1
|
Balconi M, Acconito C, Angioletti L. A preliminary EEG study on persuasive communication towards groupness. Sci Rep 2025; 15:6242. [PMID: 39979540 PMCID: PMC11842712 DOI: 10.1038/s41598-025-90301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
Social neuroscience has acknowledged the role of persuasion but examined either the Persuader's or the Receiver's neural mechanisms. This study explored electrophysiological (EEG) correlates of Persuader and Receiver during a naturalistic persuasive interaction, in which Persuader aimed to convince Receiver that adopting a group decision-making orientation was the best solution to manage a group dynamic. EEG data - frequency bands: delta (0.5-3.5 Hz), theta (4-7.5 Hz), alpha (8-12.5 Hz), beta (13-30 Hz) and gamma (30.5-50 Hz) - were collected from 14 Persuaders and 14 Receivers. Findings indicated that the strategic efforts of Persuaders to enhance groupness are linked to activation in specific EEG bands (delta, theta and alpha) that distinguish them from Receivers. There is a significant distribution of these activations in the frontal areas of the Persuaders (especially, frontal right hemisphere for theta band), contrasting with the more temporal and posterior activations observed in Receivers (where the frontal areas are generally less activated). The study concludes that, under the same behavioral conditions in terms of group orientation, persuasive interaction shows specific EEG markers that connote the role of the Persuader characterized by greater attentional effort during the interaction.
Collapse
Affiliation(s)
- Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Carlotta Acconito
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy.
| | - Laura Angioletti
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
2
|
Thomas T, Martin CD, Caffarra S. The impact of speaker accent on discourse processing: A frequency investigation. BRAIN AND LANGUAGE 2025; 260:105509. [PMID: 39657290 DOI: 10.1016/j.bandl.2024.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
Previous studies indicate differences in native and foreign speech processing (Lev-Ari, 2018), with mixed evidence for differences between dialectal and foreign accent processing (Adank, Evans, Stuart-Smith, & Scott, 2009; Floccia et al., 2006, 2009; Girard, Floccia, & Goslin, 2008). Two theories have been proposed: The Perceptual Distance Hypothesis suggests that dialectal accent processing is an attenuated version of foreign accent processing (Clarke & Garrett, 2004), while the Different Processes Hypothesis argues that foreign and dialectal accents are processed via distinct mechanisms (Floccia, Butler, Girard, & Goslin, 2009). A recent single-word ERP study suggested flexibility in these mechanisms (Thomas, Martin, & Caffarra, 2022). The present study deepens this investigation by investigating differences in native, dialectal, and foreign accent processing across frequency bands during extended speech. Electroencephalographic data was recorded from 30 participants who listened to dialogues of approximately six minutes spoken in native, dialectal and foreign accents. Power spectral density estimation (1-35 Hz) was performed. Linear mixed models were done in frequency windows of particular relevance to discourse processing. Frequency bands associated with phoneme [gamma], syllable [theta], and prosody [delta] were considered along with those of general cognitive mechanisms [alpha and beta]. Results show power differences in the Gamma frequency range. While in higher frequency ranges foreign accent processing is differentiated from power amplitudes of native and dialectal accent processing, in low frequencies we do not see any accent-related power amplitude modulations. This suggests that there may be a difference in phoneme processing for native accent types and foreign accent, while we speculate that top-down mechanisms during discourse processing may mitigate the effects observed with short units of speech.
Collapse
Affiliation(s)
- Trisha Thomas
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Harvard University, 50 Church st, Cambridge, MA 02138, USA.
| | - Clara D Martin
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Basque Foundation for Science (Ikerbasque), Spain
| | - Sendy Caffarra
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305 5101, USA; Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA 94305, USA; University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
3
|
Slaats S, Meyer AS, Martin AE. Lexical Surprisal Shapes the Time Course of Syntactic Structure Building. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:942-980. [PMID: 39534445 PMCID: PMC11556436 DOI: 10.1162/nol_a_00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/24/2024] [Indexed: 11/16/2024]
Abstract
When we understand language, we recognize words and combine them into sentences. In this article, we explore the hypothesis that listeners use probabilistic information about words to build syntactic structure. Recent work has shown that lexical probability and syntactic structure both modulate the delta-band (<4 Hz) neural signal. Here, we investigated whether the neural encoding of syntactic structure changes as a function of the distributional properties of a word. To this end, we analyzed MEG data of 24 native speakers of Dutch who listened to three fairytales with a total duration of 49 min. Using temporal response functions and a cumulative model-comparison approach, we evaluated the contributions of syntactic and distributional features to the variance in the delta-band neural signal. This revealed that lexical surprisal values (a distributional feature), as well as bottom-up node counts (a syntactic feature) positively contributed to the model of the delta-band neural signal. Subsequently, we compared responses to the syntactic feature between words with high- and low-surprisal values. This revealed a delay in the response to the syntactic feature as a consequence of the surprisal value of the word: high-surprisal values were associated with a delayed response to the syntactic feature by 150-190 ms. The delay was not affected by word duration, and did not have a lexical origin. These findings suggest that the brain uses probabilistic information to infer syntactic structure, and highlight an importance for the role of time in this process.
Collapse
Affiliation(s)
- Sophie Slaats
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Antje S. Meyer
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Andrea E. Martin
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| |
Collapse
|
4
|
Liu Y, van Hell JG. Neural correlates of listening to nonnative-accented speech in multi-talker background noise. Neuropsychologia 2024; 203:108968. [PMID: 39117064 DOI: 10.1016/j.neuropsychologia.2024.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
We examined the neural correlates underlying the semantic processing of native- and nonnative-accented sentences, presented in quiet or embedded in multi-talker noise. Implementing a semantic violation paradigm, 36 English monolingual young adults listened to American-accented (native) and Chinese-accented (nonnative) English sentences with or without semantic anomalies, presented in quiet or embedded in multi-talker noise, while EEG was recorded. After hearing each sentence, participants verbally repeated the sentence, which was coded and scored as an offline comprehension accuracy measure. In line with earlier behavioral studies, the negative impact of background noise on sentence repetition accuracy was higher for nonnative-accented than for native-accented sentences. At the neural level, the N400 effect for semantic anomaly was larger for native-accented than for nonnative-accented sentences, and was also larger for sentences presented in quiet than in noise, indicating impaired lexical-semantic access when listening to nonnative-accented speech or sentences embedded in noise. No semantic N400 effect was observed for nonnative-accented sentences presented in noise. Furthermore, the frequency of neural oscillations in the alpha frequency band (an index of online cognitive listening effort) was higher when listening to sentences in noise versus in quiet, but no difference was observed across the accent conditions. Semantic anomalies presented in background noise also elicited higher theta activity, whereas processing nonnative-accented anomalies was associated with decreased theta activity. Taken together, we found that listening to nonnative accents or background noise is associated with processing challenges during online semantic access, leading to decreased comprehension accuracy. However, the underlying cognitive mechanism (e.g., associated listening efforts) might manifest differently across accented speech processing and speech in noise processing.
Collapse
Affiliation(s)
- Yushuang Liu
- Department of Psychology and Center for Language Science, The Pennsylvania State University, University Park, PA, USA.
| | - Janet G van Hell
- Department of Psychology and Center for Language Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
5
|
Croom K, Rumschlag JA, Molinaro G, Erickson MA, Binder DK, Huber KM, Razak KA. Developmental trajectory and sex differences in auditory processing in a PTEN-deletion model of autism spectrum disorders. Neurobiol Dis 2024; 200:106628. [PMID: 39111703 DOI: 10.1016/j.nbd.2024.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Autism Spectrum Disorders (ASD) encompass a wide array of debilitating symptoms, including severe sensory deficits and abnormal language development. Sensory deficits early in development may lead to broader symptomatology in adolescents and adults. The mechanistic links between ASD risk genes, sensory processing and language impairment are unclear. There is also a sex bias in ASD diagnosis and symptomatology. The current study aims to identify the developmental trajectory and genotype- and sex-dependent differences in auditory sensitivity and temporal processing in a Pten-deletion (phosphatase and tensin homolog missing on chromosome 10) mouse model of ASD. Auditory temporal processing is crucial for speech recognition and language development and deficits will cause language impairments. However, very little is known about the development of temporal processing in ASD animal models, and if there are sex differences. To address this major gap, we recorded epidural electroencephalography (EEG) signals from the frontal (FC) and auditory (AC) cortex in developing and adult Nse-cre PTEN mice, in which Pten is deleted in specific cortical layers (layers III-V) (PTEN conditional knock-out (cKO). We quantified resting EEG spectral power distribution, auditory event related potentials (ERP) and temporal processing from awake and freely moving male and female mice. Temporal processing is measured using a gap-in-noise-ASSR (auditory steady state response) stimulus paradigm. The experimental manipulation of gap duration and modulation depth allows us to measure cortical entrainment to rapid gaps in sounds. Temporal processing was quantified using inter-trial phase clustering (ITPC) values that account for phase consistency across trials. The results show genotype differences in resting power distribution in PTEN cKO mice throughout development. Male and female cKO mice have significantly increased beta power but decreased high frequency oscillations in the AC and FC. Both male and female PTEN cKO mice show diminished ITPC in their gap-ASSR responses in the AC and FC compared to control mice. Overall, deficits become more prominent in adult (p60) mice, with cKO mice having significantly increased sound evoked power and decreased ITPC compared to controls. While both male and female cKO mice demonstrated severe temporal processing deficits across development, female cKO mice showed increased hypersensitivity compared to males, reflected as increased N1 and P2 amplitudes. These data identify a number of novel sensory processing deficits in a PTEN-ASD mouse model that are present from an early age. Abnormal temporal processing and hypersensitive responses may contribute to abnormal development of language function in ASD.
