1
|
Li W, Qin R, Tang Z, Wang C, Xu H, Li W, Leng Y, Wang Y, Xia Z. Inhibition of inflammation and apoptosis through the cyclic GMP-AMP synthase-stimulator of interferon genes pathway by stress granules after ALKBH5 demethylase activation during diabetic myocardial ischaemia-reperfusion injury. Diabetes Obes Metab 2024; 26:3940-3957. [PMID: 38988216 DOI: 10.1111/dom.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024]
Abstract
AIM Post-transcriptional modifications and their specific mechanisms are the focus of research on the regulation of myocardial damage. Stress granules (SGs) can inhibit the inflammatory response by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. This study investigated whether alkylation repair homologue protein 5 (ALKBH5) could affect myocardial inflammation and apoptosis during diabetic myocardial ischaemia-reperfusion injury (IRI) through the cGAS-STING pathway via SGs. METHODS A diabetes ischaemia-reperfusion rat model and a high glucose hypoxia/reoxygenation cell model were established. Adeno-associated virus (AAV) and lentivirus (LV) were used to overexpress ALKBH5, while the SG agonist arsenite (Ars) and the SG inhibitor anisomycin were used as interventions. Then, the levels of apoptosis and related indicators in the cell and rat models were measured. RESULTS In the in vivo experiment, compared with the normal sham group, the degree of myocardial tissue damage, creatine kinase-MB and cardiac troponin I in serum, and myocardial apoptosis, the infarcted area of myocardium, and the level of B-cell lymphoma 2 associated X protein, cGAS-STING pathway and inflammatory factors in the diabetes ischaemia-reperfusion group were significantly increased. However, the expression of SGs and the levels of ALKBH5, rat sarcoma-GTPase-activating protein-binding protein 1, T-cell intracellular antigen-1 and Bcl2 were significantly decreased. After AAV-ALKBH5 intervention, the degree of myocardial tissue damage, degree of myocardial apoptosis, and extent of myocardial infarction in myocardial tissue were significantly decreased. In the in vitro experiment, compared with those in the normal control group, the levels of lactate dehydrogenase, inflammation and apoptosis were significantly greater, and cell viability and the levels of ALKBH5 and SGs were decreased in the high glucose and hypoxia/reoxygenation groups. In the high glucose hypoxia/reoxygenation cell model, the degree of cell damage, inflammation, and apoptosis was greater than those in the high glucose and hypoxia/reoxygenation models, and the levels of ALKBH5 and SGs were further decreased. LV-ALKBH5 and Ars alleviated the degree of cell damage and inhibited inflammation and cell apoptosis. The inhibition of SGs could partly reverse the protective effect of LV-ALKBH5. The cGAS agonist G140 antagonized the inhibitory effects of the SG agonist Ars on cardiomyocyte apoptosis, inflammation and the cGAS-STING pathway. CONCLUSION Both ALKBH5 and SGs inhibited myocardial inflammation and apoptosis during diabetic myocardial ischaemia-reperfusion. Mechanistically, ALKBH5 might inhibit the apoptosis of cardiomyocytes by promoting the expression of SGs through the cGAS-STING pathway.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Renwu Qin
- Department of first ward of second Internal Medicine, The Third People's Hospital of Yichang, Yichang, China
| | - Zhen Tang
- Department of second ward of first Internal Medicine, The Third People's Hospital of Yichang, Yichang, China
| | - Changqing Wang
- Department of Surgery, The Third People's Hospital of Yichang, Yichang, China
| | - Heng Xu
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Leng
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Xing Y, Lin X. Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res 2024:S2090-1232(24)00253-4. [PMID: 38909884 DOI: 10.1016/j.jare.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
INTRODUCTION Atherosclerosis, traditionally considered a lipid-related disease, is now understood as a chronic inflammatory condition with significant global health implications. OBJECTIVES This review aims to delve into the complex interactions among immune cells, cytokines, and the inflammatory cascade in atherosclerosis, shedding light on how these elements influence both the initiation and progression of the disease. METHODS This review draws on recent clinical research to elucidate the roles of key immune cells, macrophages, T cells, endothelial cells, and clonal hematopoiesis in atherosclerosis development. It focuses on how these cells and process contribute to disease initiation and progression, particularly through inflammation-driven processes that lead to plaque formation and stabilization. Macrophages ingest oxidized low-density lipoprotein (oxLDL), which partially converts to high-density lipoprotein (HDL) or accumulates as lipid droplets, forming foam cells crucial for plaque stability. Additionally, macrophages exhibit diverse phenotypes within plaques, with pro-inflammatory types predominating and others specializing in debris clearance at rupture sites. The involvement of CD4+ T and CD8+ T cells in these processes promotes inflammatory macrophage states, suppresses vascular smooth muscle cell proliferation, and enhances plaque instability. RESULTS The nuanced roles of macrophages, T cells, and the related immune cells within the atherosclerotic microenvironment are explored, revealing insights into the cellular and molecular pathways that fuel inflammation. This review also addresses recent advancements in imaging and biomarker technology that enhance our understanding of disease progression. Moreover, it points out the limitations of current treatment and highlights the potential of emerging anti-inflammatory strategies, including clinical trials for agents such as p38MAPK, tumor necrosis factor α (TNF-α), and IL-1β, their preliminary outcomes, and the promising effects of canakinumab, colchicine, and IL-6R antagonists. CONCLUSION This review explores cutting-edge anti-inflammatory interventions, their potential efficacy in preventing and alleviating atherosclerosis, and the role of nanotechnology in delivering drugs more effectively and safely.
Collapse
Affiliation(s)
- Yiming Xing
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China.
| |
Collapse
|
3
|
Sun S, Liu F, Fan F, Chen N, Pan X, Wei Z, Zhang Y. Exploring the mechanism of atherosclerosis and the intervention of traditional Chinese medicine combined with mesenchymal stem cells based on inflammatory targets. Heliyon 2023; 9:e22005. [PMID: 38045166 PMCID: PMC10692769 DOI: 10.1016/j.heliyon.2023.e22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease, which is the common pathological basis of cardiovascular and cerebrovascular diseases. The immune inflammatory response throughout the course of AS has been evidenced by studies, in which a large number of immune cells and inflammatory factors play a crucial role in the pathogenesis of AS. The inflammation related to AS is mainly mediated by inflammatory cytokines (IL-1β, IL-6, IL-18, TNF-α, hs-CRP, SAA), inflammatory enzymes (Lp-PLA2, sPLA2-IIA, MMPs), and inflammatory signaling pathways (P38 MAPK signaling pathway, NF-κB signaling pathway, TLR2/4 signaling pathway). It is involved in the pathophysiological process of AS, and the degree of inflammation measured by it can be used to evaluate the risk of progression of AS plaque instability. In recent years, traditional Chinese medicine (TCM) has shown the advantage of minimal side effects in immune regulation and has made some progress in the prevention and treatment of AS. Mesenchymal stem cells (MSCs), as self-renewal, highly differentiated, and pluripotent stem cells with anti-inflammatory properties and immune regulation, have been widely used for AS treatment. They also play an important inflammation-immune regulatory function in AS. Notably, in terms of regulating immune cells and inflammatory factors, compared with TCM and its compound, the combination therapy has obvious anti-inflammatory advantages over the use of MSCs alone. It is an important means to further improve the efficacy of AS and provides a new way for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Shibiao Sun
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Feixiang Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Feiyan Fan
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Na Chen
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xiaolong Pan
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Zhihui Wei
- Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yunke Zhang
- Henan University of Chinese Medicine, Zhengzhou 450000, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
4
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Zhang C, Shu Y, Li Y, Guo M. Extraction and immunomodulatory activity of the polysaccharide obtained from Craterellus cornucopioides. Front Nutr 2022; 9:1017431. [PMID: 36424922 PMCID: PMC9678937 DOI: 10.3389/fnut.2022.1017431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, we investigated the structural features of the polysaccharide obtained from Craterellus cornucopioides (CCP2) by high-performance liquid chromatography, Fourier transform infrared spectroscopy and ion chromatography. The results showed that CCP2 was a catenarian pyranose that principally comprised of mannose, galactose, glucose, and xylose in the ratio of 1.86: 1.57: 1.00: 1.14, with a molecular weight of 8.28 × 104 Da. Moreover, the immunoregulation effect of CCP2 was evaluated both in vitro and in vivo. It displayed a remarkable immunological activity and activation in RAW264.7 cells by enhancing the phagocytosis of macrophages in a dose-dependent manner without showing cytotoxicity at the concentrations of 10–200 μg/mL in vitro. Additionally, Histopathological analysis indicated the protective function of CCP2 against immunosuppression induced by cyclophosphamide (Cy). Meanwhile, the intake of CCP2 had better immunoregulatory activity for immunosuppression BALB/c mice model. After prevention by CCP2, the spleen and thymus weight indexes of BALB/c mice model were significantly increased. The RT-qPCR and Western Blot results provided comprehensive evidence that the CCP2 could activate macrophages by enhancing the production of cytokines (IL-2, IL-6, and IL-8) and upregulating the protein expression of cell membrane receptor TLR4 and its downstream protein kinase (TRAF6, TRIF, and NF-κB p65) production of immunosuppressive mice through TLR4-NFκB p65 pathway. The results demonstrated that CCP2 could be a potential prebiotic and might provide meaningful information for further research on the immune mechanism.
