1
|
Tang YC, Ou JJ, Hsu SC, Huang CH, Lin LM, Chang HH, Wang YH, Huang ZT, Sun M, Liu KJ, Hung YM, Lai CY, Shih C, Chen CT, Chang JY, Hsieh HP, Jiaang WT, Kuo CC. Advancing precision therapy for colorectal cancer: Developing clinical indications for multi-target kinase inhibitor BPR1J481 using patient-derived xenograft models. Pharmacol Res 2025; 211:107556. [PMID: 39709137 DOI: 10.1016/j.phrs.2024.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/17/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The large and rapid increase in the incidence and mortality of colorectal cancer (CRC) demonstrates the urgent need for new drugs with higher efficacy to treat CRC. However, the lack of applicable and reliable preclinical models significantly hinders the progress of drug development. Patient-derived xenograft (PDX) models are currently considered reliable in vivo preclinical models for predicting drug efficacy in cancer patients. This study successfully uses the CRC PDX model to develop clinical indications for the new multi-target kinase inhibitor BPR1J481 and demonstrated the anti-cancer mechanism and competitive advantages of this drug candidate. The results demonstrate that BPR1J481 exhibits significant anticancer efficacy by inducing apoptosis in CRC PDX tumor tissues and corresponding PDX-derived CRC cells. Through kinase competitive binding and kinase activity assays, we discover that BPR1J481 effectively inhibits SRC kinase activity by directly binding to its active site. The reduction in SRC phosphorylation observed in CRC PDX tumor tissues and derived cells upon treatment with BPR1J481 further validates its inhibitory potential. Furthermore, the decrease in viable cells after SRC knockout and the poorer prognosis observed in patients with higher SRC expression, emphasizes the critical significance and clinical relevance of SRC in CRC. Additionally, BPR1J481 exhibits robust anti-angiogenic effects by suppressing VEGF- and PDGF-induced endothelial cell proliferation, migration, and capillary-like tube formation through inhibition of VEGFR2 and PDGFRβ phosphorylation. Remarkably, BPR1J481 appears to demonstrate greater efficacy against CRC compared to regorafenib. These findings highlight the therapeutic potential of BPR1J481 for patients with CRC.
Collapse
Affiliation(s)
- Ya-Chu Tang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Jing-Jim Ou
- Department of Surgery, Chang Bing Show Chwan Memorial Hospital, Changhua County 505029, Taiwan
| | - Shu-Ching Hsu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Chih-Hsiang Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Li-Mei Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Yi-Hsin Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Zih-Ting Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Manwu Sun
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704016, Taiwan
| | - Yi-Mei Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan City 704016, Taiwan
| | - Chi-Yun Lai
- Pathology Core Laboratory, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan; Taipei Medical University Hospital, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan; Taipei Cancer Center, Taiwan; TMU Research Center of Cancer Translational Medicine, 110301, Taiwan
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan.
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan.
| |
Collapse
|
2
|
Zhang H, Xu D, Huang H, Jiang H, Hu L, Liu L, Sun G, Gao J, Li Y, Xia C, Chen S, Zhou H, Kong X, Wang M, Luo C. Discovery of a Covalent Inhibitor Selectively Targeting the Autophosphorylation Site of c-Src Kinase. ACS Chem Biol 2024; 19:999-1010. [PMID: 38513196 DOI: 10.1021/acschembio.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/23/2024]
Abstract
Nonreceptor tyrosine kinase c-Src plays a crucial role in cell signaling and contributes to tumor progression. However, the development of selective c-Src inhibitors turns out to be challenging. In our previous study, we performed posttranslational modification-inspired drug design (PTMI-DD) to provide a plausible way for designing selective kinase inhibitors. In this study, after identifying a unique pocket comprising a less conserved cysteine and an autophosphorylation site in c-Src as well as a promiscuous covalent inhibitor, chemical optimization was performed to obtain (R)-LW-Srci-8 with nearly 75-fold improved potency (IC50 = 35.83 ± 7.21 nM). Crystallographic studies revealed the critical C-F···C═O interactions that may contribute to tight binding. The kinact and Ki values validated the improved binding affinity and decreased warhead reactivity of (R)-LW-Srci-8 for c-Src. Notably, in vitro tyrosine kinase profiling and cellular activity-based protein profiling (ABPP) cooperatively indicated a specific inhibition of c-Src by (R)-LW-Srci-8. Intriguingly, (R)-LW-Srci-8 preferentially binds to inactive c-Src with unphosphorylated Y419 both in vitro and in cells, subsequently disrupting the autophosphorylation. Collectively, our study demonstrated the feasibility of developing selective kinase inhibitors by cotargeting a nucleophilic residue and a posttranslational modification site and providing a chemical probe for c-Src functional studies.
