiko Matsui
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Beatriz Ferran
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Albin Oh
- Cardiology, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Dominique Croteau
- Cardiology, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Di Shao
- Helens Clinical Research Center, Chongqing, China
| | - Jingyan Han
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - David Richard Pimentel
- Cardiology, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Markus Michael Bachschmid
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
17
|
Wang ZP, Che Y, Zhou H, Meng YY, Wu HM, Jin YG, Wu QQ, Wang SS, Yuan Y. Corosolic acid attenuates cardiac fibrosis following myocardial infarction in mice. Int J Mol Med 2020; 45:1425-1435. [PMID: 32323841 PMCID: PMC7138284 DOI: 10.3892/ijmm.2020.4531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023] Open
Abstract
Corosolic acid (CRA) is a pentacyclic triterpenoid isolated from Lagerstroemia speciosa. The aim of the present study was to determine whether CRA reduces cardiac remodelling following myocardial infarction (MI) and to elucidate the underlying mechanisms. C57BL/6J mice were randomly divided into control (PBS-treated) or CRA-treated groups. After 14 days of pre-treatment, the mice were subjected to either sham surgery or permanent ligation of the left anterior descending artery. Following surgery, all animals were treated with PBS or CRA (10 or 20 mg/kg/day) for 4 weeks. After 4 weeks, echocardiographic, haemodynamic, gravimetric, histological and biochemical analyses were conducted. The results revealed that, upon MI, mice with CRA treatment exhibited decreased mortality rates, improved ventricular function and attenuated cardiac fibrosis compared with those in control mice. Furthermore, CRA treatment resulted in reduced oxidative stress, inflammation and apoptosis, as well as inhibited the transforming growth factor β1/Smad signalling pathway activation in cardiac tissue. In vitro studies further indicated that inhibition of AMP-activated protein kinase α (AMPKα) reversed the protective effect of CRA. In conclusion, the study revealed that CRA attenuated MI-induced cardiac fibrosis and dysfunction through modulation of inflammation and oxidative stress associated with AMPKα.
Collapse
Affiliation(s)
- Zhao-Peng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Yan Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ya-Ge Jin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sha-Sha Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
18
|
Wang L, Ahn YJ, Asmis R. Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol 2019; 31:101410. [PMID: 31883838 PMCID: PMC7212491 DOI: 10.1016/j.redox.2019.101410] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023] Open
Abstract
Glutathione is the most abundant intracellular low molecular weight thiol in cells and tissues, and plays an essential role in numerous cellular processes, including antioxidant defenses, the regulation of protein function, protein localization and stability, DNA synthesis, gene expression, cell proliferation, and cell signaling. Sexual dimorphisms in glutathione biology, metabolism and glutathione-dependent signaling have been reported for a broad range of biological processes, spanning the human lifespan from early development to aging. Sex-depended differences with regard to glutathione and its biology have also been reported for a number of human pathologies and diseases such as neurodegeneration, cardiovascular diseases and metabolic disorders. Here we review the latest literature in this field and discuss the potential impact of these sexual dimorphisms in glutathione biology on human health and diseases.
Collapse
Affiliation(s)
- Luxi Wang
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Yong Joo Ahn
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, USA.
| |
Collapse
|
19
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
20
|
He C, Larson-Casey JL, Davis D, Hanumanthu VS, Longhini ALF, Thannickal VJ, Gu L, Carter AB. NOX4 modulates macrophage phenotype and mitochondrial biogenesis in asbestosis. JCI Insight 2019; 4:126551. [PMID: 31434799 DOI: 10.1172/jci.insight.126551] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophage activation is implicated in the development of pulmonary fibrosis by generation of profibrotic molecules. Although NADPH oxidase 4 (NOX4) is known to contribute to pulmonary fibrosis, its effects on macrophage activation and mitochondrial redox signaling are unclear. Here, we show that NOX4 is crucial for lung macrophage profibrotic polarization and fibrotic repair after asbestos exposure. NOX4 was elevated in lung macrophages from subjects with asbestosis, and mice harboring a deletion of NOX4 in lung macrophages were protected from asbestos-induced fibrosis. NOX4 promoted lung macrophage profibrotic polarization and increased production of profibrotic molecules that induce collagen deposition. Mechanistically, NOX4 further augmented mitochondrial ROS production and induced mitochondrial biogenesis. Targeting redox signaling and mitochondrial biogenesis prevented the profibrotic polarization of lung macrophages by reducing the production of profibrotic molecules. These observations provide evidence that macrophage NOX4 is a potentially novel therapeutic target to halt the development of asbestos-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Chao He
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | | | - Dana Davis
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Vidya Sagar Hanumanthu
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ana Leda F Longhini
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
21
|
LoPresti ST, Popovic B, Kulkarni M, Skillen CD, Brown BN. Free radical-decellularized tissue promotes enhanced antioxidant and anti-inflammatory macrophage response. Biomaterials 2019; 222:119376. [PMID: 31445321 DOI: 10.1016/j.biomaterials.2019.119376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022]
Abstract
Oxidative stress leads to the progression of many diseases including chronic wounds, atherosclerosis, stroke and cancer. The modification of biomolecules with reactive nitrogen or oxygen species has been shown to trigger oxidative stress pathways that are beneficial for healing. Extracellular matrix scaffolds have been used successfully in reconstructive applications due to the beneficial host response they induce. To tailor extracellular matrix scaffolds to enhance antioxidant response, ECM were prepared using reactive nitrogen or oxygen species. These scaffolds were shown to be effectively decellularized and possess oxidative or nitroxidative protein modifications. Macrophage responses in vitro and in an in vivo muscle injury model were shown to have enhanced antioxidant phenotypes without impairment of long-term remodeling. These observations suggest that ECM decellularized with reactive oxygen or nitrogen species could provide better outcomes for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- S T LoPresti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, United States
| | - B Popovic
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - M Kulkarni
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - C D Skillen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - B N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15260, United States; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
22
|
Mitochondrial Entry of Cytotoxic Proteases: A New Insight into the Granzyme B Cell Death Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9165214. [PMID: 31249651 PMCID: PMC6556269 DOI: 10.1155/2019/9165214] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/08/2019] [Indexed: 02/03/2023]
Abstract
The mitochondria represent an integration and amplification hub for various death pathways including that mediated by granzyme B (GB), a granule enzyme expressed by cytotoxic lymphocytes. GB activates the proapoptotic B cell CLL/lymphoma 2 (Bcl-2) family member BH3-interacting domain death agonist (BID) to switch on the intrinsic mitochondrial death pathway, leading to Bcl-2-associated X protein (Bax)/Bcl-2 homologous antagonist/killer- (Bak-) dependent mitochondrial outer membrane permeabilization (MOMP), the dissipation of mitochondrial transmembrane potential (ΔΨm), and the production of reactive oxygen species (ROS). GB can also induce mitochondrial damage in the absence of BID, Bax, and Bak, critical for MOMP, indicating that GB targets the mitochondria in other ways. Interestingly, granzyme A (GA), GB, and caspase 3 can all directly target the mitochondrial respiratory chain complex I for ROS-dependent cell death. Studies of ROS biogenesis have revealed that GB must enter the mitochondria for ROS production, making the mitochondrial entry of cytotoxic proteases (MECP) an unexpected critical step in the granzyme death pathway. MECP requires an intact ΔΨm and is mediated though Sam50 and Tim22 channels in a mtHSP70-dependent manner. Preventing MECP severely compromises GB cytotoxicity. In this review, we provide a brief overview of the canonical mitochondrial death pathway in order to put into perspective this new insight into the GB action on the mitochondria to trigger ROS-dependent cell death.
