1
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
2
|
Yao J, Lin X, Zhang X, Xie M, Ma X, Bao X, Song J, Liang Y, Wang Q, Xue X. Predictive biomarkers for immune checkpoint inhibitors therapy in lung cancer. Hum Vaccin Immunother 2024; 20:2406063. [PMID: 39415535 PMCID: PMC11487980 DOI: 10.1080/21645515.2024.2406063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the treatment mode of lung cancer, extending the survival time of patients unprecedentedly. Once patients respond to ICIs, the median duration of response is usually longer than that achieved with cytotoxic or targeted drugs. Unfortunately, there is still a large proportion of lung cancer patients do not respond to ICI. Effective biomarkers are crucial for identifying lung cancer patients who can benefit from them. The first predictive biomarker is programmed death-ligand 1 (PD-L1), but its predictive value is limited to specific populations. With the development of single-cell sequencing and spatial imaging technologies, as well as the use of deep learning and artificial intelligence, the identification of predictive biomarkers has been greatly expanded. In this review, we will dissect the biomarkers used to predict ICIs efficacy in lung cancer from the tumor-immune microenvironment and host perspectives, and describe cutting-edge technologies to further identify biomarkers.
Collapse
Affiliation(s)
- Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqi Wang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Borilova S, Grell P, Selingerova I, Gescheidtova L, Mlnarikova M, Bilek O, Lakomy R, Poprach A, Podhorec J, Kiss I, Vyzula R, Vavrusakova B, Nevrlka J, Zdrazilova-Dubska L. Early changes of peripheral circulating immune subsets induced by PD-1 inhibitors in patients with advanced malignant melanoma and non-small cell lung cancer. BMC Cancer 2024; 24:1590. [PMID: 39736542 DOI: 10.1186/s12885-024-13351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), including those targeting PD-1, are currently used in a wide range of tumors, but only 20-40% of patients achieve clinical benefit. The objective of our study was to find predictive peripheral blood-based biomarkers for ICI treatment. METHODS In 41 patients with advanced malignant melanoma (MM) and NSCLC treated with PD-1 inhibitors, we analyzed peripheral blood-based immune subsets by flow cytometry before treatment initialization and the second therapy dose. Specifically, we assessed basic blood differential count, overall T cells and their subgroups, B cells, and myeloid-derived suppressor cells (MDSC). In detail, CD4 + and CD8 + T cells were assessed according to their subtypes, such as central memory T cells (TCM), effector memory T cells (TEM), and naïve T cells (TN). Furthermore, we also evaluated the predictive value of CD28 and ICOS/CD278 co-expression on T cells. RESULTS Patients who achieved disease control on ICIs had a significantly lower baseline proportion of CD4 + TEM (p = 0.013) and tended to have a higher baseline proportion of CD4 + TCM (p = 0.059). ICI therapy-induced increase in Treg count (p = 0.012) and the proportion of CD4 + TN (p = 0.008) and CD28 + ICOS- T cells (p = 0.012) was associated with disease control. Patients with a high baseline proportion of CD4 + TCM and a low baseline proportion of CD4 + TEM showed significantly longer PFS (p = 0.011, HR 2.6 and p ˂ 0.001, HR 0.23, respectively) and longer OS (p = 0.002, HR 3.75 and p ˂ 0.001, HR 0.15, respectively). Before the second dose, the high proportion of CD28 + ICOS- T cells after ICI therapy initiation was significantly associated with prolonged PFS (p = 0.017, HR 2.51) and OS (p = 0.030, HR 2.69). Also, a high Treg count after 2 weeks of ICI treatment was associated with significantly prolonged PFS (p = 0.016, HR 2.33). CONCLUSION In summary, our findings suggest that CD4 + TEM and TCM baselines and an early increase in the Treg count induced by PD-1 inhibitors and the proportion of CD28 + ICOS- T cells may be useful in predicting the response in NSCLC and MM patients.
Collapse
Affiliation(s)
- Simona Borilova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Iveta Selingerova
- Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Gescheidtova
- Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie Mlnarikova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Bilek
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radek Lakomy
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandr Poprach
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Podhorec
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Rostislav Vyzula
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbora Vavrusakova
- Research Center for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Nevrlka
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Laboratory Medicine, Department of Laboratory Methods, Faculty of Medicine and University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Lenka Zdrazilova-Dubska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Laboratory Medicine, Department of Laboratory Methods, Faculty of Medicine and University Hospital Brno, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Konen JM, Wu H, Gibbons DL. Immune checkpoint blockade resistance in lung cancer: emerging mechanisms and therapeutic opportunities. Trends Pharmacol Sci 2024; 45:520-536. [PMID: 38744552 PMCID: PMC11189143 DOI: 10.1016/j.tips.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Immune checkpoint blockade (ICB) therapy works by inhibiting suppressive checkpoints that become upregulated after T cell activation, like PD-1/PD-L1 and CTLA-4. While the initial FDA approvals of ICB have revolutionized cancer therapies and fueled a burgeoning immuno-oncology field, more recent clinical development of new agents has been slow. Here, focusing on lung cancer, we review the latest research uncovering tumor cell intrinsic and extrinsic ICB resistance mechanisms as major hurdles to treatment efficacy and clinical progress. These include genomic and non-genomic tumor cell alterations, along with host and microenvironmental factors like the microbiome, metabolite accumulation, and hypoxia. Together, these factors can cooperate to promote immunosuppression and ICB resistance. Opportunities to prevent resistance are constantly evolving in this rapidly expanding field, with the goal of moving toward personalized immunotherapeutic regimens.
Collapse
Affiliation(s)
- Jessica M Konen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
| | - Haoyi Wu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Gelibter A, Asquino A, Strigari L, Zizzari IG, Tuosto L, Scirocchi F, Pace A, Siringo M, Tramontano E, Bianchini S, Bellati F, Botticelli A, Paoli D, Santini D, Nuti M, Rughetti A, Napoletano C. CD137 + and regulatory T cells as independent prognostic factors of survival in advanced non-oncogene addicted NSCLC patients treated with immunotherapy as first-line. J Transl Med 2024; 22:329. [PMID: 38570798 PMCID: PMC10993529 DOI: 10.1186/s12967-024-05142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), administered alone or combined with chemotherapy, are the standard of care in advanced non-oncogene addicted Non-Small Cell Lung Cancer (NSCLC). Despite these treatments' success, most long-term survival benefit is restricted to approximately 20% of patients, highlighting the need to identify novel biomarkers to optimize treatment strategies. In several solid tumors, immune soluble factors, the activatory CD137+ Tcells, and the immunosuppressive cell subsets Tregs and MDSCs (PMN(Lox1+)-MDSC and M-MDSCs) correlated with responses to ICIs and clinical outcomes thus becoming appealing predictive and prognostic factors. This study investigated the role of distinct CD137+ Tcell subsets, Tregs, MDSCs, and immune-soluble factors in NSCLC patients as possible biomarkers. METHODS The levels of T cells, MDSCs and soluble factors were evaluated in 89 metastatic NSCLC patients who underwent ICIs as first- or second-line treatment. T cell analysis was performed by cytoflurimetry evaluating Tregs and different CD137+ Tcell subsets also combined with CD3+, CD8+, PD1+, and Ki67+ markers. Circulating cytokines and immune checkpoints were also evaluated by Luminex analysis. All these parameters were correlated with several clinical factors (age, sex, smoking status, PS and TPS), response to therapy, PFS , and OS . The analyses were conducted in the overall population and in patients treated with ICIs as first-line (naïve patients). RESULTS In both groups of patients, high levels of circulating CD137+ and CD137+PD1+ T cells (total, CD4 and CD8) and the soluble factor LAG3 positively correlated with response to therapy. In naïve patients, PMN(Lox1+)-MDSCs negatively correlated with clinical response, and a high percentage of Tregs was associated with favorable survival. Moreover, the balance between Treg/CD137+ Tcells or PMN(Lox1+)-MDSC/CD137+ Tcells was higher in non-responding patients and was associated with poor survival. CD137+ Tcells and Tregs resulted as two positive independent prognostic factors. CONCLUSION High levels of CD137+, CD137+PD1+ Tcells and sLAG3 could predict the response to ICIs in NSCLC patients independently by previous therapy. Combining the evaluation of CD137+ Tcells and Tregs also as Treg/CD137+ T cells ratio it is possible to identify naive patients with longer survival.
Collapse
Affiliation(s)
- Alain Gelibter
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Angela Asquino
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliera-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lucrezia Tuosto
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Fabio Scirocchi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Angelica Pace
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marco Siringo
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Elisa Tramontano
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Serena Bianchini
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Filippo Bellati
- Department of Medical and Surgical Sciences and Translational Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa 1035, 00189, Rome, Italy
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Daniele Santini
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
6
|
Brouwer-Visser J, Fiaschi N, Deering RP, Cygan KJ, Scott D, Jeong S, Boucher L, Gupta NT, Gupta S, Adler C, Topp MS, Bannerji R, Duell J, Advani RH, Flink DM, Chaudhry A, Thurston G, Ambati SR, Jankovic V. Molecular assessment of intratumoral immune cell subsets and potential mechanisms of resistance to odronextamab, a CD20×CD3 bispecific antibody, in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. J Immunother Cancer 2024; 12:e008338. [PMID: 38519055 PMCID: PMC10961523 DOI: 10.1136/jitc-2023-008338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Patients with relapsed/refractory B-cell non-Hodgkin lymphoma (R/R B-NHL) have a significant need for effective treatment options. Odronextamab is an Fc-silenced, human, CD20×CD3 bispecific antibody that targets CD20-expressing cells via T-cell-mediated cytotoxicity independent of T-cell/major histocompatibility complex interaction. Phase I results in patients with R/R B-NHL demonstrated that odronextamab monotherapy could achieve deep and durable responses with a generally manageable safety profile (ELM-1; NCT02290951). As part of a biomarker analysis of the same study, we investigated potential biomarkers and mechanisms of resistance to odronextamab. METHODS Patients with R/R B-NHL enrolled in ELM-1 received one time per week doses of intravenous odronextamab for 4×21 day cycles, then doses every 2 weeks thereafter. Patient tumor biopsies were obtained at baseline, on-treatment, and at progression. Immune cell markers were analyzed by immunohistochemistry, flow cytometry, single-cell RNA sequencing, and whole genome sequencing. RESULTS Baseline tumor biopsies showed that almost all patients had high proportions of B cells that expressed the CD20 target antigen, whereas expression of other B-cell surface antigens (CD19, CD22, CD79b) was more variable. Responses to odronextamab in patients with diffuse large B-cell lymphoma were not related to the relative level of baseline CD20 expression, cell of origin, or high-risk molecular subtype. A potential link was observed between greater tumor programmed cell death-ligand 1 expression and increased likelihood of response to odronextamab. Similarly, a trend was observed between clinical response and increased levels of CD8 T cells and regulatory T cells at baseline. We also identified an on-treatment pharmacodynamic shift in intratumoral immune cell subsets. Finally, loss of CD20 expression through inactivating gene mutations was identified as a potential mechanism of resistance in patients who were treated with odronextamab until progression, as highlighted in two detailed patient cases reported here. CONCLUSIONS This biomarker analysis expands on clinical findings of odronextamab in patients with R/R B-NHL, providing verification of the suitability of CD20 as a therapeutic target, as well as evidence for potential mechanisms of action and resistance.