Collapse
Affiliation(s)
- Huimin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dounan Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongchan Huang
- Center for Chemical Biology and Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hao Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Liping Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Ge Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Yuanqing Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuicui Xia
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shijie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Xiangqian Kong
- Center for Chemical Biology and Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Teli G, Pal R, Maji L, Purawarga Matada GS, Sengupta S. Explanatory review on pyrimidine/fused pyrimidine derivatives as anticancer agents targeting Src kinase. J Biomol Struct Dyn 2024; 42:1582-1614. [PMID: 37144746 DOI: 10.1080/07391102.2023.2205943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The pyrimidine and fused pyrimidine ring systems play vital roles to inhibit the c-Src kinase. The Src kinase is made of different domains but the kinase domain is responsible for inhibition of Src kinase. In which the kinase domain is the main domain that is made of several amino acids. The Src kinase is inhibited by its inhibitors when it is activated by phosphorylation. Although dysregulation of Src kinase caused cancer in the late nineteenth century, medicinal chemists have not explored it extensively; therefore it is still regarded as a cult pathway. There are numerous FDA-approved drugs on the market, yet novel anticancer drugs are still in demand. Existing medications have adverse effects and drug resistance owing to rapid protein mutation. In this review, we discussed the activation process of Src kinase, chemistry of pyrimidine ring and its different synthetic routes, as well as the recent development in c-Src kinase inhibitors containing pyrimidine and their biological activity, SAR, and selectivity. The c-Src binding pocket has been predicted in detail to discover the vital amino acids which will interact with inhibitors. The potent derivatives were docked to discover the binding pattern. The derivative 2 established three hydrogen bonds with the amino acid residues Thr341 and Gln278 and had the greatest binding energy of -13.0 kcal/mol. The top docked molecules were further studied for ADMET studies. The derivative 1, 2, and 43 did not show any violation of Lipinski's rule. All derivatives used for the prediction of toxicity showed toxicity.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Safari F, Ansari Dogaheh F, Dadashi H. Evaluation of SgK269 expression in colon cancer patients and the effects of hAMSCs secretome on tumor invasion through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2 signaling pathway in HT-29 colon cancer cells. 3 Biotech 2023; 13:346. [PMID: 37744286 PMCID: PMC10516828 DOI: 10.1007/s13205-023-03763-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2022] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Colon cancer is the fifth leading cause of cancer-related deaths worldwide. Stem cells have unique characteristics and are considered as a novel therapeutic platform for cancer. Sugen Kinase 269 (SgK269) is considered as an oncogenic scaffolding pseudo kinase which governs the rearranging of the cytoskeleton, cellular motility, and invasion. The aim of this study is to evaluate the expression of SgK269 in colon cancer patients and explore the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) on invasion and proliferation of colon cancer cells (HT-29) through analyzing SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2 signaling pathway. In this regard, we collected 30 samples from colon cancer patients and evaluated SgK269 expression using quantitative real-time PCR (qRT-PCR). Next, we employed a co-culture system using Transwell 6-well plates and after 72 h, tumor growth promotion and invasion were analyzed in hAMSCs-treated HT-29 cells through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway using qRT-PCR, western blot method, MTT assay, wound healing assay, and DAPI staining. Our results showed upregulation of SgK269 in colon cancer patients. Treatment of HT-29 colon cancer cells with hAMSCs secretome can inhibit SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway and the resulting suppression of cell invasion and proliferation. Our results suggest that SgK269 is an important target in colon cancer therapy and MSCs secretome may be an effective therapeutic approach to inhibit colon cancer cell invasion and proliferation through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | | | - Haniyeh Dadashi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
5
|
The Pyrazolo[3,4-d]Pyrimidine Derivative Si306 Encapsulated into Anti-GD2-Immunoliposomes as Therapeutic Treatment of Neuroblastoma. Biomedicines 2022; 10:biomedicines10030659. [PMID: 35327462 PMCID: PMC8945814 DOI: 10.3390/biomedicines10030659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Si306, a pyrazolo[3,4-d]pyrimidine derivative recently identified as promising anticancer agent, has shown favorable in vitro and in vivo activity profile against neuroblastoma (NB) models by acting as a competitive inhibitor of c-Src tyrosine kinase. Nevertheless, Si306 antitumor activity is associated with sub-optimal aqueous solubility, which might hinder its further development. Drug delivery systems were here developed with the aim to overcome this limitation, obtaining suitable formulations for more efficacious in vivo use. Si306 was encapsulated in pegylated stealth liposomes, undecorated or decorated with a monoclonal antibody able to specifically recognize and bind to the disialoganglioside GD2 expressed by NB cells (LP[Si306] and GD2-LP[Si306], respectively). Both liposomes possessed excellent morphological and physio-chemical properties, maintained over a period of two weeks. Compared to LP[Si306], GD2-LP[Si306] showed in vitro specific cellular targeting and increased cytotoxic activity against NB cell lines. After intravenous injection in healthy mice, pharmacokinetic profiles showed increased plasma exposure of Si306 when delivered by both liposomal formulations, compared to that obtained when Si306 was administered as free form. In vivo tumor homing and cytotoxic effectiveness of both liposomal formulations were finally tested in an orthotopic animal model of NB. Si306 tumor uptake resulted significantly higher when encapsulated in GD2-LP, compared to Si306, either free or encapsulated into untargeted LP. This, in turn, led to a significant increase in survival of mice treated with GD2-LP[Si306]. These results demonstrate a promising antitumor efficacy of Si306 encapsulated into GD2-targeted liposomes, supporting further therapeutic developments in pre-clinical trials and in the clinic for NB.
