1
|
Ji RL, Tao YX. Biased signaling in drug discovery and precision medicine. Pharmacol Ther 2025; 268:108804. [PMID: 39904401 DOI: 10.1016/j.pharmthera.2025.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Receptors are crucial for converting chemical and environmental signals into cellular responses, making them prime targets in drug discovery, with about 70% of drugs targeting these receptors. Biased signaling, or functional selectivity, has revolutionized drug development by enabling precise modulation of receptor signaling pathways. This concept is more firmly established in G protein-coupled receptor and has now been applied to other receptor types, including ion channels, receptor tyrosine kinases, and nuclear receptors. Advances in structural biology have further refined our understanding of biased signaling. This targeted approach enhances therapeutic efficacy and potentially reduces side effects. Numerous biased drugs have been developed and approved as therapeutics to treat various diseases, demonstrating their significant therapeutic potential. This review provides a comprehensive overview of biased signaling in drug discovery and disease treatment, highlighting recent advancements and exploring the therapeutic potential of these innovative modulators across various diseases.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
2
|
Delaitre C, Boisbrun M, Acherar S, Dias A, Kleinclauss A, Achard M, Colin M, Nguyen TM, Humbert N, Chmeis K, Martinez KL, Gilles N, Robin P, Lecat S, Dupuis F. Synthesis and Pharmacological Characterization of Fluorescent Ligands Targeting the Angiotensin II Receptors Derived from Agonists, β-Arrestin-Biased Agonists, and Antagonists. J Med Chem 2024; 67:20275-20297. [PMID: 39526976 DOI: 10.1021/acs.jmedchem.4c01693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2024]
Abstract
Angiotensin II (AngII) regulates cerebral circulation and binds with a similar affinity to AT1 and AT2 receptors. Biased AT1 agonists, such as TRV027, which are able to selectively activate β-arrestin while blocking the Gq pathway, appear promising as new therapeutics. New pharmacological tools are needed to further explore the impact of biased AT1 agonists on cells or tissues, such as the cerebral vessels. We designed and synthesized new fluorescent derivatives based on AngII, TRV027, or the AT1 antagonist losartan. We conducted pharmacological characterization to determine their selectivity, potency, and ability to activate or not specific AT1 transduction pathways in cells and cerebral arteries. We report the first highly AT1-selective fluorescent ligand, based on losartan, that retains its antagonist activity with high affinity. Fluorescent derivatives of TRV027 become AT2-selective and lose their AT1 β-arrestin bias. These new ligands can be applied to trace AT1 or AT2 receptors in vitro and ex vivo.
Collapse
Affiliation(s)
- Céline Delaitre
- Université de Lorraine, CITHEFOR, Nancy F-54000, France
- BSC UMR7242 "GPCRs, pain and inflammation" team, CNRS, Université de Strasbourg, Illkirch F-67412, France
| | | | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, Nancy F-54000, France
| | - André Dias
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | | | | | - Mélissa Colin
- Université de Lorraine, CITHEFOR, Nancy F-54000, France
| | | | - Nicolas Humbert
- Laboratory de Bioimaging and Pathology, CNRS UMR 7021, Faculty of pharmacy, Université de Strasbourg, Illkirch F-67412, France
| | - Khawla Chmeis
- Medicines and Healthcare Technologies Department of Joliot Institute for Life Sciences, CEA, Paris-Saclay university, Gif sur Yvette F-91190, France
| | - Karen L Martinez
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Nicolas Gilles
- Medicines and Healthcare Technologies Department of Joliot Institute for Life Sciences, CEA, Paris-Saclay university, Gif sur Yvette F-91190, France
| | - Philippe Robin
- Medicines and Healthcare Technologies Department of Joliot Institute for Life Sciences, CEA, Paris-Saclay university, Gif sur Yvette F-91190, France
| | - Sandra Lecat
- BSC UMR7242 "GPCRs, pain and inflammation" team, CNRS, Université de Strasbourg, Illkirch F-67412, France
| | | |
Collapse
|
3
|
Tóth AD, Turu G, Hunyady L. Functional consequences of spatial, temporal and ligand bias of G protein-coupled receptors. Nat Rev Nephrol 2024; 20:722-741. [PMID: 39039165 DOI: 10.1038/s41581-024-00869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Abstract
G protein-coupled receptors (GPCRs) regulate every aspect of kidney function by mediating the effects of various endogenous and exogenous substances. A key concept in GPCR function is biased signalling, whereby certain ligands may selectively activate specific pathways within the receptor's signalling repertoire. For example, different agonists may induce biased signalling by stabilizing distinct active receptor conformations - a concept that is supported by advances in structural biology. However, the processes underlying functional selectivity in receptor signalling are extremely complex, involving differences in subcellular compartmentalization and signalling dynamics. Importantly, the molecular mechanisms of spatiotemporal bias, particularly its connection to ligand binding kinetics, have been detailed for GPCRs critical to kidney function, such as the AT1 angiotensin receptor (AT1R), V2 vasopressin receptor (V2R) and the parathyroid hormone 1 receptor (PTH1R). This expanding insight into the multifaceted nature of biased signalling paves the way for innovative strategies for targeting GPCR functions; the development of novel biased agonists may represent advanced pharmacotherapeutic approaches to the treatment of kidney diseases and related systemic conditions, such as hypertension, diabetes and heart failure.
Collapse
MESH Headings
- Humans
- Ligands
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/physiology
- Animals
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/physiology
- Kidney Diseases/metabolism
- Kidney/metabolism
Collapse
Affiliation(s)
- András D Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Tóth AD, Szalai B, Kovács OT, Garger D, Prokop S, Soltész-Katona E, Balla A, Inoue A, Várnai P, Turu G, Hunyady L. G protein-coupled receptor endocytosis generates spatiotemporal bias in β-arrestin signaling. Sci Signal 2024; 17:eadi0934. [PMID: 38917219 DOI: 10.1126/scisignal.adi0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (AT1R) agonists revealed that the extent and kinetics of β-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When AT1R endocytosis was prevented, even weak partial agonists of the β-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine β-arrestin recruitment. The ligand-dependent variance in β-arrestin translocation was much larger at endosomes than at the plasma membrane, showing that ligand efficacy in the β-arrestin pathway was spatiotemporally determined. Experimental investigations and mathematical modeling demonstrated how multiple factors concurrently shaped the effects of agonists on endosomal receptor-β-arrestin binding and thus determined the extent of functional selectivity. Ligand dissociation rate and G protein activity had particularly strong, internalization-dependent effects on the receptor-β-arrestin interaction. We also showed that endocytosis regulated the agonist efficacies of two other receptors with sustained β-arrestin binding: the V2 vasopressin receptor and a mutant β2-adrenergic receptor. In the absence of endocytosis, the agonist-dependent variance in β-arrestin2 binding was markedly diminished. Our results suggest that endocytosis determines the spatiotemporal bias in GPCR signaling and can aid in the development of more efficacious, functionally selective compounds.
Collapse
MESH Headings
- Endocytosis/physiology
- Humans
- Signal Transduction
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- beta-Arrestins/metabolism
- beta-Arrestins/genetics
- HEK293 Cells
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Endosomes/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Animals
- Ligands
- Protein Binding
- Protein Transport
Collapse
Affiliation(s)
- András D Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Szentkirályi utca 46, H-1088 Budapest, Hungary
| | - Bence Szalai
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Orsolya T Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Dániel Garger
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- Computational Health Center, Helmholtz Munich, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Eszter Soltész-Katona
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- HUN-REN-SE Laboratory of Molecular Physiology, Hungarian Research Network, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 Japan
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- HUN-REN-SE Laboratory of Molecular Physiology, Hungarian Research Network, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Gábor Turu
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - László Hunyady
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| |
Collapse
|
5
|
Liu S, Anderson PJ, Rajagopal S, Lefkowitz RJ, Rockman HA. G Protein-Coupled Receptors: A Century of Research and Discovery. Circ Res 2024; 135:174-197. [PMID: 38900852 PMCID: PMC11192237 DOI: 10.1161/circresaha.124.323067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 06/22/2024]
Abstract
GPCRs (G protein-coupled receptors), also known as 7 transmembrane domain receptors, are the largest receptor family in the human genome, with ≈800 members. GPCRs regulate nearly every aspect of human physiology and disease, thus serving as important drug targets in cardiovascular disease. Sharing a conserved structure comprised of 7 transmembrane α-helices, GPCRs couple to heterotrimeric G-proteins, GPCR kinases, and β-arrestins, promoting downstream signaling through second messengers and other intracellular signaling pathways. GPCR drug development has led to important cardiovascular therapies, such as antagonists of β-adrenergic and angiotensin II receptors for heart failure and hypertension, and agonists of the glucagon-like peptide-1 receptor for reducing adverse cardiovascular events and other emerging indications. There continues to be a major interest in GPCR drug development in cardiovascular and cardiometabolic disease, driven by advances in GPCR mechanistic studies and structure-based drug design. This review recounts the rich history of GPCR research, including the current state of clinically used GPCR drugs, and highlights newly discovered aspects of GPCR biology and promising directions for future investigation. As additional mechanisms for regulating GPCR signaling are uncovered, new strategies for targeting these ubiquitous receptors hold tremendous promise for the field of cardiovascular medicine.