Collapse
Affiliation(s)
| | | | | | - Kamil J Cygan
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Darius Scott
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Se Jeong
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Lauren Boucher
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Namita T Gupta
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Suraj Gupta
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | | | - Max S Topp
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Rajat Bannerji
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Johannes Duell
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ranjana H Advani
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Dina M Flink
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Aafia Chaudhry
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
7
|
Kimura N, Tsukita Y, Ebina-Shibuya R, Miyauchi E, Yamada M, Narita D, Saito R, Inoue C, Fujino N, Ichikawa T, Tamada T, Sugiura H. Peripheral blood biomarkers associated with combination of immune checkpoint blockade plus chemotherapy in NSCLC. Cancer Biomark 2024:CBM230301. [PMID: 38669521 DOI: 10.3233/cbm-230301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
BACKGROUND Biomarkers predicting clinical outcomes of treating non-small cell lung cancer (NSCLC) with combination of immune checkpoint inhibitors (ICIs) and chemotherapy would be valuable. OBJECTIVE This study aims to seek predictors of combination of ICI/chemotherapy response in NSCLC patients using peripheral blood samples. METHODS Patients diagnosed with advanced NSCLC between July 2019 and May 2021 receiving combination of ICI/chemotherapy were included and assessed for partial responses (PR), stable disease (SD) or progressive disease (PD). We measured circulating immune cells, plasma cytokines and chemokines. RESULTS Nineteen patients were enrolled. The proportions of circulating natural killer (NK) cells within CD45 + cells, programmed death 1 (PD-1) + Tim-3 + T cells within CD4 + cells, and the amount of chemokine C-X-C ligand (CXCL10) in the plasma were significantly elevated in PR relative to SD/PD patients (median 8.1%-vs-2.1%, P= 0.0032; median 1.2%-vs-0.3%, P= 0.0050; and median 122.6 pg/ml-vs-76.0 pg/ml, P= 0.0125, respectively). Patients with 2 or 3 elevated factors had longer progression-free survival than patients with 0 or only one (not reached-vs-5.6 months, P= 0.0002). CONCLUSIONS We conclude that NK cells, CD4 + PD-1 + Tim-3 + T cells, and CXCL10 levels in pre-treatment peripheral blood may predict the efficacy of combination of ICI/chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Nozomu Kimura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Tsukita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Risa Ebina-Shibuya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Narita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryota Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Inoue
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Yokota S, Yonezawa T, Momoi Y, Maeda S. Myeloid derived suppressor cells in peripheral blood can be a prognostic factor in canine transitional cell carcinoma. Vet Immunol Immunopathol 2024; 269:110716. [PMID: 38308864 DOI: 10.1016/j.vetimm.2024.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature cells with immunosuppressive properties found in the tumor microenvironment. MDSCs are divided into two major subsets: polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs). Both MDSC subsets contribute to the creation of an immunosuppressive environment for tumor progression. In humans, patients with high levels of MDSCs show worse outcomes for several types of cancers. However, the association between MDSCs and clinical features has rarely been investigated in canine studies. In the present study, we measured the proportion of PMN-MDSCs and M-MDSCs in the peripheral blood and tumor tissue of dogs with hepatocellular carcinoma (HCC), prostate cancer (PC), transitional cell carcinoma (TCC), lymphoma, and pulmonary adenocarcinoma. Additionally, we examined immunosuppressive ability of PMN-MDSCs and M-MDSCs in peripheral blood mononuclear cells of TCC case on CD4+, CD8+ and interferon-γ+ cells and investigated the relationships of MDSCs with clinical features and outcomes. PMN-MDSCs increased in HCC, PC, TCC, and lymphoma. In contrast, M-MDSCs increased in the TCC. Both PMN-MDSCs and M-MDSCs exhibited immunosuppressive effects on CD8+, CD4+ and interferon-γ+ cells. In dogs with TCC, lymph node metastasis was associated with high level of PMN-MDSCs but not with M-MDSCs. High levels of both PMN-MDSCs and M-MDSCs were related to advanced tumor stage. Kaplan-Meier analysis revealed that high levels of both PMN-MDSCs and M-MDSCs were significantly associated with shorter overall survival. In addition, the Cox proportional hazard regression model showed that M-MDSCs and the tumor stage were independent prognostic factors for TCC. These results suggest that PMN-MDSCs and M-MDSCs may be involved in tumor progression and could be prognostic factors and promising therapeutic targets in dogs with TCC.
Collapse
Affiliation(s)
- Shohei Yokota
- Department of Veterinary Clinical Pathobiology, Guraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Guraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Guraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Guraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
9
|
Pettinella F, Mariotti B, Lattanzi C, Bruderek K, Donini M, Costa S, Marini O, Iannoto G, Gasperini S, Caveggion E, Castellucci M, Calzetti F, Bianchetto-Aguilera F, Gardiman E, Giani M, Dusi S, Cantini M, Vassanelli A, Pavone D, Milella M, Pilotto S, Biondani P, Höing B, Schleupner MC, Hussain T, Hadaschik B, Kaspar C, Visco C, Tecchio C, Koenderman L, Bazzoni F, Tamassia N, Brandau S, Cassatella MA, Scapini P. Surface CD52, CD84, and PTGER2 mark mature PMN-MDSCs from cancer patients and G-CSF-treated donors. Cell Rep Med 2024; 5:101380. [PMID: 38242120 PMCID: PMC10897522 DOI: 10.1016/j.xcrm.2023.101380] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66b+CD10+CD16+CD11b+ PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments. Analysis of such a gene signature uncovers a specific transcriptional program associated with mPMN-MDSC differentiation and allows us to identify that, in patients with either solid or hematologic tumors and in GDs, CD52, CD84, and prostaglandin E receptor 2 (PTGER2) represent potential mPMN-MDSC-associated markers. Altogether, our findings indicate that mature PMN-MDSCs distinctively undergo specific reprogramming during differentiation and lay the groundwork for selective immunomonitoring, and eventually targeting, of mature PMN-MDSCs.
Collapse
Affiliation(s)
- Francesca Pettinella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Barbara Mariotti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Chiara Lattanzi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Kirsten Bruderek
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany
| | - Marta Donini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Costa
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Olivia Marini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giulia Iannoto
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Gasperini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Elena Caveggion
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Elisa Gardiman
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Matteo Giani
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Stefano Dusi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Maurizio Cantini
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Aurora Vassanelli
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Denise Pavone
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Pamela Biondani
- Section of Oncology, University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Benedikt Höing
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | | | - Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Cordelia Kaspar
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Carlo Visco
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Leo Koenderman
- Department of Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Flavia Bazzoni
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany; German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
10
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
11
|
Yang C, Zhu R, Zhang Y, Ying L, Wang J, Liu P, Su D. [Research Progress of Granulocytic Myeloid-derived Suppressor Cells
in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:65-72. [PMID: 38296627 PMCID: PMC10895289 DOI: 10.3779/j.issn.1009-3419.2023.106.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Granulocytic myeloid-derived suppressor cells (G-MDSCs) are one of the main subgroups of MDSCs, which are widely enriched in most cancers. It can inhibit the killing function of T-lymphocyte through the expression of arginase-1 (Arg-1) and reactive oxygen species (ROS), reshape the tumor immune microenvironment, and promote the occurrence and development of tumors. In recent years, more and more studies have found that G-MDSCs are significantly correlated with the prognosis and immunotherapy efficacy of patients with non-small cell lung cancer, and the use of drugs specifically targeting the recruitment, differentiation and function of G-MDSCs can effectively inhibit tumor progression. This article reviews the immunosuppressive effect of G-MDSCs in non-small cell lung cancer and the progress of related pathway targeting drugs.
.
Collapse
Affiliation(s)
- Chaodan Yang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuting Zhang
- Postgraduate Training Base Alliance of Wenzhou Medical
University, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Lisha Ying
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiamin Wang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Liu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Dan Su
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
12
|
Pettinella F, Lattanzi C, Donini M, Caveggion E, Marini O, Iannoto G, Costa S, Zenaro E, Fortunato TM, Gasperini S, Giani M, Belluomini L, Sposito M, Insolda J, Scaglione IM, Milella M, Adamo A, Poffe O, Bronte V, Dusi S, Cassatella MA, Ugel S, Pilotto S, Scapini P. Plasmacytoid Dendritic Cell, Slan +-Monocyte and Natural Killer Cell Counts Function as Blood Cell-Based Biomarkers for Predicting Responses to Immune Checkpoint Inhibitor Monotherapy in Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2023; 15:5285. [PMID: 37958458 PMCID: PMC10647811 DOI: 10.3390/cancers15215285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs), for instance, programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) blockers, has greatly improved the outcome of patients affected by non-small cell lung cancer (NSCLC). However, most NSCLC patients either do not respond to ICI monotherapy or develop resistance to it after an initial response. Therefore, the identification of biomarkers for predicting the response of patients to ICI monotherapy represents an urgent issue. Great efforts are currently dedicated toward identifying blood-based biomarkers to predict responses to ICI monotherapy. In this study, more commonly utilized blood-based biomarkers, such as the neutrophil-to-lymphocyte ratio (NLR) and the lung immune prognostic index (LIPI) score, as well as the frequency/number and activation status of various types of circulating innate immune cell populations, were evaluated in NSCLC patients at baseline before therapy initiation. The data indicated that, among all the parameters tested, low plasmacytoid dendritic cell (pDC), slan+-monocyte and natural killer cell counts, as well as a high LIPI score and elevated PD-L1 expression levels on type 1 conventional DCs (cDC1s), were independently correlated with a negative response to ICI therapy in NSCLC patients. The results from this study suggest that the evaluation of innate immune cell numbers and phenotypes may provide novel and promising predictive biomarkers for ICI monotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Francesca Pettinella
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Chiara Lattanzi
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Marta Donini
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Elena Caveggion
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Olivia Marini
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Giulia Iannoto
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Sara Costa
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Elena Zenaro
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Tiago Moderno Fortunato
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Sara Gasperini
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Matteo Giani
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Lorenzo Belluomini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy (M.S.); (I.M.S.); (M.M.); (S.P.)