Collapse
Affiliation(s)
- Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, United States of America
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, United States of America
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Michael A Erickson
- Psychology Department, University of California, Riverside, United States of America
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, United States of America; Biomedical Sciences, School of Medicine, University of California, Riverside, United States of America
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, United States of America; Psychology Department, University of California, Riverside, United States of America.
| |
Collapse
|
6
|
Dekydtspotter L, Miller AK, Swanson K, Cha JH, Xiong Y, Ahn JH, Gilbert JA, Pope D, Iverson M, Meinert K. Hierarchical neural processing in γ oscillations for syntactic and semantic operations accounts for first- and second-language epistemology. Front Hum Neurosci 2024; 18:1372909. [PMID: 39376494 PMCID: PMC11456458 DOI: 10.3389/fnhum.2024.1372909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction We discuss event-related power differences (ERPDs) in low- and broadband-γ oscillations as the embedded-clause edge is processed in wh-dependencies such as Which decision regarding/about him/her did Paul say that Lydie rejected without hesitation? in first (L1) and second language (L2) French speakers. Methods The experimental conditions manipulated whether pronouns appeared in modifiers (Mods; regarding him/her) or in noun complements (Comps; about him/her) and whether they matched or mismatched a matrix-clause subject in gender. Results Across L1 and L2 speakers, we found that anaphora-linked ERPDs for Mods vs. Comps in evoked power first arose in low γ and then in broadband γ. Referential elements first seem to be retrieved from working memory by narrowband processes in low γ and then referential identification seems to be computed in broadband-γ output. Interactions between discourse- and syntax-based referential processes for the Mods vs. Comps in these ERPDs furthermore suggest that multidomain γ-band processing enables a range of elementary operations for discourse and semantic interpretation. Discussion We argue that a multidomain mechanism enabling operations conditioned by the syntactic and semantic nature of the elements processed interacts with local brain microcircuits representing features and feature sets that have been established in L1 or L2 acquisition, accounting for a single language epistemology across learning contexts.
Collapse
Affiliation(s)
- Laurent Dekydtspotter
- Department of French & Italian, Indiana University, Bloomington, IN, United States
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - A. Kate Miller
- Department of World Languages and Cultures, Indiana University–Indianapolis, Indianapolis, IN, United States
| | - Kyle Swanson
- Oral English Proficiency Program, Purdue University, West Lafayette, IN, United States
| | - Jih-Ho Cha
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - Yanyu Xiong
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States
| | - Jae-Hyun Ahn
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - Jane A. Gilbert
- Department of French & Italian, Indiana University, Bloomington, IN, United States
| | - Decker Pope
- Department of French & Italian, Indiana University, Bloomington, IN, United States
| | - Mike Iverson
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - Kent Meinert
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| |
Collapse
|
7
|
Mazzini S, Yadnik S, Timmers I, Rubio-Gozalbo E, Jansma BM. Altered neural oscillations in classical galactosaemia during sentence production. J Inherit Metab Dis 2024; 47:690-702. [PMID: 38600724 DOI: 10.1002/jimd.12740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Classical galactosaemia (CG) is a hereditary disease in galactose metabolism that despite dietary treatment is characterized by a wide range of cognitive deficits, among which is language production. CG brain functioning has been studied with several neuroimaging techniques, which revealed both structural and functional atypicalities. In the present study, for the first time, we compared the oscillatory dynamics, especially the power spectrum and time-frequency representations (TFR), in the electroencephalography (EEG) of CG patients and healthy controls while they were performing a language production task. Twenty-one CG patients and 19 healthy controls described animated scenes, either in full sentences or in words, indicating two levels of complexity in syntactic planning. Based on previous work on the P300 event related potential (ERP) and its relation with theta frequency, we hypothesized that the oscillatory activity of patients and controls would differ in theta power and TFR. With regard to behavior, reaction times showed that patients are slower, reflecting the language deficit. In the power spectrum, we observed significant higher power in patients in delta (1-3 Hz), theta (4-7 Hz), beta (15-30 Hz) and gamma (30-70 Hz) frequencies, but not in alpha (8-12 Hz), suggesting an atypical oscillatory profile. The time-frequency analysis revealed significantly weaker event-related theta synchronization (ERS) and alpha desynchronization (ERD) in patients in the sentence condition. The data support the hypothesis that CG language difficulties relate to theta-alpha brain oscillations.
Collapse
Affiliation(s)
- Sara Mazzini
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sai Yadnik
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Inge Timmers
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bernadette M Jansma
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Baus C, Millan I, Chen XJ, Blanco-Elorrieta E. Exploring the Interplay Between Language Comprehension and Cortical Tracking: The Bilingual Test Case. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:484-496. [PMID: 38911463 PMCID: PMC11192516 DOI: 10.1162/nol_a_00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 06/25/2024]
Abstract
Cortical tracking, the synchronization of brain activity to linguistic rhythms is a well-established phenomenon. However, its nature has been heavily contested: Is it purely epiphenomenal or does it play a fundamental role in speech comprehension? Previous research has used intelligibility manipulations to examine this topic. Here, we instead varied listeners' language comprehension skills while keeping the auditory stimulus constant. To do so, we tested 22 native English speakers and 22 Spanish/Catalan bilinguals learning English as a second language (SL) in an EEG cortical entrainment experiment and correlated the responses with the magnitude of the N400 component of a semantic comprehension task. As expected, native listeners effectively tracked sentential, phrasal, and syllabic linguistic structures. In contrast, SL listeners exhibited limitations in tracking sentential structures but successfully tracked phrasal and syllabic rhythms. Importantly, the amplitude of the neural entrainment correlated with the amplitude of the detection of semantic incongruities in SLs, showing a direct connection between tracking and the ability to understand speech. Together, these findings shed light on the interplay between language comprehension and cortical tracking, to identify neural entrainment as a fundamental principle for speech comprehension.
Collapse
Affiliation(s)
- Cristina Baus
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | | | - Esti Blanco-Elorrieta
- Department of Psychology, New York University, New York, NY, USA
- Department of Neural Science, New York University, New York, NY, USA
| |
Collapse
|
9
|
Mukerji CE, Wilson JS, Wilkinson CL, Krol MA, Nelson CA, Tager-Flusberg H. Resting Frontal Gamma Power is Associated with Both Expressive Language and Non-verbal Cognitive Abilities in Young Autistic Children. J Autism Dev Disord 2024:10.1007/s10803-024-06308-3. [PMID: 38607475 DOI: 10.1007/s10803-024-06308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Previous research links resting frontal gamma power to key developmental outcomes in young neurotypical (NT) children and infants at risk for language impairment. However, it remains unclear whether gamma power is specifically associated with language or with more general cognitive abilities among young children diagnosed with autism spectrum disorder (ASD). The current study evaluates differences in resting frontal gamma power between young autistic and NT children and tests whether gamma power is uniquely associated with individual differences in expressive language, receptive language and non-verbal cognitive abilities in autistic and NT children. Participants included 48 autistic children and 58 age- and sex-matched NT children (ages 22-60 months). Baseline electroencephalography (EEG) recordings were acquired from each participant. Children also completed the Mullen Scales of Early Learning (MSEL). We found that frontal gamma power at rest did not differ between autistic and NT children. Among autistic children, reduced frontal gamma power was significantly associated with both higher expressive language skills and higher non-verbal cognitive skills, controlling for age and sex. The interaction between frontal gamma power and diagnostic status no longer explained unique variance in expressive language skills after controlling for variance associated with non-verbal cognitive skills across autistic and NT children. Together, these findings suggest that reduced gamma power is associated with both better expressive language and non-verbal cognitive skills among young autistic children. Moreover, associations between high frequency neural activity and cognition are not specific to verbal abilities but reflect neural mechanisms associated with general higher-order cognitive abilities in ASD.
Collapse
Affiliation(s)
- Cora E Mukerji
- Department of Psychology, Bryn Mawr College, 101 N Merion Ave, Bryn Mawr, PA, 19010, USA
| | - John S Wilson
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Carol L Wilkinson
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School & Harvard Graduate School of Education, Boston, MA, USA
| | - Manon A Krol
- Donders Institute, Radboudumc, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Charles A Nelson
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School & Harvard Graduate School of Education, Boston, MA, USA
| | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Ershaid H, Lizarazu M, McLaughlin D, Cooke M, Simantiraki O, Koutsogiannaki M, Lallier M. Contributions of listening effort and intelligibility to cortical tracking of speech in adverse listening conditions. Cortex 2024; 172:54-71. [PMID: 38215511 DOI: 10.1016/j.cortex.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 01/14/2024]
Abstract
Cortical tracking of speech is vital for speech segmentation and is linked to speech intelligibility. However, there is no clear consensus as to whether reduced intelligibility leads to a decrease or an increase in cortical speech tracking, warranting further investigation of the factors influencing this relationship. One such factor is listening effort, defined as the cognitive resources necessary for speech comprehension, and reported to have a strong negative correlation with speech intelligibility. Yet, no studies have examined the relationship between speech intelligibility, listening effort, and cortical tracking of speech. The aim of the present study was thus to examine these factors in quiet and distinct adverse listening conditions. Forty-nine normal hearing adults listened to sentences produced casually, presented in quiet and two adverse listening conditions: cafeteria noise and reverberant speech. Electrophysiological responses were registered with electroencephalogram, and listening effort was estimated subjectively using self-reported scores and objectively using pupillometry. Results indicated varying impacts of adverse conditions on intelligibility, listening effort, and cortical tracking of speech, depending on the preservation of the speech temporal envelope. The more distorted envelope in the reverberant condition led to higher listening effort, as reflected in higher subjective scores, increased pupil diameter, and stronger cortical tracking of speech in the delta band. These findings suggest that using measures of listening effort in addition to those of intelligibility is useful for interpreting cortical tracking of speech results. Moreover, reading and phonological skills of participants were positively correlated with listening effort in the cafeteria condition, suggesting a special role of expert language skills in processing speech in this noisy condition. Implications for future research and theories linking atypical cortical tracking of speech and reading disorders are further discussed.