Collapse
Affiliation(s)
- Samuel Liu
- Department of Medicine, Duke University Medical
Center
| | - Preston J. Anderson
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Duke Medical Scientist Training Program, Duke University,
Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
| | - Robert J. Lefkowitz
- Department of Medicine, Duke University Medical
Center
- Deparment of Biochemistry Duke University, Durham, NC,
27710, USA
- Howard Hughes Medical Institute, Duke University Medical
Center, Durham, North Carolina 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical
Center
- Cell and Molecular Biology (CMB), Duke University, Durham,
NC, 27710, USA
| |
Collapse
|
6
|
Maaliki D, Jaffa AA, Nasser S, Sahebkar A, Eid AH. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol Rev 2024; 76:358-387. [PMID: 38697858 DOI: 10.1124/pharmrev.123.000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of β-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, β-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, β-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the β adrenoceptors and highlights the role of β-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Aneese A Jaffa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Suzanne Nasser
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Amirhossein Sahebkar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
7
|
Semenikhina M, Fedoriuk M, Stefanenko M, Klemens CA, Cherezova A, Marshall B, Hall G, Levchenko V, Solanki A, Lipschutz JH, Ilatovskaya DV, Staruschenko A, Palygin O. β-Arrestin pathway activation by selective ATR1 agonism promotes calcium influx in podocytes, leading to glomerular damage. Clin Sci (Lond) 2023; 137:1789-1804. [PMID: 38051199 PMCID: PMC11194114 DOI: 10.1042/cs20230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Angiotensin receptor blockers (ARBs) are the first-line treatment for hypertension; they act by inhibiting signaling through the angiotensin 1 receptor (AT1R). Recently, a novel biased AT1R agonist, TRV120027 (TRV), which selectively activates the β-arrestin cascade and blocks the G-protein-coupled receptor pathway has been proposed as a potential blood pressure medication. Here, we explored the effects of TRV and associated β-arrestin signaling in podocytes, essential cells of the kidney filter. We used human podocyte cell lines to determine β-arrestin's involvement in calcium signaling and cytoskeletal reorganization and Dahl SS rats to investigate the chronic effects of TRV administration on glomerular health. Our experiments indicate that the TRV-activated β-arrestin pathway promotes the rapid elevation of intracellular Ca2+ in a dose-dependent manner. Interestingly, the amplitude of β-arrestin-mediated Ca2+ influx was significantly higher than the response to similar Ang II concentrations. Single-channel analyses show rapid activation of transient receptor potential canonical (TRPC) channels following acute TRV application. Furthermore, the pharmacological blockade of TRPC6 significantly attenuated the β-arrestin-mediated Ca2+ influx. Additionally, prolonged activation of the β-arrestin pathway in podocytes resulted in pathological actin cytoskeleton rearrangements, higher apoptotic cell markers, and augmented glomerular damage. TRV-activated β-arrestin signaling in podocytes may promote TRPC6 channel-mediated Ca2+ influx, foot process effacement, and apoptosis, possibly leading to severe defects in glomerular filtration barrier integrity and kidney health. Under these circumstances, the potential therapeutic application of TRV for hypertension treatment requires further investigation to assess the balance of the benefits versus possible deleterious effects and off-target damage.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Mykhailo Fedoriuk
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Christine A. Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
| | - Alena Cherezova
- Department of Physiology, Medical College of Georgia, Augusta University, GA
| | - Brendan Marshall
- Department of Physiology, Medical College of Georgia, Augusta University, GA
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Ashish Solanki
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Joshua H. Lipschutz
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | | | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
8
|
Akbarzadeh R, Müller A, Humrich JY, Riemekasten G. When natural antibodies become pathogenic: autoantibodies targeted against G protein-coupled receptors in the pathogenesis of systemic sclerosis. Front Immunol 2023; 14:1213804. [PMID: 37359516 PMCID: PMC10285309 DOI: 10.3389/fimmu.2023.1213804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a chronic, multisystem connective tissue, and autoimmune disease with the highest case-specific mortality and complications among rheumatic diseases. It is characterized by complex and variable features such as autoimmunity and inflammation, vasculopathy, and fibrosis, which pose challenges in understanding the pathogenesis of the disease. Among the large variety of autoantibodies (Abs) present in the sera of patients suffering from SSc, functionally active Abs against G protein-coupled receptors (GPCRs), the most abundant integral membrane proteins, have drawn much attention over the last decades. These Abs play an essential role in regulating the immune system, and their functions are dysregulated in diverse pathological conditions. Emerging evidence indicates that functional Abs targeting GPCRs, such as angiotensin II type 1 receptor (AT1R) and the endothelin-1 type A receptor (ETAR), are altered in SSc. These Abs are part of a network with several GPCR Abs, such as those directed to the chemokine receptors or coagulative thrombin receptors. In this review, we summarize the effects of Abs against GPCRs in SSc pathologies. Extending the knowledge on pathophysiological roles of Abs against GPCRs could provide insights into a better understanding of GPCR contribution to SSc pathogenesis and therefore help in developing potential therapeutic strategies that intervene with pathological functions of these receptors.
Collapse
|
9
|
Parichatikanond W, Duangrat R, Mangmool S. G αq protein-biased ligand of angiotensin II type 1 receptor mediates myofibroblast differentiation through TGF-β1/ERK axis in human cardiac fibroblasts. Eur J Pharmacol 2023; 951:175780. [PMID: 37209939 DOI: 10.1016/j.ejphar.2023.175780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Angiotensin II receptors are members of G protein-coupled receptor superfamily that manifest biased signals toward G protein- and β-arrestin-dependent pathways. However, the role of angiotensin II receptor-biased ligands and the mechanisms underlying myofibroblast differentiation in human cardiac fibroblasts have not been fully elucidated. Our results demonstrated that antagonism of angiotensin II type 1 receptor (AT1 receptor) and blockade of Gαq protein suppressed angiotensin II (Ang II)-induced fibroblast proliferation, overexpression of collagen I and α-smooth muscle actin (α-SMA), and stress fibre formation, indicating the AT1 receptor/Gαq axis is necessary for fibrogenic effects of Ang II. Stimulation of AT1 receptors by their Gαq-biased ligand (TRV120055), but not β-arrestin-biased ligand (TRV120027), substantially exerted fibrogenic effects at a level similar to that of Ang II, suggesting that AT1 receptor induced cardiac fibrosis in a Gαq-dependent and β-arrestin-independent manner. Valsartan prevents TRV120055-mediated fibroblast activation. TRV120055 mediated the upregulation of transforming growth factor-beta1 (TGF-β1) through the AT1 receptor/Gαq cascade. In addition, Gαq protein and TGF-β1 were necessary for ERK1/2 activation induced by Ang II and TRV120055. Collectively, TGF-β1 and ERK1/2 are downstream effectors of the Gαq-biased ligand of AT1 receptor for the induction of cardiac fibrosis.
Collapse
Affiliation(s)
- Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
10
|
Ren H, Liu Y, Tan Z, Luo G, Zhang M, Li S, Tang T, Zhao L. A Common Variant of ARRB2 Promoter Region Associated with the Prognosis of Heart Failure. Hum Hered 2023; 88:68-78. [PMID: 37100034 DOI: 10.1159/000530827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
INTRODUCTION The role of ARRB2 in cardiovascular disease has recently gained increasing attention. However, the association between ARRB2 polymorphisms and heart failure (HF) has not yet been investigated. METHODS A total of 2,386 hospitalized patients with chronic HF were enrolled as the first cohort and followed up for a mean period of 20.2 months. Meanwhile, ethnically and geographically matched 3,000 individuals without evidence of HF were included as healthy controls. We genotyped the common variant in ARRB2 gene to identify the association between variant and HF. A replicated independent cohort enrolling 837 patients with chronic HF was applied to validate the observed association. A series of function analyses were conducted to illuminate the underlying mechanism. RESULTS We identified a common variant rs75428611 associated with the prognosis of HF in two-stage population: adjusted p = 0.001, hazard ratio (HR) = 1.31 (1.11-1.54) in additive model and adjusted p = 0.001, HR = 1.39 (1.14-1.69) in dominant model in first-stage population; adjusted p = 0.04, HR = 1.41 (1.02-1.95) in additive model and adjusted p = 0.03, HR = 1.51 (1.03-2.20) in dominant model in replicated stage. However, rs75428611 did not significantly associate with the risk of HF. Functional analysis indicated that rs75428611-G allele increased the promoter activity and the mRNA expression level of ARRB2 by facilitating transcription factor SRF binding but not the A allele. CONCLUSIONS Our findings demonstrated that rs75428611 in promoter of ARRB2 was associated with the risk of HF mortality. It is a promising potential treatment target for HF.
Collapse
Affiliation(s)
- Hongqiang Ren
- Cardiovascular Center, Suining Central Hospital, Suining, China,
| | - Yijun Liu
- Cardiovascular Center, Suining Central Hospital, Suining, China
| | - Zhen Tan
- Cardiovascular Center, Suining Central Hospital, Suining, China
| | - Guiquan Luo
- Cardiovascular Center, Suining Central Hospital, Suining, China
| | - Mei Zhang
- Cardiovascular Center, Suining Central Hospital, Suining, China
| | - Shuang Li
- Cardiovascular Center, Suining Central Hospital, Suining, China
| | - Tingwei Tang
- Cardiovascular Center, Suining Central Hospital, Suining, China
| | - Li Zhao
- Cardiovascular Center, Suining Central Hospital, Suining, China
| |
Collapse
|
11
|
Noto NM, Restrepo YM, Pang HW, Stoyell-Conti F, West CA, Speth RC. Comparative evaluation of biased agonists Sarcosine 1 , d-Alanine 8 -Angiotensin (Ang) II (SD Ang II) and Sarcosine 1 , Isoleucine 8 -Ang II (SI Ang II) and their radioiodinated congeners binding to rat liver membrane AT 1 receptors. Pharmacol Res Perspect 2023; 11:e01053. [PMID: 36639940 PMCID: PMC9840060 DOI: 10.1002/prp2.1053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
Angiotensin II analogue and β-arrestin biased agonist TRV027 (Sarcosine1 , d-Alanine8 -Angiotensin (Ang) II; SD Ang II), developed by Trevena, Inc. in the early 2010s, brought hopes of a novel treatment for cardiovascular diseases, due to its ability to simultaneously cause signaling through the β-arrestin signaling pathway, while antagonizing the pathophysiological effects of Ang II mediated by the AT1 receptor G protein signaling cascades. However, a phase II clinical trial of this agent revealed no significant benefit compared to placebo treatment. Using 125 I-Sarcosine1 , Isoleucine8 -Ang II (125 I-SI Ang II) radioligand receptor competition binding assays, we assessed the relative affinity of TRV027 compared to SI Ang II for liver AT1 receptors. We also compared radioiodinated TRV027 (125 I-SD Ang II) binding affinity for liver AT1 receptors with 125 I-SI Ang II. We found that despite its anticipated gain in metabolic stability, TRV027 and 125 I-SD Ang II had reduced affinity for the AT1 receptor compared with SI Ang II and 125 I-SI Ang II. Additionally, male-female comparisons showed that females have a higher AT1 receptor density, potentially attributed to tissue-dependent estrogen and progesterone effects. Peptide drugs have become more popular over the years due to their increased bioavailability, fast onset of action, high specificity, and low toxicity. Even though Trevena®'s biased agonist peptide TRV027 offered greater stability and potency compared to earlier AT1 R biased agonists, it failed its phase II clinical trial in 2016. Further refinements to AT1 R biased agonist peptides to improve affinity, as seen with SI Ang II, with better stability and bioavailability, has the potential to achieve the anticipated biased agonism.