Collapse
|
23
|
Hu D, Dong R, Yang Y, Chen Z, Tang Y, Fu M, Wang DW, Xu X, Tu L. Human kallikrein overexpression alleviates cardiac aging by alternatively regulating macrophage polarization in aged rats. FASEB J 2019; 33:8436-8452. [PMID: 30995868 DOI: 10.1096/fj.201802371rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cardiac aging is characterized by myocardial hypertrophy, fibrosis, and diastolic dysfunction. Human kallikrein (hKLK1) protects against fibrosis in various pathogenic states. However, the effects of hKLK1 overexpression on cardiac aging-related fibrosis and the underlying mechanisms remain unknown. Moreover, the role of hKLK1 in regulating macrophage function leading to cardiac fibrosis has not been investigated. Thus, in this study, we determined the effects of hKLK1 on cardiac aging and explored the mechanisms through which hKLK1 regulated aging-related fibrosis. Echocardiographic measurements showed that aging caused significant alternations in cardiac morphology, hypertrophy, and fibrosis in rats, and hKLK1 overexpression protected against aging-induced cardiac dysfunction. Compared with wild-type hearts, the hKLK1 transgene decreased the expression of monocyte chemoattractant protein 1 and suppressed mitochondrial dysfunction and excess oxidative stress, leading to decreased recruitment and retention of alternatively activated (M2) macrophages and reduced secretion of profibrotic cytokines mediated by the TGF-β1-Smad3 signaling pathway in hearts of aging rats. Furthermore, these cardioprotective effects of hKLK1 overexpression were associated with the Janus kinase-signal transducer and activator of transcription 3 signaling pathway. H2O2-induced senescence promoted the differentiation of RAW264.7 cells into M2-type cells induced by IL-4 treatment. Bradykinin treatment relieved the migratory capacity of macrophages induced by H2O2. Thus, hKLK1 overexpression reduced cardiac fibrosis and improved aging-related cardiac dysfunction through reduced shift of macrophages to M2 macrophages, indicating that hKLK1 may alleviate aging-related cardiac dysfunction.-Hu, D., Dong, R., Yang, Y., Chen, Z., Tang, Y., Fu, M., Wang, D. W., Xu, X., Tu, L. Human kallikrein overexpression alleviates cardiac aging by alternatively regulating macrophage polarization in aged rats.
Collapse
Affiliation(s)
- Danli Hu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing, China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Chen
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Tang
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xizhen Xu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Gorelenkova Miller O, Mieyal JJ. Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease. Antioxid Redox Signal 2019; 30:1352-1368. [PMID: 29183158 PMCID: PMC6391617 DOI: 10.1089/ars.2017.7411] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Glutaredoxin (Grx)1, an evolutionarily conserved and ubiquitous enzyme, regulates redox signal transduction and protein redox homeostasis by catalyzing reversible S-glutathionylation. Grx1 plays different roles in different cell types. In Parkinson's disease (PD), Grx1 regulates apoptosis signaling in dopaminergic neurons, so that loss of Grx1 leads to increased cell death; in microglial cells, Grx1 regulates proinflammatory signaling, so that upregulation of Grx1 promotes cytokine production. Here we examine the regulatory roles of Grx1 in PD with a view toward therapeutic innovation. Recent Advances: In postmortem midbrain PD samples, Grx1 was decreased relative to controls, specifically within dopaminergic neurons. In Caenorhabditis elegans models of PD, loss of the Grx1 homologue led to exacerbation of the neurodegenerative phenotype. This effect was partially relieved by overexpression of neuroprotective DJ-1, consistent with regulation of DJ-1 content by Grx1. Increased GLRX copy number in PD patients was associated with earlier PD onset; and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-α in mouse and human brain samples. In vitro studies showed Grx1 to be upregulated on proinflammatory activation of microglia. Direct overexpression of Grx1 increased microglial activation; silencing Grx1 diminished activation. Grx1 upregulation in microglia corresponded to increased neuronal cell death in coculture. Overall, these studies identify competing roles of Grx1 in PD etiology. CRITICAL ISSUES The dilemma regarding Grx1 as a PD therapeutic target is whether to stimulate its upregulation for neuroprotection or inhibit its proinflammatory activity. FUTURE DIRECTIONS Further investigation is needed to understand the preponderant role of Grx1 regarding dopaminergic neuronal survival.