| | - Marco Sposito
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy (M.S.); (I.M.S.); (M.M.); (S.P.)
| | - Jessica Insolda
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy (M.S.); (I.M.S.); (M.M.); (S.P.)
| | - Ilaria Mariangela Scaglione
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy (M.S.); (I.M.S.); (M.M.); (S.P.)
| | - Michele Milella
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy (M.S.); (I.M.S.); (M.M.); (S.P.)
| | - Annalisa Adamo
- Immunology Section, Department of Medicine, University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (A.A.)
| | - Ornella Poffe
- Immunology Section, Department of Medicine, University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (A.A.)
| | - Vincenzo Bronte
- Veneto Institute of Oncology—Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), 35128 Padova, Italy
| | - Stefano Dusi
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Marco A. Cassatella
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (A.A.)
| | - Sara Pilotto
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy (M.S.); (I.M.S.); (M.M.); (S.P.)
| | - Patrizia Scapini
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy (M.D.); (S.C.); (E.Z.); (T.M.F.); (S.G.); (M.G.)
| |
Collapse
|
13
|
Luo H, Wang W, Mai J, Yin R, Cai X, Li Q. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment. Front Immunol 2023; 14:1267918. [PMID: 37881432 PMCID: PMC10597640 DOI: 10.3389/fimmu.2023.1267918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies, that is, using monoclonal antibodies to reinvigorate tumor-reactive, antigen-specific T cells from the inhibitory effects of CTLA-4, PD-1 and PD-L1 immune checkpoints, have revolutionized the therapeutic landscape of modern oncology. However, only a subset of patients can benefit from the ICB therapy. Biomarkers associated with ICB response, resistance and prognosis have been subjected to intensive research in the past decade. Early studies focused on the analysis of tumor specimens and their residing microenvironment. However, biopsies can be challenging to obtain in clinical practice, and do not reflect the dynamic changes of immunological parameters during the ICB therapy. Recent studies have investigated profiles of antigen-specific T cells derived from the peripheral compartment using multi-omics approaches. By tracking the clonotype and diversity of tumor-reactive T cell receptor repertoire, these studies collectively establish that de novo priming of antigen-specific T cells in peripheral blood occurs throughout the course of ICB, whereas preexisting T cells prior to ICB are exhausted to various degrees. Here, we review what is known about ICB-induced T cell phenotypic and functional changes in cancer patients both within the tumor microenvironment and in the peripheral compartment. A better understanding of parameters influencing the response to ICBs will provide rationales for developing novel diagnostics and combinatorial therapeutic strategies to maximize the clinical efficacies of ICB therapies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jia Mai
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Parra ER, Ilié M, Wistuba II, Hofman P. Quantitative multiplexed imaging technologies for single-cell analysis to assess predictive markers for immunotherapy in thoracic immuno-oncology: promises and challenges. Br J Cancer 2023; 129:1417-1431. [PMID: 37391504 PMCID: PMC10628288 DOI: 10.1038/s41416-023-02318-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
The past decade has witnessed a revolution in cancer treatment by the shift from conventional drugs (chemotherapies) towards targeted molecular therapies and immune-based therapies, in particular the immune-checkpoint inhibitors (ICIs). These immunotherapies selectively release the host immune system against the tumour and have shown unprecedented durable remission for patients with cancers that were thought incurable such as advanced non-small cell lung cancer (aNSCLC). The prediction of therapy response is based since the first anti-PD-1/PD-L1 molecules FDA and EMA approvals on the level of PD-L1 tumour cells expression evaluated by immunohistochemistry, and recently more or less on tumour mutation burden in the USA. However, not all aNSCLC patients benefit from immunotherapy equally, since only around 30% of them received ICIs and among them 30% have an initial response to these treatments. Conversely, a few aNSCLC patients could have an efficacy ICIs response despite low PD-L1 tumour cells expression. In this context, there is an urgent need to look for additional robust predictive markers for ICIs efficacy in thoracic oncology. Understanding of the mechanisms that enable cancer cells to adapt to and eventually overcome therapy and identifying such mechanisms can help circumvent resistance and improve treatment. However, more than a unique universal marker, the evaluation of several molecules in the tumour at the same time, particularly by using multiplex immunostaining is a promising open room to optimise the selection of patients who benefit from ICIs. Therefore, urgent further efforts are needed to optimise to individualise immunotherapy based on both patient-specific and tumour-specific characteristics. This review aims to rethink the role of multiplex immunostaining in immuno-thoracic oncology, with the current advantages and limitations in the near-daily practice use.
Collapse
Affiliation(s)
- Edwin Roger Parra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Biobank Côte d'Azur BB-0033-00025, FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Biobank Côte d'Azur BB-0033-00025, FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France.
| |
Collapse
|
15
|
Lin X, Zong C, Zhang Z, Fang W, Xu P. Progresses in biomarkers for cancer immunotherapy. MedComm (Beijing) 2023; 4:e387. [PMID: 37799808 PMCID: PMC10547938 DOI: 10.1002/mco2.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Currently, checkpoint inhibitor-based immunotherapy has emerged as prevailing treatment modality for diverse cancers. However, immunotherapy as a first-line therapy has not consistently yielded durable responses. Moreover, the risk of immune-related adverse events increases with combination regimens. Thus, the development of predictive biomarkers is needed to optimize individuals benefit, minimize risk of toxicities, and guide combination approaches. The greatest focus has been on tumor programmed cell death-ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational burden (TMB). However, there remains a subject of debate due to thresholds variability and significant heterogeneity. Major unmet challenges in immunotherapy are the discovery and validation of predictive biomarkers. Here, we show the status of tumor PD-L1, MSI, TMB, and emerging data on novel biomarker strategies with oncogenic signaling and epigenetic regulation. Considering the exploration of peripheral and intestinal immunity has served as noninvasive alternative in predicting immunotherapy, this review also summarizes current data in systemic immunity, encompassing solute PD-L1 and TMB, circulating tumor DNA and infiltrating lymphocytes, routine emerging inflammatory markers and cytokines, as well as gut microbiota. This review provides up-to-date information on the evolving field of currently available biomarkers in predicting immunotherapy. Future exploration of novel biomarkers is warranted.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineShantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Chenyu Zong
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| | - Zhihan Zhang
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Weiyi Fang
- Cancer Research InstituteSchool of Basic Medical ScienceSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Ping Xu
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| |
Collapse
|
16
|
Chaudhri A, Bu X, Wang Y, Gomez M, Torchia JA, Hua P, Hung SH, Davies MA, Lizee GA, von Andrian U, Hwu P, Freeman GJ. The CX3CL1-CX3CR1 chemokine axis can contribute to tumor immune evasion and blockade with a novel CX3CR1 monoclonal antibody enhances response to anti-PD-1 immunotherapy. Front Immunol 2023; 14:1237715. [PMID: 37771579 PMCID: PMC10524267 DOI: 10.3389/fimmu.2023.1237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
CX3CL1 secreted in the tumor microenvironment serves as a chemoattractant playing a critical role in metastasis of CX3CR1 expressing cancer cells. CX3CR1 can be expressed in both cancer and immune-inhibitory myeloid cells to facilitate their migration. We generated a novel monoclonal antibody against mouse CX3CR1 that binds to CX3CR1 and blocks the CX3CL1-CX3CR1 interaction. We next explored the immune evasion strategies implemented by the CX3CL1-CX3CR1 axis and find that it initiates a resistance program in cancer cells that results in 1) facilitation of tumor cell migration, 2) secretion of soluble mediators to generate a pro-metastatic niche, 3) secretion of soluble mediators to attract myeloid populations, and 4) generation of tumor-inflammasome. The CX3CR1 monoclonal antibody reduces migration of tumor cells and decreases secretion of immune suppressive soluble mediators by tumor cells. In combination with anti-PD-1 immunotherapy, this CX3CR1 monoclonal antibody enhances survival in an immunocompetent mouse colon carcinoma model through a decrease in tumor-promoting myeloid populations. Thus, this axis is involved in the mechanisms of resistance to anti-PD-1 immunotherapy and the combination therapy can overcome a portion of the resistance mechanisms to anti-PD-1.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Yunfei Wang
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael Gomez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - James A. Torchia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A. Lizee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ulrich von Andrian
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Yu Z, Qin L, Yu G. The progresses of relevant factors on the efficacy of immune checkpoint inhibitors in the non-small cell lung cancer patients. Cancer Treat Res Commun 2023; 37:100758. [PMID: 37776694 DOI: 10.1016/j.ctarc.2023.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 10/02/2023]
Abstract
Lung cancer has the highest mortality rate of all cancers worldwide. Although immune checkpoint inhibitor (ICI)-based therapy can improve the survival of patients with lung cancer, its efficacy is affected by many factors. Therefore, it is necessary to identify factors that affect the efficacy of ICI-based treatment and establish a model for predicting drug response and resistance before and during treatment for individualized and accurate treatment of patients. This review summarizes the clinical and biological factors related to ICI-based treatment of non-small cell lung cancer (NSCLC) and the recent research progress of predictive models for assessing ICI efficacy.
Collapse
Affiliation(s)
- Zhaoqing Yu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Li Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Guifang Yu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
18
|
Chen N, Xu X, Fan Y. Immune checkpoint inhibitors in the treatment of oesophageal squamous cell carcinoma: where are we and where are we going? Ther Adv Med Oncol 2023; 15:17588359231189420. [PMID: 37547447 PMCID: PMC10399266 DOI: 10.1177/17588359231189420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Oesophageal squamous cell carcinoma (ESCC) is a kind of malignant tumour with high invasiveness and a poor prognosis. Immunotherapy, especially immune checkpoint inhibitors (ICIs), is a rapidly growing therapeutic method that activates and enhances anti-tumour immunity to treat patients with malignancy. Several clinical trials have confirmed the efficacy of ICIs in the treatment of ESCC. ICIs have been approved for the treatment of patients with ESCC. However, only a subset of patients can obtain excellent benefits from ICI therapy. In recent years, there has been a growing interest in exploring predictive biomarkers of immunotherapy response. In this review, we highlighted the predictive biomarkers for the prognosis of ESCC patients treated with ICIs and pointed out the existing problems and the direction of future research in this field.