Collapse
|
6
|
Martins JVD, Mendes R, Lopes JM, Tenório PP. Análise da Razão Neutrófilo-Linfócito como Marcador de Aterosclerose da Aorta Abdominal. Arq Bras Cardiol 2022; 119:813-814. [DOI: 10.36660/abc.20220145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
|
7
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.,Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain.,Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Zhang Q, Li Z, Liu X, Zhao M. Recombinant Humanized IgG1 Antibody Protects against oxLDL-Induced Oxidative Stress and Apoptosis in Human Monocyte/Macrophage THP-1 Cells by Upregulation of MSRA via Sirt1-FOXO1 Axis. Int J Mol Sci 2022; 23:ijms231911718. [PMID: 36233020 PMCID: PMC9569918 DOI: 10.3390/ijms231911718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL)-induced oxidative stress and apoptosis are considered as critical contributors to cardiovascular diseases. Methionine sulfoxide reductase A (MSRA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. Here, we firstly provide evidence that recombinant humanized IgG1 antibody treatment upregulated the expression of MSRA in THP-1 cells to defend against oxLDL-induced oxidative stress and apoptosis. It was also observed that the upregulation of MSRA is regulated by the forkhead box O transcription factor (FOXO1), and the acetylation of FOXO1 increased when exposed to oxLDL but declined when treated with recombinant humanized IgG1 antibody. In addition, we identified that silent information regulator 1 (SIRT1) suppresses FOXO1 acetylation. Importantly, SIRT1 or FOXO1 deficiency impaired the anti-oxidative stress and anti-apoptotic effect of recombinant humanized IgG1 antibody. Together, our results suggest that recombinant humanized IgG1 antibody exerts its anti-oxidative stress and anti-apoptotic function by upregulation of MSRA via the Sirt1-FOXO1 axis.
Collapse
Affiliation(s)
- Qi Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhonghao Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianyan Liu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence:
| |
Collapse
|
9
|
Liu X, Su J, Zhou H, Zeng Z, Li Z, Xiao Z, Zhao M. Collagen VI antibody reduces atherosclerosis by activating monocyte/macrophage polarization in ApoE -/- mice. Int Immunopharmacol 2022; 111:109100. [PMID: 35932614 DOI: 10.1016/j.intimp.2022.109100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/20/2022]
Abstract
Atherosclerosis (AS) has been regarded as an autoimmune disease. However, studies on immunotherapy against AS are limited. We previously found that IgG in AS patients serum binding to alpha 5 and 6 chain of collagen VI (COL6A5 or COL6A6) was significantly higher than that in healthy subjects, here we tried to identify whether they are AS-protective, and tried to develop human antibodies against them. ApoE-/- mice were immunized with COL6A5 or COL6A6 and COL6A6 was found a protective antigen against atherosclerosis. A phage display human single-chain antibody (scFv) library was constructed and COL6A6-specific scFv was obtained, and cloned into a modified pcDNA3 vector to express full-length human antibodies. ApoE-/- mice were fed a high-fat diet (HFD) for 20 weeks and administered three weekly injections of CVI monoclonal antibody (mAb) or isotype control antibody, CVI mAb was found to be able to reduce plaque area by 45 % via aorta oil red O staining. Flowcytometry method predicted that CVI mAb induced monocyte/macrophage polarization from M1 to M2. Furthermore, CVI mAb induced decreases of pro-inflammatory cytokines of MCP-1and IL-1β, and increases of IL-4 and IL-10 levels in animal serum by using theLuminexassay. Overall, we found a novel atherosclero-related antigen - Collagen VI, and its protective fragment - Collagen VI alpha 6 chain (COL6A6) and proved that humanized antibody against COL6A6 therapy regresses atherosclerosis and induces monocyte/macrophage polarization from M1 to M2 in ApoE-/- mice animal model.
Collapse
Affiliation(s)
- Xianyan Liu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China
| | - Jinyu Su
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China
| | - Hui Zhou
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China; Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Zhiyun Zeng
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China
| | - Zhonghao Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China
| | - Zhi Xiao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China; Tengzhou Central People's Hospital, Tengzhou 277500, PR China
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
10
|
Razeghian-Jahromi I, Karimi Akhormeh A, Razmkhah M, Zibaeenezhad MJ. Immune system and atherosclerosis: Hostile or friendly relationship. Int J Immunopathol Pharmacol 2022; 36:3946320221092188. [PMID: 35410514 PMCID: PMC9009140 DOI: 10.1177/03946320221092188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coronary artery disease has remained a major health challenge despite enormous
progress in prevention, diagnosis, and treatment strategies. Formation of
atherosclerotic plaque is a chronic process that is developmentally influenced
by intrinsic and extrinsic determinants. Inflammation triggers atherosclerosis,
and the fundamental element of inflammation is the immune system. The immune
system involves in the atherosclerosis process by a variety of immune cells and
a cocktail of mediators. It is believed that almost all main components of this
system possess a profound contribution to the atherosclerosis. However, they
play contradictory roles, either protective or progressive, in different stages
of atherosclerosis progression. It is evident that monocytes are the first
immune cells appeared in the atherosclerotic lesion. With the plaque growth,
other types of the immune cells such as mast cells, and T lymphocytes are
gradually involved. Each cell releases several cytokines which cause the
recruitment of other immune cells to the lesion site. This is followed by
affecting the expression of other cytokines as well as altering certain
signaling pathways. All in all, a mix of intertwined interactions determine the
final outcome in terms of mild or severe manifestations, either clinical or
subclinical. Therefore, it is of utmost importance to precisely understand the
kind and degree of contribution which is made by each immune component in order
to stop the growing burden of cardiovascular morbidity and mortality. In this
review, we present a comprehensive appraisal on the role of immune cells in the
atherosclerosis initiation and development.