Collapse
Affiliation(s)
- Olga Gorelenkova Miller
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - John J Mieyal
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
25
|
You Y, Chen J, Zhu F, Xu Q, Han L, Gao X, Zhang X, Luo HR, Miao J, Sun X, Ren H, Du Y, Guo L, Wang X, Wang Y, Chen S, Huang N, Li J. Glutaredoxin 1 up-regulates deglutathionylation of α4 integrin and thereby restricts neutrophil mobilization from bone marrow. J Biol Chem 2018; 294:2616-2627. [PMID: 30598505 DOI: 10.1074/jbc.ra118.006096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
α4 integrin plays a crucial role in retention and release of neutrophils from bone marrow. Although α4 integrin is known to be a potential target of reactive oxygen species (ROS)-induced cysteine glutathionylation, the physiological significance and underlying regulatory mechanism of this event remain elusive. Here, using in vitro and in vivo biochemical and cell biology approaches, we show that physiological ROS-induced glutathionylation of α4 integrin in neutrophils increases the binding of neutrophil-associated α4 integrin to vascular cell adhesion molecule 1 (VCAM-1) on human endothelial cells. This enhanced binding was reversed by extracellular glutaredoxin 1 (Grx1), a thiol disulfide oxidoreductase promoting protein deglutathionylation. Furthermore, in a murine inflammation model, Grx1 disruption dramatically elevated α4 glutathionylation and subsequently enhanced neutrophil egress from the bone marrow. Corroborating this observation, intravenous injection of recombinant Grx1 into mice inhibited α4 glutathionylation and thereby suppressed inflammation-induced neutrophil mobilization from the bone marrow. Taken together, our results establish ROS-elicited glutathionylation and its modulation by Grx1 as pivotal regulatory mechanisms controlling α4 integrin affinity and neutrophil mobilization from the bone marrow under physiological conditions.
Collapse
Affiliation(s)
| | - Junli Chen
- From the Departments of Pathophysiology and
| | - Feimei Zhu
- From the Departments of Pathophysiology and
| | - Qian Xu
- From the Departments of Pathophysiology and
| | - Lu Han
- the State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiang Gao
- the State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Zhang
- the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hongbo R Luo
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Lab Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, and.,the Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| | | | - Xiaodong Sun
- Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyu Ren
- From the Departments of Pathophysiology and
| | - Yu Du
- From the Departments of Pathophysiology and
| | - Lijuan Guo
- From the Departments of Pathophysiology and
| | | | - Yi Wang
- From the Departments of Pathophysiology and
| | | | - Ning Huang
- From the Departments of Pathophysiology and
| | - Jingyu Li
- From the Departments of Pathophysiology and
| |
Collapse
|
26
|
Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA 2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:846-860. [PMID: 30408523 DOI: 10.1016/j.bbalip.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
The Ca2+-independent phospholipases, designated as group VI iPLA2s, also referred to as PNPLAs due to their shared homology with patatin, include the β, γ, δ, ε, ζ, and η forms of the enzyme. The iPLA2s are ubiquitously expressed, share a consensus GXSXG catalytic motif, and exhibit organelle/cell-specific localization. Among the iPLA2s, iPLA2β has received wide attention as it is recognized to be involved in membrane remodeling, cell proliferation, cell death, and signal transduction. Ongoing studies implicate participation of iPLA2β in a variety of disease processes including cancer, cardiovascular abnormalities, glaucoma, and peridonditis. This review will focus on iPLA2β and its links to male fertility, neurological disorders, metabolic disorders, and inflammation.
Collapse
Affiliation(s)
- John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
27
|
Marelli-Berg FM, Jangani M. Metabolic regulation of leukocyte motility and migration. J Leukoc Biol 2018; 104:285-293. [PMID: 29451682 DOI: 10.1002/jlb.1mr1117-472r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 08/17/2023] Open
Abstract
Dynamic reorganization of the cytoskeleton is essential for numerous cellular processes including leukocyte migration. This process presents a substantial bioenergetic challenge to migrating cells as actin polymerization is dependent on ATP hydrolysis. Hence, migrating cells must increase ATP production to meet the increased metabolic demands of cytoskeletal reorganization. Despite this long-standing evidence, the metabolic regulation of leukocyte motility and trafficking has only recently begun to be investigated. In this review, we will summarize current knowledge of the crosstalk between cell metabolism and the cytoskeleton in leukocytes, and discuss the concept that leukocyte metabolism may reprogram in response to migratory stimuli and the different environmental cues received during recirculation ultimately regulating leukocyte motility and migration.
Collapse
Affiliation(s)
| | - Maryam Jangani
- William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
28
|
Garcia AM, Allawzi A, Tatman P, Hernandez-Lagunas L, Swain K, Mouradian G, Bowler R, Karimpour-Fard A, Sucharov CC, Nozik-Grayck E. R213G polymorphism in SOD3 protects against bleomycin-induced inflammation and attenuates induction of proinflammatory pathways. Physiol Genomics 2018; 50:807-816. [PMID: 30004839 DOI: 10.1152/physiolgenomics.00053.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD), one of three mammalian SOD isoforms, is the sole extracellular enzymatic defense against superoxide. A known human single nucleotide polymorphism (SNP) in the matrix-binding domain of EC-SOD characterized by an arginine-to-glycine substitution at position 213 (R213G) redistributes EC-SOD from the matrix into extracellular fluids. We previously reported that knock-in mice harboring the human R213G SNP (R213G mice) exhibited enhanced resolution of inflammation with subsequent protection against fibrosis following bleomycin treatment compared with wild-type (WT) littermates. Herein we set out to determine the underlying pathways with RNA-Seq analysis of WT and R213G lungs 7 days post-PBS and bleomycin. RNA-Seq analysis uncovered significant differential gene expression changes induced in WT and R213G strains in response to bleomycin. Ingenuity Pathways Analysis was used to predict differentially regulated up- and downstream processes based on transcriptional changes. Most prominent was the induction of inflammatory and immune responses in WT mice, which were suppressed in the R213G mice. Specifically, PKC signaling in T lymphocytes, IL-6, and NFΚB signaling were opposed in WT mice when compared with R213G. Several upstream regulators such as IFNγ, IRF3, and IKBKG were implicated in the divergent responses between WT and R213G mice. Our data suggest that the redistributed EC-SOD due to the R213G SNP attenuates the dysregulated inflammatory responses observed in WT mice. We speculate that redistributed EC-SOD protects against dysregulated alveolar inflammation via reprogramming of recruited immune cells toward a proresolving state.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Department of Pediatrics, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ayed Allawzi
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Philip Tatman
- Medical Scientist Training Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Laura Hernandez-Lagunas
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kalin Swain
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Gary Mouradian
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Russell Bowler
- Department of Medicine, National Jewish Health , Denver, Colorado
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Carmen C Sucharov
- Department of Medicine, Division of Cardiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Eva Nozik-Grayck
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
29
|
Nguyen HN, Ahn YJ, Medina EA, Asmis R. Dietary 23-hydroxy ursolic acid protects against atherosclerosis and obesity by preventing dyslipidemia-induced monocyte priming and dysfunction. Atherosclerosis 2018; 275:333-341. [PMID: 30015296 DOI: 10.1016/j.atherosclerosis.2018.06.882] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/16/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS We demonstrated that dietary ursolic acid (UA) reduces atherosclerotic lesion size and improves kidney function in diabetic mice. Based on structure-function analyses of naturally occurring UA analogs, we synthesized 23-hydroxy ursolic acid (23-OHUA), a compound with structural features predicted to enhance its bioavailability and anti-atherogenic properties compared to UA. The goal of this study was to determine the anti-obesogenic and atheroprotective properties of 23-OHUA and its mechanism of action. METHODS We performed chemotaxis assays to determine IC50 of phytochemicals on primed THP-1 monocytes. We fed 12-week old female LDLR-/- mice a high-fat diet (HFD) or a HFD supplemented with either 0.05% UA or 0.05% 23-OHUA, and measured monocyte priming, weight gain and atherosclerotic lesion size after 6 and 20 weeks. RESULTS Both dietary UA and 23-OHUA prevented dyslipidemia-induced loss of MKP-1 activity, and hyper-chemotactic activity, hallmarks of blood monocytes priming and dysfunction, but they did not affect plasma lipids or blood glucose levels nor WBC and monocyte counts. After 20 weeks, mice fed 23-OHUA showed 11% less weight gain compared to HFD-fed control mice and a 40% reduction in atherosclerotic plaque size, whereas UA reduced lesion size by only 19% and did not reduce weight gain. CONCLUSIONS Dietary 23-OHUA reduces weight gain and attenuates atherogenesis in mice by protecting monocytes against metabolic stress-induced priming and dysfunction. Based on its mechanism of action, 23-OHUA may represent a novel therapeutic approach for the prevention and treatment of obesity and atherosclerosis.