Collapse
Affiliation(s)
- Natalia M Noto
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Yazmin M Restrepo
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hong W Pang
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Filipe Stoyell-Conti
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.,University of Miami, Miami, Florida, USA
| | - Crystal A West
- Department of Biology, Appalachian State University, Kannapolis, North Carolina, USA
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Maginnis MS. β-arrestins and G protein-coupled receptor kinases in viral entry: A graphical review. Cell Signal 2023; 102:110558. [PMID: 36509265 PMCID: PMC9811579 DOI: 10.1016/j.cellsig.2022.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Viruses rely on host-cell machinery in order to invade host cells and carry out a successful infection. G-protein coupled receptor (GPCR)-mediated signaling pathways are master regulators of cellular physiological processing and are an attractive target for viruses to rewire cells during infection. In particular, the GPCR-associated scaffolding proteins β-arrestins and GPCR signaling effectors G-protein receptor kinases (GRKs) have been identified as key cellular factors that mediate viral entry and orchestrate signaling pathways that reprogram cells for viral replication. Interestingly, a broad range of viruses have been identified to activate and/or require GPCR-mediated pathways for infection, including polyomaviruses, flaviviruses, influenza virus, and SARS-CoV-2, demonstrating that these viruses may have conserved mechanisms of host-cell invasion. Thus, GPCR-mediated pathways highlight an attractive target for the development of broad antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, United States of America; Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469, United States of America.
| |
Collapse
|
13
|
Kaur G, Verma SK, Singh D, Singh NK. Role of G-Proteins and GPCRs in Cardiovascular Pathologies. Bioengineering (Basel) 2023; 10:bioengineering10010076. [PMID: 36671648 PMCID: PMC9854459 DOI: 10.3390/bioengineering10010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Cell signaling is a fundamental process that enables cells to survive under various ecological and environmental contexts and imparts tolerance towards stressful conditions. The basic machinery for cell signaling includes a receptor molecule that senses and receives the signal. The primary form of the signal might be a hormone, light, an antigen, an odorant, a neurotransmitter, etc. Similarly, heterotrimeric G-proteins principally provide communication from the plasma membrane G-protein-coupled receptors (GPCRs) to the inner compartments of the cells to control various biochemical activities. G-protein-coupled signaling regulates different physiological functions in the targeted cell types. This review article discusses G-proteins' signaling and regulation functions and their physiological relevance. In addition, we also elaborate on the role of G-proteins in several cardiovascular diseases, such as myocardial ischemia, hypertension, atherosclerosis, restenosis, stroke, and peripheral artery disease.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Shailendra Kumar Verma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Deepak Singh
- Lloyd Institute of Engineering and Technology, Greater Noida 201306, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Correspondence:
| |
Collapse
|
14
|
Autoimmune autonomic nervous system imbalance and conditions: Chronic fatigue syndrome, fibromyalgia, silicone breast implants, COVID and post-COVID syndrome, sick building syndrome, post-orthostatic tachycardia syndrome, autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants. Clin Exp Rheumatol 2023; 22:103230. [PMID: 36347462 DOI: 10.1016/j.autrev.2022.103230] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
Chronic fatigue syndrome (CFS), fibromyalgia, silicone breast implants syndrome (SBIs), COVID and post-COVID syndrome (PCS), sick building syndrome (SBS), post-orthostatic tachycardia syndrome (POTS), autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants (ASIA) are frequently accompanied by clinical symptoms characteristic for dysautonomia: severe fatigue, dizziness, fogginess, memory loss, dry mouth and eyes, hearing dysfunction, tachycardia etc. The recent discovery of an imbalance of autoantibodies against G protein-coupled receptors (GPCR) in some autoimmune diseases, post-COVID syndrome, SBIs allowed researchers to assume the novel mechanism in these conditions - autoimmune autonomic nervous system imbalance. In this review, all data published on an imbalance of autoantibodies against GPCR, clinical symptoms and pathogenic mechanisms in CFS, Fibromyalgia, SBIs, COVID and PCS, SBS, POTS, and some autoimmune diseases were analyzed. Possible criteria to diagnose the autoimmune autonomic nervous system imbalance were created.
Collapse
|
15
|
Malkova AM, Shoenfeld Y. WITHDRAWN: Autoimmune autonomic nervous system imbalance and conditions: Chronic fatigue syndrome, fibromyalgia, silicone breast implants, COVID and post-COVID syndrome, sick building syndrome, post-orthostatic tachycardia syndrome, autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants. Autoimmun Rev 2022:103231. [PMID: 36356798 DOI: 10.1016/j.autrev.2022.103231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.autrev.2022.103230. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- A M Malkova
- Zabludowicz Center of autoimmunity, Sheba Medical Center, Tel Hashomer, Israel.
| | - Y Shoenfeld
- Zabludowicz Center of autoimmunity, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
16
|
Mathieu NM, Nakagawa P, Grobe CC, Reho JJ, Brozoski DT, Lu KT, Wackman KK, Ritter ML, Segar JL, Grobe JL, Sigmund CD. ARRB2 (β-Arrestin-2) Deficiency Alters Fluid Homeostasis and Blood Pressure Regulation. Hypertension 2022; 79:2480-2492. [PMID: 36215165 PMCID: PMC9669141 DOI: 10.1161/hypertensionaha.122.19863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND GPCRs (G protein-coupled receptors) are implicated in blood pressure (BP) and fluid intake regulation. There is a developing concept that these effects are mediated by both canonical G protein signaling and noncanonical β-arrestin mediated signaling, but the contributions of each remain largely unexplored. Here, we hypothesized that β-arrestin contributes to fluid homeostasis and blood pressure (BP) regulation in deoxycorticosterone acetate (DOCA) salt hypertension, a prototypical model of salt-sensitive hypertension. METHODS Global β-arrestin1 (Arrb1) and β-arrestin2 (Arrb2) knockout mice were employed to evaluate drinking behavior, and BP was evaluated in Arrb2-knockout mice. Age- and sex-matched C57BL/6 mice served as controls. We measured intake of water and different sodium chloride solutions and BP employing a 2-bottle choice paradigm with and without DOCA. RESULTS Without DOCA (baseline), Arrb2-knockout mice exhibited a significant elevation in saline intake with no change in water intake. With DOCA treatment, Arrb2-knockout mice exhibited a significant increase in both saline and water intake. Although Arrb2-knockout mice exhibited hypernatremia at baseline conditions, we did not find significant changes in total body sodium stores or sodium palatability. In a separate cohort, BP was measured via telemetry in Arrb2-knockout and C57BL/6 mice with and without DOCA. Arrb2-knockout did not exhibit significant differences in BP before DOCA treatment when provided water alone, or when provided a choice of water and saline. However, Arrb2-knockout exhibited an increased pressor response to DOCA-salt. CONCLUSIONS These findings suggest that in salt-sensitive hypertension, ARRB2, but not ARRB1 (β-arrestin 1), might counterbalance the canonical signaling of GPCRs.
Collapse
Affiliation(s)
- Natalia M Mathieu
- Department of Physiology, Cardiovascular Center (N.M.M., P.N., J.J.R., D.T.B., K.-T.L., K.K.W., M.L.R., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center (N.M.M., P.N., J.J.R., D.T.B., K.-T.L., K.K.W., M.L.R., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center (P.N., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
| | - Connie C Grobe
- Department of Pediatrics (C.C.G., J.L.S.), Medical College of Wisconsin, Milwaukee, WI
| | - John J Reho
- Department of Physiology, Cardiovascular Center (N.M.M., P.N., J.J.R., D.T.B., K.-T.L., K.K.W., M.L.R., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core (J.J.R., J.L.G.), Medical College of Wisconsin, Milwaukee, WI
| | - Daniel T Brozoski
- Department of Physiology, Cardiovascular Center (N.M.M., P.N., J.J.R., D.T.B., K.-T.L., K.K.W., M.L.R., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
| | - Ko-Ting Lu
- Department of Physiology, Cardiovascular Center (N.M.M., P.N., J.J.R., D.T.B., K.-T.L., K.K.W., M.L.R., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
| | - Kelsey K Wackman
- Department of Physiology, Cardiovascular Center (N.M.M., P.N., J.J.R., D.T.B., K.-T.L., K.K.W., M.L.R., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
| | - McKenzie L Ritter
- Department of Physiology, Cardiovascular Center (N.M.M., P.N., J.J.R., D.T.B., K.-T.L., K.K.W., M.L.R., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
| | - Jeffrey L Segar
- Department of Physiology, Cardiovascular Center (N.M.M., P.N., J.J.R., D.T.B., K.-T.L., K.K.W., M.L.R., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center (P.N., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics (C.C.G., J.L.S.), Medical College of Wisconsin, Milwaukee, WI
| | - Justin L Grobe
- Department of Physiology, Cardiovascular Center (N.M.M., P.N., J.J.R., D.T.B., K.-T.L., K.K.W., M.L.R., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center (P.N., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core (J.J.R., J.L.G.), Medical College of Wisconsin, Milwaukee, WI
- Department of Biomedical Engineering (J.L.G.), Medical College of Wisconsin, Milwaukee, WI
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center (N.M.M., P.N., J.J.R., D.T.B., K.-T.L., K.K.W., M.L.R., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center (P.N., J.L.S., J.L.G., C.D.S.), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
17
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
18
|
Bagardi M, Zamboni V, Locatelli C, Galizzi A, Ghilardi S, Brambilla PG. Management of Chronic Congestive Heart Failure Caused by Myxomatous Mitral Valve Disease in Dogs: A Narrative Review from 1970 to 2020. Animals (Basel) 2022; 12:ani12020209. [PMID: 35049831 PMCID: PMC8773235 DOI: 10.3390/ani12020209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Myxomatous mitral valve disease (MMVD) is the most common acquired cardiovascular disease in dogs. The progression of the disease and the increasing severity of valvular regurgitation cause a volume overload of the left heart, leading to left atrial and ventricular remodeling and congestive heart failure (CHF). The treatment of chronic CHF secondary to MMVD in dogs has not always been the same over time. In the last fifty years, the drugs utilized have considerably changed, as well as the therapeutic protocols. Some drugs have also changed their intended use. An analysis of the literature concerning the therapy of chronic heart failure in dogs affected by this widespread degenerative disease is not available; a synthesis of the published literature on this topic and a description of its current state of art are needed. To the authors’ knowledge, a review of this topic has never been published in veterinary medicine; therefore, the aim of this study is to overview the treatments of chronic CHF secondary to MMVD in dogs from 1970 to 2020 using the general framework of narrative reviews. Abstract The treatment of chronic congestive heart failure (CHF), secondary to myxomatous mitral valve disease (MMVD) in dogs, has considerably changed in the last fifty years. An analysis of the literature concerning the therapy of chronic CHF in dogs affected by MMVD is not available, and it is needed. Narrative reviews (NRs) are aimed at identifying and summarizing what has been previously published, avoiding duplications, and seeking new study areas that have not yet been addressed. The most accessible open-access databases, PubMed, Embase, and Google Scholar, were chosen, and the searching time frame was set in five decades, from 1970 to 2020. The 384 selected studies were classified into categories depending on the aim of the study, the population target, the pathogenesis of MMVD (natural/induced), and the resulting CHF. Over the years, the types of studies have increased considerably in veterinary medicine. In particular, there have been 43 (24.29%) clinical trials, 41 (23.16%) randomized controlled trials, 10 (5.65%) cross-over trials, 40 (22.60%) reviews, 5 (2.82%) comparative studies, 17 (9.60%) case-control studies, 2 (1.13%) cohort studies, 2 (1.13%) experimental studies, 2 (1.13%) questionnaires, 6 (3.40%) case-reports, 7 (3.95%) retrospective studies, and 2 (1.13%) guidelines. The experimental studies on dogs with an induced form of the disease were less numerous (49–27.68%) than the studies on dogs affected by spontaneous MMVD (128–72.32%). The therapy of chronic CHF in dogs has considerably changed in the last fifty years: in the last century, some of the currently prescribed drugs did not exist yet, while others had different indications.