Collapse
Affiliation(s)
- Iman Razeghian-Jahromi
- Cardiovascular Research Center, 571605Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Karimi Akhormeh
- Cardiovascular Research Center, 571605Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
11
|
van Ingen E, Foks AC, Woudenberg T, van der Bent ML, de Jong A, Hohensinner PJ, Wojta J, Bot I, Quax PHA, Nossent AY. Inhibition of microRNA-494-3p activates Wnt signaling and reduces proinflammatory macrophage polarization in atherosclerosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1228-1239. [PMID: 34853722 PMCID: PMC8607137 DOI: 10.1016/j.omtn.2021.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/24/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022]
Abstract
We have previously shown that treatment with third-generation antisense oligonucleotides against miR-494-3p (3GA-494) reduces atherosclerotic plaque progression and stabilizes lesions, both in early and established plaques, with reduced macrophage content in established plaques. Within the plaque, different subtypes of macrophages are present. Here, we aimed to investigate whether miR-494-3p directly influences macrophage polarization and activation. Human macrophages were polarized into either proinflammatory M1 or anti-inflammatory M2 macrophages and simultaneously treated with 3GA-494 or a control antisense (3GA-ctrl). We show that 3GA-494 treatment inhibited miR-494-3p in M1 macrophages and dampened M1 polarization, while in M2 macrophages miR-494-3p expression was induced and M2 polarization enhanced. The proinflammatory marker CCR2 was reduced in 3GA-494-treated atherosclerosis-prone mice. Pathway enrichment analysis predicted an overlap between miR-494-3p target genes in macrophage polarization and Wnt signaling. We demonstrate that miR-494-3p regulates expression levels of multiple Wnt signaling components, such as LRP6 and TBL1X. Wnt signaling appears activated upon treatment with 3GA-494, both in cultured M1 macrophages and in plaques of hypercholesterolemic mice. Taken together, 3GA-494 treatment dampened M1 polarization, at least in part via activated Wnt signaling, while M2 polarization was enhanced, which is both favorable in reducing atherosclerotic plaque formation and increasing plaque stability.
Collapse
Affiliation(s)
- Eva van Ingen
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, The Netherlands
| | - Tamar Woudenberg
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - M Leontien van der Bent
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Alwin de Jong
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Philipp J Hohensinner
- Department of Internal Medicine II, Medical, University of Vienna, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical, University of Vienna, 1090 Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Ilze Bot
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, The Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.,Department of Internal Medicine II, Medical, University of Vienna, 1090 Vienna, Austria.,Department of Laboratory Medicine, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Verberk SGS, Kuiper KL, Lauterbach MA, Latz E, Van den Bossche J. The multifaceted therapeutic value of targeting ATP-citrate lyase in atherosclerosis. Trends Mol Med 2021; 27:1095-1105. [PMID: 34635427 DOI: 10.1016/j.molmed.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
ATP-citrate lyase (Acly) is the target of the new class low-density lipoprotein-cholesterol (LDL-C)-lowering drug bempedoic acid (BA). Acly is a key metabolic enzyme synthesizing acetyl-CoA as the building block of cholesterol and fatty acids. Treatment with BA lowers circulating lipid levels and reduces systemic inflammation, suggesting a dual benefit of this drug for atherosclerosis therapy. Recent studies have shown that targeting Acly in macrophages can attenuate inflammatory responses and decrease atherosclerotic plaque vulnerability. Therefore, it could be beneficial to extend the application of Acly inhibition from solely lipid-lowering by liver-specific inhibition to also targeting macrophages in atherosclerosis. Here, we outline the possibilities of targeting Acly and describe the future needs to translate these findings to the clinic.
Collapse
Affiliation(s)
- Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kirsten L Kuiper
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mario A Lauterbach
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Reis-Mendes A, Dores-Sousa JL, Padrão AI, Duarte-Araújo M, Duarte JA, Seabra V, Gonçalves-Monteiro S, Remião F, Carvalho F, Sousa E, Bastos ML, Costa VM. Inflammation as a Possible Trigger for Mitoxantrone-Induced Cardiotoxicity: An In Vivo Study in Adult and Infant Mice. Pharmaceuticals (Basel) 2021; 14:ph14060510. [PMID: 34073506 PMCID: PMC8229902 DOI: 10.3390/ph14060510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Mitoxantrone (MTX) is a pharmaceutical drug used in the treatment of several cancers and refractory multiple sclerosis (MS). Despite its therapeutic value, adverse effects may be severe, namely the frequently reported cardiotoxicity, whose mechanisms need further research. This work aimed to assess if inflammation or oxidative stress-related pathways participate in the cardiotoxicity of MTX, using the mouse as an animal model, at two different age periods (infant or adult mice) using two therapeutic relevant cumulative doses. Histopathology findings showed that MTX caused higher cardiac toxicity in adults. In MTX-treated adults, at the highest dose, noradrenaline cardiac levels decreased, whereas at the lowest cumulative dose, protein carbonylation increased and the expression of nuclear factor kappa B (NF-κB) p65 subunit and of M1 macrophage marker increased. Moreover, MTX-treated adult mice had enhanced expression of NF-κB p52 and tumour necrosis factor (TNF-α), while decreasing interleukin-6 (IL-6). Moreover, while catalase expression significantly increased in both adult and infant mice treated with the lowest MTX cumulative dose, the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glutathione peroxidase only significantly increased in infant animals. Nevertheless, the ratio of GAPDH to ATP synthase subunit beta decreased in adult animals. In conclusion, clinically relevant doses of MTX caused dissimilar responses in adult and infant mice, being that inflammation may be an important trigger to MTX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
- Correspondence: (A.R.-M.); (V.M.C.); Tel.: +351-220-428-599 (A.R.-M.); +351-220-428-599 (V.M.C.)
| | - José Luís Dores-Sousa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
| | - Ana Isabel Padrão
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.I.P.); (J.A.D.)
| | - Margarida Duarte-Araújo
- LAQV/REQUIMTE, University of Porto, 4050-313 Porto, Portugal;
- Department of Immune-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - José Alberto Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.I.P.); (J.A.D.)
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Paredes, Portugal;
| | - Vítor Seabra
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Paredes, Portugal;
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- MOREHealth, Outcomes Research Lab, Portuguese Institute of Oncology at Porto Francisco Gentil (IPO Porto), 4200-072 Porto, Portugal
| | - Fernando Remião
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.L.D.-S.); (F.R.); (F.C.); (M.L.B.)