Collapse
|
6
|
Rathinagopal T, Bhanot S, Yegrov S, Min J, Hu N, Fang J, Greene TH, Varma Shrivastav S, Singh H, Shrivastav A. N-myristoyltransferase 2-based Blood Test for the Detection of Colorectal Adenomatous Polyps and Cancer. ANNALS OF SURGERY OPEN 2022; 3:e117. [PMID: 37600093 PMCID: PMC10431588 DOI: 10.1097/as9.0000000000000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
Background Colorectal cancer is the second leading cause of cancer-related deaths. This study demonstrates the utility of a simple blood test with high sensitivity and specificity for colorectal adenomatous polyps and cancer. A simple blood test with high sensitivity and specificity for adenomas would help identify individuals for a follow-up colonoscopy during which any adenomatous polyps found could be removed, thus preventing colorectal cancer (CRC). Methods We determined the H-score by using immunohistochemical analyses of N-myristoyltransferase 2 (NMT2) in peripheral blood mononuclear cells (PBMC) isolated from the blood. We determined the sensitivity and specificity of the NMT2-based blood test in identifying colorectal adenomatous polyps and cancer. Design All experimental procedures were performed by research personnel blinded to the colonoscopy status of the participants. Setting In this cohort study, participants were recruited from those coming for an outpatient colonoscopy at a referral center. Participants PBMC were collected from 74 subjects at the Health Sciences Centre, Winnipeg, Canada. Samples were collected from colonoscopy patients prior to colonoscopy. All 74 subjects were included in CRC vs. non-CRC analysis, whereas only 70 subjects were analyzed for colorectal adenomatous polyps and cancer versus individuals with no evidence of disease and non-adenomatous polyps. NMT2 expression was tested in samples by immunohistochemistry. Results The expression of NMT2 was significantly higher in PBMC of subjects with colorectal adenomatous polyps and cancer (n = 34) compared with individuals with non-adenomatous polyps or no evidence of disease (n = 36) (P < 0.0001). The test had an overall sensitivity of 91% (95% confidence intervals: 84.49-97.80) and specificity of 81% (95% confidence intervals: 71.28-89.83) in detecting colorectal adenomatous polyps and cancer (all stages). Conclusions Our results suggest that the sensitivity of NMT2 in detecting adenomatous polyps is high (91%). A simple blood-based CRC screening test using NMT2 expression detects colorectal adenomatous polyps and cancer with high sensitivity and specificity has the potential of increasing the compliance for CRC screening as has been reported for other blood-based CRC screening tests.
Collapse
Affiliation(s)
- Tharmini Rathinagopal
- From the VastCon Inc, Winnipeg, MB, Canada
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Shiv Bhanot
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | | | - Jordan Min
- From the VastCon Inc, Winnipeg, MB, Canada
| | - Nan Hu
- Division of Biostatistics, University of Utah, Salt Lake City, UT
| | - John Fang
- Division of Gastroenterology, School of Medicine, University of Utah, Salt Lake City, UT
| | - Tom H. Greene
- Division of Biostatistics, University of Utah, Salt Lake City, UT
| | | | - Harminder Singh
- Departments of Internal Medicine and Community Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Canada. Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Canada. Winnipeg, MB, Canada
| |
Collapse
|
7
|
Lee V, Griffin TD, Suzuki-Horiuchi Y, Wushanley L, Kweon Y, Marshall C, Li W, Ayli E, Haimovic A, Hines A, Seykora JT. Downregulation of Src-family tyrosine kinases by Srcasm and c-Cbl: A comparative analysis. J Carcinog 2021; 20:21. [PMID: 34729053 PMCID: PMC8531571 DOI: 10.4103/jcar.jcar_13_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 11/04/2022] Open
Abstract
AIM Elevated Src-Family tyrosine kinase (SFK) activity drives carcinogenesis in vivo and elevated SFK activity is found ubiquitously in human cancers. Although human squamous cell carcinomas (SCCs) demonstrate increased SFK activity, in silico analysis of SCCs demonstrates that only 0.4% of lesions contain mutations that could potentially increase SFK activity; similarly, a low frequency of activating SFK mutations is found in other major cancers. These findings indicate that SFK activation in cancers likely is not due to activating mutations but alternative mechanisms. To evaluate potential alternative mechanisms, we evaluated the selectivity of c-Cbl and Srcasm in downregulating native and activated mutant forms of SFKs. MATERIALS AND METHODS We co-transfected native and activated forms of Src and Fyn with c-Cbl and Srcasm into HaCaT cells and monitored the ability of Srcasm and c-Cbl to downregulate native and activated forms of SFKs by Western blotting. The mechanism of downregulation was probed using mutant forms of Srcasm and c-Cbl and using proteosomal and lysosomal inhibition. RESULTS The data indicate that Srcasm downregulates native Fyn and Src more effectively than c-Cbl, whereas c-Cbl preferentially downregulates activated SFK mutants, including Fyn Y528F, more effectively than Srcasm. Srcasm downregulates SFKs through a lysosomal-dependent mechanism while c-Cbl utilizes a proteosomal-dependent mechanism. CONCLUSION Given the rarity of activating SFK mutations in human cancer, these data indicate that decreasing Srcasm level/function may represent a mechanism for increasing SFK activity in SCC and other human tumors.