Collapse
|
19
|
Kawagishi H, Yamada M. [A novel way of modification of AT 1 angiotensin receptors to alleviate neonatal and infantile heart failure]. Nihon Yakurigaku Zasshi 2021; 156:351-354. [PMID: 34719568 DOI: 10.1254/fpj.21059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
Abstract
Heart failure is an important cause of death of children. Especially, overt one within the preweaning period is fulminant and severe. However, there are no drugs with evidence for it. We recently found that angiotensin II (AngII) activates L-type Ca2+ channels through AT1 receptors (AT1R) and β-arrestin 2 in murine cardiac myocytes only in the preweaning period, indicating that AT1R/β-arrestin 2 pathway mediates positive inotropic effects before weaning. Indeed, β-arrestin-bias AT1R agonist (BBA), TRV027 caused significant long-lasting positive inotropic effects in preweaning mice without increasing serum aldosterone concentrations or inducing tachycardia, arrhythmias, increased cardiac oxygen consumption, and reactive oxygen species generation. TRV027 increased the peak amplitude of twitch Ca2+ transients not only in preweaning mouse cardiac myocytes but in human iPS cell-derived cardiac myocytes exhibiting the fetal to neonatal phenotype. Moreover, TRV027 also increased contraction of the compromised heart of the model knock-in mice mimicking human congenital dilated cardiomyopathy. Although ~80% of these mice died before weaning, TRV027 significantly increased their survival rate. TRV027 did not cause any obvious adverse effects on their preweaning wildtype littermates. Thus, we reason in this review that BBA can be important therapeutics for preweaning heart failure.
Collapse
Affiliation(s)
- Hiroyuki Kawagishi
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University.,Department of Molecular Pharmacology, Shinshu University School of Medicine
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine
| |
Collapse
|
20
|
Ma Z, Viswanathan G, Sellig M, Jassal C, Choi I, Garikipati A, Xiong X, Nazo N, Rajagopal S. β-Arrestin–Mediated Angiotensin II Type 1 Receptor Activation Promotes Pulmonary Vascular Remodeling in Pulmonary Hypertension. JACC Basic Transl Sci 2021; 6:854-869. [PMID: 34869949 PMCID: PMC8617598 DOI: 10.1016/j.jacbts.2021.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/29/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/05/2022]
Abstract
We tested the effects of a β-arrestin–biased agonist (TRV023) of the angiotensin II (AngII) type 1 receptor (AT1R), which acts as a vasodilator while not blocking cellular proliferation, compared to a balanced agonist, AngII, and an antagonist, losartan, in PAH. In acute infusion, AngII increased right ventricular pressures while TRV023 and losartan did not. However, in chronic infusion in monocrotaline PAH rats, both TRV023 and AngII had significantly worse survival than losartan. Both TRV023 and AngII enhanced proliferation and migration of pulmonary artery smooth muscle cells from patients with PAH. β-arrestin-mediated AT1R signaling promotes vascular remodeling and worsens PAH, and suggests that the benefit of current PAH therapies is primarily through pulmonary vascular reverse remodeling.
Pulmonary arterial hypertension (PAH) is a disease of abnormal pulmonary vascular remodeling whose medical therapies are thought to primarily act as vasodilators but also may have effects on pulmonary vascular remodeling. The angiotensin II type 1 receptor (AT1R) is a G protein–coupled receptor that promotes vasoconstriction through heterotrimeric G proteins but also signals via β-arrestins, which promote cardioprotective effects and vasodilation through promoting cell survival. We found that an AT1R β-arrestin-biased agonist promoted vascular remodeling and worsened PAH, suggesting that the primary benefit of current PAH therapies is through pulmonary vascular reverse remodeling in addition to their vasodilation.
Collapse
|
21
|
Hansen W, Luppus S, Barthel R, Chang D, Broemstrup J, Zwarg T, Shibata J, Westendorf AM, Buer J, Scherbaum N. Heroin-assisted treatment of heroin-addicted patients normalizes regulatory T cells but does not restore CD4 + T cell proliferation. Addict Biol 2021; 26:e12998. [PMID: 33336491 DOI: 10.1111/adb.12998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023]
Abstract
Heroin dependence may result in suppression of adaptive immune responses. Previously, we demonstrated an increase in relative numbers of inhibitory CD4+ regulatory T cells (Tregs) and impaired proliferative activity of CD4+ T cells from heroin-addicted patients in contrast to patients in opioid maintenance therapy and healthy controls. However, it remains elusive whether heroin has a direct impact on the CD4+ T cell compartment or whether observed effects result from stressful living conditions. Here, we analyzed the frequencies of Tregs and the proliferation as well as the cytokine production of stimulated CD4+ T cells from heroin-addicted patients with use of illicit heroin, patients in heroin-assisted treatment (HAT), and patients in methadone maintenance therapy (MMT). Relative numbers of CD4+ Tregs were significantly enhanced in patients with illicit heroin abuse compared with patients in HAT or MMT. Notably, CD4+ T cells from patients in HAT and from persons using illicit heroin showed significant reduced proliferation and secretion of the pro-inflammatory cytokines IFN-γ and IL-6 upon stimulation in vitro. From these results, we conclude that structured programs such as HAT and MMT dampen elevated frequencies of Tregs in heroin-addicted patients, whereas chronic heroin administration irrespective of using illicit heroin or receiving HAT has a direct impact on the proliferative activity and cytokine production of CD4+ T cells.
Collapse
Affiliation(s)
- Wiebke Hansen
- Institute of Medical Microbiology University Hospital Essen, University of Duisburg‐Essen Essen Germany
| | - Sina Luppus
- Institute of Medical Microbiology University Hospital Essen, University of Duisburg‐Essen Essen Germany
| | - Romy Barthel
- Institute of Medical Microbiology University Hospital Essen, University of Duisburg‐Essen Essen Germany
| | - Dae‐In Chang
- Addiction Research Group at the Department of Psychiatry and Psychotherapy LVR‐Hospital Essen, University of Duisburg‐Essen Essen Germany
| | - Julia Broemstrup
- Addiction Research Group at the Department of Psychiatry and Psychotherapy LVR‐Hospital Essen, University of Duisburg‐Essen Essen Germany
| | - Thomas Zwarg
- Addiction Research Group at the Department of Psychiatry and Psychotherapy LVR‐Hospital Essen, University of Duisburg‐Essen Essen Germany
| | - Jo Shibata
- Substitution Outpatient Clinic Health Department of the City of Cologne Cologne Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology University Hospital Essen, University of Duisburg‐Essen Essen Germany
| | - Jan Buer
- Institute of Medical Microbiology University Hospital Essen, University of Duisburg‐Essen Essen Germany
| | - Norbert Scherbaum
- Addiction Research Group at the Department of Psychiatry and Psychotherapy LVR‐Hospital Essen, University of Duisburg‐Essen Essen Germany
| |
Collapse
|
22
|
Delaitre C, Boisbrun M, Lecat S, Dupuis F. Targeting the Angiotensin II Type 1 Receptor in Cerebrovascular Diseases: Biased Signaling Raises New Hopes. Int J Mol Sci 2021; 22:ijms22136738. [PMID: 34201646 PMCID: PMC8269339 DOI: 10.3390/ijms22136738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022] Open
Abstract
The physiological and pathophysiological relevance of the angiotensin II type 1 (AT1) G protein-coupled receptor no longer needs to be proven in the cardiovascular system. The renin–angiotensin system and the AT1 receptor are the targets of several classes of therapeutics (such as angiotensin converting enzyme inhibitors or angiotensin receptor blockers, ARBs) used as first-line treatments in cardiovascular diseases. The importance of AT1 in the regulation of the cerebrovascular system is also acknowledged. However, despite numerous beneficial effects in preclinical experiments, ARBs do not induce satisfactory curative results in clinical stroke studies. A better understanding of AT1 signaling and the development of biased AT1 agonists, able to selectively activate the β-arrestin transduction pathway rather than the Gq pathway, have led to new therapeutic strategies to target detrimental effects of AT1 activation. In this paper, we review the involvement of AT1 in cerebrovascular diseases as well as recent advances in the understanding of its molecular dynamics and biased or non-biased signaling. We also describe why these alternative signaling pathways induced by β-arrestin biased AT1 agonists could be considered as new therapeutic avenues for cerebrovascular diseases.