Collapse
Affiliation(s)
- Hadeel Ershaid
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Mikel Lizarazu
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Drew McLaughlin
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Martin Cooke
- Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| | | | | | - Marie Lallier
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
11
|
Silva Pereira S, Özer EE, Sebastian-Galles N. Complexity of STG signals and linguistic rhythm: a methodological study for EEG data. Cereb Cortex 2024; 34:bhad549. [PMID: 38236741 DOI: 10.1093/cercor/bhad549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 02/06/2024] Open
Abstract
The superior temporal and the Heschl's gyri of the human brain play a fundamental role in speech processing. Neurons synchronize their activity to the amplitude envelope of the speech signal to extract acoustic and linguistic features, a process known as neural tracking/entrainment. Electroencephalography has been extensively used in language-related research due to its high temporal resolution and reduced cost, but it does not allow for a precise source localization. Motivated by the lack of a unified methodology for the interpretation of source reconstructed signals, we propose a method based on modularity and signal complexity. The procedure was tested on data from an experiment in which we investigated the impact of native language on tracking to linguistic rhythms in two groups: English natives and Spanish natives. In the experiment, we found no effect of native language but an effect of language rhythm. Here, we compare source projected signals in the auditory areas of both hemispheres for the different conditions using nonparametric permutation tests, modularity, and a dynamical complexity measure. We found increasing values of complexity for decreased regularity in the stimuli, giving us the possibility to conclude that languages with less complex rhythms are easier to track by the auditory cortex.
Collapse
Affiliation(s)
- Silvana Silva Pereira
- Center for Brain and Cognition, Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Ege Ekin Özer
- Center for Brain and Cognition, Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Nuria Sebastian-Galles
- Center for Brain and Cognition, Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| |
Collapse
|
12
|
Assaneo MF, Orpella J. Rhythms in Speech. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:257-274. [PMID: 38918356 DOI: 10.1007/978-3-031-60183-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Speech can be defined as the human ability to communicate through a sequence of vocal sounds. Consequently, speech requires an emitter (the speaker) capable of generating the acoustic signal and a receiver (the listener) able to successfully decode the sounds produced by the emitter (i.e., the acoustic signal). Time plays a central role at both ends of this interaction. On the one hand, speech production requires precise and rapid coordination, typically within the order of milliseconds, of the upper vocal tract articulators (i.e., tongue, jaw, lips, and velum), their composite movements, and the activation of the vocal folds. On the other hand, the generated acoustic signal unfolds in time, carrying information at different timescales. This information must be parsed and integrated by the receiver for the correct transmission of meaning. This chapter describes the temporal patterns that characterize the speech signal and reviews research that explores the neural mechanisms underlying the generation of these patterns and the role they play in speech comprehension.
Collapse
Affiliation(s)
- M Florencia Assaneo
- Instituto de Neurobiología, Universidad Autónoma de México, Santiago de Querétaro, Mexico.
| | - Joan Orpella
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
13
|
Jensen M, Hyder R, Westner BU, Højlund A, Shtyrov Y. Speech comprehension across time, space, frequency, and age: MEG-MVPA classification of intertrial phase coherence. Neuropsychologia 2023; 188:108602. [PMID: 37270028 DOI: 10.1016/j.neuropsychologia.2023.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Language is a key part of human cognition, essential for our well-being at all stages of our lives. Whereas many neurocognitive abilities decline with age, for language the picture is much less clear, and how exactly speech comprehension changes with ageing is still unknown. To investigate this, we employed magnetoencephalography (MEG) and recorded neuromagnetic brain responses to auditory linguistic stimuli in healthy participants of younger and older age using a passive task-free paradigm and a range of different linguistic stimulus contrasts, which enabled us to assess neural processing of spoken language at multiple levels (lexical, semantic, morphosyntactic). Using machine learning-based classification algorithms to scrutinise intertrial phase coherence of MEG responses in cortical source space, we found that patterns of oscillatory neural activity diverged between younger and older participants across several frequency bands (alpha, beta, gamma) for all tested linguistic information types. The results suggest multiple age-related changes in the brain's neurolinguistic circuits, which may be due to both healthy ageing in general and compensatory processes in particular.
Collapse
Affiliation(s)
- Mads Jensen
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Research Unit for Robophilosophy and Integrative Social Robotics, School of Culture and Society, Aarhus University, Aarhus, Denmark; Interacting Minds Centre, School of Culture and Society, Aarhus University, Aarhus, Denmark.
| | - Rasha Hyder
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Britta U Westner
- Radboud University, Donders Centre for Cognition, Nijmegen, the Netherlands
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
14
|
Croom K, Rumschlag JA, Erickson MA, Binder DK, Razak KA. Developmental delays in cortical auditory temporal processing in a mouse model of Fragile X syndrome. J Neurodev Disord 2023; 15:23. [PMID: 37516865 PMCID: PMC10386252 DOI: 10.1186/s11689-023-09496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) encompass a wide array of debilitating symptoms, including sensory dysfunction and delayed language development. Auditory temporal processing is crucial for speech perception and language development. Abnormal development of temporal processing may account for the language impairments associated with ASD. Very little is known about the development of temporal processing in any animal model of ASD. METHODS In the current study, we quantify auditory temporal processing throughout development in the Fmr1 knock-out (KO) mouse model of Fragile X Syndrome (FXS), a leading genetic cause of intellectual disability and ASD-associated behaviors. Using epidural electrodes in awake and freely moving wildtype (WT) and KO mice, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (gap-ASSR) paradigm. Mice were recorded at three different ages in a cross sectional design: postnatal (p)21, p30 and p60. Recordings were obtained from both auditory and frontal cortices. The gap-ASSR requires underlying neural generators to synchronize responses to gaps of different widths embedded in noise, providing an objective measure of temporal processing across genotypes and age groups. RESULTS We present evidence that the frontal, but not auditory, cortex shows significant temporal processing deficits at p21 and p30, with poor ability to phase lock to rapid gaps in noise. Temporal processing was similar in both genotypes in adult mice. ERP amplitudes were larger in Fmr1 KO mice in both auditory and frontal cortex, consistent with ERP data in humans with FXS. CONCLUSIONS These data indicate cortical region-specific delays in temporal processing development in Fmr1 KO mice. Developmental delays in the ability of frontal cortex to follow rapid changes in sounds may shape language delays in FXS, and more broadly in ASD.
Collapse
Affiliation(s)
- Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, USA
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, USA
| | | | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, USA
- Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, USA.
- Department of Psychology, University of California, Riverside, USA.
| |
Collapse
|
15
|
Stinkeste C, Vincent MA, Delrue L, Brunellière A. Between alpha and gamma oscillations: Neural signatures of linguistic predictions and listener's attention to speaker's communication intention. Biol Psychol 2023; 180:108583. [PMID: 37156325 DOI: 10.1016/j.biopsycho.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
When listeners hear a message produced by their interlocutor, they can predict upcoming words thanks to the sentential context and their attention can be focused on the speaker's communication intention. In two electroencephalographical (EEG) studies, we investigated the oscillatory correlates of prediction in spoken-language comprehension and how they are modulated by the listener's attention. Sentential contexts which were strongly predictive of a particular word were ended by a possessive adjective either matching the gender of the predicted word or not. Alpha, beta and gamma oscillations were studied as they were considered to play a crucial role in the predictive process. While evidence of word prediction was related to alpha fluctuations when listeners focused their attention on sentence meaning, changes in high-gamma oscillations were triggered by word prediction when listeners focused their attention on the speaker's communication intention. Independently of the endogenous attention to a level of linguistic information, the oscillatory correlates of word predictions in language comprehension were sensitive to the prosodic emphasis produced by the speaker at a late stage. These findings thus bear major implications for understanding the neural mechanisms that support predictive processing in spoken-language comprehension.
Collapse
Affiliation(s)
- Charlotte Stinkeste
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France
| | - Marion A Vincent
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France
| | - Laurence Delrue
- Univ. Lille, CNRS, UMR 8163 - STL - Savoirs Textes Langage, F-59000 Lille, France
| | - Angèle Brunellière
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France.
| |
Collapse
|
16
|
Lu Y, Jin P, Ding N, Tian X. Delta-band neural tracking primarily reflects rule-based chunking instead of semantic relatedness between words. Cereb Cortex 2023; 33:4448-4458. [PMID: 36124831 PMCID: PMC10110438 DOI: 10.1093/cercor/bhac354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/14/2022] Open
Abstract
It is debated whether cortical responses matching the time scales of phrases and sentences mediate the mental construction of the syntactic chunks or are simply caused by the semantic properties of words. Here, we investigate to what extent delta-band neural responses to speech can be explained by semantic relatedness between words. To dissociate the contribution of semantic relatedness from sentential structures, participants listened to sentence sequences and paired-word sequences in which semantically related words repeated at 1 Hz. Semantic relatedness in the 2 types of sequences was quantified using a word2vec model that captured the semantic relation between words without considering sentential structure. The word2vec model predicted comparable 1-Hz responses with paired-word sequences and sentence sequences. However, empirical neural activity, recorded using magnetoencephalography, showed a weaker 1-Hz response to paired-word sequences than sentence sequences in a word-level task that did not require sentential processing. Furthermore, when listeners applied a task-related rule to parse paired-word sequences into multi-word chunks, 1-Hz response was stronger than that in word-level task on the same sequences. Our results suggest that cortical activity tracks multi-word chunks constructed by either syntactic rules or task-related rules, whereas the semantic relatedness between words contributes only in a minor way.