Collapse
Affiliation(s)
- Ning Chen
- Department of Oncology, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaoling Xu
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang 310022, China
| | - Yun Fan
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
19
|
Marcos Rubio A, Everaert C, Van Damme E, De Preter K, Vermaelen K. Circulating immune cell dynamics as outcome predictors for immunotherapy in non-small cell lung cancer. J Immunother Cancer 2023; 11:e007023. [PMID: 37536935 PMCID: PMC10401220 DOI: 10.1136/jitc-2023-007023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 08/05/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) continues to transform the therapeutic landscape of non-small cell lung cancer (NSCLC), with these drugs now being evaluated at every stage of the disease. In contrast to these advances, little progress has been made with respect to reliable predictive biomarkers that can inform clinicians on therapeutic efficacy. All current biomarkers for outcome prediction, including PD-L1, tumor mutational burden or complex immune gene expression signatures, require access to tumor tissue. Besides the invasive nature of the sampling procedure, other disadvantages of tumor tissue biopsies are the inability to capture the complete spatial heterogeneity of the tumor and the difficulty to perform longitudinal follow-up on treatment. A concept emerges in which systemic immune events developing at a distance from the tumor reflect local response or resistance to immunotherapy. The importance of this cancer 'macroenvironment', which can be deciphered by comprehensive analysis of peripheral blood immune cell subsets, has been demonstrated in several cutting-edge preclinical reports, and is corroborated by intriguing data emerging from ICI-treated patients. In this review, we will provide the biological rationale underlying the potential of blood immune cell-based biomarkers in guiding treatment decision in immunotherapy-eligible NSCLC patients. Finally, we will describe new techniques that will facilitate the discovery of more immune cell subpopulations with potential to become predictive biomarkers, and reflect on ways and the remaining challenges to bring this type of analysis to the routine clinical care in the near future.
Collapse
Affiliation(s)
- Alvaro Marcos Rubio
- VIB UGent Center for Medical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
| | - Celine Everaert
- VIB UGent Center for Medical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
| | - Eufra Van Damme
- VIB UGent Center for Medical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
| | - Katleen De Preter
- VIB UGent Center for Medical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
20
|
Tostes K, Siqueira AP, Reis RM, Leal LF, Arantes LMRB. Biomarkers for Immune Checkpoint Inhibitor Response in NSCLC: Current Developments and Applicability. Int J Mol Sci 2023; 24:11887. [PMID: 37569262 PMCID: PMC10418476 DOI: 10.3390/ijms241511887] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer has the highest mortality rate among all cancer types, resulting in over 1.8 million deaths annually. Immunotherapy utilizing immune checkpoint inhibitors (ICIs) has revolutionized the treatment of non-small cell lung cancer (NSCLC). ICIs, predominantly monoclonal antibodies, modulate co-stimulatory and co-inhibitory signals crucial for maintaining immune tolerance. Despite significant therapeutic advancements in NSCLC, patients still face challenges such as disease progression, recurrence, and high mortality rates. Therefore, there is a need for predictive biomarkers that can guide lung cancer treatment strategies. Currently, programmed death-ligand 1 (PD-L1) expression is the only established biomarker for predicting ICI response. However, its accuracy and robustness are not consistently reliable. This review provides an overview of potential biomarkers currently under development or in the validation stage that hold promise in improving the classification of responders and non-responders to ICI therapy in the near future.
Collapse
Affiliation(s)
- Katiane Tostes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
| | - Aléxia Polo Siqueira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil; (K.T.)
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos 14785-002, São Paulo, Brazil
| | | |
Collapse
|
21
|
Song R, Liu F, Ping Y, Zhang Y, Wang L. Potential non-invasive biomarkers in tumor immune checkpoint inhibitor therapy: response and prognosis prediction. Biomark Res 2023; 11:57. [PMID: 37268978 DOI: 10.1186/s40364-023-00498-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically enhanced the treatment outcomes for diverse malignancies. Yet, only 15-60% of patients respond significantly. Therefore, accurate responder identification and timely ICI administration are critical issues in tumor ICI therapy. Recent rapid developments at the intersection of oncology, immunology, biology, and computer science have provided an abundance of predictive biomarkers for ICI efficacy. These biomarkers can be invasive or non-invasive, depending on the specific sample collection method. Compared with invasive markers, a host of non-invasive markers have been confirmed to have superior availability and accuracy in ICI efficacy prediction. Considering the outstanding advantages of dynamic monitoring of the immunotherapy response and the potential for widespread clinical application, we review the recent research in this field with the aim of contributing to the identification of patients who may derive the greatest benefit from ICI therapy.
Collapse
Affiliation(s)
- Ruixia Song
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
22
|
Ancel J, Dormoy V, Raby BN, Dalstein V, Durlach A, Dewolf M, Gilles C, Polette M, Deslée G. Soluble biomarkers to predict clinical outcomes in non-small cell lung cancer treated by immune checkpoints inhibitors. Front Immunol 2023; 14:1171649. [PMID: 37283751 PMCID: PMC10239865 DOI: 10.3389/fimmu.2023.1171649] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Lung cancer remains the first cause of cancer-related death despite many therapeutic innovations, including immune checkpoint inhibitors (ICI). ICI are now well used in daily practice at late metastatic stages and locally advanced stages after a chemo-radiation. ICI are also emerging in the peri-operative context. However, all patients do not benefit from ICI and even suffer from additional immune side effects. A current challenge remains to identify patients eligible for ICI and benefiting from these drugs. Currently, the prediction of ICI response is only supported by Programmed death-ligand 1 (PD-L1) tumor expression with perfectible results and limitations inherent to tumor-biopsy specimen analysis. Here, we reviewed alternative markers based on liquid biopsy and focused on the most promising biomarkers to modify clinical practice, including non-tumoral blood cell count such as absolute neutrophil counts, platelet to lymphocyte ratio, neutrophil to lymphocyte ratio, and derived neutrophil to lymphocyte ratio. We also discussed soluble-derived immune checkpoint-related products such as sPD-L1, circulating tumor cells (detection, count, and marker expression), and circulating tumor DNA-related products. Finally, we explored perspectives for liquid biopsies in the immune landscape and discussed how they could be implemented into lung cancer management with a potential biological-driven decision.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Valérian Dormoy
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
| | - Béatrice Nawrocki Raby
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
| | - Véronique Dalstein
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Anne Durlach
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Maxime Dewolf
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Myriam Polette
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| | - Gaëtan Deslée
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, Reims, France
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, Reims, France
| |
Collapse
|
23
|
Bhardwaj V, Ansell SM. Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies. Front Cell Dev Biol 2023; 11:1129343. [PMID: 37091970 PMCID: PMC10113446 DOI: 10.3389/fcell.2023.1129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes that negatively regulate the immune response to cancer and chronic infections. Abnormal myelopoiesis and pathological activation of myeloid cells generate this heterogeneous population of myeloid-derived suppressor cells. They are characterized by their distinct transcription, phenotypic, biochemical, and functional features. In the tumor microenvironment (TME), myeloid-derived suppressor cells represent an important class of immunosuppressive cells that correlate with tumor burden, stage, and a poor prognosis. Myeloid-derived suppressor cells exert a strong immunosuppressive effect on T-cells (and a broad range of other immune cells), by blocking lymphocyte homing, increasing production of reactive oxygen and nitrogen species, promoting secretion of various cytokines, chemokines, and immune regulatory molecules, stimulation of other immunosuppressive cells, depletion of various metabolites, and upregulation of immune checkpoint molecules. Additionally, the heterogeneity of myeloid-derived suppressor cells in cancer makes their identification challenging. Overall, they serve as a major obstacle for many cancer immunotherapies and targeting them could be a favorable strategy to improve the effectiveness of immunotherapeutic interventions. However, in hematological malignancies, particularly B-cell malignancies, the clinical outcomes of targeting these myeloid-derived suppressor cells is a field that is still to be explored. This review summarizes the complex biology of myeloid-derived suppressor cells with an emphasis on the immunosuppressive pathways used by myeloid-derived suppressor cells to modulate T-cell function in hematological malignancies. In addition, we describe the challenges, therapeutic strategies, and clinical relevance of targeting myeloid-derived suppressor cells in these diseases.
Collapse
|
24
|
Jain S, Ma K, Morris LGT. CD66b as a prognostic and predictive biomarker in patients with non-small cell lung cancer treated with checkpoint blockade immunotherapy. Transl Cancer Res 2023; 12:447-451. [PMID: 36915573 PMCID: PMC10007870 DOI: 10.21037/tcr-22-2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 02/24/2023]
Affiliation(s)
- Swati Jain
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Ma
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G T Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Kong Q, Ma M, Zhang L, Liu S, He S, Wu J, Liu B, Dong J. Icariside II potentiates the anti-PD-1 antitumor effect by reducing chemotactic infiltration of myeloid-derived suppressor cells into the tumor microenvironment via ROS-mediated inactivation of the SRC/ERK/STAT3 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154638. [PMID: 36621167 DOI: 10.1016/j.phymed.2022.154638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Immune checkpoint blockade agents, such as anti-PD-1 antibodies, show promising antitumor efficacy but only a limited response in patients with non-small cell lung cancer (NSCLC). Icariside II (IS), a metabolite of Herba Epimedii, is a COX-2 and EGFR inhibitor that can enhance the anti-PD-1 effect. This study aimed to evaluate the antitumor effect of IS in combination with anti-PD-1 and explore the underlying mechanism. METHODS Tumor growth was assessed in Lewis Lung Cancer (LLC) tumor-bearing mice in seven groups (control, IS 20 mg/kg, IS 40 mg/kg, anti-PD-1, IS 20 mg/kg+anti-PD-1, IS 40 mg/kg+anti-PD-1, ERK inhibitor+anti-PD-1). Tumor-infiltrating immune cells were measured by flow cytometry. The mechanisms were explored by tumor RNA-seq and validated in LLC cells through molecular biological experiments using qRT‒PCR, ELISA, and western blotting. RESULTS Animal experiments showed that IS in combination with anti-PD-1 further inhibited tumor growth and remarkably reduced the infiltration of myeloid-derived suppressor cells (MDSCs) into the tumor compared with anti-PD-1 monotherapy. RNA-seq and in vitro experiments showed that IS suppressed the chemotactic migration of MDSCs by downregulating the expression of CXC chemokine ligands 2 (CXCL2) and CXCL3. Moreover, IS promoted reactive oxygen species (ROS) generation and inhibited the activation of SRC/ERK/STAT3 in LLC cells, which are upstream signaling pathways of these chemokines. CONCLUSION IS potentiates the anti-PD-1 anti-tumor effect by reducing chemotactic infiltration of the myeloid-derived suppressor cell into the tumor microenvironment, via ROS-mediated inactivation of SRC/ERK/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Qing Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengyu Ma
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Neurology, Huadong Hospital, Fudan University, Shanghai, China
| | - Suqing Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shan He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Sadeghirad H, Bahrami T, Layeghi SM, Yousefi H, Rezaei M, Hosseini-Fard SR, Radfar P, Warkiani ME, O'Byrne K, Kulasinghe A. Immunotherapeutic targets in non-small cell lung cancer. Immunology 2023; 168:256-272. [PMID: 35933597 DOI: 10.1111/imm.13562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/02/2022] [Indexed: 01/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of cancer in the world and has a 5-year survival rate of ~20%. Immunotherapies have shown promising results leading to durable responses, however, they are only effective for a subset of patients. To determine the best therapeutic approach, a thorough and in-depth profiling of the tumour microenvironment (TME) is required. The TME is a complex network of cell types that form an interconnected network, promoting tumour cell initiation, growth and dissemination. The stroma, immune cells and endothelial cells that comprise the TME generate a plethora of cytotoxic or cytoprotective signalling pathways. In this review, we discuss immunotherapeutic targets in NSCLC tumours and how the TME may influence patients' response to immunotherapy.