Collapse
Affiliation(s)
- Céline Delaitre
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | | | - Sandra Lecat
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | - François Dupuis
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Correspondence: ; Tel.: +33-372747272
| |
Collapse
|
23
|
Pascale JV, Lucchesi PA, Garcia V. Unraveling the Role of 12- and 20- HETE in Cardiac Pathophysiology: G-Protein-Coupled Receptors, Pharmacological Inhibitors, and Transgenic Approaches. J Cardiovasc Pharmacol 2021; 77:707-717. [PMID: 34016841 PMCID: PMC8523029 DOI: 10.1097/fjc.0000000000001013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/04/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
ABSTRACT Arachidonic acid-derived lipid mediators play crucial roles in the development and progression of cardiovascular diseases. Eicosanoid metabolites generated by lipoxygenases and cytochrome P450 enzymes produce several classes of molecules, including the epoxyeicosatrienoic acid (EET) and hydroxyeicosatetraenoic acids (HETE) family of bioactive lipids. In general, the cardioprotective effects of EETs have been documented across a number of cardiac diseases. In contrast, members of the HETE family have been shown to contribute to the pathogenesis of ischemic cardiac disease, maladaptive cardiac hypertrophy, and heart failure. The net effect of 12(S)- and 20-HETE depends upon the relative amounts generated, ratio of HETEs:EETs produced, timing of synthesis, as well as cellular and subcellular mechanisms activated by each respective metabolite. HETEs are synthesized by and affect multiple cell types within the myocardium. Moreover, cytochrome P450-derived and lipoxygenase- derived metabolites have been shown to directly influence cardiac myocyte growth and the regulation of cardiac fibroblasts. The mechanistic data uncovered thus far have employed the use of enzyme inhibitors, HETE antagonists, and the genetic manipulation of lipid-producing enzymes and their respective receptors, all of which influence a complex network of outcomes that complicate data interpretation. This review will summarize and integrate recent findings on the role of 12(S)-/20-HETE in cardiac diseases.
Collapse
Affiliation(s)
| | | | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY
| |
Collapse
|
24
|
Alhosaini K, Azhar A, Alonazi A, Al-Zoghaibi F. GPCRs: The most promiscuous druggable receptor of the mankind. Saudi Pharm J 2021; 29:539-551. [PMID: 34194261 PMCID: PMC8233523 DOI: 10.1016/j.jsps.2021.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
All physiological events in living organisms originated as specific chemical/biochemical signals on the cell surface and transmitted into the cytoplasm. This signal is translated within milliseconds-hours to a specific and unique order required to maintain optimum performance and homeostasis of living organisms. Examples of daily biological functions include neuronal communication and neurotransmission in the process of learning and memory, secretion (hormones, sweat, and saliva), muscle contraction, cellular growth, differentiation and migration during wound healing, and immunity to fight infections. Among the different transducers for such life-dependent signals is the large family of G protein-coupled receptors (GPCRs). GPCRs constitute roughly 800 genes, corresponding to 2% of the human genome. While GPCRs control a plethora of pathophysiological disorders, only approximately one-third of GPCR families have been deorphanized and characterized. Recent drug data show that around 40% of the recommended drugs available in the market target mainly GPCRs. In this review, we presented how such system signals, either through G protein or via other players, independent of G protein, function within the biological system. We also discussed drugs in the market or clinical trials targeting mainly GPCRs in various diseases, including cancer.
Collapse
Key Words
- AC, Adenylyl Cyclase
- Arrestin
- CCR, Chemokine Receptor
- COX, Cyclooxygenase
- DAG, Diacylglycerol
- Drugs
- ERK, Extracellular signal-Regulated Kinase
- G proteins
- GIP, Gastric Inhibitory Peptide
- GLP1R, Glucagon-Like Peptide-1 Receptor
- GPCR
- GRKs
- GRKs, G protein-coupled Receptor Kinases
- Heterodimerization
- IP3, Inositol 1,4,5-triphosphate
- MAPK, Mitogen-Activated Protein Kinase
- NMDA, N-Methyl D-Aspartate
- Nbs, Nanobodies
- PAR-1, Protease Activated Receptor 1
- PIP2, Phosphatidylinositol-4,5-bisphosphate
- PKA, Protein Kinase A
- Signaling
- cAMP, cyclic AMP
Collapse
Affiliation(s)
- Khaled Alhosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Saudi Arabia
| | - Asim Azhar
- Interdisciplinary Biotechnology Unit, AMU Aligarh, UP, India
| | - Asma Alonazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Saudi Arabia
| | - F Al-Zoghaibi
- Molecular BioMedicine Program, Research Centre, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, MBC:03, Riyadh 11211, Saudi Arabia
| |
Collapse
|
25
|
Kadam PS, Mueller SC, Ji H, Liu J, Pai AV, Ma J, Speth RC, Sandberg K. Modulation of the rat angiotensin type 1a receptor by an upstream short open reading frame. Peptides 2021; 140:170529. [PMID: 33744369 DOI: 10.1016/j.peptides.2021.170529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
The rat angiotensin type 1a receptor (AT1aR) is a peptide hormone G protein-coupled receptor (GPCR) that plays a key role in electrolyte homeostasis and blood pressure control. There is a highly conserved short open reading frame (sORF) in exon 2 (E2) that is downstream from exon 1 (E1) and upstream of the AT1aR coding region located in exon 3 (E3). To determine the role of this E2 sORF in AT1aR signaling, human embryonic kidney-293 (HEK293) cells were transfected with plasmids containing AT1aR cDNA with either an intact or disrupted E2 sORF. The intact sORF attenuated the efficacy of angiotensin (Ang) II (p < 0.001) and sarcosine1,Ile4,Ile8-Ang II (SII), (p < 0.01) to activate AT1aR signaling through extracellular signal-related kinases 1/2 (ERK1/2). A time-course showed agonist-induced AT1aR-mediated ERK1/2 activation was slower in the presence of the intact compared to the disrupted sORF [Ang II: p < 0.01 and SII: p < 0.05]. Ang II-induced ERK1/2 activation was completely inhibited by the protein kinase C (PKC) inhibitor Ro 31-8220 regardless of whether the sORF was intact or disrupted. Flow cytometric analyses suggested the intact sORF improved cell survival; the percentage of live cells increased (p < 0.05) while the percentage of early apoptotic cells decreased (p < 0.01) in cells transfected with the AT1aR plasmid containing the intact sORF. These findings have implications for the regulation of AT1Rs in physiological and pathological conditions and warrant investigation of sORFs in the 5' leader sequence (5'LS) of other GPCRs.
Collapse
Affiliation(s)
- Parnika S Kadam
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States; Department of Medicine, Georgetown University, Washington, DC, United States
| | - Susette C Mueller
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Hong Ji
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Jun Liu
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Amrita V Pai
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States; Department of Medicine, Georgetown University, Washington, DC, United States
| | - Junfeng Ma
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Robert C Speth
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States; Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University, Washington, DC, United States.
| |
Collapse
|
26
|
Xiong X, Nazo N, Revoori R, Rajagopal S, Sparks MA. G protein- and β-arrestin Signaling Profiles of Endothelin Derivatives at the Type A Endothelin Receptor. KIDNEY360 2021; 2:1124-1131. [PMID: 35368349 PMCID: PMC8786096 DOI: 10.34067/kid.0005462020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/14/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Background Endothelin-1 (ET-1) is a potent vasoconstrictor in the cardiovascular system, an effect mediated through the type A endothelin receptor (ETAR), a G protein-coupled receptor (GPCR). Antagonists of the ETAR have shown promising results in randomized clinical trials. However, side effects limit widespread use. Biased agonists have been developed to mitigate the untoward effects of a number of GPCR antagonists. These agents block deleterious G-coupled pathways while stimulating protective β-arrestin pathways. The goal of this study was to test whether there was any significant ligand bias between endothelin derivatives, and whether this could have any physiologic effects in the cardiovascular system. Methods A panel of endothelin derivatives were tested in assays of G protein signaling and β-arrestin 2 recruitment at the ETAR. We then tested the effects of ET-1 on the vasopressor response in wild-type and β-arrestin 1 and 2 KO mice. Results We found the endothelins activated a wide range of G proteins at the ETAR, but none of the endothelin derivatives demonstrated significant biased agonism. Endothelin derivatives did display structure-activity relationships with regards to their degrees of agonism. β-arrestin 1 and 2 knockout mice did not display any differences to wild-type mice in the acute pressor response to ET-1, and β-arrestin 2 knockout mice did not display any blood pressure differences to wild-type mice in the chronic responses to ET-1. Conclusions Our findings are consistent with vasoconstriction being mediated by G proteins with a lack of significant desensitization by β-arrestins at the ETAR. These findings suggest that G protein- and β-arrestin-biased ETAR agonists could have distinct physiologic effects from balanced agonists, although the endothelin peptide scaffold does not appear suitable for designing such ligands.
Collapse
Affiliation(s)
- Xinyu Xiong
- Department of Biochemistry, Duke University, Durham, North Carolina,Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Nour Nazo
- Department of Biochemistry, Duke University, Durham, North Carolina,Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Ritika Revoori
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, North Carolina,Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Matthew A. Sparks
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina,Renal Section, Durham Veterans Affairs Health Care System, Durham, North Carolina
| |
Collapse
|
27
|
Abstract
JC polyomavirus (JCPyV) infects the majority of the population, establishing a lifelong, asymptomatic infection in the kidney of healthy individuals. People that become severely immunocompromised may experience JCPyV reactivation, which can cause progressive multifocal leukoencephalopathy (PML), a neurodegenerative disease. Due to a lack of therapeutic options, PML results in fatality or significant debilitation among affected individuals. Cellular internalization of JCPyV is mediated by serotonin 5-hydroxytryptamine subfamily 2 receptors (5-HT2Rs) via clathrin-mediated endocytosis. The JCPyV entry process requires the clathrin-scaffolding proteins β-arrestin, adaptor protein 2 (AP2), and dynamin. Further, a β-arrestin interacting domain, the Ala-Ser-Lys (ASK) motif, within the C-terminus of 5-HT2AR is important for JCPyV internalization and infection. Interestingly, 5-HT2R subtypes A, B, and C equally support JCPyV entry and infection, and all subtypes contain an ASK motif, suggesting a conserved mechanism for viral entry. However, the role of the 5-HT2R ASK motifs and the activation of β-arrestin-associated proteins during internalization has not been fully elucidated. Through mutagenesis, the ASK motifs within 5-HT2BR and 5-HT2CR were identified as critical for JCPyV internalization and infectivity. Further, utilizing biochemical pulldown techniques, mutagenesis of the ASK motifs in 5-HT2BR and 5-HT2CR resulted in reduced β-arrestin binding. Utilizing small-molecule chemical inhibitors and RNA interference, G-protein receptor kinase 2 (GRK2) was determined to be required for JCPyV internalization and infection by mediating interactions between β-arrestin and the ASK motif of 5-HT2Rs. These findings demonstrate that GRK2 and β-arrestin interactions with 5-HT2Rs are critical for JCPyV entry by clathrin-mediated endocytosis and resultant infection.IMPORTANCE As intracellular parasites, viruses require a host cell to replicate and cause disease. Therefore, virus-host interactions contribute to viral pathogenesis. JC polyomavirus (JCPyV) infects most of the population, establishing a lifelong asymptomatic infection within the kidney. Under conditions of severe immunosuppression JCPyV may spread to the central nervous system, causing the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). Individuals living with HIV or undergoing immunomodulatory therapies are at risk for developing PML. The mechanisms of how JCPyV uses specific receptors on the surface of host cells to initiate internalization and infection is a poorly understood process. We have further identified cellular proteins involved in JCPyV internalization and infection and elucidated their specific interactions that are responsible for activation of receptors. Collectively, these findings illuminate how viruses usurp cellular receptors during infection, contributing to current development efforts for therapeutic options for the treatment or prevention of PML.