- Correspondence: (A.R.-M.); (V.M.C.); Tel.: +351-220-428-599 (A.R.-M.); +351-220-428-599 (V.M.C.)
| |
Collapse
|
14
|
Nedeva I, Gateva A, Assyov Y, Karamfilova V, Velikova T, Kamenov Z. Neopterin in the Evolution from Obesity to Prediabetes and Newly Diagnosed Type 2 Diabetes. Metab Syndr Relat Disord 2021; 19:249-255. [PMID: 33599536 DOI: 10.1089/met.2020.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Neopterin, marker of cellular immunity and oxidative stress, is mainly produced by activated macrophages. It could play a crucial role in the development of insulin resistance (IR) and type 2 diabetes (T2D). The aim of this study was to investigate the circulating levels of neopterin in different stages of glucose dysregulation from obesity through prediabetes to newly diagnosed diabetes. Methods: Neopterin levels were determined using a commercially available human enzyme-linked immunosorbent assay kit. The homeostasis model assessment of IR was used as an index to assess IR. Results: The sample consisted of 163 subjects with mean age 52.5 ± 11.3 years, divided in three age- and body mass index (BMI)-matched groups-obesity, prediabetes, and diabetes. The control group consisted of 42 healthy individuals. Neopterin levels were significantly higher in patients with obesity and/or prediabetes and newly diagnosed diabetes than those in the control group, respectively (4.14 ± 2.51; 4.04 ± 2.80 and 2.17 ± 1.93 vs. 0.87 ± 0.84; P < 0.05). Correlation analysis showed that the level of neopterin positively correlated with BMI, waist, waist-to-stature ratio, waist-to-hip ratio, fasting glucose, and triglycerides. Receiver operating characteristic analysis established neopterin suitable for distinguishing subjects with obesity [area under the curve (AUC) = 0.83; P < 0.001] and carbohydrate disturbances (AUC = 0.59; P < 0.05) from those without these conditions. Neopterin ≥0.47 ng/mL have an odds ratio (OR) of 2.71 for development of dysglycemia, whereas threshold value of neopterin ≥0.56 ng/mL shows an OR of 5.94 for development of obesity. Conclusion: The levels of neopterin were increased in patients with obesity and carbohydrate disturbances. Further studies will elucidate the role of the biomarker in development of T2D and its complications.
Collapse
Affiliation(s)
- Iveta Nedeva
- Clinic of Endocrinology, Department of Internal Medicine, Medical University of Sofia, University Hospital "Alexandrovska," Sofia, Bulgaria
| | - Antoaneta Gateva
- Clinic of Endocrinology, Department of Internal Medicine, Medical University of Sofia, University Hospital "Alexandrovska," Sofia, Bulgaria
| | - Yavor Assyov
- Clinic of Endocrinology, Department of Internal Medicine, Medical University of Sofia, University Hospital "Alexandrovska," Sofia, Bulgaria
| | - Vera Karamfilova
- Clinic of Endocrinology, Department of Internal Medicine, Medical University of Sofia, University Hospital "Alexandrovska," Sofia, Bulgaria
| | - Tsvetelina Velikova
- Laboratory of Clinical Immunology, Department of Clinical Laboratory and Clinical Immunology, Medical University of Sofia, University Hospital "Lozenetz," Sofia, Bulgaria
| | - Zdravko Kamenov
- Clinic of Endocrinology, Department of Internal Medicine, Medical University of Sofia, University Hospital "Alexandrovska," Sofia, Bulgaria
| |
Collapse
|
15
|
Abstract
Thrombosis is the most feared complication of cardiovascular diseases and a main cause of death worldwide, making it a major health-care challenge. Platelets and the coagulation cascade are effectively targeted by antithrombotic approaches, which carry an inherent risk of bleeding. Moreover, antithrombotics cannot completely prevent thrombotic events, implicating a therapeutic gap due to a third, not yet adequately addressed mechanism, namely inflammation. In this Review, we discuss how the synergy between inflammation and thrombosis drives thrombotic diseases. We focus on the huge potential of anti-inflammatory strategies to target cardiovascular pathologies. Findings in the past decade have uncovered a sophisticated connection between innate immunity, platelet activation and coagulation, termed immunothrombosis. Immunothrombosis is an important host defence mechanism to limit systemic spreading of pathogens through the bloodstream. However, the aberrant activation of immunothrombosis in cardiovascular diseases causes myocardial infarction, stroke and venous thromboembolism. The clinical relevance of aberrant immunothrombosis, referred to as thromboinflammation, is supported by the increased risk of cardiovascular events in patients with inflammatory diseases but also during infections, including in COVID-19. Clinical trials in the past 4 years have confirmed the anti-ischaemic effects of anti-inflammatory strategies, backing the concept of a prothrombotic function of inflammation. Targeting inflammation to prevent thrombosis leaves haemostasis mainly unaffected, circumventing the risk of bleeding associated with current approaches. Considering the growing number of anti-inflammatory therapies, it is crucial to appreciate their potential in covering therapeutic gaps in cardiovascular diseases.
Collapse
|
16
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
17
|
Guo M, Meng M, Zhao J, Wang X, Wang C. Immunomodulatory effects of the polysaccharide from Craterellus cornucopioides via activating the TLR4-NFκB signaling pathway in peritoneal macrophages of BALB/c mice. Int J Biol Macromol 2020; 160:871-879. [DOI: 10.1016/j.ijbiomac.2020.05.270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/08/2020] [Accepted: 05/30/2020] [Indexed: 01/23/2023]
|
18
|
Watanabe T. Neopterin derivatives - a novel therapeutic target rather than biomarker for atherosclerosis and related diseases. VASA 2020; 50:165-173. [PMID: 32924886 DOI: 10.1024/0301-1526/a000903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review provides an updated overview of the emerging roles of neopterin derivatives in atherosclerosis. Neopterin, a metabolite of guanosine triphosphate, is produced by interferon-γ-activated macrophages and is expressed at high levels in atheromatous plaques within the human carotid and coronary arteries as well as in the aorta. Plasma concentrations of neopterin are higher in patients with carotid, cerebral, and coronary artery diseases as well as aortic aneurysm. The concentration of neopterin is positively correlated with the severity of coronary artery disease. However, a prospective cohort study showed that neopterin contributes to protection against plaque formation in carotid arteries in patients with atherosclerosis. Moreover, using both in vitro and in vivo experiments, a recent study has shown the atheroprotective effects of neopterin. Neopterin suppresses the expression of monocyte chemotactic protein-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in endothelial cells, and thereby suppresses the adhesion of monocytes to endothelial cells. It also suppresses the inflammatory phenotype of monocyte-derived macrophages. In addition, neopterin suppresses oxidized low-density lipoprotein-induced foam cell formation in macrophages and the migration and proliferation of vascular smooth muscle cells. Neopterin injection into apolipoprotein E-deficient (Apoe-/-) mice suppresses the development of atherosclerotic lesions. A neopterin derivative tetrahydroneopterin (BH4), also known as a cofactor for nitric oxide (NO) synthases, suppresses atherosclerosis and vascular injury-induced neointimal hyperplasia in Apoe-/- mice. BH4 administration improves endothelial dysfunction in patients with coronary artery disease. These findings suggest that neopterin production may increase to counteract the progression of atherosclerosis, as neopterin contributes to atheroprotection. Otherwise, the increased neopterin levels in atherosclerosis may reflect a compensatory mechanism associated with inducible NO synthase upregulation in macrophages to supply BH4 for high output NO production caused by decreased endothelial NO synthase in atherosclerosis. Therefore, neopterin derivatives are a novel therapeutic target for atherosclerosis and related diseases.