Collapse
Affiliation(s)
- Huynh Nga Nguyen
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Yong Joo Ahn
- Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Edward Antonio Medina
- Department of Pathology, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Reto Asmis
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA; Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
30
|
Gorelenkova Miller O, Cole KS, Emerson CC, Allimuthu D, Golczak M, Stewart PL, Weerapana E, Adams DJ, Mieyal JJ. Novel chloroacetamido compound CWR-J02 is an anti-inflammatory glutaredoxin-1 inhibitor. PLoS One 2017; 12:e0187991. [PMID: 29155853 PMCID: PMC5695812 DOI: 10.1371/journal.pone.0187991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Glutaredoxin (Grx1) is a ubiquitously expressed thiol-disulfide oxidoreductase that specifically catalyzes reduction of S-glutathionylated substrates. Grx1 is known to be a key regulator of pro-inflammatory signaling, and Grx1 silencing inhibits inflammation in inflammatory disease models. Therefore, we anticipate that inhibition of Grx1 could be an anti-inflammatory therapeutic strategy. We used a rapid screening approach to test 504 novel electrophilic compounds for inhibition of Grx1, which has a highly reactive active-site cysteine residue (pKa 3.5). From this chemical library a chloroacetamido compound, CWR-J02, was identified as a potential lead compound to be characterized. CWR-J02 inhibited isolated Grx1 with an IC50 value of 32 μM in the presence of 1 mM glutathione. Mass spectrometric analysis documented preferential adduction of CWR-J02 to the active site Cys-22 of Grx1, and molecular dynamics simulation identified a potential non-covalent binding site. Treatment of the BV2 microglial cell line with CWR-J02 led to inhibition of intracellular Grx1 activity with an IC50 value (37 μM). CWR-J02 treatment decreased lipopolysaccharide-induced inflammatory gene transcription in the microglial cells in a parallel concentration-dependent manner, documenting the anti-inflammatory potential of CWR-J02. Exploiting the alkyne moiety of CWR-J02, we used click chemistry to link biotin azide to CWR-J02-adducted proteins, isolating them with streptavidin beads. Tandem mass spectrometric analysis identified many CWR-J02-reactive proteins, including Grx1 and several mediators of inflammatory activation. Taken together, these data identify CWR-J02 as an intracellularly effective Grx1 inhibitor that may elicit its anti-inflammatory action in a synergistic manner by also disabling other pro-inflammatory mediators. The CWR-J02 molecule provides a starting point for developing more selective Grx1 inhibitors and anti-inflammatory agents for therapeutic development.
Collapse
Affiliation(s)
- Olga Gorelenkova Miller
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kyle S. Cole
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Corey C. Emerson
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dharmaraja Allimuthu
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Phoebe L. Stewart
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Drew J. Adams
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - John J. Mieyal
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Short JD, Tavakoli S, Nguyen HN, Carrera A, Farnen C, Cox LA, Asmis R. Dyslipidemic Diet-Induced Monocyte "Priming" and Dysfunction in Non-Human Primates Is Triggered by Elevated Plasma Cholesterol and Accompanied by Altered Histone Acetylation. Front Immunol 2017; 8:958. [PMID: 28878765 PMCID: PMC5572238 DOI: 10.3389/fimmu.2017.00958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Monocytes and the recruitment of monocyte-derived macrophages into sites of inflammation play a key role in atherogenesis and other chronic inflammatory diseases linked to cardiometabolic syndrome and obesity. Previous studies from our group have shown that metabolic stress promotes monocyte priming, i.e., enhanced adhesion and accelerated chemotaxis of monocytes in response to chemokines, both in vitro and in dyslipidemic LDLR-/- mice. We also showed that metabolic stress-induced monocyte dysfunction is, at least to a large extent caused by the S-glutathionylation, inactivation, and subsequent degradation of mitogen-activated protein kinase phosphatase 1. Here, we analyzed the effects of a Western-style, dyslipidemic diet (DD), which was composed of high levels of saturated fat, cholesterol, and simple sugars, on monocyte (dys)function in non-human primates (NHPs). We found that similar to mice, a DD enhances monocyte chemotaxis in NHP within 4 weeks, occurring concordantly with the onset of hypercholesterolemia but prior to changes in triglycerides, blood glucose, monocytosis, or changes in monocyte subset composition. In addition, we identified transitory decreases in the acetylation of histone H3 at the lysine residues 18 and 23 in metabolically primed monocytes, and we found that monocyte priming was correlated with the acetylation of histone H3 at lysine 27 after an 8-week DD regimen. Our data show that metabolic stress promotes monocyte priming and hyper-chemotactic responses in NHP. The histone modifications accompanying monocyte priming in primates suggest a reprogramming of the epigenetic landscape, which may lead to dysregulated responses and functionalities in macrophages derived from primed monocytes that are recruited to sites of inflammation.