Collapse
Affiliation(s)
- Yuhan Lu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Peiqing Jin
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Nai Ding
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
- Research Center for Applied Mathematics and Machine Intelligence, Research Institute of Basic Theories, Zhejiang Lab, Hangzhou 311121, China
| | - Xing Tian
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Division of Arts and Sciences, New York University Shanghai
| |
Collapse
|
17
|
Kösem A, Dai B, McQueen JM, Hagoort P. Neural tracking of speech envelope does not unequivocally reflect intelligibility. Neuroimage 2023; 272:120040. [PMID: 36935084 DOI: 10.1016/j.neuroimage.2023.120040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
During listening, brain activity tracks the rhythmic structures of speech signals. Here, we directly dissociated the contribution of neural envelope tracking in the processing of speech acoustic cues from that related to linguistic processing. We examined the neural changes associated with the comprehension of Noise-Vocoded (NV) speech using magnetoencephalography (MEG). Participants listened to NV sentences in a 3-phase training paradigm: (1) pre-training, where NV stimuli were barely comprehended, (2) training with exposure of the original clear version of speech stimulus, and (3) post-training, where the same stimuli gained intelligibility from the training phase. Using this paradigm, we tested if the neural responses of a speech signal was modulated by its intelligibility without any change in its acoustic structure. To test the influence of spectral degradation on neural envelope tracking independently of training, participants listened to two types of NV sentences (4-band and 2-band NV speech), but were only trained to understand 4-band NV speech. Significant changes in neural tracking were observed in the delta range in relation to the acoustic degradation of speech. However, we failed to find a direct effect of intelligibility on the neural tracking of speech envelope in both theta and delta ranges, in both auditory regions-of-interest and whole-brain sensor-space analyses. This suggests that acoustics greatly influence the neural tracking response to speech envelope, and that caution needs to be taken when choosing the control signals for speech-brain tracking analyses, considering that a slight change in acoustic parameters can have strong effects on the neural tracking response.
Collapse
Affiliation(s)
- Anne Kösem
- Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands; Lyon Neuroscience Research Center (CRNL), CoPhy Team, INSERM U1028, 69500 Bron, France.
| | - Bohan Dai
- Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - James M McQueen
- Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
18
|
Rimmele JM, Sun Y, Michalareas G, Ghitza O, Poeppel D. Dynamics of Functional Networks for Syllable and Word-Level Processing. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:120-144. [PMID: 37229144 PMCID: PMC10205074 DOI: 10.1162/nol_a_00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/07/2022] [Indexed: 05/27/2023]
Abstract
Speech comprehension requires the ability to temporally segment the acoustic input for higher-level linguistic analysis. Oscillation-based approaches suggest that low-frequency auditory cortex oscillations track syllable-sized acoustic information and therefore emphasize the relevance of syllabic-level acoustic processing for speech segmentation. How syllabic processing interacts with higher levels of speech processing, beyond segmentation, including the anatomical and neurophysiological characteristics of the networks involved, is debated. In two MEG experiments, we investigate lexical and sublexical word-level processing and the interactions with (acoustic) syllable processing using a frequency-tagging paradigm. Participants listened to disyllabic words presented at a rate of 4 syllables/s. Lexical content (native language), sublexical syllable-to-syllable transitions (foreign language), or mere syllabic information (pseudo-words) were presented. Two conjectures were evaluated: (i) syllable-to-syllable transitions contribute to word-level processing; and (ii) processing of words activates brain areas that interact with acoustic syllable processing. We show that syllable-to-syllable transition information compared to mere syllable information, activated a bilateral superior, middle temporal and inferior frontal network. Lexical content resulted, additionally, in increased neural activity. Evidence for an interaction of word- and acoustic syllable-level processing was inconclusive. Decreases in syllable tracking (cerebroacoustic coherence) in auditory cortex and increases in cross-frequency coupling between right superior and middle temporal and frontal areas were found when lexical content was present compared to all other conditions; however, not when conditions were compared separately. The data provide experimental insight into how subtle and sensitive syllable-to-syllable transition information for word-level processing is.
Collapse
Affiliation(s)
- Johanna M. Rimmele
- Departments of Neuroscience and Cognitive Neuropsychology, Max-Planck-Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Max Planck NYU Center for Language, Music and Emotion, Frankfurt am Main, Germany; New York, NY, USA
| | - Yue Sun
- Departments of Neuroscience and Cognitive Neuropsychology, Max-Planck-Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Georgios Michalareas
- Departments of Neuroscience and Cognitive Neuropsychology, Max-Planck-Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Oded Ghitza
- Departments of Neuroscience and Cognitive Neuropsychology, Max-Planck-Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- College of Biomedical Engineering & Hearing Research Center, Boston University, Boston, MA, USA
| | - David Poeppel
- Departments of Neuroscience and Cognitive Neuropsychology, Max-Planck-Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
- Max Planck NYU Center for Language, Music and Emotion, Frankfurt am Main, Germany; New York, NY, USA
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Rahimi V, Mohammadkhani G, Alaghband Rad J, Mousavi SZ, Khalili ME. Modulation of auditory temporal processing, speech in noise perception, auditory-verbal memory, and reading efficiency by anodal tDCS in children with dyslexia. Neuropsychologia 2022; 177:108427. [PMID: 36410540 DOI: 10.1016/j.neuropsychologia.2022.108427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Dyslexia is a neurodevelopmental disorder that is prevalent in children. It is estimated that 30-50% of individuals diagnosed with dyslexia also manifest an auditory perceptual deficit characteristic of auditory processing disorder (APD). Some studies suggest that defects in basic auditory processing can lead to phonological defects as the most prominent cause of dyslexia. Thus, in some cases, there may be interrelationships between dyslexia and some of the aspects of central auditory processing. In recent years, transcranial direct current stimulation (tDCS) has been used as a safe method for the modulation of central auditory processing aspects in healthy adults and reading skills in children with dyslexia. Therefore, the objectives of our study were to investigate the effect of tDCS on the modulation of different aspects of central auditory processing, aspects of reading, and the relationship between these two domains in dyslexic children with APD. A within-subjects design was employed to investigate the effect of two electrode arrays (the anode on the left STG (AC)/cathode on the right shoulder and anode on the left STG/cathode on the right STG) on auditory temporal processing; speech-in-noise perception, short-term auditory memory; and high-frequency word, low-frequency word, pseudoword, and text reading. The results of this clinical trial showed the modulation of the studied variables in central auditory processing and the accuracy and speed of reading variables compared to the control and sham statuses in both electrode arrays. Our results also showed that the improvement of the accuracy and speed of text reading, as well as the accuracy of pseudoword reading were related to the improvement of speech in noise perception and temporal processing. The results of this research can be effective in clarifying the basis of the neurobiology of dyslexia and, in particular, the hypothesis of the role of basic auditory processing and subsequently the role of the auditory cortex in dyslexia. These results might provide a framework to facilitate behavioral rehabilitation in dyslexic children with APD.
Collapse
Affiliation(s)
- Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran.
| | - Javad Alaghband Rad
- Department of Psychiatry, Tehran University of Medical Sciences, Roozbeh Hospital, Tehran, Iran
| | - Seyyedeh Zohre Mousavi
- Department of Speech Therapy, School of Rehabilitation, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Ehsan Khalili
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
20
|
Broderick MP, Zuk NJ, Anderson AJ, Lalor EC. More than words: Neurophysiological correlates of semantic dissimilarity depend on comprehension of the speech narrative. Eur J Neurosci 2022; 56:5201-5214. [PMID: 35993240 DOI: 10.1111/ejn.15805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Speech comprehension relies on the ability to understand words within a coherent context. Recent studies have attempted to obtain electrophysiological indices of this process by modelling how brain activity is affected by a word's semantic dissimilarity to preceding words. Although the resulting indices appear robust and are strongly modulated by attention, it remains possible that, rather than capturing the contextual understanding of words, they may actually reflect word-to-word changes in semantic content without the need for a narrative-level understanding on the part of the listener. To test this, we recorded electroencephalography from subjects who listened to speech presented in either its original, narrative form, or after scrambling the word order by varying amounts. This manipulation affected the ability of subjects to comprehend the speech narrative but not the ability to recognise individual words. Neural indices of semantic understanding and low-level acoustic processing were derived for each scrambling condition using the temporal response function. Signatures of semantic processing were observed when speech was unscrambled or minimally scrambled and subjects understood the speech. The same markers were absent for higher scrambling levels as speech comprehension dropped. In contrast, word recognition remained high and neural measures related to envelope tracking did not vary significantly across scrambling conditions. This supports the previous claim that electrophysiological indices based on the semantic dissimilarity of words to their context reflect a listener's understanding of those words relative to that context. It also highlights the relative insensitivity of neural measures of low-level speech processing to speech comprehension.
Collapse
Affiliation(s)
- Michael P Broderick
- School of Engineering, Trinity Centre for Biomedical Engineering and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Nathaniel J Zuk
- School of Engineering, Trinity Centre for Biomedical Engineering and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Andrew J Anderson
- Del Monte Institute for Neuroscience, Department of Neuroscience, Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Edmund C Lalor
- School of Engineering, Trinity Centre for Biomedical Engineering and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Del Monte Institute for Neuroscience, Department of Neuroscience, Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
21
|
Bai F, Meyer AS, Martin AE. Neural dynamics differentially encode phrases and sentences during spoken language comprehension. PLoS Biol 2022; 20:e3001713. [PMID: 35834569 PMCID: PMC9282610 DOI: 10.1371/journal.pbio.3001713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
Human language stands out in the natural world as a biological signal that uses a structured system to combine the meanings of small linguistic units (e.g., words) into larger constituents (e.g., phrases and sentences). However, the physical dynamics of speech (or sign) do not stand in a one-to-one relationship with the meanings listeners perceive. Instead, listeners infer meaning based on their knowledge of the language. The neural readouts of the perceptual and cognitive processes underlying these inferences are still poorly understood. In the present study, we used scalp electroencephalography (EEG) to compare the neural response to phrases (e.g., the red vase) and sentences (e.g., the vase is red), which were close in semantic meaning and had been synthesized to be physically indistinguishable. Differences in structure were well captured in the reorganization of neural phase responses in delta (approximately <2 Hz) and theta bands (approximately 2 to 7 Hz),and in power and power connectivity changes in the alpha band (approximately 7.5 to 13.5 Hz). Consistent with predictions from a computational model, sentences showed more power, more power connectivity, and more phase synchronization than phrases did. Theta-gamma phase-amplitude coupling occurred, but did not differ between the syntactic structures. Spectral-temporal response function (STRF) modeling revealed different encoding states for phrases and sentences, over and above the acoustically driven neural response. Our findings provide a comprehensive description of how the brain encodes and separates linguistic structures in the dynamics of neural responses. They imply that phase synchronization and strength of connectivity are readouts for the constituent structure of language. The results provide a novel basis for future neurophysiological research on linguistic structure representation in the brain, and, together with our simulations, support time-based binding as a mechanism of structure encoding in neural dynamics.