Collapse
Affiliation(s)
- Takuya Watanabe
- Department of Internal Medicine, Ushioda General Hospital/Clinic, Yokohama, Japan
| |
Collapse
|
19
|
Chen HJ, Tas SW, de Winther MPJ. Type-I interferons in atherosclerosis. J Exp Med 2020; 217:132613. [PMID: 31821440 PMCID: PMC7037237 DOI: 10.1084/jem.20190459] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Chen et al. review the effects of type-I IFNs and the potential of anti–type-I IFN therapies in atherosclerosis. The contribution of dyslipidemia and inflammation in atherosclerosis is well established. Along with effective lipid-lowering treatments, the recent success of clinical trials with anti-inflammatory therapies and the accelerated atherosclerosis in many autoimmune diseases suggest that targeting inflammation may open new avenues for the prevention and the treatment for cardiovascular diseases (CVDs). In the past decades, studies have widened the role of type-I interferons (IFNs) in disease, from antivirus defense to autoimmune responses and immuno-metabolic syndromes. While elevated type-I IFN level in serum is associated with CVD incidence in patients with interferonopathies, experimental data have attested that type-I IFNs affect plaque-residing macrophages, potentiate foam cell and extracellular trap formation, induce endothelial dysfunction, alter the phenotypes of dendritic cells and T and B lymphocytes, and lead to exacerbated atherosclerosis outcomes. In this review, we discuss the production and the effects of type-I IFNs in different atherosclerosis-associated cell types from molecular biology studies, animal models, and clinical observations, and the potential of new therapies against type-I IFN signaling for atherosclerosis.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
20
|
Duncan SE, Gao S, Sarhene M, Coffie JW, Linhua D, Bao X, Jing Z, Li S, Guo R, Su J, Fan G. Macrophage Activities in Myocardial Infarction and Heart Failure. Cardiol Res Pract 2020; 2020:4375127. [PMID: 32377427 PMCID: PMC7193281 DOI: 10.1155/2020/4375127] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Heart diseases remain the major cause of death worldwide. Advances in pharmacological and biomedical management have resulted in an increasing proportion of patients surviving acute heart failure (HF). However, many survivors of HF in the early stages end up increasing the disease to chronic HF (CHF). HF is an established frequent complication of myocardial infarction (MI), and numerous influences including persistent myocardial ischemia, shocked myocardium, ventricular remodeling, infarct size, and mechanical impairments, as well as hibernating myocardium trigger the development of left ventricular systolic dysfunction following MI. Macrophage population is active in inflammatory process, yet the clear understanding of the causative roles for these macrophage cells in HF development and progression is actually incomplete. Long ago, it was thought that macrophages are of importance in the heart after MI. Also, though inflammation is as a result of adverse HF in patients, but despite the fact that broad immunosuppression therapeutic target has been used in various clinical trials, no positive results have showed up, but rather, the focus on proinflammatory cytokines has proved more benefits in patients with HF. Therefore, in this review, we discuss the recent findings and new development about macrophage activations in HF, its role in the healthy heart, and some therapeutic targets for myocardial repair. We have a strong believe that there is a need to give maximum attention to cardiac resident macrophages due to the fact that they perform various tasks in wound healing, self-renewal of the heart, and tissue remodeling. Currently, it has been discovered that the study of macrophages goes far beyond its phagocytotic roles. If researchers in future confirm that macrophages play a vital role in the heart, they can be therapeutically targeted for cardiac healing.
Collapse
Affiliation(s)
- Sophia Esi Duncan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Michael Sarhene
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Joel Wake Coffie
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Deng Linhua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Xingru Bao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Zhang Jing
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Rui Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Su
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| |
Collapse
|
21
|
Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood 2020; 134:1859-1872. [PMID: 31481482 DOI: 10.1182/blood.2019000518] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical observations implicate a role of eosinophils in cardiovascular diseases because markers of eosinophil activation are elevated in atherosclerosis and thrombosis. However, their contribution to atherosclerotic plaque formation and arterial thrombosis remains unclear. In these settings, we investigated how eosinophils are recruited and activated through an interplay with platelets. Here, we provide evidence for a central importance of eosinophil-platelet interactions in atherosclerosis and thrombosis. We show that eosinophils support atherosclerotic plaque formation involving enhanced von Willebrand factor exposure on endothelial cells and augmented platelet adhesion. During arterial thrombosis, eosinophils are quickly recruited in an integrin-dependent manner and engage in interactions with platelets leading to eosinophil activation as we show by intravital calcium imaging. These direct interactions induce the formation of eosinophil extracellular traps (EETs), which are present in human thrombi and constitute a substantial part of extracellular traps in murine thrombi. EETs are decorated with the granule protein major basic protein, which causes platelet activation by eosinophils. Consequently, targeting of EETs diminished thrombus formation in vivo, which identifies this approach as a novel antithrombotic concept. Finally, in our clinical analysis of coronary artery thrombi, we identified female patients with stent thrombosis as the population that might derive the greatest benefit from an eosinophil-inhibiting strategy. In summary, eosinophils contribute to atherosclerotic plaque formation and thrombosis through an interplay with platelets, resulting in mutual activation. Therefore, eosinophils are a promising new target in the prevention and therapy of atherosclerosis and thrombosis.
Collapse
|
22
|
Guo MZ, Meng M, Feng CC, Wang X, Wang CL. A novel polysaccharide obtained from Craterellus cornucopioides enhances immunomodulatory activity in immunosuppressive mice models via regulation of the TLR4-NF-κB pathway. Food Funct 2019; 10:4792-4801. [PMID: 31314026 DOI: 10.1039/c9fo00201d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The immunoregulatory effect of a novel Craterellus cornucopioides polysaccharide (CCP) with a triple-helix structure on immunosuppressive BALB/c mice models was investigated; moreover, the immune response of BALB/c mice models in the preventive and therapeutic treatment groups treated with CCP was explored, and its molecular mechanism was elucidated. It was found that the BALB/c mice models in the preventive groups treated with CCP (120 and 240 mg kg-1 d-1) had better immunoregulatory activity. The spleen and thymus weight indices of the BALB/c mice models were significantly increased, and the histopathological analysis indicated a protective function of CCP against the immunosuppression induced by cyclophosphamide (CTX). Moreover, CCP displayed definite and clear synergistic effects on the T- or B-lymphocyte proliferation induced by ConA or LPS, respectively, promoted the natural killer (NK) cell activity and significantly increased phagocytic activity to activate peritoneal macrophages in immunosuppressive mice. The western blot and quantitative real-time polymerase chain reaction (qRT-PCR) results provided comprehensive evidence that CCP could upregulate the protein expression of the G-protein-coupled cell membrane receptor TLR4 and the production of its downstream protein kinases (TRAF6, TK1, p-IKKα/β and NF-κB p50); this, in turn, enhanced the production of cytokines (IL-2, IL-6, TNF-α and IFN-α) through both preventive and therapeutic treatments via regulation of the TLR4-NFκB pathway in the peritoneal macrophage of immunosuppressive mice.
Collapse
Affiliation(s)
- M-Z Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | | | | | | | | |
Collapse
|
23
|
Bonaccorsi I, Spinelli D, Cantoni C, Barillà C, Pipitò N, De Pasquale C, Oliveri D, Cavaliere R, Carrega P, Benedetto F, Ferlazzo G. Symptomatic Carotid Atherosclerotic Plaques Are Associated With Increased Infiltration of Natural Killer (NK) Cells and Higher Serum Levels of NK Activating Receptor Ligands. Front Immunol 2019; 10:1503. [PMID: 31354703 PMCID: PMC6639781 DOI: 10.3389/fimmu.2019.01503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022] Open
Abstract
A wide array of immune cells, including lymphocytes, is known to be present and to play a pathogenetic role in atherosclerotic lesions. However, limited information is currently available regarding the presence of Natural Killer (NK) cell subsets within vessel plaque, and more in general, regarding their role in human atherosclerosis. We evaluated the distribution of NK cells in human carotid atherosclerotic plaques, dissecting asymptomatic and symptomatic patients (identified as affected by stroke, transient ischemic attack, or amaurosis fugax within 6 months) with the aim of shedding light on the putative contribution of NK cells to the pathogenic process that leads to plaque instability and subsequent clinical complications. We observed that carotid plaques were consistently infiltrated by NK cells and, among them, CD56brightperforinlow NK cells were abundantly present and displayed different markers of tissue residency (i.e., CD103 CD69 and CD49a). Interestingly, carotid atherosclerotic plaques of symptomatic patients showed a higher content of NK cells and an increased ratio between CD56brightperforinlow NK cells and their CD56dimperforinhigh counterpart. NK cells isolated from plaques of symptomatic patients were also stronger producers of IFN-γ. Analysis of the expression of NK activating receptor ligands (including MICA/B, ULBP-3, and B7-H6) in atherosclerotic carotid plaques revealed that they were abundantly expressed by a HLA-DR+CD11c+ myeloid cell population resident in the plaques. Remarkably, sera of symptomatic patients contained significant higher levels of soluble ligands for NK activating receptors. Our observations indicate that CD56bright NK cells accumulate within human atherosclerotic lesions and suggest a possible contribution of NK cells to the process determining plaque instability.