Collapse
Affiliation(s)
- Vivian Lee
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas D Griffin
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yoko Suzuki-Horiuchi
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lily Wushanley
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yerin Kweon
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Christine Marshall
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Weijie Li
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Elias Ayli
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adele Haimovic
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Aliya Hines
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
New Structural Perspectives in G Protein-Coupled Receptor-Mediated Src Family Kinase Activation. Int J Mol Sci 2021; 22:ijms22126489. [PMID: 34204297 PMCID: PMC8233884 DOI: 10.3390/ijms22126489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
Src family kinases (SFKs) are key regulators of cell proliferation, differentiation, and survival. The expression of these non-receptor tyrosine kinases is strongly correlated with cancer development and tumor progression. Thus, this family of proteins serves as an attractive drug target. The activation of SFKs can occur via multiple signaling pathways, yet many of them are poorly understood. Here, we summarize the current knowledge on G protein-coupled receptor (GPCR)-mediated regulation of SFKs, which is of considerable interest because GPCRs are among the most widely used pharmaceutical targets. This type of activation can occur through a direct interaction between the two proteins or be allosterically regulated by arrestins and G proteins. We postulate that a rearrangement of binding motifs within the active conformation of arrestin-3 mediates Src regulation by comparison of available crystal structures. Therefore, we hypothesize a potentially different activation mechanism compared to arrestin-2. Furthermore, we discuss the probable direct regulation of SFK by GPCRs and investigate the intracellular domains of exemplary GPCRs with conserved polyproline binding motifs that might serve as scaffolding domains to allow such a direct interaction. Large intracellular domains in GPCRs are often understudied and, in general, not much is known of their contribution to different signaling pathways. The suggested direct interaction between a GPCR and a SFK could allow for a potential immediate allosteric regulation of SFKs by GPCRs and thereby unravel a novel mechanism of SFK signaling. This overview will help to identify new GPCR-SFK interactions, which could serve to explain biological functions or be used to modulate downstream effectors.
Collapse
|
9
|
c-Src facilitates tumorigenesis by phosphorylating and activating G6PD. Oncogene 2021; 40:2567-2580. [PMID: 33686238 DOI: 10.1038/s41388-021-01673-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 11/09/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme in pentose phosphate pathway (PPP), excessive activation of which has been considered to be involved in tumorigenesis. Here, we show that tyrosine kinase c-Src interacts with and phosphorylates G6PD at Tyr 112. This phosphorylation enhances catalytic activity of G6PD by dramatically decreasing its Km value and increasing its Kcat value for substrate glucose-6-phosphate. Activated G6PD therefore augments the PPP flux for NADPH and ribose-5-phosphate production which is required for detoxification of intracellular reactive oxygen species (ROS) and biosynthesis of cancer cells, and eventually contributes to tumorigenesis. Consistently, c-Src activation is closely correlated with tyrosine phosphorylation and activity of G6PD in clinical colorectal cancer samples. We thus uncover another aspect of c-Src in promoting cell proliferation and tumorigenesis, deepening our understanding of c-Src as a proto-oncogene.