Collapse
|
28
|
Receptors | Angiotensin Receptors. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021. [PMCID: PMC8326513 DOI: 10.1016/b978-0-12-819460-7.00096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The renin-angiotensin-aldosterone system (RAS) is a vital hormone-receptor system that regulates cardiovascular and renal functions. In this article, we discuss exciting new findings in the RAS field. Recently solved active state crystal structures of Angiotensin II type 1 (AT1R) and type 2 receptor (AT2R) helped in understanding receptor activation mechanisms in detail. Also, considerable attention is given to the developments in characterizing the counter-regulatory RAS axis due to current hope for harnessing this axis for the development of protective therapies against various cardiovascular diseases. We describe the RAS component, angiotensin-converting enzyme 2 (ACE2) functioning as cellular entry receptor for the causative agent of COVID-19 pandemic, SARS-CoV-2. Altogether, these discoveries paved the way for developing novel therapies targeting different components of the RAS in the future.
Collapse
|
29
|
Kashihara T, Kawagishi H, Nakada T, Numaga-Tomita T, Kadota S, Wolf EE, Du CK, Shiba Y, Morimoto S, Yamada M. β-Arrestin-Biased AT 1 Agonist TRV027 Causes a Neonatal-Specific Sustained Positive Inotropic Effect Without Increasing Heart Rate. JACC Basic Transl Sci 2020; 5:1057-1069. [PMID: 33294739 PMCID: PMC7691286 DOI: 10.1016/j.jacbts.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/28/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/14/2023]
Abstract
The treatment of pediatric heart failure is a long-standing unmet medical need. Angiotensin II supports mammalian perinatal circulation by activating cardiac L-type Ca2+ channels through angiotensin type 1 receptor (AT1R) and β-arrestin. TRV027, a β-arrestin-biased AT1R agonist, that has been reported to be safe but not effective for adult patients with heart failure, activates the AT1R/β-arrestin pathway. We found that TRV027 evokes a long-acting positive inotropic effect specifically on immature cardiac myocytes through the AT1R/β-arrestin/L-type Ca2+ channel pathway with minimum effect on heart rate, oxygen consumption, reactive oxygen species production, and aldosterone secretion. Thus, TRV027 could be utilized as a valuable drug specific for pediatric heart failure.
Collapse
Key Words
- AT1R, angiotensin type 1 receptor
- AngII, angiotensin II
- BBA, β-arrestin–biased angiotensin type 1 receptor agonist
- ECG, electrocardiography
- GPCR, G protein–coupled receptor
- LTCC, CaV1.2 L-type Ca2+ channel
- OCR, oxygen consumption rate
- PHF, pediatric heart failure
- ROS, reactive oxygen species
- TRV027
- UCG, ultrasound cardiogram
- congenital dilated cardiomyopathy
- hiPSC-CM, human induced pluripotent stem cell–derived cardiac myocyte
- human induced pluripotent stem cell-derived cardiac myocytes
- inotropic vasodilator
- mNVCM, mouse neonatal ventricular cardiac myocyte
- neonate
- pediatric heart failure
- β-arrestin–biased AT1 angiotensin receptor agonist
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyuki Kawagishi
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Biotechnology, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Tsutomu Nakada
- Department of Instrumental Analysis, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Japan
| | - Takuro Numaga-Tomita
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin Kadota
- Department of Biotechnology, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan.,Department of Regenerative Science and Medicine, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Elena E Wolf
- Division of Nephrology and Division of Vascular Endothelium and Microcirculation, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cheng-Kun Du
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yuji Shiba
- Department of Biotechnology, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan.,Department of Regenerative Science and Medicine, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Sachio Morimoto
- School of Health Sciences Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
30
|
Abstract
Heart failure is a major source of morbidity and mortality, driven, in part, by maladaptive sympathetic hyperactivity in response to poor cardiac output. Current therapies target β-adrenergic and angiotensin II G protein-coupled receptors to reduce adverse cardiac remodeling and improve clinical outcomes; however, there is a pressing need for new therapeutic approaches to preserve cardiac function. β-arrestin is a multifunctional protein which has come under analysis in recent years as a key player in G protein-coupled receptor signal transduction and a potential therapeutic target in heart failure. β-arrestin attenuates β-adrenergic and angiotensin II receptor signaling to limit the deleterious response to excessive sympathetic stimulation while simultaneously transactivating cardioprotective signaling cascades that preserve cardiac structure and function in response to injury. β-arrestin signaling may provide unique advantages compared to classic heart failure treatment approaches, but a number of challenges currently limit clinical applications. In this review, we discuss the role and functions of β-arrestin and the current attempts to develop G protein-coupled receptor agonists biased towards β-arrestin activation. Furthermore, we examine the functional diversity of cardiac β-arrestin isotypes to explore key considerations in the promise of β-arrestin as a pharmacotherapeutic target in heart failure.
Collapse
|
31
|
Rukavina Mikusic NL, Silva MG, Pineda AM, Gironacci MM. Angiotensin Receptors Heterodimerization and Trafficking: How Much Do They Influence Their Biological Function? Front Pharmacol 2020; 11:1179. [PMID: 32848782 PMCID: PMC7417933 DOI: 10.3389/fphar.2020.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
G-protein–coupled receptors (GPCRs) are targets for around one third of currently approved and clinical prescribed drugs and represent the largest and most structurally diverse family of transmembrane signaling proteins, with almost 1000 members identified in the human genome. Upon agonist stimulation, GPCRs are internalized and trafficked inside the cell: they may be targeted to different organelles, recycled back to the plasma membrane or be degraded. Once inside the cell, the receptors may initiate other signaling pathways leading to different biological responses. GPCRs’ biological function may also be influenced by interaction with other receptors. Thus, the ultimate cellular response may depend not only on the activation of the receptor from the cell membrane, but also from receptor trafficking and/or the interaction with other receptors. This review is focused on angiotensin receptors and how their biological function is influenced by trafficking and interaction with others receptors.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Angélica M Pineda
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
32
|
Davenport AP, Scully CCG, de Graaf C, Brown AJH, Maguire JJ. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov 2020; 19:389-413. [PMID: 32494050 DOI: 10.1038/s41573-020-0062-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) - nearly 50 GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first-in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, to both introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to allow biasing ligands to activate specific downstream signalling pathways, in order to optimize efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma half-life have been revolutionary. Here, we discuss the current status of the peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | | | | | | | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Hoare SRJ, Tewson PH, Quinn AM, Hughes TE. A kinetic method for measuring agonist efficacy and ligand bias using high resolution biosensors and a kinetic data analysis framework. Sci Rep 2020; 10:1766. [PMID: 32019973 PMCID: PMC7000712 DOI: 10.1038/s41598-020-58421-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
The kinetics/dynamics of signaling are of increasing value for G-protein-coupled receptor therapeutic development, including spatiotemporal signaling and the kinetic context of biased agonism. Effective application of signaling kinetics to developing new therapeutics requires reliable kinetic assays and an analysis framework to extract kinetic pharmacological parameters. Here we describe a platform for measuring arrestin recruitment kinetics to GPCRs using a high quantum yield, genetically encoded fluorescent biosensor, and a data analysis framework to quantify the recruitment kinetics. The sensor enabled high temporal resolution measurement of arrestin recruitment to the angiotensin AT1 and vasopressin V2 receptors. The analysis quantified the initial rate of arrestin recruitment (kτ), a biologically-meaningful kinetic drug efficacy parameter, by fitting time course data using routine curve-fitting methods. Biased agonism was assessed by comparing kτ values for arrestin recruitment with those for Gq signaling via the AT1 receptor. The kτ ratio values were in good agreement with bias estimates from existing methods. This platform potentially improves and simplifies assessment of biased agonism because the same assay modality is used to compare pathways (potentially in the same cells), the analysis method is parsimonious and intuitive, and kinetic context is factored into the bias measurement.
Collapse
Affiliation(s)
- Sam R J Hoare
- Pharmechanics LLC, 14 Sunnyside Drive South, Owego, NY, 13827, USA.
| | - Paul H Tewson
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Anne Marie Quinn
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA
| | - Thomas E Hughes
- Montana Molecular, 366 Gallatin Park Dr. Suite A, Bozeman, MT, 59715, USA.
| |
Collapse
|
34
|
Discontinued Drugs for the Treatment of Cardiovascular Disease from 2016 to 2018. Int J Mol Sci 2019; 20:ijms20184513. [PMID: 31547243 PMCID: PMC6769515 DOI: 10.3390/ijms20184513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular drug research and development (R&D) has been in active state and continuously attracts attention from the pharmaceutical industry. However, only one individual drug can eventually reach the market from about the 10,000 compounds tested. It would be useful to learn from these failures when developing better strategies for the future. Discontinued drugs were identified from a search performed by Thomson Reuters Integrity. Additional information was sought through PubMed, ClinicalTrials.gov, and pharmaceutical companies search. Twelve compounds discontinued for cardiovascular disease treatment after reaching Phase I-III clinical trials from 2016 to 2018 are detailed in this manuscript, and the reasons for these failures are reported. Of these, six candidates (MDCO-216, TRV027, ubenimex, sodium nitrite, losmapimod, and bococizumab) were dropped for lack of clinical efficacy, the other six for strategic or unspecified reasons. In total, three candidates were discontinued in Phase I trials, six in Phase II, and three in Phase III. It was reported that the success rate of drug R&D utilizing selection biomarkers is higher. Four candidate developments (OPC-108459, ONO-4232, GSK-2798745, and TAK-536TCH) were run without biomarkers, which could be used as surrogate endpoints in the 12 cardiovascular drugs discontinued from 2016 to 2018. This review will be useful for those involved in the field of drug discovery and development, and for those interested in the treatment of cardiovascular disease.