Collapse
Affiliation(s)
- Fan Bai
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Antje S. Meyer
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Andrea E. Martin
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
22
|
Coopmans CW, de Hoop H, Hagoort P, Martin AE. Effects of Structure and Meaning on Cortical Tracking of Linguistic Units in Naturalistic Speech. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:386-412. [PMID: 37216060 PMCID: PMC10158633 DOI: 10.1162/nol_a_00070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/02/2022] [Indexed: 05/24/2023]
Abstract
Recent research has established that cortical activity "tracks" the presentation rate of syntactic phrases in continuous speech, even though phrases are abstract units that do not have direct correlates in the acoustic signal. We investigated whether cortical tracking of phrase structures is modulated by the extent to which these structures compositionally determine meaning. To this end, we recorded electroencephalography (EEG) of 38 native speakers who listened to naturally spoken Dutch stimuli in different conditions, which parametrically modulated the degree to which syntactic structure and lexical semantics determine sentence meaning. Tracking was quantified through mutual information between the EEG data and either the speech envelopes or abstract annotations of syntax, all of which were filtered in the frequency band corresponding to the presentation rate of phrases (1.1-2.1 Hz). Overall, these mutual information analyses showed stronger tracking of phrases in regular sentences than in stimuli whose lexical-syntactic content is reduced, but no consistent differences in tracking between sentences and stimuli that contain a combination of syntactic structure and lexical content. While there were no effects of compositional meaning on the degree of phrase-structure tracking, analyses of event-related potentials elicited by sentence-final words did reveal meaning-induced differences between conditions. Our findings suggest that cortical tracking of structure in sentences indexes the internal generation of this structure, a process that is modulated by the properties of its input, but not by the compositional interpretation of its output.
Collapse
Affiliation(s)
- Cas W. Coopmans
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands
| | - Helen de Hoop
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Andrea E. Martin
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Distracting Linguistic Information Impairs Neural Tracking of Attended Speech. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100043. [DOI: 10.1016/j.crneur.2022.100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
|
24
|
Coopmans CW, Cohn N. An electrophysiological investigation of co-referential processes in visual narrative comprehension. Neuropsychologia 2022; 172:108253. [DOI: 10.1016/j.neuropsychologia.2022.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|
25
|
Wagner M, Ortiz-Mantilla S, Rusiniak M, Benasich AA, Shafer VL, Steinschneider M. Acoustic-level and language-specific processing of native and non-native phonological sequence onsets in the low gamma and theta-frequency bands. Sci Rep 2022; 12:314. [PMID: 35013345 PMCID: PMC8748887 DOI: 10.1038/s41598-021-03611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Acoustic structures associated with native-language phonological sequences are enhanced within auditory pathways for perception, although the underlying mechanisms are not well understood. To elucidate processes that facilitate perception, time-frequency (T-F) analyses of EEGs obtained from native speakers of English and Polish were conducted. Participants listened to same and different nonword pairs within counterbalanced attend and passive conditions. Nonwords contained the onsets /pt/, /pət/, /st/, and /sət/ that occur in both the Polish and English languages with the exception of /pt/, which never occurs in the English language in word onset. Measures of spectral power and inter-trial phase locking (ITPL) in the low gamma (LG) and theta-frequency bands were analyzed from two bilateral, auditory source-level channels, created through source localization modeling. Results revealed significantly larger spectral power in LG for the English listeners to the unfamiliar /pt/ onsets from the right hemisphere at early cortical stages, during the passive condition. Further, ITPL values revealed distinctive responses in high and low-theta to acoustic characteristics of the onsets, which were modulated by language exposure. These findings, language-specific processing in LG and acoustic-level and language-specific processing in theta, support the view that multi scale temporal processing in the LG and theta-frequency bands facilitates speech perception.
Collapse
Affiliation(s)
- Monica Wagner
- St. John's University, St. John's Hall, Room 344 e1, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | | | | | | | - Valerie L Shafer
- The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | | |
Collapse
|
26
|
Palana J, Schwartz S, Tager-Flusberg H. Evaluating the Use of Cortical Entrainment to Measure Atypical Speech Processing: A Systematic Review. Neurosci Biobehav Rev 2021; 133:104506. [PMID: 34942267 DOI: 10.1016/j.neubiorev.2021.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cortical entrainment has emerged as promising means for measuring continuous speech processing in young, neurotypical adults. However, its utility for capturing atypical speech processing has not been systematically reviewed. OBJECTIVES Synthesize evidence regarding the merit of measuring cortical entrainment to capture atypical speech processing and recommend avenues for future research. METHOD We systematically reviewed publications investigating entrainment to continuous speech in populations with auditory processing differences. RESULTS In the 25 publications reviewed, most studies were conducted on older and/or hearing-impaired adults, for whom slow-wave entrainment to speech was often heightened compared to controls. Research conducted on populations with neurodevelopmental disorders, in whom slow-wave entrainment was often reduced, was less common. Across publications, findings highlighted associations between cortical entrainment and speech processing performance differences. CONCLUSIONS Measures of cortical entrainment offer useful means of capturing speech processing differences and future research should leverage them more extensively when studying populations with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Joseph Palana
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA; Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Harvard Medical School, Boston Children's Hospital, 1 Autumn Street, Boston, MA, 02215, USA
| | - Sophie Schwartz
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
27
|
Soni S, Tata MS. Brain electrical dynamics in speech segmentation depends upon prior experience with the language. BRAIN AND LANGUAGE 2021; 219:104967. [PMID: 34022679 DOI: 10.1016/j.bandl.2021.104967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
It remains unclear whether the process of speech tracking, which facilitates speech segmentation, reflects top-down mechanisms related to prior linguistic models or stimulus-driven mechanisms, or possibly both. To address this, we recorded electroencephalography (EEG) responses from native and non-native speakers of English that had different prior experience with the English language but heard acoustically identical stimuli. Despite a significant difference in the ability to segment and perceive speech, our EEG results showed that theta-band tracking of the speech envelope did not depend significantly on prior experience with language. However, tracking in the theta-band did show changes across repetitions of the same sentence, suggesting a priming effect. Furthermore, native and non-native speakers showed different phase dynamics at word boundaries, suggesting differences in segmentation mechanisms. Finally, we found that the correlation between higher frequency dynamics reflecting phoneme-level processing and perceptual segmentation of words might depend on prior experience with the spoken language.
Collapse
Affiliation(s)
- Shweta Soni
- The University of Lethbridge, Lethbridge, AB, Canada.
| | | |
Collapse
|
28
|
Overath T, Paik JH. From acoustic to linguistic analysis of temporal speech structure: Acousto-linguistic transformation during speech perception using speech quilts. Neuroimage 2021; 235:117887. [PMID: 33617990 PMCID: PMC8246445 DOI: 10.1016/j.neuroimage.2021.117887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
Speech perception entails the mapping of the acoustic waveform to linguistic representations. For this transformation to succeed, the speech signal needs to be tracked over various temporal windows at high temporal precision in order to decode linguistic units ranging from phonemes (tens of milliseconds) to sentences (seconds). Here, we tested the hypothesis that cortical processing of speech-specific temporal structure is modulated by higher-level linguistic analysis. Using fMRI, we measured BOLD signal changes to 4 s long speech quilts with variable temporal structure (30, 120, 480, 960 ms segment lengths), as well as natural speech, created from a familiar (English) or foreign (Korean) language. We found evidence for the acoustic analysis of temporal speech properties in superior temporal sulcus (STS): the BOLD signal increased as a function of temporal speech structure in both familiar and foreign languages. However, activity in left inferior gyrus (IFG) revealed evidence for linguistic processing of temporal speech properties: the BOLD signal increased as a function of temporal speech structure only in familiar, but not in foreign speech. Network connectivity analyses suggested that left IFG modulates the processing of temporal speech structure in primary and non-primary auditory cortex, which in turn sensitizes the analysis of temporal speech structure in STS. The results thus suggest that acousto-linguistic transformation of temporal speech structure is achieved by a cortical network comprising primary and non-primary auditory cortex, STS, and left IFG.
Collapse
Affiliation(s)
- Tobias Overath
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina, 27708, U.S.A.; Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, 27708, U.S.A.; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina, 27708, U.S.A..
| | - Joon H Paik
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, 27708, U.S.A
| |
Collapse
|
29
|
Uhler K, Hunter S, Gilley PM. Mismatched response predicts behavioral speech discrimination outcomes in infants with hearing loss and normal hearing. INFANCY 2021; 26:327-348. [PMID: 33481354 DOI: 10.1111/infa.12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023]
Abstract
Children with hearing loss (HL) remain at risk for poorer language abilities than normal hearing (NH) children despite targeted interventions; reasons for these differences remain unclear. In NH children, research suggests speech discrimination is related to language outcomes, yet we know little about it in children with HL under the age of 2 years. We utilized a vowel contrast, /a-i/, and a consonant-vowel contrast, /ba-da/, to examine speech discrimination in 47 NH infants and 40 infants with HL. At Mean age =3 months, EEG recorded from 11 scalp electrodes was used to compute the time-frequency mismatched response (TF-MMRSE ) to the contrasts; at Mean age =9 months, behavioral discrimination was assessed using a head turn task. A machine learning (ML) classifier was used to predict behavioral discrimination when given an arbitrary TF-MMRSE as input, achieving accuracies of 73% for exact classification and 92% for classification within a distance of one class. Linear fits revealed a robust relationship regardless of hearing status or speech contrast. TF-MMRSE responses in the delta (1-3.5 Hz), theta (3.5-8 Hz), and alpha (8-12 Hz) bands explained the most variance in behavioral task performance. Our findings demonstrate the feasibility of using TF-MMRSE to predict later behavioral speech discrimination.