Collapse
|
10
|
Wu CW, Wang SG, Lee CH, Chan WL, Lin ML, Chen SS. Enforced C-Src Activation Causes Compartmental Dysregulation of PI3K and PTEN Molecules in Lipid Rafts of Tongue Squamous Carcinoma Cells by Attenuating Rac1-Akt-GLUT-1-Mediated Sphingolipid Synthesis. Int J Mol Sci 2020; 21:ijms21165812. [PMID: 32823607 PMCID: PMC7461551 DOI: 10.3390/ijms21165812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/03/2023] Open
Abstract
Pharmacologic intervention to affect the membrane lipid homeostasis of lipid rafts is a potent therapeutic strategy for cancer. Here we showed that gallic acid (GA) caused the complex formation of inactive Ras-related C3 botulinum toxin substrate 1 (Rac1)-phospho (p)-casein kinase 2 α (CK2α) (Tyr 255) in human tongue squamous carcinoma (TSC) cells, which disturbed the lipid raft membrane-targeting of phosphatidylinositol 3-kinase (PI3K)-Rac1-protein kinase B (Akt) signal molecules by inducing the association of p110α-free p85α with unphosphorylated phosphatase tensin homolog deleted on chromosome 10 (PTEN) in lipid rafts. The effects on induction of inactive Rac1-p-CK2α (Tyr 255) complex formation and attenuation of p-Akt (Ser 473), GTP-Rac1, glucose transporter-1 (GLUT-1) lipid raft membrane-targeting, and cell invasive activity by GA were counteracted either by CK2α short hairpin RNA or cellular-Src (c-Src) inhibitor PP1. PP1 treatment, GLUT-1 or constitutively active Rac1 ectopic-expression blocked GA-induced decreases in cellular glucose, sphingolipid and cholesterol of lipid raft membranes, p85α-p110α-GTP-Rac1 complexes, glucosylceramide synthase activity and increase in ceramide and p110α-free p85α-PTEN complex levels of lipid raft membranes, which reversed the inhibition on matrix metalloproteinase (MMP)-2/-9-mediated cell invasion induced by GA. Using transient ectopic expression of nuclear factor-kappa B (NF-κB) p65, MMP-2/-9 promoter-driven luciferase, and NF-κB-dependent luciferase reporter genes and NF-κB specific inhibitors or Rac1 specific inhibitor NSC23766, we confirmed that an attenuation of Rac1 activity by GA confers inhibition of NF-κB-mediated MMP-2/-9 expression and cell invasion. In conclusion, GA-induced c-Src activation is a key inductive event for the formation of inactive Rac1-p-CK2α (Tyr 255) complexes, which disturbed lipid raft compartment of PI3K and PTEN molecules by impairing Akt-regulated GLUT-1-mediated sphingolipid synthesis, and finally resulting in inhibition of TSC cell invasion.
Collapse
Affiliation(s)
- Chien-Wei Wu
- Division of Laboratory, Armed Force Taichung General Hospital, Taichung 411228, Taiwan;
| | - Shyang-Guang Wang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan;
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli 356006, Taiwan;
| | - Wen-Ling Chan
- Department of Bioinformatics and Medical Enginerring, Asia University, Taichung 41354, Taiwan;
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan
- Correspondence: (M.-L.L.); (S.-S.C.); Tel.: +886-4-2205-3366 (ext. 7211) (M.-L.L.); +886-4-2239-1647 (ext. 7057) (S.-S.C.)
| | - Shih-Shun Chen
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan;
- Correspondence: (M.-L.L.); (S.-S.C.); Tel.: +886-4-2205-3366 (ext. 7211) (M.-L.L.); +886-4-2239-1647 (ext. 7057) (S.-S.C.)
| |
Collapse
|
11
|
Src Family Tyrosine Kinases in Intestinal Homeostasis, Regeneration and Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082014. [PMID: 32717909 PMCID: PMC7464719 DOI: 10.3390/cancers12082014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 01/11/2023] Open
Abstract
Src, originally identified as an oncogene, is a membrane-anchored tyrosine kinase and the Src family kinase (SFK) prototype. SFKs regulate the signalling induced by a wide range of cell surface receptors leading to epithelial cell growth and adhesion. In the intestine, the SFK members Src, Fyn and Yes regulate epithelial cell proliferation and migration during tissue regeneration and transformation, thus implicating conserved and specific functions. In patients with colon cancer, SFK activity is a marker of poor clinical prognosis and a potent driver of metastasis formation. These tumorigenic activities are linked to SFK capacity to promote the dissemination and tumour-initiating capacities of epithelial tumour cells. However, it is unclear how SFKs promote colon tumour formation and metastatic progression because SFK-encoding genes are unfrequently mutated in human cancer. Here, we review recent findings on SFK signalling during intestinal homeostasis, regeneration and tumorigenesis. We also describe the key nongenetic mechanisms underlying SFK tumour activities in colorectal cancer, and discuss how these mechanisms could be exploited in therapeutic strategies to target SFK signalling in metastatic colon cancer.