Collapse
|
35
|
Utilization of Biased G Protein-Coupled ReceptorSignaling towards Development of Safer andPersonalized Therapeutics. Molecules 2019; 24:molecules24112052. [PMID: 31146474 PMCID: PMC6600667 DOI: 10.3390/molecules24112052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are involved in a wide variety of physiological processes. Therefore, approximately 40% of currently prescribed drugs have targeted this receptor family. Discovery of β-arrestin mediated signaling and also separability of G protein and β-arrestin signaling pathways have switched the research focus in the GPCR field towards development of biased ligands, which provide engagement of the receptor with a certain effector, thus enriching a specific signaling pathway. In this review, we summarize possible factors that impact signaling profiles of GPCRs such as oligomerization, drug treatment, disease conditions, genetic background, etc. along with relevant molecules that can be used to modulate signaling properties of GPCRs such as allosteric or bitopic ligands, ions, aptamers and pepducins. Moreover, we also discuss the importance of inclusion of pharmacogenomics and molecular dynamics simulations to achieve a holistic understanding of the relation between genetic background and structure and function of GPCRs and GPCR-related proteins. Consequently, specific downstream signaling pathways can be enriched while those that bring unwanted side effects can be prevented on a patient-specific basis. This will improve studies that centered on development of safer and personalized therapeutics, thus alleviating the burden on economy and public health.
Collapse
|
36
|
Abstract
Advances in the treatment of heart failure with reduced ejection fraction due to systolic dysfunction are engaging an ever-expanding compendium of molecular signaling targets. Well established approaches modifying hemodynamics and cell biology by neurohumoral receptor blockade are evolving, exploring the role and impact of modulating intracellular signaling pathways with more direct myocardial effects. Even well-tread avenues are being reconsidered with new insights into the signaling engaged and thus opportunity to treat underlying myocardial disease. This review explores therapies that have proven successful, those that have not, those that are moving into the clinic but whose utility remains to be confirmed, and those that remain in the experimental realm. The emphasis is on signaling pathways that are tractable for therapeutic manipulation. Of the approaches yet to be tested in humans, we chose those with a well-established experimental history, where clinical translation may be around the corner. The breadth of opportunities bodes well for the next generation of heart failure therapeutics.
Collapse
Affiliation(s)
| | | | - David A. Kass
- Division of Cardiology, Department of Medicine
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore Maryland, 21205
| |
Collapse
|
37
|
Bouressam ML, Lecat S, Raoul A, Gaucher C, Perrin-Sarrado C, Lartaud I, Dupuis F. S-nitrosoglutathione inhibits cerebrovascular angiotensin II-dependent and -independent AT 1 receptor responses: A possible role of S-nitrosation. Br J Pharmacol 2019; 176:2049-2062. [PMID: 30822355 DOI: 10.1111/bph.14644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Angiotensin II (AngII) and NO regulate the cerebral circulation. AngII AT1 receptors exert ligand-dependent and ligand-independent (myogenic tone [MT]) vasoconstriction of cerebral vessels. NO induces post-translational modifications of proteins such as S-nitrosation (redox modification of cysteine residues). In cultured cells, S-nitrosation decreases AngII's affinity for the AT1 receptor. The present work evaluated the functional consequences of S-nitrosation on both AngII-dependent and AngII-independent cerebrovascular responses. EXPERIMENTAL APPROACH S-Nitrosation was induced in rat isolated middle cerebral arteries by pretreatment with the NO donors, S-nitrosoglutathione (GSNO) or sodium nitroprusside (SNP). Agonist-dependent activation of AT1 receptors was evaluated by obtaining concentration-response curves to AngII. Ligand-independent activation of AT1 receptors was evaluated by calculating MT (active vs. passive diameter) at pressures ranging from 20 to 200 mmHg in the presence or not of a selective AT1 receptor inverse agonist. KEY RESULTS GSNO or SNP completely abolished the AngII-dependent AT1 receptor-mediated vasoconstriction of cerebral arteries. GSNO had no impact on responses to other vasoconstrictors sharing (phenylephrine, U46619) or not (5-HT) the same signalling pathway. MT was reduced by GSNO, and the addition of losartan did not further decrease MT, suggesting that GSNO blocks AT1 receptor-dependent MT. Ascorbate (which reduces S-nitrosated compounds) restored the response to AngII but not the soluble GC inhibitor ODQ, suggesting that these effects are mediated by S-nitrosation rather than by S-nitrosylation. CONCLUSIONS AND IMPLICATIONS In rat middle cerebral arteries, GSNO pretreatment specifically affects the AT1 receptor and reduces both AngII-dependent and AngII-independent activation, most likely through AT1 receptor S-nitrosation.
Collapse
Affiliation(s)
| | - Sandra Lecat
- BSC UMR7242 "GPCRs, pain and inflammation" team, CNRS, Université de Strasbourg Labex Medalis, Illkirch, France
| | | | | | | | | | | |
Collapse
|
38
|
Nucleoligands-repurposing G Protein-coupled Receptor Ligands to Modulate Nuclear-localized G Protein-coupled Receptors in the Cardiovascular System. J Cardiovasc Pharmacol 2019; 71:193-204. [PMID: 28858907 DOI: 10.1097/fjc.0000000000000535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
There is significant evidence that internal pools of G protein-coupled receptors (GPCRs) exist and may be affected by both endogenous signaling molecules and hydrophobic pharmaceutical ligands, once assumed to only affect cell surface versions of these receptors. Here, we discuss evidence that the biology of nuclear GPCRs in particular is complex, rich, and highly interactive with GPCR signaling from the cell surface. Caging existing GPCR ligands may be an excellent means of further stratifying the phenotypic effects of known pharmacophores such as β-adrenergic, angiotensin II, and type B endothelin receptor ligands in the cardiovascular system. We describe some synthetic strategies we have used to design ligands to go from in cellulo to in vivo experiments. We also consider how surface and intracellular GPCR signaling might be integrated and ways to dissect this. If they could be selectively targeted, nuclear GPCRs and their associated nucleoligands would represent a completely novel area for exploration by Pharma.
Collapse
|
39
|
Bond RA, Lucero Garcia-Rojas EY, Hegde A, Walker JKL. Therapeutic Potential of Targeting ß-Arrestin. Front Pharmacol 2019; 10:124. [PMID: 30894814 PMCID: PMC6414794 DOI: 10.3389/fphar.2019.00124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
ß-arrestins are multifunctional proteins that modulate heptahelical 7 transmembrane receptors, also known as G protein-coupled receptors (GPCRs), a superfamily of receptors that regulate most physiological processes. ß-arrestin modulation of GPCR function includes termination of G protein-dependent signaling, initiation of ß-arrestin-dependent signaling, receptor trafficking to degradative or recycling pathways, receptor transactivation, transcriptional regulation, and localization of second messenger regulators. The pleiotropic influence ß-arrestins exert on these receptors regulates a breadth of physiological functions, and additionally, ß-arrestins are involved in the pathophysiology of numerous and wide-ranging diseases, making them prime therapeutic targets. In this review, we briefly describe the mechanisms by which ß-arrestins regulate GPCR signaling, including the functional cellular mechanisms modulated by ß-arrestins and relate this to observed pathophysiological responses associated with ß-arrestins. We focus on the role for ß-arrestins in transducing cell signaling; a pathway that is complementary to the classical G protein-coupling pathway. The existence of these GPCR dual signaling pathways offers an immense therapeutic opportunity through selective targeting of one signaling pathway over the other. Finally, we will consider several mechanisms by which the potential of dual signaling pathway regulation can be harnessed and the implications for improved disease treatments.
Collapse
Affiliation(s)
- Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Emilio Y Lucero Garcia-Rojas
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, NC, United States
| | | |
Collapse
|
40
|
Lymperopoulos A, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA. Not all arrestins are created equal: Therapeutic implications of the functional diversity of the β-arrestins in the heart. World J Cardiol 2019; 11:47-56. [PMID: 30820275 PMCID: PMC6391623 DOI: 10.4330/wjc.v11.i2.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The two ubiquitous, outside the retina, G protein-coupled receptor (GPCR) adapter proteins, β-arrestin-1 and -2 (also known as arrestin-2 and -3, respectively), have three major functions in cells: GPCR desensitization, i.e., receptor decoupling from G-proteins; GPCR internalization via clathrin-coated pits; and signal transduction independently of or in parallel to G-proteins. Both β-arrestins are expressed in the heart and regulate a large number of cardiac GPCRs. The latter constitute the single most commonly targeted receptor class by Food and Drug Administration-approved cardiovascular drugs, with about one-third of all currently used in the clinic medications affecting GPCR function. Since β-arrestin-1 and -2 play important roles in signaling and function of several GPCRs, in particular of adrenergic receptors and angiotensin II type 1 receptors, in cardiac myocytes, they have been a major focus of cardiac biology research in recent years. Perhaps the most significant realization coming out of their studies is that these two GPCR adapter proteins, initially thought of as functionally interchangeable, actually exert diametrically opposite effects in the mammalian myocardium. Specifically, the most abundant of the two β-arrestin-1 exerts overall detrimental effects on the heart, such as negative inotropy and promotion of adverse remodeling post-myocardial infarction (MI). In contrast, β-arrestin-2 is overall beneficial for the myocardium, as it has anti-apoptotic and anti-inflammatory effects that result in attenuation of post-MI adverse remodeling, while promoting cardiac contractile function. Thus, design of novel cardiac GPCR ligands that preferentially activate β-arrestin-2 over β-arrestin-1 has the potential of generating novel cardiovascular therapeutics for heart failure and other heart diseases.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
- Jackson Memorial Hospital, Miami, FL 33136, United States
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
- Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
41
|
Turu G, Balla A, Hunyady L. The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne) 2019; 10:519. [PMID: 31447777 PMCID: PMC6691095 DOI: 10.3389/fendo.2019.00519] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
AT1 angiotensin receptor plays important physiological and pathophysiological roles in the cardiovascular system. Renin-angiotensin system represents a target system for drugs acting at different levels. The main effects of ATR1 stimulation involve activation of Gq proteins and subsequent IP3, DAG, and calcium signaling. It has become evident in recent years that besides the well-known G protein pathways, AT1R also activates a parallel signaling pathway through β-arrestins. β-arrestins were originally described as proteins that desensitize G protein-coupled receptors, but they can also mediate receptor internalization and G protein-independent signaling. AT1R is one of the most studied receptors, which was used to unravel the newly recognized β-arrestin-mediated pathways. β-arrestin-mediated signaling has become one of the most studied topics in recent years in molecular pharmacology and the modulation of these pathways of the AT1R might offer new therapeutic opportunities in the near future. In this paper, we review the recent advances in the field of β-arrestin signaling of the AT1R, emphasizing its role in cardiovascular regulation and heart failure.