Collapse
Affiliation(s)
- Kristin Uhler
- Children's Hospital Colorado, University of Colorado, Anschutz School of Medicine, Aurora, CO, USA
| | - Sharon Hunter
- University of Colorado, Anschutz School of Medicine, Aurora, CO, USA
| | - Phillip M Gilley
- Institute of Cognitive Science, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
30
|
Rufener KS, Zaehle T. Dysfunctional auditory gamma oscillations in developmental dyslexia: A potential target for a tACS-based intervention. PROGRESS IN BRAIN RESEARCH 2021; 264:211-232. [PMID: 34167657 DOI: 10.1016/bs.pbr.2021.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interventions in developmental dyslexia typically consist of orthography-based reading and writing trainings. However, their efficacy is limited and, consequently, the symptoms persist into adulthood. Critical for this lack of efficacy is the still ongoing debate about the core deficit in dyslexia and its underlying neurobiological causes. There is ample evidence on phonological as well as auditory temporal processing deficits in dyslexia and, on the other hand, cortical gamma oscillations in the auditory cortex as functionally relevant for the extraction of linguistically meaningful information units from the acoustic signal. The present work aims to shed more light on the link between auditory gamma oscillations, phonological awareness, and literacy skills in dyslexia. By mean of EEG, individual gamma frequencies were assessed in a group of children and adolescents diagnosed with dyslexia as well as in an age-matched control group with typical literacy skills. Furthermore, phonological awareness was assessed in both groups, while in dyslexic participants also reading and writing performance was measured. We found significantly lower gamma peak frequencies as well as lower phonological awareness scores in dyslexic participants compared to age-matched controls. Additionally, results showed a positive correlation between the individual gamma frequency and phonological awareness. Our data suggest a hierarchical structure of neural gamma oscillations, phonological awareness, and literacy skills. Thereby, the results emphasize altered gamma oscillation not only as a core deficit in dyslexia but also as a potential target for future causal interventions. We discuss these findings considering non-invasive brain stimulation techniques and suggest transcranial alternating current stimulation as a promising approach to normalize dysfunctional oscillations in dyslexia.
Collapse
Affiliation(s)
| | - Tino Zaehle
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
31
|
Luo C, Ding N. Cortical encoding of acoustic and linguistic rhythms in spoken narratives. eLife 2020; 9:60433. [PMID: 33345775 PMCID: PMC7775109 DOI: 10.7554/elife.60433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/20/2020] [Indexed: 11/13/2022] Open
Abstract
Speech contains rich acoustic and linguistic information. Using highly controlled speech materials, previous studies have demonstrated that cortical activity is synchronous to the rhythms of perceived linguistic units, for example, words and phrases, on top of basic acoustic features, for example, the speech envelope. When listening to natural speech, it remains unclear, however, how cortical activity jointly encodes acoustic and linguistic information. Here we investigate the neural encoding of words using electroencephalography and observe neural activity synchronous to multi-syllabic words when participants naturally listen to narratives. An amplitude modulation (AM) cue for word rhythm enhances the word-level response, but the effect is only observed during passive listening. Furthermore, words and the AM cue are encoded by spatially separable neural responses that are differentially modulated by attention. These results suggest that bottom-up acoustic cues and top-down linguistic knowledge separately contribute to cortical encoding of linguistic units in spoken narratives.
Collapse
Affiliation(s)
- Cheng Luo
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Nai Ding
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China.,Research Center for Advanced Artificial Intelligence Theory, Zhejiang Lab, Hangzhou, China
| |
Collapse
|
32
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
33
|
Poeppel D, Assaneo MF. Speech rhythms and their neural foundations. Nat Rev Neurosci 2020; 21:322-334. [PMID: 32376899 DOI: 10.1038/s41583-020-0304-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
The recognition of spoken language has typically been studied by focusing on either words or their constituent elements (for example, low-level features or phonemes). More recently, the 'temporal mesoscale' of speech has been explored, specifically regularities in the envelope of the acoustic signal that correlate with syllabic information and that play a central role in production and perception processes. The temporal structure of speech at this scale is remarkably stable across languages, with a preferred range of rhythmicity of 2- 8 Hz. Importantly, this rhythmicity is required by the processes underlying the construction of intelligible speech. A lot of current work focuses on audio-motor interactions in speech, highlighting behavioural and neural evidence that demonstrates how properties of perceptual and motor systems, and their relation, can underlie the mesoscale speech rhythms. The data invite the hypothesis that the speech motor cortex is best modelled as a neural oscillator, a conjecture that aligns well with current proposals highlighting the fundamental role of neural oscillations in perception and cognition. The findings also show motor theories (of speech) in a different light, placing new mechanistic constraints on accounts of the action-perception interface.
Collapse
Affiliation(s)
- David Poeppel
- Department of Neuroscience, Max Planck Institute, Frankfurt, Germany. .,Department of Psychology, New York University, New York, NY, USA.
| | - M Florencia Assaneo
- Department of Psychology, New York University, New York, NY, USA.,Instituto de Neurobiologia, Universidad Nacional Autónoma de México Juriquilla, Querétaro, México
| |
Collapse
|
34
|
Coopmans CW, Nieuwland MS. Dissociating activation and integration of discourse referents: Evidence from ERPs and oscillations. Cortex 2020; 126:83-106. [DOI: 10.1016/j.cortex.2019.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
|
35
|
Rubinsten O, Korem N, Levin N, Furman T. Frequency-based Dissociation of Symbolic and Nonsymbolic Numerical Processing during Numerical Comparison. J Cogn Neurosci 2020; 32:762-782. [DOI: 10.1162/jocn_a_01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Recent evidence suggests that during numerical calculation, symbolic and nonsymbolic processing are functionally distinct operations. Nevertheless, both roughly recruit the same brain areas (spatially overlapping networks in the parietal cortex) and happen at the same time (roughly 250 msec poststimulus onset). We tested the hypothesis that symbolic and nonsymbolic processing are segregated by means of functionally relevant networks in different frequency ranges: high gamma (above 50 Hz) for symbolic processing and lower beta (12–17 Hz) for nonsymbolic processing. EEG signals were quantified as participants compared either symbolic numbers or nonsymbolic quantities. Larger EEG gamma-band power was observed for more difficult symbolic comparisons (ratio of 0.8 between the two numbers) than for easier comparisons (ratio of 0.2) over frontocentral regions. Similarly, beta-band power was larger for more difficult nonsymbolic comparisons than for easier ones over parietal areas. These results confirm the existence of a functional dissociation in EEG oscillatory dynamics during numerical processing that is compatible with the notion of distinct linguistic processing of symbolic numbers and approximation of nonsymbolic numerical information.
Collapse
|
36
|
Abstract
Natural sounds contain acoustic dynamics ranging from tens to hundreds of milliseconds. How does the human auditory system encode acoustic information over wide-ranging timescales to achieve sound recognition? Previous work (Teng et al. 2017) demonstrated a temporal coding preference for the theta and gamma ranges, but it remains unclear how acoustic dynamics between these two ranges are coded. Here, we generated artificial sounds with temporal structures over timescales from ~200 to ~30 ms and investigated temporal coding on different timescales. Participants discriminated sounds with temporal structures at different timescales while undergoing magnetoencephalography recording. Although considerable intertrial phase coherence can be induced by acoustic dynamics of all the timescales, classification analyses reveal that the acoustic information of all timescales is preferentially differentiated through the theta and gamma bands, but not through the alpha and beta bands; stimulus reconstruction shows that the acoustic dynamics in the theta and gamma ranges are preferentially coded. We demonstrate that the theta and gamma bands show the generality of temporal coding with comparable capacity. Our findings provide a novel perspective-acoustic information of all timescales is discretised into two discrete temporal chunks for further perceptual analysis.
Collapse
Affiliation(s)
- Xiangbin Teng
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt, Germany
| | - David Poeppel
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt, Germany
- Department of Psychology, New York University, New York, NY 10003, USA
| |
Collapse
|
37
|
Theta band (4~8 Hz) oscillations reflect syllables processing in Chinese spoken word production. ACTA PSYCHOLOGICA SINICA 2020. [DOI: 10.3724/sp.j.1041.2020.01199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Nieuwland MS, Coopmans CW, Sommers RP. Distinguishing Old From New Referents During Discourse Comprehension: Evidence From ERPs and Oscillations. Front Hum Neurosci 2019; 13:398. [PMID: 31803033 PMCID: PMC6870011 DOI: 10.3389/fnhum.2019.00398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/23/2019] [Indexed: 11/26/2022] Open
Abstract
In this EEG study, we used pre-registered and exploratory ERP and time-frequency analyses to investigate the resolution of anaphoric and non-anaphoric noun phrases during discourse comprehension. Participants listened to story contexts that described two antecedents, and subsequently read a target sentence with a critical noun phrase that lexically matched one antecedent ('old'), matched two antecedents ('ambiguous'), partially matched one antecedent in terms of semantic features ('partial-match'), or introduced another referent (non-anaphoric, 'new'). After each target sentence, participants judged whether the noun referred back to an antecedent (i.e., an 'old/new' judgment), which was easiest for ambiguous nouns and hardest for partially matching nouns. The noun-elicited N400 ERP component demonstrated initial sensitivity to repetition and semantic overlap, corresponding to repetition and semantic priming effects, respectively. New and partially matching nouns both elicited a subsequent frontal positivity, which suggested that partially matching anaphors may have been processed as new nouns temporarily. ERPs in an even later time window and ERPs time-locked to sentence-final words suggested that new and partially matching nouns had different effects on comprehension, with partially matching nouns incurring additional processing costs up to the end of the sentence. In contrast to the ERP results, the time-frequency results primarily demonstrated sensitivity to noun repetition, and did not differentiate partially matching anaphors from new nouns. In sum, our results show the ERP and time-frequency effects of referent repetition during discourse comprehension, and demonstrate the potentially demanding nature of establishing the anaphoric meaning of a novel noun.