Collapse
Affiliation(s)
- John D Short
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Sina Tavakoli
- Department of Radiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Huynh Nga Nguyen
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ana Carrera
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Chelbee Farnen
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Laura A Cox
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, United States.,Southwest National Primate Research Center, San Antonio, TX, United States
| | - Reto Asmis
- Department of Radiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Clinical Laboratory Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
32
|
Kim HS, Asmis R. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype. Free Radic Biol Med 2017; 109:75-83. [PMID: 28330703 PMCID: PMC5462841 DOI: 10.1016/j.freeradbiomed.2017.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/03/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea; Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Reto Asmis
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
33
|
Cysteine-Containing Peptides Stimulate Monocyte Migration through NADPH-Oxidase Activation. Bull Exp Biol Med 2017; 163:203-205. [PMID: 28726203 DOI: 10.1007/s10517-017-3766-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 01/10/2023]
Abstract
We analyzed migration of monocytes under the effect of apocinin (NADPH inhibitor) and PD98059 (blocker of extracellular MEK/ERK kinase involved in Nox4 oxidase-mediated migration of monocytes). Migration of monocytes stimulated by cysteine-containing peptides (fragments of chemokines with free thiol group MCP-1 and fractalkine) was completely inhibited by apocinin and MEK/ERK blocker. It is assumed that the stimulating effect of cysteine-containing peptides on monocyte migration is mediated by the NADPH-oxidase system, in particular, Nox4.
Collapse
|
34
|
Gorelenkova Miller O, Behring JB, Siedlak SL, Jiang S, Matsui R, Bachschmid MM, Zhu X, Mieyal JJ. Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease. Antioxid Redox Signal 2016; 25:967-982. [PMID: 27224303 PMCID: PMC5175443 DOI: 10.1089/ars.2015.6598] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Neuroinflammation and redox dysfunction are recognized factors in Parkinson's disease (PD) pathogenesis, and diabetes is implicated as a potentially predisposing condition. Remarkably, upregulation of glutaredoxin-1 (Grx1) is implicated in regulation of inflammatory responses in various disease contexts, including diabetes. In this study, we investigated the potential impact of Grx1 upregulation in the central nervous system on dopaminergic (DA) viability. RESULTS Increased GLRX copy number in PD patients was associated with earlier PD onset, and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-alpha (TNF-α) in mouse and human brain samples, prompting mechanistic in vitro studies. Grx1 content/activity in microglia was upregulated by lipopolysaccharide (LPS), or TNF-α, treatment. Adenoviral overexpression of Grx1, matching the extent of induction by LPS, increased microglial activation; Grx1 silencing diminished activation. Selective inhibitors/probes of nuclear factor κB (NF-κB) activation revealed glrx1 induction to be mediated by the Nurr1/NF-κB axis. Upregulation of Grx1 in microglia corresponded to increased death of neuronal cells in coculture. With a mouse diabetes model of diet-induced insulin resistance, we found upregulation of Grx1 in brain was associated with DA loss (decreased tyrosine hydroxylase [TH]; diminished TH-positive striatal axonal terminals); these effects were not seen with Grx1-knockout mice. INNOVATION Our results indicate that Grx1 upregulation promotes neuroinflammation and consequent neuronal cell death in vitro, and synergizes with proinflammatory insults to promote DA loss in vivo. Our findings also suggest a genetic link between elevated Grx1 and PD development. CONCLUSION In vitro and in vivo data suggest Grx1 upregulation promotes neurotoxic neuroinflammation, potentially contributing to PD. Antioxid. Redox Signal. 25, 967-982.
Collapse
Affiliation(s)
- Olga Gorelenkova Miller
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jessica Belle Behring
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Sandra L. Siedlak
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sirui Jiang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Markus M. Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Xiongwei Zhu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - John J. Mieyal
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Louis Stokes Cleveland Veterans Administration Medical Research Center, Cleveland, Ohio
| |
Collapse
|
35
|
Ullevig SL, Kim HS, Short JD, Tavakoli S, Weintraub ST, Downs K, Asmis R. Protein S-Glutathionylation Mediates Macrophage Responses to Metabolic Cues from the Extracellular Environment. Antioxid Redox Signal 2016; 25:836-851. [PMID: 26984580 PMCID: PMC5107721 DOI: 10.1089/ars.2015.6531] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Protein S-glutathionylation, the formation of a mixed disulfide between glutathione and protein thiols, is an oxidative modification that has emerged as a new signaling paradigm, potentially linking oxidative stress to chronic inflammation associated with heart disease, diabetes, cancer, lung disease, and aging. Using a novel, highly sensitive, and selective proteomic approach to identify S-glutathionylated proteins, we tested the hypothesis that monocytes and macrophages sense changes in their microenvironment and respond to metabolic stress by altering their protein thiol S-glutathionylation status. RESULTS We identified over 130 S-glutathionylated proteins, which were associated with a variety of cellular functions, including metabolism, transcription and translation, protein folding, free radical scavenging, cell motility, and cell death. Over 90% of S-glutathionylated proteins identified in metabolically stressed THP-1 monocytes were also found in hydrogen peroxide (H2O2)-treated cells, suggesting that H2O2 mediates metabolic stress-induced protein S-glutathionylation in monocytes and macrophages. We validated our findings in mouse peritoneal macrophages isolated from both healthy and dyslipidemic atherosclerotic mice and found that 52% of the S-glutathionylated proteins found in THP-1 monocytes were also identified in vivo. Changes in macrophage protein S-glutathionylation induced by dyslipidemia were sexually dimorphic. INNOVATION We provide a novel mechanistic link between metabolic (and thiol oxidative) stress, macrophage dysfunction, and chronic inflammatory diseases associated with metabolic disorders. CONCLUSION Our data support the concept that changes in the extracellular metabolic microenvironment induce S-glutathionylation of proteins central to macrophage metabolism and a wide array of cellular signaling pathways and functions, which in turn initiate and promote functional and phenotypic changes in macrophages. Antioxid. Redox Signal. 25, 836-851.