Collapse
Affiliation(s)
- Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy
| | - Domenico Spinelli
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Barillà
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Narayana Pipitò
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy
| | - Daniela Oliveri
- Research Center Cell Factory UniMe, University of Messina, Messina, Italy.,Clinical Pathology Unit, University Hospital - A.O.U. Policlinico G. Martino, Messina, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy.,Clinical Pathology Unit, University Hospital - A.O.U. Policlinico G. Martino, Messina, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy
| | - Filippo Benedetto
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department Human Pathology, University of Messina, Messina, Italy.,Research Center Cell Factory UniMe, University of Messina, Messina, Italy.,Clinical Pathology Unit, University Hospital - A.O.U. Policlinico G. Martino, Messina, Italy
| |
Collapse
|
24
|
Qian C, Yun Z, Yao Y, Cao M, Liu Q, Hu S, Zhang S, Luo D. Heterogeneous macrophages: Supersensors of exogenous inducing factors. Scand J Immunol 2019; 90:e12768. [PMID: 31002413 PMCID: PMC6852148 DOI: 10.1111/sji.12768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
As heterogeneous immune cells, macrophages mount effective responses to various internal and external changes during disease progression. Macrophage polarization, rather than macrophage heterogenization, is often used to describe the functional differences between macrophages. While macrophage polarization partially contributes to heterogeneity, it does not completely explain the concept of macrophage heterogeneity. At the same time, there are abundant and sophisticated endogenous and exogenous substances that can affect macrophage heterogeneity. While the research on endogenous factors has been systematically reviewed, the findings on exogenous factors have not been well summarized. Hence, we reviewed the characteristics and inducing factors of heterogeneous macrophages to reveal their functional plasticity as well as their targeting manoeuvreability. In the process of constructing and analysing a network organized by disease-related cells and molecules, paying more attention to heterogeneous macrophages as mediators of this network may help to explore a novel entry point for early prevention of and intervention in disease.
Collapse
Affiliation(s)
- Caiyun Qian
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zehui Yun
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yudi Yao
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Minghua Cao
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Liu
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Song Hu
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Daya Luo
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China.,Affiliated Infectious Disease Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Shibata MA, Harada-Shiba M, Shibata E, Tosa H, Matoba Y, Hamaoka H, Iinuma M, Kondo Y. Crude α-Mangostin Suppresses the Development of Atherosclerotic Lesions in Apoe-Deficient Mice by a Possible M2 Macrophage-Mediated Mechanism. Int J Mol Sci 2019; 20:ijms20071722. [PMID: 30959963 PMCID: PMC6480575 DOI: 10.3390/ijms20071722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle choices play a significant role in the etiology of atherosclerosis. Male Apoe−/− mice that develop spontaneous atherosclerotic lesions were fed 0%, 0.3%, and 0.4% mangosteen extracts, composed largely of α-mangostin (MG), for 17 weeks. Body weight gains were significantly decreased in both MG-treated groups compared to the control, but the general condition remained good throughout the study. The levels of total cholesterol (decreased very-low-density lipoprotein in lipoprotein profile) and triglycerides decreased significantly in the MG-treated mice in conjunction with decreased hepatic HMG-CoA synthase and Fatty acid transporter. Additionally, increased serum lipoprotein lipase activity and histopathology further showed a significant reduction in atherosclerotic lesions at both levels of MG exposure. Real-time PCR analysis for macrophage indicators showed a significant elevation in the levels of Cd163, an M2 macrophage marker, in the lesions of mice receiving 0.4% MG. However, the levels of Nos2, associated with M1 macrophages, showed no change. In addition, quantitative immunohistochemical analysis of macrophage subtypes showed a tendency for increased M2 populations (CD68+/CD163+) in the lesions of mice given 0.4% MG. In further analysis of the cytokine-polarizing macrophage subtypes, the levels of Interleukin13 (Il13), associated with M2 polarization, were significantly elevated in lesions exposed to 0.4% MG. Thus, MG could suppress the development of atherosclerosis in Apoe−/− mice, possibly through an M2 macrophage-mediated mechanism.
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | - Eiko Shibata
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | - Yoshinobu Matoba
- Ecoresource Institute Co., Ltd., Minokamo, Gifu 505-0042, Japan.
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | | | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
26
|
The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis. Mediators Inflamm 2019; 2019:7434376. [PMID: 31089324 PMCID: PMC6476044 DOI: 10.1155/2019/7434376] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is one of the leading causes of death and disability worldwide. It is a complex disease characterized by lipid accumulation within the arterial wall, inflammation, local neoangiogenesis, and apoptosis. Innate immune effectors, in particular monocytes and macrophages, play a pivotal role in atherosclerosis initiation and progression. Although most of available evidence on the role of monocytes and macrophages in atherosclerosis is derived from animal studies, a growing body of evidence elucidating the role of these mononuclear cell subtypes in human atherosclerosis is currently accumulating. A novel pathogenic role of monocytes and macrophages in terms of atherosclerosis initiation and progression, in particular concerning the role of these cell subsets in neovascularization, has been discovered. The aim of the present article is to review currently available evidence on the role of monocytes and macrophages in human atherosclerosis and in relation to plaque characteristics, such as plaque neoangiogenesis, and patients' prognosis and their potential role as biomarkers.