Collapse
Affiliation(s)
- Habib Sadeghirad
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tayyeb Bahrami
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh M Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Meysam Rezaei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Seyed R Hosseini-Fard
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Payar Radfar
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ken O'Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Arutha Kulasinghe
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
The Immunosuppressive Effect of TNFR2 Expression in the Colorectal Cancer Microenvironment. Biomedicines 2023; 11:biomedicines11010173. [PMID: 36672682 PMCID: PMC9856189 DOI: 10.3390/biomedicines11010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common causes of death among cancers worldwide. Its incidence has been increasing among the young population. Many risk factors contribute to the development and progression of CRC and about 70% of them are sporadic. The CRC microenvironment is highly heterogeneous and represents a very complex immunosuppressive platform. Many cytokines and their receptors are vital participants in this immunosuppressive microenvironment. Tumor necrosis factors (TNFs) and TNF receptor 2 (TNFR2) are critical players in the development of CRC. TNFR2 was observed to have increased the immunosuppressive activity of CRC cells via regulatory T cells (T regs) and myeloid-derived suppressor cells (MDSC) in the CRC microenvironment. However, the exact mechanism of TNFR2 in regulating the CRC prognosis remains elusive. Here, we discuss the role of TNFR2 in immune escape mechanism of CRC in the immunosuppressive cells, including Tregs and MDSCs, and the complex signaling pathways that facilitate the development of CRC. It is suggested that extensive studies on TNFR2 downstream signaling must be done, since TNFR2 has a high potential to be developed into a therapeutic agent and cancer biomarker in the future.
Collapse
|
28
|
Xu D, Li C, Xu Y, Huang M, Cui D, Xie J. Myeloid-derived suppressor cell: A crucial player in autoimmune diseases. Front Immunol 2022; 13:1021612. [PMID: 36569895 PMCID: PMC9780445 DOI: 10.3389/fimmu.2022.1021612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are identified as a highly heterogeneous group of immature cells derived from bone marrow and play critical immunosuppressive functions in autoimmune diseases. Accumulating evidence indicates that the pathophysiology of autoimmune diseases was closely related to genetic mutations and epigenetic modifications, with the latter more common. Epigenetic modifications, which involve DNA methylation, covalent histone modification, and non-coding RNA-mediated regulation, refer to inheritable and potentially reversible changes in DNA and chromatin that regulate gene expression without altering the DNA sequence. Recently, numerous reports have shown that epigenetic modifications in MDSCs play important roles in the differentiation and development of MDSCs and their suppressive functions. The molecular mechanisms of differentiation and development of MDSCs and their regulatory roles in the initiation and progression of autoimmune diseases have been extensively studied, but the exact function of MDSCs remains controversial. Therefore, the biological and epigenetic regulation of MDSCs in autoimmune diseases still needs to be further characterized. This review provides a detailed summary of the current research on the regulatory roles of DNA methylation, histone modifications, and non-coding RNAs in the development and immunosuppressive activity of MDSCs, and further summarizes the distinct role of MDSCs in the pathogenesis of autoimmune diseases, in order to provide help for the diagnosis and treatment of diseases from the perspective of epigenetic regulation of MDSCs.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Cheng Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China
| | - Mingyue Huang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang University, China,*Correspondence: Dawei Cui, ; Jue Xie,
| |
Collapse
|
29
|
Magalhães-Gama F, Alves-Hanna FS, Araújo ND, Barros MS, Silva FS, Catão CLS, Moraes JS, Freitas IC, Tarragô AM, Malheiro A, Teixeira-Carvalho A, Costa AG. The Yin-Yang of myeloid cells in the leukemic microenvironment: Immunological role and clinical implications. Front Immunol 2022; 13:1071188. [PMID: 36532078 PMCID: PMC9751477 DOI: 10.3389/fimmu.2022.1071188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
The leukemic microenvironment has a high diversity of immune cells that are phenotypically and functionally distinct. However, our understanding of the biology, immunology, and clinical implications underlying these cells remains poorly investigated. Among the resident immune cells that can infiltrate the leukemic microenvironment are myeloid cells, which correspond to a heterogeneous cell group of the innate immune system. They encompass populations of neutrophils, macrophages, and myeloid-derived suppressor cells (MDSCs). These cells can be abundant in different tissues and, in the leukemic microenvironment, are associated with the clinical outcome of the patient, acting dichotomously to contribute to leukemic progression or stimulate antitumor immune responses. In this review, we detail the current evidence and the many mechanisms that indicate that the activation of different myeloid cell populations may contribute to immunosuppression, survival, or metastatic dissemination, as well as in immunosurveillance and stimulation of specific cytotoxic responses. Furthermore, we broadly discuss the interactions of tumor-associated neutrophils and macrophages (TANs and TAMs, respectively) and MDSCs in the leukemic microenvironment. Finally, we provide new perspectives on the potential of myeloid cell subpopulations as predictive biomarkers of therapeutical response, as well as potential targets in the chemoimmunotherapy of leukemias due to their dual Yin-Yang roles in leukemia.
Collapse
Affiliation(s)
- Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Fabíola Silva Alves-Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Nilberto Dias Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Mateus Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Flavio Souza Silva
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Claudio Lucas Santos Catão
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Júlia Santos Moraes
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Izabela Cabral Freitas
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Andréa Teixeira-Carvalho
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Instituto René Rachou – FIOCRUZ Minas, Belo Horizonte, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
30
|
Colligan SH, Amitrano AM, Zollo RA, Peresie J, Kramer ED, Morreale B, Barbi J, Singh PK, Yu H, Wang J, Opyrchal M, Sykes DB, Nemeth MJ, Abrams SI. Inhibiting the biogenesis of myeloid-derived suppressor cells enhances immunotherapy efficacy against mammary tumor progression. J Clin Invest 2022; 132:e158661. [PMID: 36453551 PMCID: PMC9711879 DOI: 10.1172/jci158661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/05/2022] [Indexed: 12/05/2022] Open
Abstract
While immune checkpoint inhibitors (ICIs) have transformed the therapeutic landscape in oncology, they are effective in select subsets of patients. Efficacy may be limited by tumor-driven immune suppression, of which 1 key mechanism is the development of myeloid-derived suppressor cells (MDSCs). A fundamental gap in MDSC therapeutics is the lack of approaches that target MDSC biogenesis. We hypothesized that targeting MDSC biogenesis would mitigate MDSC burden and bolster tumor responses to ICIs. We tested a class of agents, dihydroorotate dehydrogenase (DHODH) inhibitors, that have been previously shown to restore the terminal differentiation of leukemic myeloid progenitors. DHODH inhibitors have demonstrated preclinical safety and are under clinical study for hematologic malignancies. Using mouse models of mammary cancer that elicit robust MDSC responses, we demonstrated that the DHODH inhibitor brequinar (a) suppressed MDSC production from early-stage myeloid progenitors, which was accompanied by enhanced myeloid maturation; (b) augmented the antitumor and antimetastatic activities of programmed cell death 1-based (PD-1-based) ICI therapy in ICI-resistant mammary cancer models; and (c) acted in concert with PD-1 blockade through modulation of MDSC and CD8+ T cell responses. Moreover, brequinar facilitated myeloid maturation and inhibited immune-suppressive features in human bone marrow culture systems. These findings advance the concept of MDSC differentiation therapy in immuno-oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Barbi
- Department of Immunology
- Department of Thoracic Surgery
| | | | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mateusz Opyrchal
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
31
|
Nguyen NT, Mitsuhashi A, Ogino H, Kozai H, Yoneda H, Afroj T, Sato S, Nokihara H, Shinohara T, Nishioka Y. S-1 eliminates MDSCs and enhances the efficacy of PD-1 blockade via regulation of tumor-derived Bv8 and S100A8 in thoracic tumor. Cancer Sci 2022; 114:384-398. [PMID: 36285504 PMCID: PMC9899614 DOI: 10.1111/cas.15620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been known to play a pivotal role in the induction of immune tolerance, which limits the benefits of immune checkpoint inhibitors (ICIs). Recent studies revealed that several chemotherapeutic agents decreased tumor-infiltrating MDSCs. Therefore, combination therapy with cytotoxic chemotherapeutic agents and ICIs was approved for first-line treatment for lung cancer. However, the impact of chemotherapeutic agents on MDSCs and an optimal partner of ICIs has not been fully investigated in thoracic tumors, including lung cancer and malignant pleural mesothelioma. In the present study, we found that treatment with 5-FU and its oral formulation, S-1, suppressed tumor progression and inhibited the accumulation of MDSCs in thoracic tumor-bearing mice. Tumor-infiltrating T cells and dendritic cells were significantly expanded in S-1-treated mice. 5-FU suppressed the ability of tumor cells to recruit MDSCs, while it did not suppress the survival and differentiation of mouse MDSCs in vitro. We also revealed that 5-FU or S-1 significantly downregulated the expression of tumor-derived Bv8 and S100A8. The knockdown of Bv8 or S100A8 in tumor cells suppressed tumor growth and MDSC recruitment in vivo. Furthermore, in comparison with pemetrexed, administration of S-1 improved the synergistic therapeutic efficacy of anti-PD-1 antibodies with or without carboplatin. Our findings revealed a novel mechanism wherein S-1 primed a favorable tumor microenvironment to provide the rationale for combination therapy with S-1 and ICIs as the optimal therapy for thoracic cancer.