Collapse
|
12
|
Poon CLC, Brumby AM, Richardson HE. Src Cooperates with Oncogenic Ras in Tumourigenesis via the JNK and PI3K Pathways in Drosophila epithelial Tissue. Int J Mol Sci 2018; 19:ijms19061585. [PMID: 29861494 PMCID: PMC6032059 DOI: 10.3390/ijms19061585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
The Ras oncogene (Rat Sarcoma oncogene, a small GTPase) is a key driver of human cancer, however alone it is insufficient to produce malignancy, due to the induction of cell cycle arrest or senescence. In a Drosophila melanogaster genetic screen for genes that cooperate with oncogenic Ras (bearing the RasV12 mutation, or RasACT), we identified the Drosophila Src (Sarcoma virus oncogene) family non-receptor tyrosine protein kinase genes, Src42A and Src64B, as promoting increased hyperplasia in a whole epithelial tissue context in the Drosophila eye. Moreover, overexpression of Src cooperated with RasACT in epithelial cell clones to drive neoplastic tumourigenesis. We found that Src overexpression alone activated the Jun N-terminal Kinase (JNK) signalling pathway to promote actin cytoskeletal and cell polarity defects and drive apoptosis, whereas, in cooperation with RasACT, JNK led to a loss of differentiation and an invasive phenotype. Src + RasACT cooperative tumourigenesis was dependent on JNK as well as Phosphoinositide 3-Kinase (PI3K) signalling, suggesting that targeting these pathways might provide novel therapeutic opportunities in cancers dependent on Src and Ras signalling.
Collapse
Affiliation(s)
- Carole L C Poon
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Anthony M Brumby
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Helena E Richardson
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
13
|
Mendes Oliveira D, Grillone K, Mignogna C, De Falco V, Laudanna C, Biamonte F, Locane R, Corcione F, Fabozzi M, Sacco R, Viglietto G, Malanga D, Rizzuto A. Next-generation sequencing analysis of receptor-type tyrosine kinase genes in surgically resected colon cancer: identification of gain-of-function mutations in the RET proto-oncogene. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:84. [PMID: 29665843 PMCID: PMC5905113 DOI: 10.1186/s13046-018-0746-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/20/2017] [Accepted: 04/02/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Improvement in genetic characterization of Colon Cancer (CC) patients is required to propose new potential targets, since surgical resection coupled to chemotherapy, presents several limits such as cancer recurrence and drug resistance. Targeted therapies have more efficacy and less toxicity than standard treatments. One of the most relevant cancer-specific actionable targets are receptor tyrosine kinases (RTKs) whose role in CC need to be better investigated. METHODS We have analysed 37 CC patients using the Ion AmpliSeq™ Comprehensive Cancer Panel (CCP). We have confirmed the somatic nature of RET variants through Sanger sequencing and assessed RET activation status and protein expression by immunofluorescence and western-blot analyses. We have used RET mutant expression vectors to evaluate the effect of selected mutations in HEK293 cells by performing proliferation, migration and clonogenic assays. RESULTS Among the 409 cancer-related genes included in the CCP we have focused on the RTKs. Overall, we have observed 101 different potentially damaging variants distributed across 31 RTK genes in 28 patients. The most frequently mutated RTKs were FLT4, ROS1, EPH7, ERBB2, EGFR, RET, FGFR3 and FGFR4. In particular, we have identified 4 different somatic variants in 10% of CC patients in RET proto-oncogene. Among them, we have demonstrated that the G533C variant was able to activate RET by promoting dimer formation and enhancing Y1062 phosphorylation. Moreover, we have demonstrated that RET G533C variant was able to stimulate anchorage-dependent proliferation, migration and clonogenic cell survival. Notably, the effects induced by the RET G533C variant were abolished by vandetanib. CONCLUSIONS The discovery of pathogenic variants across RTK genes in 75% of the CC patients under analysis, suggests a previously underestimated role for RTKs in CC development. The identification of a gain-of-function RET mutation in CC highlights the potential use of RET in targeted therapy.
Collapse
Affiliation(s)
- Duarte Mendes Oliveira
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100, Italy
| | - Chiara Mignogna
- Department of Health Sciences, University Magna Graecia of Catanzaro, Campus Salvatore Venuta - Viale Europa, Catanzaro, 88100, Italy
| | - Valentina De Falco
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Carmelo Laudanna
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100, Italy
| | - Rosa Locane
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Campus Salvatore Venuta - Viale Europa, Catanzaro, 88100, Italy
| | | | | | - Rosario Sacco
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Campus Salvatore Venuta - Viale Europa, Catanzaro, 88100, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100, Italy.
| | - Donatella Malanga
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, Catanzaro, 88100, Italy.