Collapse
|
27
|
Pertiwi KR, de Boer OJ, Mackaaij C, Pabittei DR, de Winter RJ, Li X, van der Wal AC. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis. J Pathol 2019; 247:505-512. [PMID: 30506885 PMCID: PMC6590313 DOI: 10.1002/path.5212] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
Abstract
Extracellular traps generated by neutrophils contribute to thrombus progression in coronary atherosclerotic plaques. It is not known whether other inflammatory cell types in coronary atherosclerotic plaque or thrombus also release extracellular traps. We investigated their formation by macrophages, mast cells, and eosinophils in human coronary atherosclerosis, and in relation to the age of thrombus of myocardial infarction patients. Coronary arteries with thrombosed or intact plaques were retrieved from patients who died from myocardial infarction. In addition, thrombectomy specimens from patients with myocardial infarction were classified histologically as fresh, lytic or organised. Neutrophil and macrophage extracellular traps were identified using sequential triple immunostaining of CD68, myeloperoxidase, and citrullinated histone H3. Eosinophil and mast cell extracellular traps were visualised using double immunostaining for eosinophil major basic protein or tryptase, respectively, and citrullinated histone H3. Single‐ and double‐stained immunopositive cells in the plaque, adjacent adventitia, and thrombus were counted. All types of leucocyte‐derived extracellular traps were present in all thrombosed plaques, and in all types of the in vivo‐derived thrombi, but only to a much lower extent in intact plaques. Neutrophil traps, followed by macrophage traps, were the most prominent types in the autopsy series of atherothrombotic plaques, including the adventitia adjacent to thrombosed plaques. In contrast, macrophage traps were more numerous than neutrophil traps in intact plaques (lipid cores) and organised thrombi. Mast cell and eosinophil extracellular traps were also present, but sparse in all instances. In conclusion, not only neutrophils but also macrophages, eosinophils, and mast cells are sources of etosis involved in evolving coronary thrombosis. Neutrophil traps dominate numerically in early thrombosis and macrophage traps in late (organising) thrombosis, implying that together they span all the stages of thrombus progression and maturation. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kartika R Pertiwi
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Biology Education, Faculty of Mathematics and Natural Science, Yogyakarta State University, Yogyakarta, Indonesia
| | - Onno J de Boer
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Claire Mackaaij
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dara R Pabittei
- Amsterdam Heart Centre, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Xiaofei Li
- Department of Pathology, Maastricht UMC, Maastricht, The Netherlands
| | - Allard C van der Wal
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Yoshiyama T, Sugioka K, Naruko T, Nakagawa M, Shirai N, Ohsawa M, Yoshiyama M, Ueda M. Neopterin and Cardiovascular Events Following Coronary Stent Implantation in Patients with Stable Angina Pectoris. J Atheroscler Thromb 2018; 25:1105-1117. [PMID: 29593175 PMCID: PMC6224201 DOI: 10.5551/jat.43166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/17/2018] [Indexed: 01/11/2023] Open
Abstract
AIM Neopterin is an activation marker for monocytes/macrophages. We prospectively investigated the predictive value of plasma neopterin levels on 2-year and long-term cardiovascular events in patients with stable angina pectoris (SAP) undergoing coronary stent implantation. METHODS We studied 123 consecutive patients with SAP who underwent primary coronary stenting (44 patients with bare metal stent: BMS group and 79 with drug-eluting stent: DES group). Plasma neopterin levels were measured on admission using HPLC. Moreover, one frozen coronary artery specimen after DES and three frozen coronary specimens after BMS were obtained by autopsy or endarterectomy, followed by immunohistochemical staining for neopterin. RESULTS Plasma neopterin levels were significantly higher in patients with cardiovascular events than in those without them (P<0.001). In subgroup analyses, higher levels of plasma neopterin in patients with cardiovascular events (P<0.001) and a positive correlation between neopterin levels and late lumen loss after stenting (P =0.008) were observed in the BMS group but not in the DES group (P=0.53 and P=0.17, respectively). In long-term cardiovascular events, multivariate Cox regression analysis identified the significance of the high-neopterin group as independent determinants of cardiovascular events (hazard ratio, 2.225; 95% CI, 1.283-3.857; P =0.004). Immunohistochemical staining showed abundant neopterin-positive macrophages in the neointima after BMS implantation but no neopterin-positive macrophages in the neointima after DES implantation. CONCLUSION These findings suggest that neopterin is associated with cardiovascular events after coronary stent implantation in patients with SAP. However, there might be a strong association between neopterin and cardiovascular events after BMS but not after DES in these patients.
Collapse
Affiliation(s)
- Tomotaka Yoshiyama
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenichi Sugioka
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiko Naruko
- Department of Cardiology, Osaka City General Hospital, Osaka, Japan
| | - Masashi Nakagawa
- Department of Cardiology, Osaka City General Hospital, Osaka, Japan
| | - Nobuyuki Shirai
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masahiko Ohsawa
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Minoru Yoshiyama
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Makiko Ueda
- Morinomiya University of Medical Sciences, Osaka, Japan
| |
Collapse
|
29
|
Elevated serum neopterin levels in children with functional constipation: association with systemic proinflammatory cytokines. World J Pediatr 2018; 14:448-453. [PMID: 29549607 DOI: 10.1007/s12519-018-0144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/21/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Functional constipation is a clinical problem with an incompletely understood etiology. Functional bowel diseases have been shown to be related to inflammation in many studies in adults. In this study, we aimed to evaluate leukocytes, C-reactive protein, proinflammatory and anti-inflammatory cytokines, and neopterin levels in children with functional constipation. METHODS Seventy-six children with constipation and 71 healthy controls (mean age 7.12 ± 3.46 years and 7.32 ± 4.33 years, respectively, P = 0.991) were included in the study. Leukocytes, C-reactive protein, interleukin (IL)-1β, IL-6, IL-10, IL-12, tumor necrosis factor-alpha (TNF-α) and neopterin levels were assessed in patients and healthy controls. Parameters were measured in the serum using enzyme-linked immunosorbent assay methods. RESULTS Mean IL-6 (20.31 ± 12.05 vs. 16.2 ± 10.25 pg/mL, respectively, P = 0.003), IL-12 (181.42 ± 133.45 vs. 135.6 ± 83.67 pg/mL, respectively, P = 0.018) and neopterin levels (2.08 ± 1.12 vs. 1.52 ± 1.02 pg/mL, respectively, P = 0.001) were significantly higher in constipated children than healthy controls. Leukocyte and thrombocyte counts, C-reactive protein, and IL-1β, IL-10 and TNF-α levels did not show any difference between the two groups. CONCLUSIONS In this study, IL-6, IL-12 and neopterin levels of constipated patients were found to be higher than those of controls. These results indicate the presence of subclinical inflammation in children with functional constipation.
Collapse
|
30
|
Decano JL, Aikawa M. Dynamic Macrophages: Understanding Mechanisms of Activation as Guide to Therapy for Atherosclerotic Vascular Disease. Front Cardiovasc Med 2018; 5:97. [PMID: 30123798 PMCID: PMC6086112 DOI: 10.3389/fcvm.2018.00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
An emerging theory is that macrophages are heterogenous; an attribute that allows them to change behavior and execute specific functions in disease processes. This review aims to describe the current understanding on factors that govern their phenotypic changes, and provide insights for intervention beyond managing classical risk factors. Evidence suggests that metabolic reprogramming of macrophages triggers either a pro-inflammatory, anti-inflammatory or pro-resolving behavior. Dynamic changes in bioenergetics, metabolome or influence from bioactive lipids may promote resolution or aggravation of inflammation. Direct cell-to-cell interactions with other immune cells can also influence macrophage activation. Both paracrine signaling and intercellular molecular interactions either co-stimulate or co-inhibit activation of macrophages as well as their paired immune cell collaborator. More pathways of activation can even be uncovered by inspecting macrophages in the single cell level, since differential expression in key gene regulators can be screened in higher resolution compared to conventional averaged gene expression readouts. All these emerging macrophage activation mechanisms may be further explored and consolidated by using approaches in network biology. Integrating these insights can unravel novel and safer drug targets through better understanding of the pro-inflammatory activation circuitry.
Collapse
Affiliation(s)
- Julius L. Decano
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Zuiderwijk M, Geerts M, van Rhijn CJ, van den Bogaerdt A, Hamming JF, van Dijk RA, Lindeman JH. Leukocyte Dynamics during the Evolution of Human Coronary Atherosclerosis: Conclusions from a Sevenfold, Chromogen-Based, Immunohistochemical Evaluation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1524-1529. [PMID: 29684365 DOI: 10.1016/j.ajpath.2018.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a complex process with strong inflammatory component. We developed a straightforward sevenfold staining protocol for simultaneous assessment of dominant leukocyte classes, vascularization, and expression of the putative foam cell maker CD36. The method was applied on human coronaries covering the full spectrum of atherosclerotic disease. Results confirm the progressive association of macrophages and T cells with the process and a global presence of mast cells. B cells are exclusively present in adventitial follicles that accompany the process plaque destabilization (thin cap and ruptured lesions) and are otherwise absent. Neutrophils are only present as part of the hemorrhage that accompanies plaque rupture. This study does not classify CD36 as a key factor in foam cell formation. Observed macrophage accumulation in the neointima of stabilized fibrous calcified plaques is consistent with a process of neoatherosclerosis. This study on human coronaries shows a progressive association of macrophage and T-cell abundance with plaque progression. Follicle-like structures are transiently present during the process of plaque destabilization. Plaque healing is accompanied by cessation of the inflammatory response but followed by a new cycle of atherosclerosis.