Collapse
Affiliation(s)
- Na T. Nguyen
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Atsushi Mitsuhashi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Hiroyuki Kozai
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Hiroto Yoneda
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Tania Afroj
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Seidai Sato
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Hiroshi Nokihara
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Tsutomu Shinohara
- Department of Community Medicine for Respirology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan,Department of Community Medicine for Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
32
|
Fortunato O, Huber V, Segale M, Cova A, Vallacchi V, Squarcina P, Rivoltini L, Suatoni P, Sozzi G, Pastorino U, Boeri M. Development of a Molecular Blood-Based Immune Signature Classifier as Biomarker for Risks Assessment in Lung Cancer Screening. Cancer Epidemiol Biomarkers Prev 2022; 31:2020-2029. [PMID: 36112827 PMCID: PMC9627262 DOI: 10.1158/1055-9965.epi-22-0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Low-dose CT (LDCT) screening trials have shown that lung cancer early detection saves lives. However, a better stratification of the screening population is still needed. In this respect, we generated and prospectively validated a plasma miRNA signature classifier (MSC) able to categorize screening participants according to lung cancer risk. Here, we aimed to deeply characterize the peripheral immune profile and develop a diagnostic immune signature classifier to further implement blood testing in lung cancer screening. METHODS Peripheral blood mononuclear cell (PBMC) samples collected from 20 patients with LDCT-detected lung cancer and 20 matched cancer-free screening volunteers were analyzed by flow cytometry using multiplex panels characterizing both lymphoid and myeloid immune subsets. Data were validated in PBMC from 40 patients with lung cancer and 40 matched controls and in a lung cancer specificity set including 27 subjects with suspicious lung nodules. A qPCR-based gene expression signature was generated resembling selected immune subsets. RESULTS Monocytic myeloid-derived suppressor cell (MDSC), polymorphonuclear MDSC, intermediate monocytes and CD8+PD-1+ T cells distinguished patients with lung cancer from controls with AUCs values of 0.94/0.72/0.88 in the training, validation, and lung cancer specificity set, respectively. AUCs raised up to 1.00/0.84/0.92 in subgroup analysis considering only MSC-negative subjects. A 14-immune genes expression signature distinguished patients from controls with AUC values of 0.76 in the validation set and 0.83 in MSC-negative subjects. CONCLUSIONS An immune-based classifier can enhance the accuracy of blood testing, thus supporting the contribution of systemic immunity to lung carcinogenesis. IMPACT Implementing LDCT screening trials with minimally invasive blood tests could help reduce unnecessary procedures and optimize cost-effectiveness.
Collapse
Affiliation(s)
- Orazio Fortunato
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Miriam Segale
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Agata Cova
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Squarcina
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Suatoni
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Corresponding Author: Gabriella Sozzi, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, Milan 20133, Italy. Phone: 223-903-775; E-mail:
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mattia Boeri
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
33
|
The function of myeloid-derived suppressor cells in COVID-19 lymphopenia. Int Immunopharmacol 2022; 112:109277. [PMID: 36206651 PMCID: PMC9513342 DOI: 10.1016/j.intimp.2022.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has caused a global pandemic and presents a significant danger to public health. Lymphopenia is considered to be the defining characteristic of severe COVID-19, especially in elderly people. Lymphopenia has been suggested as a pivotal factor in disease severity. To minimize mortality in COVID-19 patients, it is essential to have a deeper understanding of the processes behind lymphocytopenia. Recently, myeloid-derived suppressor cells (MDSCs) have been confirmed as a key mediator of lymphopenia. MDSCs are characterized by their powerful capacity to suppress T cells and eventually contribute to the course of illness. Targeting these cells may improve the disease prognosis. In this article, we analyze the available research on MDSCs in lymphopenia and discuss their immunopathologic changes and prospective therapeutic targets in patients with COVID-19 lymphocytopenia.
Collapse
|
34
|
Lv L, Huang RH, Li J, Xu J, Gao W. Impact of NSCLC metabolic remodeling on immunotherapy effectiveness. Biomark Res 2022; 10:66. [PMID: 36038935 PMCID: PMC9425942 DOI: 10.1186/s40364-022-00412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
It is known that metabolic reprogramming (MR) contributes to tumorigenesis through the activation of processes that support survival of cells, proliferation, and grow in the tumor microenvironment. In order to keep the tumor proliferating at a high rate, metabolic pathways must be upregulated, and tumor metabolism must be adapted to meet this requirement. Additionally, immune cells engage in metabolic remodeling to maintain body and self-health. With the advent of immunotherapy, the fate of individuals suffering from non-small cell lung cancer (NSCLC) has been transformed dramatically. MR may have a profound influence on their prognosis. The aim of this review is to summarize current research advancements in metabolic reprogramming and their impact on immunotherapy in NSCLC. Moreover, we talk about promising approaches targeting and manipulating metabolic pathways to improve cancer immunotherapy’s effectiveness in NSCLC.
Collapse
Affiliation(s)
- Lulu Lv
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ruo Han Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiale Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
35
|
Baci D, Cekani E, Imperatori A, Ribatti D, Mortara L. Host-Related Factors as Targetable Drivers of Immunotherapy Response in Non-Small Cell Lung Cancer Patients. Front Immunol 2022; 13:914890. [PMID: 35874749 PMCID: PMC9298844 DOI: 10.3389/fimmu.2022.914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite some significant therapeutic breakthroughs leading to immunotherapy, a high percentage of patients with non-small cell lung cancer (NSCLC) do not respond to treatment on relapse, thus experiencing poor prognosis and survival. The unsatisfying results could be related to the features of the tumor immune microenvironment and the dynamic interactions between a tumor and immune infiltrate. Host-tumor interactions strongly influence the course of disease and response to therapies. Thus, targeting host-associated factors by restoring their physiologic functions altered by the presence of a tumor represents a new therapeutic approach to control tumor development and progression. In NSCLC, the immunogenic tumor balance is shifted negatively toward immunosuppression due to the release of inhibitory factors as well as the presence of immunosuppressive cells. Among these cells, there are myeloid-derived suppressor cells, regulatory T cells that can generate a tumor-permissive milieu by reprogramming the cells of the hosts such as tumor-associated macrophages, tumor-associated neutrophils, natural killer cells, dendritic cells, and mast cells that acquire tumor-supporting phenotypes and functions. This review highlights the current knowledge of the involvement of host-related factors, including innate and adaptive immunity in orchestrating the tumor cell fate and the primary resistance mechanisms to immunotherapy in NSCLC. Finally, we discuss combinational therapeutic strategies targeting different aspects of the tumor immune microenvironment (TIME) to prime the host response. Further research dissecting the characteristics and dynamic interactions within the interface host-tumor is necessary to improve a patient fitness immune response and provide answers regarding the immunotherapy efficacy, with the aim to develop more successful treatments for NSCLC.
Collapse
Affiliation(s)
- Denisa Baci
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy.,Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elona Cekani
- Medical Oncology Clinic, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Andrea Imperatori
- Center for Thoracic Surgery, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
36
|
Alfranca YL, García MEO, Rueda AG, Ballesteros PÁ, Rodríguez DR, Velasco MT. Blood Biomarkers of Response to Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. J Clin Med 2022; 11:jcm11113245. [PMID: 35683629 PMCID: PMC9181575 DOI: 10.3390/jcm11113245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment landscape of non-small cell lung cancer (NSCLC), either used in monotherapy or in combination with chemotherapy. While some patients achieve durable responses, some will not get benefit from this treatment. Early identification of non- responder patients could avoid unnecessary treatment, potentially serious immune-related adverse events and reduce treatment costs. PD-L1 expression using immunohistochemistry is the only approved biomarker for the selection of patients that can benefit from immunotherapy. However, application of PD-L1 as a biomarker of treatment efficacy shows many deficiencies probably due to the complexity of the tumor microenvironment and the technical limitations of the samples. Thus, there is an urgent need to find other biomarkers, ideally blood biomarkers to help us to identify different subgroups of patients in a minimal invasive way. In this review, we summarize the emerging blood-based markers that could help to predict the response to ICIs in NSCLC.
Collapse
|
37
|
Wen T, Su C, Cheng X, Wang Y, Ma T, Bai Z, Zhang H, Liu Z. Circulating myeloid-derived suppressors cells correlate with clinicopathological characteristics and outcomes undergoing neoadjuvant chemoimmunotherapy in non-small cell lung cancer. Clin Transl Oncol 2022; 24:1184-1194. [PMID: 34988921 DOI: 10.1007/s12094-021-02765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Myeloid-derived suppressors cells (MDSCs) are heterogeneous immunosuppressive cells, closely related to the development, efficacy and prognosis in various tumors. The relationship between clinicopathological characteristics, efficacy of neoadjuvant chemoimmunotherapy (NCIO) and circulating MDSCs in patients with non-small cell lung cancer (NSCLC) was investigated in this study. METHODS This study analyzed the clinical data of patients diagnosed at Department of Thoracic Surgery, Beijing Chest Hospital from November 2020 to August 2021. MDSCs and T cells subgroups were measured in fresh peripheral blood mononuclear cells(PBMCs) at baseline. Flow cytometry was used to detect MDSCs and T cells subgroups. RESULTS A total of 78 patients with NSCLC and 20 patients with benign nodule underwent direct surgery. 23 patients with NSCLC scheduled to accept NCIO before surgery. NSCLC had elevated levels of total MDSCs, PMN-MDSCs and M-MDSCs compared to patients with benign nodule. MDSCs subgroups were correlated to the pTNM stage in NSCLC patients. The frequency of total MDSCs were moderately positively correlated with regulatory T cells (Tregs)(r = 0.3597, P < 0.01) and negatively correlated with CD4 + T cells(r = 0.2714, P < 0.05). The baseline levels of total MDSCs, PMN-MDSCs and Tregs in pCR patients were significantly decreased than those of non-pCR patients (P < 0.05). CONCLUSION Circulating MDSCs were increased in NSCLC patients. MDSC subgroups were related to pTNM stage in NSCLC patients. Total MDSCs were positively correlated with Tregs levels and negatively correlated with CD4 + T cells in peripheral blood. The level of MDSCs and Tregs in peripheral blood may have potential value in predicting pathological response in NSCLC.
Collapse
Affiliation(s)
- T Wen
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - C Su
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - X Cheng
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Y Wang
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - T Ma
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Z Bai
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - H Zhang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Z Liu
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Tan Q, Yin S, Zhou D, Chi Y, Man X, Li H. Potential Predictive and Prognostic Value of Biomarkers Related to Immune Checkpoint Inhibitor Therapy of Triple-Negative Breast Cancer. Front Oncol 2022; 12:779786. [PMID: 35646659 PMCID: PMC9134495 DOI: 10.3389/fonc.2022.779786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
As an aggressive subtype of breast cancer, triple-negative breast cancer (TNBC) is associated with poor prognosis and lack of effective therapy, except chemotherapy. In recent years, immunotherapy based on immune checkpoint (IC) inhibition has emerged as a promising therapeutic strategy in TNBC. TNBC has more tumor-infiltrating lymphocytes (TILs) and higher rate of mutation and programmed cell death ligand-1 (PD-L1) expression than other subtypes of breast cancer have. However, previous studies have shown that monotherapy has little efficacy and only some TNBC patients can benefit from immunotherapy. Therefore, it is important to identify biomarkers that can predict the efficacy of IC inhibitors (ICIs) in TNBC. Recently, various biomarkers have been extensively explored, such as PD-L1, TILs and tumor mutational burden (TMB). Clinical trials have shown that PD-L1-positive patients with advanced TNBC benefit from ICIs plus chemotherapy. However, in patients with early TNBC receiving neoadjuvant therapy, PD-L1 cannot predict the efficacy of ICIs. These inconsistent conclusions suggest that PD-L1 is the best to date but an imperfect predictive biomarker for efficacy of ICIs. Other studies have shown that advanced TNBC patients with TMB ≥10 mutations/Mb can achieve clinical benefits from pembrolizumab. TILs also have potential predictive value in TNBC. Here, we select some biomarkers related to ICIs and discuss their potential predictive and prognostic value in TNBC. We hope these biomarkers could help to identify suitable patients and realize precision immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Huihui Li
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
39
|
Yan Y, Wang X, Liu C, Jia J. Association of lymphocyte subsets with efficacy and prognosis of immune checkpoint inhibitor therapy in advanced non-small cell lung carcinoma: a retrospective study. BMC Pulm Med 2022; 22:166. [PMID: 35484541 PMCID: PMC9052648 DOI: 10.1186/s12890-022-01951-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/11/2022] [Indexed: 01/07/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have achieved promising effects in patients with non-small cell lung cancer (NSCLC). However, not all patients with NSCLC benefit from immunotherapy. There is an urgent need to explore biomarkers that could predict the survival outcomes and therapeutic efficacy in advanced NSCLC patients treated with immunotherapy. In this study, we aimed to assess the changes in peripheral blood lymphocyte subsets and their association with the therapeutic efficacy and clinical prognosis of advanced NSCLC patients treated with immunotherapy.