| | - Antonia Rizzuto
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Campus Salvatore Venuta - Viale Europa, Catanzaro, 88100, Italy
| |
Collapse
|
14
|
Phosphorylation of TOPK at Y74, Y272 by Src increases the stability of TOPK and promotes tumorigenesis of colon. Oncotarget 2017; 7:24483-94. [PMID: 27016416 PMCID: PMC5029716 DOI: 10.18632/oncotarget.8231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023] Open
Abstract
T-LAK cell-originated protein kinase (TOPK), a serine/threonine protein kinase, is highly expressed in a variety of tumors and associated with a poor prognosis of human malignancies. However, the activation mechanism of TOPK is still unrevealed. Herein, first we found that Src directly bound with and phosphorylated TOPK at Y74 and Y272 in vitro. Anti-phospho-TOPK at Y74 was prepared, the endogenous phosphorylation of TOPK at Y74 was detected in colon cancer cells, and the phosphorylation was inhibited in cells expressing low levels of Src. Subsequently, we stably transfected Y74 and Y272 double mutated TOPK (TOPK-FF) into JB6 or SW480 cells, and observed that both the anchorage-independent growth ability and tumorigenesis of TOPK-FF cells were suppressed compared with those of wild type TOPK (TOPK-WT) ex vivo and in vivo. The phosphorylation level of TOPK substrate, Histone H3 at Ser10 also decreased dramatically ex vivo or in vivo. Moreover, we showed that Src could inhibit the ubiquitination of TOPK. Transiently expressed TOPK-WT was more stable than TOPK-FF in pause and chase experiment. Endogenous TOPK was more stable in Src wild type (Src+/+) MEFs than in Src knockout (Src-/-). Taken together, our results indicate that Src is a novel upstream kinase of TOPK. The phosphorylation of TOPK at Y74 and Y272 by Src increases the stability and activity of TOPK, and promotes the tumorigenesis of colon cancer. It may provide opportunities for TOPK based prognosis and targeted therapy for colon cancer patients.
Collapse
|
15
|
Parseghian CM, Parikh NU, Wu JY, Jiang ZQ, Henderson L, Tian F, Pastor B, Ychou M, Raghav K, Dasari A, Fogelman DR, Katsiampoura AD, Menter DG, Wolff RA, Eng C, Overman MJ, Thierry AR, Gallick GE, Kopetz S. Dual Inhibition of EGFR and c-Src by Cetuximab and Dasatinib Combined with FOLFOX Chemotherapy in Patients with Metastatic Colorectal Cancer. Clin Cancer Res 2017; 23:4146-4154. [PMID: 28280091 DOI: 10.1158/1078-0432.ccr-16-3138] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2016] [Revised: 01/10/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
Purpose: Aberrant activation of the intracellular tyrosine kinase Src has been implicated as a mechanism of acquired chemotherapy resistance in metastatic colorectal cancer (mCRC). Here, the oral tyrosine kinase Src inhibitor, dasatinib, was investigated in combination with FOLFOX and cetuximab.Experimental Design: We performed a phase IB/II study of 77 patients with previously treated mCRC. Primary objectives were to determine the maximum tolerated dose, dose-limiting toxicities (DLT), pharmacodynamics, and efficacy. Using a 3 + 3 design, patients received FOLFOX6 with cetuximab and escalating doses of dasatinib (100, 150, 200 mg daily), followed by a 12-patient expansion cohort at 150 mg. Phase II studies evaluated FOLFOX plus dasatinib 100 mg in KRAS c12/13mut patients or in combination with cetuximab if KRAS c12/13WT FAK and paxillin were utilized as surrogate blood biomarkers of Src inhibition, and paired biopsies of liver metastases were obtained in patients in the expansion cohort.Results: In phase IB, the DLTs were grade 3/4 fatigue (20%) and neutropenia (23%). In phase II, grade 3/4 fatigue (23%) and pleural effusions (11%) were present. Response rates were 20% (6 of 30) in the phase IB escalation and expansion cohort and 13% (3 of 24) and 0% (0 of 23) in the KRAS c12/13WT and mutant cohorts of phase II, respectively. Median progression-free survival was 4.6, 2.3, and 2.3 months, respectively. There was no evidence of Src inhibition based on surrogate blood biomarkers or paired tumor biopsies.Conclusions: The combination of dasatinib plus FOLFOX with or without cetuximab showed only modest clinical activity in refractory colorectal cancer. This appears to be primarily due to a failure to fully inhibit Src at the achievable doses of dasatinib. The combination of dasatinib plus FOLFOX with or without cetuximab did not show meaningful clinical activity in refractory colorectal cancer due to failure to fully inhibit Src. Clin Cancer Res; 23(15); 4146-54. ©2017 AACR.