Collapse
Affiliation(s)
- Sarah L Ullevig
- 1 Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio , San Antonio, Texas
| | - Hong Seok Kim
- 2 Department of Molecular Medicine, College of Medicine, Inha University , Incheon, Korea
| | - John D Short
- 3 Department of Pharmacology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Sina Tavakoli
- 4 Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Susan T Weintraub
- 5 Institutional Mass Spectrometry Core Laboratory, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,6 Department of Biochemistry, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Kevin Downs
- 7 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Reto Asmis
- 4 Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,6 Department of Biochemistry, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,8 Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
36
|
Short JD, Downs K, Tavakoli S, Asmis R. Protein Thiol Redox Signaling in Monocytes and Macrophages. Antioxid Redox Signal 2016; 25:816-835. [PMID: 27288099 PMCID: PMC5107717 DOI: 10.1089/ars.2016.6697] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Monocyte and macrophage dysfunction plays a critical role in a wide range of inflammatory disease processes, including obesity, impaired wound healing diabetic complications, and atherosclerosis. Emerging evidence suggests that the earliest events in monocyte or macrophage dysregulation include elevated reactive oxygen species production, thiol modifications, and disruption of redox-sensitive signaling pathways. This review focuses on the current state of research in thiol redox signaling in monocytes and macrophages, including (i) the molecular mechanisms by which reversible protein-S-glutathionylation occurs, (ii) the identification of bona fide S-glutathionylated proteins that occur under physiological conditions, and (iii) how disruptions of thiol redox signaling affect monocyte and macrophage functions and contribute to atherosclerosis. Recent Advances: Recent advances in redox biochemistry and biology as well as redox proteomic techniques have led to the identification of many new thiol redox-regulated proteins and pathways. In addition, major advances have been made in expanding the list of S-glutathionylated proteins and assessing the role that protein-S-glutathionylation and S-glutathionylation-regulating enzymes play in monocyte and macrophage functions, including monocyte transmigration, macrophage polarization, foam cell formation, and macrophage cell death. CRITICAL ISSUES Protein-S-glutathionylation/deglutathionylation in monocytes and macrophages has emerged as a new and important signaling paradigm, which provides a molecular basis for the well-established relationship between metabolic disorders, oxidative stress, and cardiovascular diseases. FUTURE DIRECTIONS The identification of specific S-glutathionylated proteins as well as the mechanisms that control this post-translational protein modification in monocytes and macrophages will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis and other metabolic diseases. Antioxid. Redox Signal. 25, 816-835.
Collapse
Affiliation(s)
- John D Short
- 1 Department of Pharmacology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Kevin Downs
- 2 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Sina Tavakoli
- 3 Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Reto Asmis
- 4 Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,5 Department of Biochemistry, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
37
|
Kim HS, Tavakoli S, Piefer LA, Nguyen HN, Asmis R. Monocytic MKP-1 is a Sensor of the Metabolic Environment and Regulates Function and Phenotypic Fate of Monocyte-Derived Macrophages in Atherosclerosis. Sci Rep 2016; 6:34223. [PMID: 27670844 PMCID: PMC5037453 DOI: 10.1038/srep34223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022] Open
Abstract
Diabetes promotes the S-glutathionylation, inactivation and subsequent degradation of mitogen-activated protein kinase phosphatase 1 (MKP-1) in blood monocytes, and hematopoietic MKP-1-deficiency in atherosclerosis-prone mice accelerates atherosclerotic lesion formation, but the underlying mechanisms were not known. Our aim was to determine the mechanisms through which MKP-1 deficiency in monocytes and macrophages promotes atherogenesis. Transplantation of MKP-1-deficient bone marrow into LDL-R−/− (MKP-1LeuKO) mice accelerated high-fat diet (HFD)-induced atherosclerotic lesion formation. After 12 weeks of HFD feeding, MKP-1LeuKO mice showed increased lesion size in both the aortic root (1.2-fold) and the aorta (1.6-fold), despite reduced plasma cholesterol levels. Macrophage content was increased in lesions of MKP-1LeuKO mice compared to mice that received wildtype bone marrow. After only 6 weeks on a HFD, in vivo chemotactic activity of monocytes was already significantly increased in MKP-1LeuKO mice. MKP-1 deficiency in monocytes and macrophages promotes and accelerates atherosclerotic lesion formation by hyper-sensitizing monocytes to chemokine-induced recruitment, predisposing macrophages to M1 polarization, decreased autophagy and oxysterol-induced cell death whereas overexpression of MKP-1 protects macrophages against metabolic stress-induced dysfunction. MKP-1 serves as a master-regulator of macrophage phenotype and function and its dysregulation by metabolic stress may be a major contributor to atherogenesis and the progression of atherosclerotic plaques.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea.,Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Sina Tavakoli
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Leigh Ann Piefer
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Huynh Nga Nguyen
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Reto Asmis
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
38
|
Wilson C, Terman JR, González-Billault C, Ahmed G. Actin filaments-A target for redox regulation. Cytoskeleton (Hoboken) 2016; 73:577-595. [PMID: 27309342 DOI: 10.1002/cm.21315] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through noncovalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates-the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL-and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carlos Wilson
- Department of Biology, Faculty of Sciences, Universidad De Chile, Las Palmeras 3425, Santiago, 7800024, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Jonathan R Terman
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390. .,Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad De Chile, Las Palmeras 3425, Santiago, 7800024, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,The Buck Institute for Research on Aging, Novato, California 94945.
| | - Giasuddin Ahmed
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.,Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
39
|
Glutathione adducts induced by ischemia and deletion of glutaredoxin-1 stabilize HIF-1α and improve limb revascularization. Proc Natl Acad Sci U S A 2016; 113:6011-6. [PMID: 27162359 DOI: 10.1073/pnas.1524198113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) are increased in ischemic tissues and necessary for revascularization; however, the mechanism remains unclear. Exposure of cysteine residues to ROS in the presence of glutathione (GSH) generates GSH-protein adducts that are specifically reversed by the cytosolic thioltransferase, glutaredoxin-1 (Glrx). Here, we show that a key angiogenic transcriptional factor hypoxia-inducible factor (HIF)-1α is stabilized by GSH adducts, and the genetic deletion of Glrx improves ischemic revascularization. In mouse muscle C2C12 cells, HIF-1α protein levels are increased by increasing GSH adducts with cell-permeable oxidized GSH (GSSG-ethyl ester) or 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanyl thiocarbonylamino) phenylthiocarbamoylsulfanyl] propionic acid (2-AAPA), an inhibitor of glutathione reductase. A biotin switch assay shows that GSSG-ester-induced HIF-1α contains reversibly modified thiols, and MS confirms GSH adducts on Cys(520) (mouse Cys(533)). In addition, an HIF-1α Cys(520) serine mutant is resistant to 2-AAPA-induced HIF-1α stabilization. Furthermore, Glrx overexpression prevents HIF-1α stabilization, whereas Glrx ablation by siRNA increases HIF-1α protein and expression of downstream angiogenic genes. Blood flow recovery after femoral artery ligation is significantly improved in Glrx KO mice, associated with increased levels of GSH-protein adducts, capillary density, vascular endothelial growth factor (VEGF)-A, and HIF-1α in the ischemic muscles. Therefore, Glrx ablation stabilizes HIF-1α by increasing GSH adducts on Cys(520) promoting in vivo HIF-1α stabilization, VEGF-A production, and revascularization in the ischemic muscles.