Methods A total of 276 patients with advanced NSCLC were enrolled. Peripheral blood lymphocyte subsets including CD4+ T cells, CD8+ T cells, CD4+/CD8+ ratio, NK cells, Tregs and B cells were collected before any treatment, before immunotherapy or chemotherapy, and after 4 cycles of immunotherapy or chemotherapy. T-test was used to analyze the factors influencing lymphocyte subsets and their changes before and after therapy. Logistic regression was used to plot ROC curves and analyze the relationship between lymphocyte subsets and therapeutic efficacy. Log-rank test and Cox regression model were used to evaluate the relationship between lymphocyte subsets and progression-free survival (PFS). Results Gender, distant metastasis, and EGFR mutation status are known to affect the proportion of peripheral blood lymphocyte subsets in patients with advanced NSCLC. The proportions of CD4+ T cells, CD8+ T cells, Tregs and B cells were found to decrease after chemotherapy as compared to the baseline. The proportion of CD4+ T cells, CD8+ T cells, CD4+/CD8+ ratio, NK cells and Tregs were higher after immunotherapy than after chemotherapy. Compared to the baseline, the effective group showed significant increase in the proportions of CD4+ T cells, CD4+/CD8+ ratio, NK cells and Tregs, and the number of CD8+ T cells was significantly lower in the peripheral blood after 4 cycles of immunotherapy. On the contrary, the ineffective group did not show any significant differences in the above parameters. Baseline CD4+ T cells and NK cells were independent predictors of immunotherapy efficacy and PFS. Baseline Tregs were independent predictor of immunotherapy efficacy. Conclusion Immune checkpoint inhibitors induced changes in the proportion of peripheral blood lymphocyte subsets in patients that responded well to immunotherapy. The levels of the different lymphocyte subsets could serve as valuable predictive biomarkers of efficacy and clinical prognosis for NSCLC patients treated with immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01951-x.
Collapse
Affiliation(s)
- Yi Yan
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyan Wang
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenan Liu
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junmei Jia
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
40
|
Bronte G, Petracci E, De Matteis S, Canale M, Zampiva I, Priano I, Cravero P, Andrikou K, Burgio MA, Ulivi P, Delmonte A, Crinò L. High Levels of Circulating Monocytic Myeloid-Derived Suppressive-Like Cells Are Associated With the Primary Resistance to Immune Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer: An Exploratory Analysis. Front Immunol 2022; 13:866561. [PMID: 35493483 PMCID: PMC9043492 DOI: 10.3389/fimmu.2022.866561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022] Open
Abstract
BackgroundImmunotherapy has become the standard of care for non-small cell lung cancer (NSCLC) patients. Some patients experience primary resistance to immunotherapy. Currently, we lack a marker of resistance to immunotherapy. Myeloid-derived suppressive-like cells (MDSCs) can reduce tumor response rate and survival outcomes.MethodsThis is an exploratory prospective observational study on metastatic NSCLC patients starting immunotherapy. Baseline peripheral blood samples were collected. Monocytic (M)-MDSCs were analyzed by flow cytometry. The main clinical outcomes were tumor response, progression-free survival (PFS), and overall survival (OS). The association between MDSC levels and tumor response was assessed. The association of PFS with OS was investigated using the Kaplan–Meier method and the Cox proportional hazards model.ResultsTwenty-two patients were included. The median M-MDSC value was higher in patients with progressive disease than patients with stable disease or partial response, p = 0.045. The median MDSC value in the overall population was 1.9. We found worse PFS (HR = 2.51; p = 0.046) and OS (HR = 2.68; p = 0.042) in patients with M-MDSC values higher than the median.ConclusionsIn this exploratory analysis, high M-MDSC levels are strongly associated with primary resistance to immunotherapy. If validated in larger studies, MDSC levels in blood samples could help to select NSCLC patients for higher benefit from immunotherapy.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- *Correspondence: Giuseppe Bronte,
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Serena De Matteis
- Unit of Immunobiology of Transplants and Advanced Cellular Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Canale
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Ilaria Zampiva
- Section of Oncology, Department of Medicine, University of Verona; Centro Ricerche Cliniche di Verona (CRC), Verona, Italy
| | - Ilaria Priano
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Paola Cravero
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Kalliopi Andrikou
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marco Angelo Burgio
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucio Crinò
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
41
|
Huang M, Xiong D, Pan J, Zhang Q, Wang Y, Myers CR, Johnson BD, Hardy M, Kalyanaraman B, You M. Prevention of Tumor Growth and Dissemination by In Situ Vaccination with Mitochondria-Targeted Atovaquone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101267. [PMID: 35243806 PMCID: PMC9036031 DOI: 10.1002/advs.202101267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Atovaquone, an FDA-approved drug for malaria, is known to inhibit mitochondrial electron transport. A recently synthesized mitochondria-targeted atovaquone increased mitochondrial accumulation and antitumor activity in vitro. Using an in situ vaccination approach, local injection of mitochondria-targeted atovaquone into primary tumors triggered potent T cell immune responses locally and in distant tumor sites. Mitochondria-targeted atovaquone treatment led to significant reductions of both granulocytic myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment. Mitochondria-targeted atovaquone treatment blocks the expression of genes involved in oxidative phosphorylation and glycolysis in granulocytic-myeloid-derived suppressor cells and regulatory T cells, which may lead to death of granulocytic-myeloid-derived suppressor cells and regulatory T cells. Mitochondria-targeted atovaquone inhibits expression of genes for mitochondrial complex components, oxidative phosphorylation, and glycolysis in both granulocytic-myeloid-derived suppressor cells and regulatory T cells. The resulting decreases in intratumoral granulocytic-myeloid-derived suppressor cells and regulatory T cells could facilitate the observed increase in tumor-infiltrating CD4+ T cells. Mitochondria-targeted atovaquone also improves the anti-tumor activity of PD-1 blockade immunotherapy. The results implicate granulocytic-myeloid-derived suppressor cells and regulatory T cells as novel targets of mitochondria-targeted atovaquone that facilitate its antitumor efficacy.
Collapse
Affiliation(s)
- Mofei Huang
- Center for Cancer Prevention, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Donghai Xiong
- Center for Cancer Prevention, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Jing Pan
- Center for Cancer Prevention, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Qi Zhang
- Center for Cancer Prevention, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Yian Wang
- Center for Cancer Prevention, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Bryon D Johnson
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| |
Collapse
|
42
|
Fatima S, Ma Y, Safrachi A, Haider S, Spring KJ, Vafaee F, Scott KF, Roberts TL, Becker TM, de Souza P. Harnessing Liquid Biopsies to Guide Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2022; 14:1669. [PMID: 35406441 PMCID: PMC8997025 DOI: 10.3390/cancers14071669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy (IO), involving the use of immune checkpoint inhibition, achieves improved response-rates and significant disease-free survival for some cancer patients. Despite these beneficial effects, there is poor predictability of response and substantial rates of innate or acquired resistance, resulting in heterogeneous responses among patients. In addition, patients can develop life-threatening adverse events, and while these generally occur in patients that also show a tumor response, these outcomes are not always congruent. Therefore, predicting a response to IO is of paramount importance. Traditionally, tumor tissue analysis has been used for this purpose. However, minimally invasive liquid biopsies that monitor changes in blood or other bodily fluid markers are emerging as a promising cost-effective alternative. Traditional biomarkers have limitations mainly due to difficulty in repeatedly obtaining tumor tissue confounded also by the spatial and temporal heterogeneity of tumours. Liquid biopsy has the potential to circumvent tumor heterogeneity and to help identifying patients who may respond to IO, to monitor the treatment dynamically, as well as to unravel the mechanisms of relapse. We present here a review of the current status of molecular markers for the prediction and monitoring of IO response, focusing on the detection of these markers in liquid biopsies. With the emerging improvements in the field of liquid biopsy, this approach has the capacity to identify IO-eligible patients and provide clinically relevant information to assist with their ongoing disease management.
Collapse
Affiliation(s)
- Shadma Fatima
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (A.S.); (F.V.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Yafeng Ma
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
- Centre for Circulating Tumor Cell Diagnosis and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Azadeh Safrachi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (A.S.); (F.V.)
| | - Sana Haider
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kevin J. Spring
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia; (A.S.); (F.V.)