Collapse
Affiliation(s)
- Mante S. Nieuwland
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Cas W. Coopmans
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Centre for Language Studies, Radboud University, Nijmegen, Netherlands
| | - Rowan P. Sommers
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| |
Collapse
|
39
|
Prystauka Y, Lewis AG. THE POWER OF NEURAL OSCILLATIONS TO INFORM SENTENCE COMPREHENSION: A LINGUISTIC PERSPECTIVE. LANGUAGE AND LINGUISTICS COMPASS 2019; 13:e12347. [PMID: 33042211 PMCID: PMC7546279 DOI: 10.1111/lnc3.12347] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The field of psycholinguistics is currently experiencing an explosion of interest in the analysis of neural oscillations - rhythmic brain activity synchronized at different temporal and spatial levels. Given that language comprehension relies on a myriad of processes, which are carried out in parallel in distributed brain networks, there is hope that this methodology might bring the field closer to understanding some of the more basic (spatially and temporally distributed, yet at the same time often overlapping) neural computations that support language function. In this review we discuss existing proposals linking oscillatory dynamics in different frequency bands to basic neural computations, and review relevant theories suggesting associations between band-specific oscillations and higher-level cognitive processes. More or less consistent patterns of oscillatory activity related to certain types of linguistic processing can already be derived from the evidence that has accumulated over the past few decades. The centerpiece of the current review is a synthesis of such patterns grouped by linguistic phenomenon. We restrict our review to evidence linking measures of oscillatory power to the comprehension of sentences, as well as linguistically (and/or pragmatically) more complex structures. For each grouping, we provide a brief summary and a table of associated oscillatory signatures that a psycholinguist might expect to find when employing a particular linguistic task. Summarizing across different paradigms, we conclude that a handful of basic neural oscillatory mechanisms are likely recruited in different ways and at different times for carrying out a variety of linguistic computations.
Collapse
Affiliation(s)
- Yanina Prystauka
- Department of Psychological Sciences, University of Connecticut
- Connecticut Institute for the Brain and Cognitive Sciences
| | - Ashley Glen Lewis
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
- Haskins Laboratories, New Haven, CT 06510, USA
| |
Collapse
|
40
|
Gehrig J, Michalareas G, Forster MT, Lei J, Hok P, Laufs H, Senft C, Seifert V, Schoffelen JM, Hanslmayr S, Kell CA. Low-Frequency Oscillations Code Speech during Verbal Working Memory. J Neurosci 2019; 39:6498-6512. [PMID: 31196933 PMCID: PMC6697399 DOI: 10.1523/jneurosci.0018-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/21/2022] Open
Abstract
The way the human brain represents speech in memory is still unknown. An obvious characteristic of speech is its evolvement over time. During speech processing, neural oscillations are modulated by the temporal properties of the acoustic speech signal, but also acquired knowledge on the temporal structure of language influences speech perception-related brain activity. This suggests that speech could be represented in the temporal domain, a form of representation that the brain also uses to encode autobiographic memories. Empirical evidence for such a memory code is lacking. We investigated the nature of speech memory representations using direct cortical recordings in the left perisylvian cortex during delayed sentence reproduction in female and male patients undergoing awake tumor surgery. Our results reveal that the brain endogenously represents speech in the temporal domain. Temporal pattern similarity analyses revealed that the phase of frontotemporal low-frequency oscillations, primarily in the beta range, represents sentence identity in working memory. The positive relationship between beta power during working memory and task performance suggests that working memory representations benefit from increased phase separation.SIGNIFICANCE STATEMENT Memory is an endogenous source of information based on experience. While neural oscillations encode autobiographic memories in the temporal domain, little is known on their contribution to memory representations of human speech. Our electrocortical recordings in participants who maintain sentences in memory identify the phase of left frontotemporal beta oscillations as the most prominent information carrier of sentence identity. These observations provide evidence for a theoretical model on speech memory representations and explain why interfering with beta oscillations in the left inferior frontal cortex diminishes verbal working memory capacity. The lack of sentence identity coding at the syllabic rate suggests that sentences are represented in memory in a more abstract form compared with speech coding during speech perception and production.
Collapse
Affiliation(s)
- Johannes Gehrig
- Department of Neurology, Goethe University, 60528 Frankfurt, Germany
| | | | | | - Juan Lei
- Department of Neurology, Goethe University, 60528 Frankfurt, Germany
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt, Germany
| | - Pavel Hok
- Department of Neurology, Goethe University, 60528 Frankfurt, Germany
- Department of Neurology, Palacky University and University Hospital Olomouc, 77147 Olomouc, Czech Republic
| | - Helmut Laufs
- Department of Neurology, Goethe University, 60528 Frankfurt, Germany
- Department of Neurology, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Christian Senft
- Department of Neurosurgery, Goethe University, 60528 Frankfurt, Germany
| | - Volker Seifert
- Department of Neurosurgery, Goethe University, 60528 Frankfurt, Germany
| | - Jan-Mathijs Schoffelen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6525 HR Nijmegen, The Netherlands, and
| | - Simon Hanslmayr
- School of Psychology at University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Christian A Kell
- Department of Neurology, Goethe University, 60528 Frankfurt, Germany,
| |
Collapse
|
41
|
Rufener KS, Krauel K, Meyer M, Heinze HJ, Zaehle T. Transcranial electrical stimulation improves phoneme processing in developmental dyslexia. Brain Stimul 2019; 12:930-937. [DOI: 10.1016/j.brs.2019.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/18/2018] [Accepted: 02/11/2019] [Indexed: 11/29/2022] Open
|
42
|
Neural Speech Tracking in the Theta and in the Delta Frequency Band Differentially Encode Clarity and Comprehension of Speech in Noise. J Neurosci 2019; 39:5750-5759. [PMID: 31109963 PMCID: PMC6636082 DOI: 10.1523/jneurosci.1828-18.2019] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 11/21/2022] Open
Abstract
Humans excel at understanding speech even in adverse conditions such as background noise. Speech processing may be aided by cortical activity in the delta and theta frequency bands, which have been found to track the speech envelope. However, the rhythm of non-speech sounds is tracked by cortical activity as well. It therefore remains unclear which aspects of neural speech tracking represent the processing of acoustic features, related to the clarity of speech, and which aspects reflect higher-level linguistic processing related to speech comprehension. Here we disambiguate the roles of cortical tracking for speech clarity and comprehension through recording EEG responses to native and foreign language in different levels of background noise, for which clarity and comprehension vary independently. We then use a both a decoding and an encoding approach to relate clarity and comprehension to the neural responses. We find that cortical tracking in the theta frequency band is mainly correlated to clarity, whereas the delta band contributes most to speech comprehension. Moreover, we uncover an early neural component in the delta band that informs on comprehension and that may reflect a predictive mechanism for language processing. Our results disentangle the functional contributions of cortical speech tracking in the delta and theta bands to speech processing. They also show that both speech clarity and comprehension can be accurately decoded from relatively short segments of EEG recordings, which may have applications in future mind-controlled auditory prosthesis. SIGNIFICANCE STATEMENT Speech is a highly complex signal whose processing requires analysis from lower-level acoustic features to higher-level linguistic information. Recent work has shown that neural activity in the delta and theta frequency bands track the rhythm of speech, but the role of this tracking for speech processing remains unclear. Here we disentangle the roles of cortical entrainment in different frequency bands and at different temporal lags for speech clarity, reflecting the acoustics of the signal, and speech comprehension, related to linguistic processing. We show that cortical speech tracking in the theta frequency band encodes mostly speech clarity, and thus acoustic aspects of the signal, whereas speech tracking in the delta band encodes the higher-level speech comprehension.
Collapse
|
43
|
Zou J, Feng J, Xu T, Jin P, Luo C, Zhang J, Pan X, Chen F, Zheng J, Ding N. Auditory and language contributions to neural encoding of speech features in noisy environments. Neuroimage 2019; 192:66-75. [DOI: 10.1016/j.neuroimage.2019.02.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 11/28/2022] Open
|
44
|
White EJ, Nayman C, Dunkley BT, Keller AE, Valiante TA, Pang EW. Addressing the Language Binding Problem With Dynamic Functional Connectivity During Meaningful Spoken Language Comprehension. Front Psychol 2018; 9:1960. [PMID: 30369900 PMCID: PMC6194231 DOI: 10.3389/fpsyg.2018.01960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/24/2018] [Indexed: 11/18/2022] Open
Abstract
During speech, how does the brain integrate information processed on different timescales and in separate brain areas so we can understand what is said? This is the language binding problem. Dynamic functional connectivity (brief periods of synchronization in the phase of EEG oscillations) may provide some answers. Here we investigate time and frequency characteristics of oscillatory power and phase synchrony (dynamic functional connectivity) during speech comprehension. Twenty adults listened to meaningful English sentences and non-sensical “Jabberwocky” sentences in which pseudo-words replaced all content words, while EEG was recorded. Results showed greater oscillatory power and global connectivity strength (mean phase lag index) in the gamma frequency range (30–80 Hz) for English compared to Jabberwocky. Increased power and connectivity relative to baseline was also seen in the theta frequency range (4–7 Hz), but was similar for English and Jabberwocky. High-frequency gamma oscillations may reflect a mechanism by which the brain transfers and integrates linguistic information so we can extract meaning and understand what is said. Slower frequency theta oscillations may support domain-general processing of the rhythmic features of speech. Our findings suggest that constructing a meaningful representation of speech involves dynamic interactions among distributed brain regions that communicate through frequency-specific functional networks.
Collapse
Affiliation(s)
- Erin J White
- Neurosciences and Mental Health, Sick Kids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada
| | - Candace Nayman
- Neurosciences and Mental Health, Sick Kids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Benjamin T Dunkley
- Neurosciences and Mental Health, Sick Kids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Anne E Keller
- Neurosciences and Mental Health, Sick Kids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada
| | - Taufik A Valiante
- Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada.,Krembil Research Institute, University Health Network and Toronto Western Hospital, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Elizabeth W Pang
- Neurosciences and Mental Health, Sick Kids Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Epilespy Research Program of the Ontario Brain Institute, Toronto, ON, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
45
|
Abstract
Using magnetoencephalography, the current study examined gamma activity associated with language prediction. Participants read high- and low-constraining sentences in which the final word of the sentence was either expected or unexpected. Although no consistent gamma power difference induced by the sentence-final words was found between the expected and unexpected conditions, the correlation of gamma power during the prediction and activation intervals of the sentence-final words was larger when the presented words matched with the prediction compared with when the prediction was violated or when no prediction was available. This suggests that gamma magnitude relates to the match between predicted and perceived words. Moreover, the expected words induced activity with a slower gamma frequency compared with that induced by unexpected words. Overall, the current study establishes that prediction is related to gamma power correlations and a slowing of the gamma frequency.