Collapse
|
40
|
The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2795090. [PMID: 27143992 PMCID: PMC4837277 DOI: 10.1155/2016/2795090] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
High heterogeneity of macrophage is associated with its functions in polarization to different functional phenotypes depending on environmental cues. Macrophages remain in balanced state in healthy subject and thus macrophage polarization may be crucial in determining the tissue fate. The two distinct populations, classically M1 and alternatively M2 activated, representing the opposing ends of the full activation spectrum, have been extensively studied for their associations with several disease progressions. Accumulating evidences have postulated that the redox signalling has implication in macrophage polarization and the key roles of M1 and M2 macrophages in tissue environment have provided the clue for the reasons of ROS abundance in certain phenotype. M1 macrophages majorly clearing the pathogens and ROS may be crucial for the regulation of M1 phenotype, whereas M2 macrophages resolve inflammation which favours oxidative metabolism. Therefore how ROS play its role in maintaining the homeostatic functions of macrophage and in particular macrophage polarization will be reviewed here. We also review the biology of macrophage polarization and the disturbance of M1/M2 balance in human diseases. The potential therapeutic opportunities targeting ROS will also be discussed, hoping to provide insights for development of target-specific delivery system or immunomodulatory antioxidant for the treatment of ROS-related diseases.
Collapse
|
41
|
Moderate Increase of Indoxyl Sulfate Promotes Monocyte Transition into Profibrotic Macrophages. PLoS One 2016; 11:e0149276. [PMID: 26925780 PMCID: PMC4771744 DOI: 10.1371/journal.pone.0149276] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The uremic toxin Indoxyl-3-sulphate (IS), a ligand of Aryl hydrocarbon Receptor (AhR), raises in blood during early renal dysfunction as a consequence of tubular damage, which may be present even when eGFR is normal or only moderately reduced, and promotes cardiovascular damage and monocyte-macrophage activation. We previously found that patients with abdominal aortic aneurysms (AAAs) have higher CD14+CD16+ monocyte frequency and prevalence of moderate chronic kidney disease (CKD) than age-matched control subjects. Here we aimed to evaluate the IS levels in plasma from AAA patients and to investigate in vitro the effects of IS concentrations corresponding to mild-to-moderate CKD on monocyte polarization and macrophage differentiation. METHODS Free IS plasma levels, monocyte subsets and laboratory parameters were evaluated on blood from AAA patients and eGFR-matched controls. THP-1 monocytes, treated with IS 1, 10, 20 μM were evaluated for CD163 expression, AhR signaling and then induced to differentiate into macrophages by PMA. Their phenotype was evaluated both at the stage of semi-differentiated and fully differentiated macrophages. AAA and control sera were similarly used to treat THP-1 monocytes and the resulting macrophage phenotype was analyzed. RESULTS IS plasma concentration correlated positively with CD14+CD16+ monocytes and was increased in AAA patients. In THP-1 cells, IS promoted CD163 expression and transition to macrophages with hallmarks of classical (IL-6, CCL2, COX2) and alternative phenotype (IL-10, PPARγ, TGF-β, TIMP-1), via AhR/Nrf2 activation. Analogously, AAA sera induced differentiation of macrophages with enhanced IL-6, MCP1, TGF-β, PPARγ and TIMP-1 expression. CONCLUSION IS skews monocyte differentiation toward low-inflammatory, profibrotic macrophages and may contribute to sustain chronic inflammation and maladaptive vascular remodeling.
Collapse
|
42
|
Diebold BA, Smith SM, Li Y, Lambeth JD. NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid Redox Signal 2015; 23:375-405. [PMID: 24512192 PMCID: PMC4545678 DOI: 10.1089/ars.2014.5862] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/08/2014] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. RECENT ADVANCES Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. CRITICAL ISSUES Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. FUTURE DIRECTIONS NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Becky A. Diebold
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M.E. Smith
- Department of Biology and Physics, Kennesaw State University, Kennesaw, Georgia
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - J. David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
43
|
Zamora DA, Downs KP, Ullevig SL, Tavakoli S, Kim HS, Qiao M, Greaves DR, Asmis R. Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice. Atherosclerosis 2015; 241:69-78. [PMID: 25966442 PMCID: PMC4466159 DOI: 10.1016/j.atherosclerosis.2015.04.805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/31/2022]
Abstract
AIMS Reactive oxygen species (ROS)-mediated formation of mixed disulfides between critical cysteine residues in proteins and glutathione, a process referred to as protein S-glutathionylation, can lead to loss of enzymatic activity and protein degradation. Since mitochondria are a major source of ROS and a number of their proteins are susceptible to protein-S-glutathionylation, we examined if overexpression of mitochondrial thioltranferase glutaredoxin 2a (Grx2a) in macrophages of dyslipidemic atherosclerosis-prone mice would prevent mitochondrial dysfunction and protect against atherosclerotic lesion formation. METHODS AND RESULTS We generated transgenic Grx2aMac(LDLR-/-) mice, which overexpress Grx2a as an EGFP fusion protein under the control of the macrophage-specific CD68 promoter. Transgenic mice and wild type siblings were fed a high fat diet for 14 weeks at which time we assessed mitochondrial bioenergetic function in peritoneal macrophages and atherosclerotic lesion formation. Flow cytometry and Western blot analysis demonstrated transgene expression in blood monocytes and peritoneal macrophages isolated from Grx2aMac(LDLR-/-) mice, and fluorescence confocal microscopy studies confirmed that Grx2a expression was restricted to the mitochondria of monocytic cells. Live-cell bioenergetic measurements revealed impaired mitochondrial ATP turnover in macrophages isolated from Grx2aMac(LDLR-/-) mice compared to macrophages isolated from non-transgenic mice. However, despite impaired mitochondrial function in macrophages of Grx2aMac(LDLR-/-) mice, we observed no significant difference in the severity of atherosclerosis between wildtype and Grx2aMac(LDLR-/-) mice. CONCLUSION Our findings suggest that increasing Grx2a activity in macrophage mitochondria disrupts mitochondrial respiration and ATP production, but without affecting the proatherogenic potential of macrophages. Our data suggest that macrophages are resistant against moderate mitochondrial dysfunction and rely on alternative pathways for ATP synthesis to support the energetic requirements.