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2031, Australia
| | - Kieran F. Scott
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Tara L. Roberts
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
| | - Therese M. Becker
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
- Centre for Circulating Tumor Cell Diagnosis and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Paul de Souza
- Department of Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (Y.M.); (S.H.); (K.J.S.); (K.F.S.); (T.L.R.); (T.M.B.); (P.d.S.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- South Western Sydney Clinical School, UNSW, Sydney, NSW 2031, Australia
| |
Collapse
|
43
|
Kotze LA, van der Spuy G, Leonard B, Penn-Nicholson A, Musvosvi M, McAnda S, Malherbe ST, Erasmus M, Scriba T, Koegelenberg CFN, Allwood BW, Walzl G, du Plessis N. Targeted Gene Expression Profiling of Human Myeloid Cells From Blood and Lung Compartments of Patients With Tuberculosis and Other Lung Diseases. Front Immunol 2022; 13:839747. [PMID: 35356003 PMCID: PMC8959218 DOI: 10.3389/fimmu.2022.839747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) have been identified in the peripheral blood and granulomas of patients with active TB disease, but their phenotype-, function-, and immunosuppressive mechanism- spectrum remains unclear. Importantly, the frequency and signaling pathways of MDSC at the site of disease is unknown with no indication how this compares to MDSC identified in peripheral blood or to those of related myeloid counterparts such as alveolar macrophages and monocytes. Most phenotypic and functional markers have been described in oncological studies but have not yet been validated in TB. Using a panel of 43 genes selected from pathways previously shown to contribute to tumor-derived MDSC, we set out to evaluate if the expression of these additional functional markers and properties may also be relevant to TB-derived MDSC. Differential expression was investigated between MDSC, alveolar macrophages and monocytes enriched from bronchoalveolar lavage fluid and peripheral blood of patients with active TB, patients with other lung diseases (OLD). Results demonstrated that anatomical compartments may drive compartment-specific immunological responses and subsequent MDSC immunosuppressive functions, demonstrated by the observation that MDSC and/or monocytes from PB alone can discriminate, via hierarchical clustering, between patients with active TB disease and OLD. Our data show that the gene expression patterns of MDSC in peripheral blood and bronchoalveolar lavage fluid do not cluster according to disease states (TB vs OLD). This suggests that MDSC from TB patients may display similar gene expression profiles to those found for MDSC in cancer, but this needs to be validated in a larger cohort. These are important observations for TB research and may provide direction for future studies aimed at repurposing and validating cancer immunotherapies for use in TB.
Collapse
Affiliation(s)
- Leigh Ann Kotze
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gian van der Spuy
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bryan Leonard
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shirley McAnda
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T. Malherbe
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas Scriba
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Coenraad F. N. Koegelenberg
- Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
| | - Brian W. Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University and Tygerberg Academic Hospital, Cape Town, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
44
|
Fang L, Yu W, Yu G, Zhong F, Ye B. Junctional Adhesion Molecule-Like Protein (JAML) Is Correlated with Prognosis and Immune Infiltrates in Lung Adenocarcinoma. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e933503. [PMID: 35034089 PMCID: PMC8772237 DOI: 10.12659/msm.933503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Junctional adhesion molecule-like protein (JAML) is a member of the junctional adhesion molecule family and mediates migration of immune cells, but its function in cancers remains unclear. This study aimed to evaluate the role of JAML in the prognosis and immune infiltrates of lung adenocarcinoma (LUAD). MATERIAL AND METHODS JAML expressions in LUAD tissues and normal tissues were compared using The Cancer Genome Atlas (TCGA) database and datasets from the Gene Expression Omnibus (GEO) database. The influence of JAML expression on prognosis was analyzed by Kaplan-Meier curve and Cox regression model. Interactive and functional analyses of JAML were performed by LinkedOmics and GeneMANIA databases. TIMER2.0, TISIDB, and GEPIA2 databases were used to investigate the correlation between JAML expression and immune infiltrates. RESULTS JAML expression was decreased in LUAD (P<0.001), and lower JAML expression was associated with worse outcomes of LUAD patients. High JAML expression was the protective factor for overall survival (OS) (HR 0.706, 95% CI 0.500-0.997, P=0.048). Interactive and functional analyses suggested that co-expressed genes with JAML have an obvious link to immune-related pathways. In addition, JAML expression was positively associated with infiltrating levels of CD8+ T cells, CD4+ T cells, B cells, dendritic cells, macrophages, and neutrophils, and had significant correlations with diverse immune marker sets in LUAD. CONCLUSIONS JAML expression was significantly correlated with prognosis and immune infiltrates. These preliminary findings suggested JAML could be considered as a potential prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Likui Fang
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Wenfeng Yu
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Guocan Yu
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Fangming Zhong
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Bo Ye
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
45
|
Cheng JN, Yuan YX, Zhu B, Jia Q. Myeloid-Derived Suppressor Cells: A Multifaceted Accomplice in Tumor Progression. Front Cell Dev Biol 2022; 9:740827. [PMID: 35004667 PMCID: PMC8733653 DOI: 10.3389/fcell.2021.740827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature myeloid cells, has a pivotal role in negatively regulating immune response, promoting tumor progression, creating pre-metastases niche, and weakening immunotherapy efficacy. The underlying mechanisms are complex and diverse, including immunosuppressive functions (such as inhibition of cytotoxic T cells and recruitment of regulatory T cells) and non-immunological functions (mediating stemness and promoting angiogenesis). Moreover, MDSC may predict therapeutic response as a poor prognosis biomarker among multiple tumors. Accumulating evidence indicates targeting MDSC can reverse immunosuppressive tumor microenvironment, and improve therapeutic response either single or combination with immunotherapy. This review summarizes the phenotype and definite mechanisms of MDSCs in tumor progression, and provide new insights of targeting strategies regarding to their clinical applications.
Collapse
Affiliation(s)
- Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Yi-Xiao Yuan
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China.,Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| |
Collapse
|
46
|
Abstract
For the past decade, the role and importance of neutrophils in cancer is being increasingly appreciated. Research has focused on the ability of cancer-related neutrophils to either support tumor growth or interfere with it, showing diverse mechanisms through which the effects of neutrophils take place. In contrast to the historic view of neutrophils as terminally differentiated cells, mounting evidence has demonstrated that neutrophils are a plastic and diverse population of cells. These dynamic and plastic abilities allow them to perform varied and sometimes opposite functions simultaneously. In this review, we summarize and detail clinical and experimental evidence for, and underlying mechanisms of, the dual impact of neutrophils' functions, both supporting and inhibiting cancer development. We first discuss the effects of various basic functions of neutrophils, namely direct cytotoxicity, secretion of reactive oxygen species (ROS), nitric oxide (NO) and proteases, NETosis, autophagy and modulation of other immune cells, on tumor growth and metastatic progression. We then describe the clinical evidence for pro- vs anti-tumor functions of neutrophils in human cancer. We believe and show that the "net" impact of neutrophils in cancer is the sum of a complex balance between contradicting effects which occur simultaneously.
Collapse
|
47
|
Sheida F, Razi S, Keshavarz-Fathi M, Rezaei N. The role of myeloid-derived suppressor cells in lung cancer and targeted immunotherapies. Expert Rev Anticancer Ther 2021; 22:65-81. [PMID: 34821533 DOI: 10.1080/14737140.2022.2011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Lung cancer is the deadliest cancer in both sexes combined globally due to significant delays in diagnosis and poor survival. Despite advances in the treatment of lung cancer, the overall outcomes remain poor and traditional chemotherapy fails to provide long-term benefits for many patients. Therefore, new treatment strategies are needed to increase overall survival. Myeloid-derived suppressor cells (MDSCs) are immunosuppressive cells taking part in lung cancer, as has been described in other types of tumors. MDSCs immunosuppressive activity is mediated by arginases (ARG-1 and ARG-2), nitric oxide (NO), reactive oxygen species (ROS), peroxynitrite, PD-1/PD-L1 axis, and different cytokines. MDSCs can be a target for lung cancer immunotherapy by inducing their differentiation into mature myeloid cells, elimination, attenuation of their function, and inhibition of their accumulation. AREAS COVERED In this review, the immunosuppressive function of MDSCs, their role in lung cancer, and strategies to target them, which could result in increased efficacy of immunotherapy in patients with lung cancer, are discussed. EXPERT OPINION Identification of important mechanisms and upstream pathways involved in MDSCs functions paves the way for further preclinical and clinical lung cancer research, which could lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fateme Sheida
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
48
|
Hicks KC, Tyurina YY, Kagan VE, Gabrilovich DI. Myeloid-cell derived oxidized lipids and regulation of the tumor microenvironment. Cancer Res 2021; 82:187-194. [PMID: 34764204 DOI: 10.1158/0008-5472.can-21-3054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Immune suppressive myeloid cells play a major role in cancer by negatively regulating immune responses, promoting tumor progression, and limiting the efficacy of cancer immunotherapy. Immune suppression is mediated by various mechanisms dependent upon the type of myeloid cell involved. In recent years, a more universal mechanism of immune suppressive activity of myeloid cells has emerged: generation of oxidized lipids. Oxidized lipids accumulate in all types of myeloid cells and are often transferred between cells. In this review, we discuss mechanisms involved in the generation and biological role of myeloid cell-derived oxidized lipids in cancer.
Collapse
|
49
|
Grover A, Sanseviero E, Timosenko E, Gabrilovich DI. Myeloid-Derived Suppressor Cells: A Propitious Road to Clinic. Cancer Discov 2021; 11:2693-2706. [PMID: 34635571 DOI: 10.1158/2159-8290.cd-21-0764] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important regulators of immune responses in cancer. They represent a relatively stable form of pathologic activation of neutrophils and monocytes and are characterized by distinct transcriptional, biochemical, functional, and phenotypical features. The close association of MDSCs with clinical outcomes in cancer suggests that these cells can be an attractive target for therapeutic intervention. However, the complex nature of MDSC biology represents a substantial challenge for the development of selective therapies. Here, we discuss the mechanisms regulating MDSC development and fate and recent research advances that have demonstrated opportunities for therapeutic regulation of these cells. SIGNIFICANCE: MDSCs are attractive therapeutic targets because of their close association with negative clinical outcomes in cancer and established biology as potent immunosuppressive cells. However, the complex nature of MDSC biology presents a substantial challenge for therapeutic targeting. In this review, we discuss those challenges and possible solutions.
Collapse
Affiliation(s)
- Amit Grover
- AstraZeneca, ICC, Early Oncology, R&D, Cambridge, United Kingdom
| | | | - Elina Timosenko
- AstraZeneca, ICC, Early Oncology, R&D, Cambridge, United Kingdom
| | | |
Collapse
|
50
|
An HJ, Chon HJ, Kim C. Peripheral Blood-Based Biomarkers for Immune Checkpoint Inhibitors. Int J Mol Sci 2021; 22:9414. [PMID: 34502325 PMCID: PMC8430528 DOI: 10.3390/ijms22179414] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
As cancer immunotherapy using immune checkpoint inhibitors (ICIs) is rapidly evolving in clinical practice, it is necessary to identify biomarkers that will allow the selection of cancer patients who will benefit most or least from ICIs and to longitudinally monitor patients' immune responses during treatment. Various peripheral blood-based immune biomarkers are being identified with recent advances in high-throughput multiplexed analytical technologies. The identification of these biomarkers, which can be easily detected in blood samples using non-invasive and repeatable methods, will contribute to overcoming the limitations of previously used tissue-based biomarkers. Here, we discuss the potential of circulating immune cells, soluble immune and inflammatory molecules, circulating tumor cells and DNA, exosomes, and the blood-based tumor mutational burden, as biomarkers for the prediction of immune responses and clinical benefit from ICI treatment in patients with advanced cancer.
Collapse
Affiliation(s)
- Ho Jung An
- Department of Medical Oncology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Korea
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Korea
| |
Collapse
|