Collapse
Affiliation(s)
- Melissa Zuiderwijk
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden
| | - Marlieke Geerts
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden
| | - Connie J van Rhijn
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden
| | | | - Jaap F Hamming
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden
| | - Rogier A van Dijk
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden
| | - Jan H Lindeman
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden.
| |
Collapse
|
32
|
Shirai R, Sato K, Yamashita T, Yamaguchi M, Okano T, Watanabe-Kominato K, Watanabe R, Matsuyama TA, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T. Neopterin Counters Vascular Inflammation and Atherosclerosis. J Am Heart Assoc 2018; 7:e007359. [PMID: 29420219 PMCID: PMC5850243 DOI: 10.1161/jaha.117.007359] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neopterin, a metabolite of GTP, is produced by activated macrophages and is abundantly expressed within atherosclerotic lesions in human aorta and carotid and coronary arteries. We aimed to clarify the influence of neopterin on both vascular inflammation and atherosclerosis, as neither effect had been fully assessed. METHODS AND RESULTS We investigated neopterin expression in coronary artery lesions and plasma from patients with coronary artery disease. We assessed the atheroprotective effects of neopterin in vitro using human aortic endothelial cells, human monocyte-derived macrophages, and human aortic smooth muscle cells. In vivo experiments included a study of aortic lesions in apolipoprotein E-deficient mice. Neopterin expression in coronary artery lesions and plasma was markedly increased in patients with versus without coronary artery disease. In human aortic endothelial cells, neopterin reduced proliferation and TNF-α (tumor necrosis factor α)-induced upregulation of MCP-1 (monocyte chemotactic protein 1), ICAM-1 (intercellular adhesion molecule 1), and VCAM-1 (vascular cell adhesion molecule 1). Neopterin attenuated TNF-α-induced monocyte adhesion to human aortic endothelial cells and the inflammatory macrophage phenotype via NF-κB (nuclear factor-κB) downregulation. Neopterin suppressed oxidized low-density lipoprotein-induced foam cell formation associated with CD36 downregulation and upregulation of ATP-binding cassette transporters A1 and G1 in human monocyte-derived macrophages. In human aortic smooth muscle cells, neopterin suppressed angiotensin II-induced migration and proliferation via c-Src/Raf-1/ERK1/2 downregulation without inducing apoptosis. Exogenous neopterin administration and endogenous neopterin attenuation with its neutralizing antibody for 4 weeks retarded and promoted, respectively, the development of aortic atherosclerotic lesions in apolipoprotein E-deficient mice. CONCLUSIONS Our results indicate that neopterin prevents both vascular inflammation and atherosclerosis and may be induced to counteract the progression of atherosclerotic lesions. Consequently, neopterin could be of use as a novel therapeutic target for atherosclerotic cardiovascular diseases.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Apoptosis/drug effects
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Coculture Techniques
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Coronary Artery Disease/prevention & control
- Cytokines/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Foam Cells/metabolism
- Foam Cells/pathology
- Humans
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neopterin/metabolism
- Plaque, Atherosclerotic
- Signal Transduction
- THP-1 Cells
- Vasculitis/metabolism
- Vasculitis/pathology
- Vasculitis/prevention & control
Collapse
Affiliation(s)
- Remina Shirai
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoyuki Yamashita
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Maho Yamaguchi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taisuke Okano
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kaho Watanabe-Kominato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Rena Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taka-Aki Matsuyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Youichi Kobayashi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
33
|
Shimada S, Ebina Y, Iijima N, Deguchi M, Yamada H. Decidual CD68+
HLA-DR+
CD163−
M1 macrophages increase in miscarriages with normal fetal chromosome. Am J Reprod Immunol 2017; 79. [DOI: 10.1111/aji.12791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/07/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Yasuhiko Ebina
- Department of Obstetrics and Gynecology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Norifumi Iijima
- Department of Immunobiology; Yale University School of Medicine; New Haven CT USA
| | - Masashi Deguchi
- Department of Obstetrics and Gynecology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Hideto Yamada
- Department of Obstetrics and Gynecology; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
34
|
Harari E, Guo L, Smith SL, Braumann RE, Virmani R, Finn AV. Heart-resident macrophages: are they involved in the rhythm of every beat? J Thorac Dis 2017; 9:2264-2267. [PMID: 28932520 DOI: 10.21037/jtd.2017.07.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Liang Guo
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | | | | | - Aloke V Finn
- CVPath Institute, Gaithersburg, Maryland, USA.,University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Huet F, Akodad M, Fauconnier J, Lacampagne A, Roubille F. Anti-inflammatory drugs as promising cardiovascular treatments. Expert Rev Cardiovasc Ther 2016; 15:109-125. [DOI: 10.1080/14779072.2017.1273771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fabien Huet
- Cardiology Department, Hôpital Arnaud de Villeneuve, CHU de Montpellier, UFR de Médecine, Université Montpellier 1, Montpellier cedex, France
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier cedex, France
| | - Mariama Akodad
- Cardiology Department, Hôpital Arnaud de Villeneuve, CHU de Montpellier, UFR de Médecine, Université Montpellier 1, Montpellier cedex, France
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier cedex, France
| | - Jérémy Fauconnier
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier cedex, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier cedex, France
| | - François Roubille
- Cardiology Department, Hôpital Arnaud de Villeneuve, CHU de Montpellier, UFR de Médecine, Université Montpellier 1, Montpellier cedex, France
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier cedex, France
| |
Collapse
|
36
|
Martín Giménez VM, Ruiz-Roso MB, Camargo AB, Kassuha D, Manucha W. Nanotechnology, a new paradigm in atherosclerosis treatment. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2016; 29:224-230. [PMID: 27914728 DOI: 10.1016/j.arteri.2016.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Atherosclerosis, a known and prevalent disease, causes progressive deterioration of affected vessels, inducing a blood flow reduction with different complications, and its symptoms usually manifest in advanced stages of the disease. Therefore, the classic therapeutic alternatives are insufficient because the damages are many times irreversible. For this reason, there is a need to implement intelligent forms of drug administration and develop new therapeutic targets that reduce the progression of atherosclerotic lesion. The implementation of new tools for prevention, diagnosis and treatment of this cardiovascular disease is of special interest, focusing our attention on achieving a more effective control of the immune system. Finally, this review highlights the latest knowledge about nanotechnology as a powerful, modern, and promising therapeutic alternative applied to atherosclerotic disease, as well as warning of the potential complications with their use.
Collapse
Affiliation(s)
- Virna M Martín Giménez
- Instituto de Investigación en Ciencias Químicas, Facultad de Ciencias de la Alimentación, Bioquímicas y Farmacéuticas, Universidad Católica de Cuyo, San Juan, San Juan, Argentina
| | - María Belén Ruiz-Roso
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, España
| | - Alejandra Beatriz Camargo
- IBAM, UNCuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Luján, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Kassuha
- Instituto de Investigación en Ciencias Químicas, Facultad de Ciencias de la Alimentación, Bioquímicas y Farmacéuticas, Universidad Católica de Cuyo, San Juan, San Juan, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina; Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|