Collapse
Affiliation(s)
- D A Zamora
- Department of Biology, Trinity University, San Antonio, USA
| | - K P Downs
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA
| | - S L Ullevig
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio, USA
| | - S Tavakoli
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - H S Kim
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA
| | - M Qiao
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA
| | - D R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - R Asmis
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, USA.
| |
Collapse
|
44
|
Manea A, Manea SA, Gan AM, Constantin A, Fenyo IM, Raicu M, Muresian H, Simionescu M. Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. Biochem Biophys Res Commun 2015; 461:172-9. [DOI: 10.1016/j.bbrc.2015.04.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022]
|
45
|
Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules 2015; 5:472-84. [PMID: 25884116 PMCID: PMC4496681 DOI: 10.3390/biom5020472] [Citation(s) in RCA: 408] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022] Open
Abstract
In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity.
Collapse
|
46
|
The role of oxidative stress and autophagy in atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:130315. [PMID: 25866599 PMCID: PMC4381688 DOI: 10.1155/2015/130315] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a multifactorial, multistep disorder of large- and medium-sized arteries involving, in addition to age, gender and menopausal status, a complex interplay between lifestyle and genetic risk factors. Atherosclerosis usually begins with the diffusion and retention of atherogenic lipoproteins into the subendothelial space of the artery wall where they become oxidized by local enzymes and accumulate, leading to the formation of a cushion called atheroma or atheromatous or fibrofatty plaque, composed of a mixture of macrophages, lymphocytes, smooth muscle cells (SMCs), cholesterol cleft, necrotic debris, and lipid-laden foam cells. The pathogenesis of atherosclerosis still remains incompletely understood but emerging evidence suggests that it may involve multiple cellular events, including endothelial cell (EC) dysfunction, inflammation, proliferation of vascular SMCs, matrix (ECM) alteration, and neovascularization. Actually, a growing body of evidence indicates that autophagy along with the chronic and acute overproduction of reactive oxygen species (ROS) is integral to the development and progression of the disease and may represent fruitful avenues for biological investigation and for the identification of new therapeutic targets. In this review, we give an overview of ROS and autophagy in atherosclerosis as background to understand their potential role in this vascular disease.
Collapse
|
47
|
Zhao QD, Viswanadhapalli S, Williams P, Shi Q, Tan C, Yi X, Bhandari B, Abboud HE. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation 2015; 131:643-55. [PMID: 25589557 DOI: 10.1161/circulationaha.114.011079] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND NADPH oxidase 4 (Nox4) has been implicated in cardiac remodeling, but its precise role in cardiac injury remains controversial. Furthermore, little is known about the downstream effector signaling pathways activated by Nox4-derived reactive oxygen species in the myocardium. We investigated the role of Nox4 and Nox4-associated signaling pathways in the development of cardiac remodeling. METHODS AND RESULTS Cardiac-specific human Nox4 transgenic mice (c-hNox4Tg) were generated. Four groups of mice were studied: (1) control mice, littermates that are negative for hNox4 transgene but Cre positive; (2) c-hNox4 Tg mice; (3) angiotensin II (AngII)-infused control mice; and (4) c-hNox4Tg mice infused with AngII. The c-hNox4Tg mice exhibited an ≈10-fold increase in Nox4 protein expression and an 8-fold increase in the production of reactive oxygen species, and manifested cardiac interstitial fibrosis. AngII infusion to control mice increased cardiac Nox4 expression and induced fibrosis and hypertrophy. The Tg mice receiving AngII exhibited more advanced cardiac remodeling and robust elevation in Nox4 expression, indicating that AngII worsens cardiac injury, at least in part by enhancing Nox4 expression. Moreover, hNox4 transgene and AngII infusion induced the expression of cardiac fetal genes and activated the Akt-mTOR and NFκB signaling pathways. Treatment of AngII-infused c-hNox4Tg mice with GKT137831, a Nox4/Nox1 inhibitor, abolished the increase in oxidative stress, suppressed the Akt-mTOR and NFκB signaling pathways, and attenuated cardiac remodeling. CONCLUSIONS Upregulation of Nox4 in the myocardium causes cardiac remodeling through activating Akt-mTOR and NFκB signaling pathways. Inhibition of Nox4 has therapeutic potential to treat cardiac remodeling.
Collapse
Affiliation(s)
- Qingwei David Zhao
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX.
| | - Suryavathi Viswanadhapalli
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Paul Williams
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Qian Shi
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Chunyan Tan
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Xiaolan Yi
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Basant Bhandari
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| | - Hanna E Abboud
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
48
|
RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm. Kidney Int 2014; 87:771-83. [PMID: 25469849 PMCID: PMC4382433 DOI: 10.1038/ki.2014.364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/03/2014] [Accepted: 09/11/2014] [Indexed: 01/13/2023]
Abstract
Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 minute injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 minute unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury blood flow was decreased in the inner cortex of wild type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 hours after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMC) to secrete the macrophage chemoattractant, RANTES; a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared to transgenic and non-transgenic mice after the 10 minute injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation.
Collapse
|
49
|
Abstract
SIGNIFICANCE Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. RECENT ADVANCES Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. CRITICAL ISSUES Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. FUTURE DIRECTIONS We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine , São Paulo, Brazil
| | | | | |
Collapse
|
50
|
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of "kindling radicals," which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. RECENT ADVANCES There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. CRITICAL ISSUES NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. FUTURE DIRECTIONS Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice.
Collapse
Affiliation(s)
- Anna Konior
- 1 Department of Internal Medicine, Jagiellonian University School of Medicine , Cracow, Poland
| | | | | | | |
Collapse
|