Collapse
Affiliation(s)
- Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: László Hunyady
| |
Collapse
|
42
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
43
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 708] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
44
|
|
45
|
Lavenus S, Simard É, Besserer-Offroy É, Froehlich U, Leduc R, Grandbois M. Label-free cell signaling pathway deconvolution of angiotensin type 1 receptor reveals time-resolved G-protein activity and distinct AngII and AngIIIIV responses. Pharmacol Res 2018; 136:108-120. [PMID: 29959993 DOI: 10.1016/j.phrs.2018.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/05/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 01/14/2023]
Abstract
Angiotensin II (AngII) type 1 receptor (AT1R) is a G protein-coupled receptor known for its role in numerous physiological processes and its implication in many vascular diseases. Its functions are mediated through G protein dependent and independent signaling pathways. AT1R has several endogenous peptidic agonists, all derived from angiotensinogen, as well as several synthetic ligands known to elicit biased signaling responses. Here, surface plasmon resonance (SPR) was used as a cell-based and label-free technique to quantify, in real time, the response of HEK293 cells stably expressing the human AT1R. The goal was to take advantage of the integrative nature of this assay to identify specific signaling pathways in the features of the response profiles generated by numerous endogenous and synthetic ligands of AT1R. First, we assessed the contributions of Gq, G12/13, Gi, Gβγ, ERK1/2 and β-arrestins pathways in the cellular responses measured by SPR where Gq, G12/Rho/ROCK together with β-arrestins and ERK1/2 were found to play significant roles. More specifically, we established a major role for G12 in the early events of the AT1R-dependent response, which was followed by a robust ERK1/2 component associated to the later phase of the signal. Interestingly, endogenous AT1R ligands (AngII, AngIII and AngIV) exhibited distinct responses signatures with a significant increase of the ERK1/2-like components for both AngIII and AngIV, which points toward possibly distinct physiological roles for the later. We also tested AT1R biased ligands, all of which affected both the early and later events. Our results support SPR-based integrative cellular assays as a powerful approach to delineate the contribution of specific signaling pathways for a given cell response and reveal response differences associated with ligands with distinct pharmacological properties.
Collapse
Affiliation(s)
- Sandrine Lavenus
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Élie Simard
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Ulrike Froehlich
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| | - Michel Grandbois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada; Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H5N4, Canada.
| |
Collapse
|
46
|
Singh A, Laribi S, Teerlink JR, Mebazaa A. Agents with vasodilator properties in acute heart failure. Eur Heart J 2018; 38:317-325. [PMID: 28201723 DOI: 10.1093/eurheartj/ehv755] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/04/2014] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 01/05/2023] Open
Abstract
Millions of patients worldwide are admitted for acute heart failure (AHF) each year and physicians caring for these patients are confronted with the short-term challenges of reducing symptoms while preventing end organ dysfunction without causing additional harm, and the intermediate-term challenges of improving clinical outcomes such as hospital readmission and survival. There are limited data demonstrating the efficacy of any currently available therapies for AHF to meet these goals. After diuretics, vasodilators are the most common intravenous therapy for AHF, but neither nitrates, nitroprusside, nor nesiritide have robust evidence supporting their ability to provide meaningful effects on clinical outcomes, except perhaps early symptom improvement. Recently, a number of novel agents with vasodilating properties have been developed for the treatment of AHF. These agents include serelaxin, natriuretic peptides (ularitide, cenderitide), β-arrestin-biased angiotensin II type 1 receptor ligands (TRV120027), nitroxyl donors (CXL-1020, CXL-1427), soluble guanylate cyclase modulators (cinaciguat, vericiguat), short-acting calcium channel blockers (clevidipine), and potassium channel activators (nicorandil). These development programmes range from the stage of early dose-finding studies (e.g. TRV120027, CXL-1427) to large, multicentre mortality trials (e.g. serelaxin, ularitide). There is an urgent need for agents with vasodilating properties that will improve both in-hospital and post-discharge clinical outcomes, and these novel approaches may provide opportunities to address this need.
Collapse
Affiliation(s)
- Abhishek Singh
- Section of Cardiology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.,School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Saïd Laribi
- INSERM, UMRS 942, Biomarkers and cardiac diseases, Paris, France.,Emergency Department, APHP, Saint Louis-Lariboisière Hospitals, Paris, France
| | - John R Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.,School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alexandre Mebazaa
- INSERM, UMRS 942, Biomarkers and cardiac diseases, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Anesthesiology and Critical Care, APHP, Saint Louis-Lariboisière Hospitals, Paris, France
| |
Collapse
|
47
|
Sanni SJ, Lyngsø C, Gammeltoft S, Hansen JL. [Sar1, Ile4, Ile8]-angiotensin II Potentiates Insulin Receptor Signalling and Glycogen Synthesis in Hepatocytes. Basic Clin Pharmacol Toxicol 2018; 122:460-469. [PMID: 29136335 DOI: 10.1111/bcpt.12937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2016] [Accepted: 11/03/2017] [Indexed: 01/05/2025]
Abstract
The angiotensin II type I receptor (AT1R) is involved in the regulation of cardiovascular function. Excessive activation of AT1R by angiotensin II (Ang II) leads to cardiovascular disease and may be involved in the development of insulin resistance and diabetes. Functionally selective Ang II analogues, such as the [Sar1, Ile4, Ile8]-angiotensin II (SII Ang II) analogue, that only activate a subset of signalling networks have been demonstrated to have beneficial effects on cardiovascular function in certain settings, including lowering blood pressure and increasing cardiac performance. Here, we studied the effect of SII Ang II on insulin receptor (IR) signalling and glucose metabolism in primary rat hepatocytes. We show that long-term pre-treatment of hepatocytes with SII Ang II increased insulin-stimulated glycogen synthesis, while Ang II and the AT1R antagonist losartan had no effect. Insulin-stimulated suppression of hepatic glucose output was not affected by Ang II or SII Ang II. It is well known that insulin regulates glycogen synthesis and glucose output through Akt-mediated phosphorylation of glycogen synthase kinase α/β (GSK3α/β) and forkhead box protein O1 (FOXO1), respectively. In line with this, we show that SII Ang II potentiated insulin-stimulated phosphorylation of Akt and GSK3α/β, but not FOXO1. Furthermore, we demonstrate that the effect of SII Ang II on insulin-stimulated signalling and glycogen synthesis was dependent on Src and Gαq, as inhibitors of these proteins abolished the potentiating effect of SII Ang II. Thus, our results demonstrate that SII Ang II may have a positive effect on IR signalling and glucose metabolism in hepatocytes.
Collapse
Affiliation(s)
- Samra Joke Sanni
- Obesity Biology, Novo Nordisk A/S, Maalov, Denmark
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, Glostrup, Denmark
| | - Christina Lyngsø
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, Glostrup, Denmark
| | - Steen Gammeltoft
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, Glostrup, Denmark
| | | |
Collapse
|
48
|
Michel MC, Charlton SJ. Biased Agonism in Drug Discovery-Is It Too Soon to Choose a Path? Mol Pharmacol 2018; 93:259-265. [PMID: 29326242 DOI: 10.1124/mol.117.110890] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
A single receptor can activate multiple signaling pathways that have distinct or even opposite effects on cell function. Biased agonists stabilize receptor conformations preferentially stimulating one of these pathways, and therefore allow a more targeted modulation of cell function and treatment of disease. Dedicated development of biased agonists has led to promising drug candidates in clinical development, such as the G protein-biased µ opioid receptor agonist oliceridine. However, leveraging the theoretical potential of biased agonism for drug discovery faces several challenges. Some of these challenges are technical, such as techniques for quantitative analysis of bias and development of suitable screening assays; others are more fundamental, such as the need to robustly identify in a very early phase which cell type harbors the cellular target of the drug candidate, which signaling pathway leads to the desired therapeutic effect, and how these pathways may be modulated in the disease to be treated. We conclude that biased agonism has potential mainly in the treatment of conditions with a well-understood pathophysiology; in contrast, it may increase effort and commercial risk under circumstances where the pathophysiology has been less well defined, as is the case with many highly innovative treatments.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| | - Steven J Charlton
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| |
Collapse
|
49
|
Desimine VL, McCrink KA, Parker BM, Wertz SL, Maning J, Lymperopoulos A. Biased Agonism/Antagonism of Cardiovascular GPCRs for Heart Failure Therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:41-61. [PMID: 29776604 DOI: 10.1016/bs.ircmb.2018.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptors (GPCRs) are among the most important drug targets currently used in clinic, including drugs for cardiovascular indications. We now know that, in addition to activating heterotrimeric G protein-dependent signaling pathways, GPCRs can also activate G protein-independent signaling, mainly via the βarrestins. The major role of βarrestin1 and -2, also known as arrestin2 or -3, respectively, is to desensitize GPCRs, i.e., uncoupled them from G proteins, and to subsequently internalize the receptor. As the βarrestin-bound GPCR recycles inside the cell, it serves as a signalosome transducing signals in the cytoplasm. Since both G proteins and βarrestins can transduce signals from the same receptor independently of each other, any given GPCR agonist might selectively activate either pathway, which would make it a biased agonist for that receptor. Although this selectivity is always relative (never absolute), in cases where the G protein- and βarrestin-dependent signals emanating from the same GPCR result in different cellular effects, pharmacological exploitation of GPCR-biased agonism might have therapeutic potential. In this chapter, we summarize the GPCR signaling pathways and their biased agonism/antagonism examples discovered so far that can be exploited for heart failure treatment. We also highlight important issues that need to be clarified along the journey of these ligands from bench to the clinic.
Collapse
Affiliation(s)
- Victoria L Desimine
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Katie A McCrink
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Barbara M Parker
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Shelby L Wertz
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Jennifer Maning
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States.
| |
Collapse
|
50
|
Arrestins in the Cardiovascular System: An Update. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:27-57. [DOI: 10.1016/bs.pmbts.2018.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|