Collapse
Affiliation(s)
- Lin Wang
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, the Netherlands
- Harvard Medical School
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, the Netherlands
| | | |
Collapse
|
46
|
Keitel A, Gross J, Kayser C. Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. PLoS Biol 2018. [PMID: 29529019 PMCID: PMC5864086 DOI: 10.1371/journal.pbio.2004473] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During online speech processing, our brain tracks the acoustic fluctuations in speech at different timescales. Previous research has focused on generic timescales (for example, delta or theta bands) that are assumed to map onto linguistic features such as prosody or syllables. However, given the high intersubject variability in speaking patterns, such a generic association between the timescales of brain activity and speech properties can be ambiguous. Here, we analyse speech tracking in source-localised magnetoencephalographic data by directly focusing on timescales extracted from statistical regularities in our speech material. This revealed widespread significant tracking at the timescales of phrases (0.6–1.3 Hz), words (1.8–3 Hz), syllables (2.8–4.8 Hz), and phonemes (8–12.4 Hz). Importantly, when examining its perceptual relevance, we found stronger tracking for correctly comprehended trials in the left premotor (PM) cortex at the phrasal scale as well as in left middle temporal cortex at the word scale. Control analyses using generic bands confirmed that these effects were specific to the speech regularities in our stimuli. Furthermore, we found that the phase at the phrasal timescale coupled to power at beta frequency (13–30 Hz) in motor areas. This cross-frequency coupling presumably reflects top-down temporal prediction in ongoing speech perception. Together, our results reveal specific functional and perceptually relevant roles of distinct tracking and cross-frequency processes along the auditory–motor pathway. How we comprehend speech—and how the brain encodes information from a continuous speech stream—is of interest for neuroscience, linguistics, and research on language disorders. Previous work that examined dynamic brain activity has addressed the issue of comprehension only indirectly, by contrasting intelligible speech with unintelligible speech or baseline activity. Recent work, however, suggests that brain areas can show similar stimulus-driven activity but differently contribute to perception or comprehension. To directly address the perceptual relevance of dynamic brain activity for speech encoding, we used a straightforward, single-trial comprehension measure. Furthermore, previous work has been vague regarding the analysed timescales. We therefore base our analysis directly on the timescales of phrases, words, syllables, and phonemes of our speech stimuli. By incorporating these two conceptual innovations, we demonstrate that different areas of the brain track acoustic information at the time-scales of words and phrases. Moreover, our results suggest that the motor cortex uses a cross-frequency coupling mechanism to predict the timing of phrases in ongoing speech. Our findings suggest spatially and temporally distinct brain mechanisms that directly shape our comprehension.
Collapse
Affiliation(s)
- Anne Keitel
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Christoph Kayser
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
47
|
Nacar Garcia L, Guerrero-Mosquera C, Colomer M, Sebastian-Galles N. Evoked and oscillatory EEG activity differentiates language discrimination in young monolingual and bilingual infants. Sci Rep 2018; 8:2770. [PMID: 29426859 PMCID: PMC5807452 DOI: 10.1038/s41598-018-20824-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/25/2018] [Indexed: 11/08/2022] Open
Abstract
Language discrimination is one of the core differences between bilingual and monolingual language acquisition. Here, we investigate the earliest brain specialization induced by it. Following previous research, we hypothesize that bilingual native language discrimination is a complex process involving specific processing of the prosodic properties of the speech signal. We recorded the brain activity of monolingual and bilingual 4.5-month-old infants using EEG, while listening to their native/dominant language and two foreign languages. We defined two different windows of analysis to separate discrimination and identification effects. In the early window of analysis (150-280 ms) we measured the P200 component, and in the later window of analysis we measured Theta (400-1800 ms) and Gamma (300-2800 ms) oscillations. The results point in the direction of different language discrimination strategies for bilingual and monolingual infants. While only monolingual infants show early discrimination of their native language based on familiarity, bilinguals perform a later processing which is compatible with an increase in attention to the speech signal. This is the earliest evidence found for brain specialization induced by bilingualism.
Collapse
Affiliation(s)
- Loreto Nacar Garcia
- Infant Studies Centre, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
- Center for Brain and Cognition, Universitat Pompeu Fabra, Ramon Trias Fargas, 25-27, 08005, Barcelona, Spain.
| | - Carlos Guerrero-Mosquera
- Center for Brain and Cognition, Universitat Pompeu Fabra, Ramon Trias Fargas, 25-27, 08005, Barcelona, Spain
| | - Marc Colomer
- Center for Brain and Cognition, Universitat Pompeu Fabra, Ramon Trias Fargas, 25-27, 08005, Barcelona, Spain
| | - Nuria Sebastian-Galles
- Center for Brain and Cognition, Universitat Pompeu Fabra, Ramon Trias Fargas, 25-27, 08005, Barcelona, Spain
| |
Collapse
|
48
|
Riecke L, Formisano E, Sorger B, Başkent D, Gaudrain E. Neural Entrainment to Speech Modulates Speech Intelligibility. Curr Biol 2017; 28:161-169.e5. [PMID: 29290557 DOI: 10.1016/j.cub.2017.11.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023]
Abstract
Speech is crucial for communication in everyday life. Speech-brain entrainment, the alignment of neural activity to the slow temporal fluctuations (envelope) of acoustic speech input, is a ubiquitous element of current theories of speech processing. Associations between speech-brain entrainment and acoustic speech signal, listening task, and speech intelligibility have been observed repeatedly. However, a methodological bottleneck has prevented so far clarifying whether speech-brain entrainment contributes functionally to (i.e., causes) speech intelligibility or is merely an epiphenomenon of it. To address this long-standing issue, we experimentally manipulated speech-brain entrainment without concomitant acoustic and task-related variations, using a brain stimulation approach that enables modulating listeners' neural activity with transcranial currents carrying speech-envelope information. Results from two experiments involving a cocktail-party-like scenario and a listening situation devoid of aural speech-amplitude envelope input reveal consistent effects on listeners' speech-recognition performance, demonstrating a causal role of speech-brain entrainment in speech intelligibility. Our findings imply that speech-brain entrainment is critical for auditory speech comprehension and suggest that transcranial stimulation with speech-envelope-shaped currents can be utilized to modulate speech comprehension in impaired listening conditions.
Collapse
Affiliation(s)
- Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands.
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| | - Deniz Başkent
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Etienne Gaudrain
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands; CNRS UMR 5292, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics, Inserm UMRS 1028, Université Claude Bernard Lyon 1, Université de Lyon, 69366 Lyon Cedex 07, France
| |
Collapse
|
49
|
Attention Is Required for Knowledge-Based Sequential Grouping: Insights from the Integration of Syllables into Words. J Neurosci 2017; 38:1178-1188. [PMID: 29255005 DOI: 10.1523/jneurosci.2606-17.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022] Open
Abstract
How the brain groups sequential sensory events into chunks is a fundamental question in cognitive neuroscience. This study investigates whether top-down attention or specific tasks are required for the brain to apply lexical knowledge to group syllables into words. Neural responses tracking the syllabic and word rhythms of a rhythmic speech sequence were concurrently monitored using electroencephalography (EEG). The participants performed different tasks, attending to either the rhythmic speech sequence or a distractor, which was another speech stream or a nonlinguistic auditory/visual stimulus. Attention to speech, but not a lexical-meaning-related task, was required for reliable neural tracking of words, even when the distractor was a nonlinguistic stimulus presented cross-modally. Neural tracking of syllables, however, was reliably observed in all tested conditions. These results strongly suggest that neural encoding of individual auditory events (i.e., syllables) is automatic, while knowledge-based construction of temporal chunks (i.e., words) crucially relies on top-down attention.SIGNIFICANCE STATEMENT Why we cannot understand speech when not paying attention is an old question in psychology and cognitive neuroscience. Speech processing is a complex process that involves multiple stages, e.g., hearing and analyzing the speech sound, recognizing words, and combining words into phrases and sentences. The current study investigates which speech-processing stage is blocked when we do not listen carefully. We show that the brain can reliably encode syllables, basic units of speech sounds, even when we do not pay attention. Nevertheless, when distracted, the brain cannot group syllables into multisyllabic words, which are basic units for speech meaning. Therefore, the process of converting speech sound into meaning crucially relies on attention.
Collapse
|
50
|
Haegens S, Zion Golumbic E. Rhythmic facilitation of sensory processing: A critical review. Neurosci Biobehav Rev 2017; 86:150-165. [PMID: 29223770 DOI: 10.1016/j.neubiorev.2017.12.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/02/2017] [Accepted: 12/03/2017] [Indexed: 11/17/2022]
Abstract
Here we review the role of brain oscillations in sensory processing. We examine the idea that neural entrainment of intrinsic oscillations underlies the processing of rhythmic stimuli in the context of simple isochronous rhythms as well as in music and speech. This has been a topic of growing interest over recent years; however, many issues remain highly controversial: how do fluctuations of intrinsic neural oscillations-both spontaneous and entrained to external stimuli-affect perception, and does this occur automatically or can it be actively controlled by top-down factors? Some of the controversy in the literature stems from confounding use of terminology. Moreover, it is not straightforward how theories and findings regarding isochronous rhythms generalize to more complex, naturalistic stimuli, such as speech and music. Here we aim to clarify terminology, and distinguish between different phenomena that are often lumped together as reflecting "neural entrainment" but may actually vary in their mechanistic underpinnings. Furthermore, we discuss specific caveats and confounds related to making inferences about oscillatory mechanisms from human electrophysiological data.
Collapse
Affiliation(s)
- Saskia Haegens
- Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|