Collapse
Affiliation(s)
- Christine M Parseghian
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Nila U Parikh
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ji Yuan Wu
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi-Qin Jiang
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Henderson
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feng Tian
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brice Pastor
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Marc Ychou
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Fogelman
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anastasia D Katsiampoura
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cathy Eng
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alain R Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Gary E Gallick
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
16
|
Singh DK, Deshmukh RK, Narayanan PK, Shivaji S, Siva AB. SRC family kinases in hamster spermatozoa: evidence for the presence of LCK. Reproduction 2017; 153:655-669. [PMID: 28250239 DOI: 10.1530/rep-16-0591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2016] [Revised: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
Abstract
Sperm capacitation is a prerequisite for successful fertilization. Increase in tyrosine phosphorylation is considered the hallmark of capacitation and attempts to understand its regulation are ongoing. In this regard, we attempted to study the role of SRC family kinases (SFKs) in the hamster sperm functions. Interestingly, we found the presence of the lymphocyte-specific protein tyrosine kinase, LCK, in mammalian spermatozoa and further characterized it in terms of its localization and function. LCK was found in spermatozoa of several species, and its transcript was identified in the hamster testis. Autophosphorylation of LCK at the Y394 residue increased as capacitation progressed, indicating an upregulation of LCK activity during capacitation. Inhibition of LCK (and perhaps the other SFKs) with the use of a specific inhibitor showed a significant decrease in protein tyrosine phosphorylation of several proteins, implying LCK/SFKs as key tyrosine kinase(s) regulating tyrosine phosphorylation during hamster sperm capacitation. Dihydrolipoamide dehydrogenase was identified as a substrate for LCK/SFK. LCK/SFKs inhibition significantly reduced the percentage fertilization (in vitro) but had no effect on sperm motility, hyperactivation and acrosome reaction. In summary, this is the first report on the presence of LCK, an SFK of hematopoietic lineage in spermatozoa besides being the first study on the role of SFKs in the spermatozoa of Syrian hamsters.
Collapse
Affiliation(s)
| | | | | | - Sisinthy Shivaji
- CSIR-Centre for Cellular and Molecular BiologyHyderabad 500007, India
| | | |
Collapse
|
17
|
Zhang J, Wang S, Jiang B, Huang L, Ji Z, Li X, Zhou H, Han A, Chen A, Wu Y, Ma H, Zhao W, Zhao Q, Xie C, Sun X, Zhou Y, Huang H, Suleman M, Lin F, Zhou L, Tian F, Jin M, Cai Y, Zhang N, Li Q. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Nat Commun 2017; 8:13732. [PMID: 28054552 PMCID: PMC5227066 DOI: 10.1038/ncomms13732] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2015] [Accepted: 10/28/2016] [Indexed: 12/20/2022] Open
Abstract
It is well known that c-Src has important roles in tumorigenesis. However, it remains unclear whether c-Src contributes to metabolic reprogramming. Here we find that c-Src can interact with and phosphorylate hexokinases HK1 and HK2, the rate-limiting enzymes in glycolysis. Tyrosine phosphorylation dramatically increases their catalytic activity and thus enhances glycolysis. Mechanistically, c-Src phosphorylation of HK1 at Tyr732 robustly decreases its Km and increases its Vmax by disrupting its dimer formation. Mutation in c-Src phosphorylation site of either HK1 or HK2 remarkably abrogates the stimulating effects of c-Src on glycolysis, cell proliferation, migration, invasion, tumorigenesis and metastasis. Due to its lower Km for glucose, HK1 rather than HK2 is required for tumour cell survival when glucose is scarce. Importantly, HK1-Y732 phosphorylation level remarkably correlates with the incidence and metastasis of various clinical cancers and may serve as a marker to predict metastasis risk of primary cancers. The protein tyrosine kinase c-Src is a renowned proto-oncogene with pleiotropic effects. Here, the authors show that c-Src induces the metabolic reprogramming of cancer cells by phosphorylating hexokinases HK1 and HK2, which in turns lead to increased HK catalytic activity and consequent enhancement of glycolysis.
Collapse
Affiliation(s)
- Jia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Suili Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lihong Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaotong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huamin Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ai Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yanan Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingwen Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyan Sun
- Department of Thoracic Surgery, Chenggong Hospital, Xiamen University, Xiamen, Fujian 361003, China
| | - Yanming Zhou
- Department of Hepatobiliary &Pancreatovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Huiying Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Muhammad Suleman
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lin Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fang Tian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Meijun Jin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yana Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Nan Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
18
|
Padhan N, Nordling TEM, Sundström M, Åkerud P, Birgisson H, Nygren P, Nelander S, Claesson-Welsh L. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer 2016; 16:683. [PMID: 27562229 PMCID: PMC5000422 DOI: 10.1186/s12885-016-2725-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2015] [Accepted: 08/15/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The progression of colorectal cancer (CRC) involves recurrent amplifications/mutations in the epidermal growth factor receptor (EGFR) and downstream signal transducers of the Ras pathway, KRAS and BRAF. Whether genetic events predicted to result in increased and constitutive signaling indeed lead to enhanced biological activity is often unclear and, due to technical challenges, unexplored. Here, we investigated proliferative signaling in CRC using a highly sensitive method for protein detection. The aim of the study was to determine whether multiple changes in proliferative signaling in CRC could be combined and exploited as a "complex biomarker" for diagnostic purposes. METHODS We used robotized capillary isoelectric focusing as well as conventional immunoblotting for the comprehensive analysis of epidermal growth factor receptor signaling pathways converging on extracellular regulated kinase 1/2 (ERK1/2), AKT, phospholipase Cγ1 (PLCγ1) and c-SRC in normal mucosa compared with CRC stage II and IV. Computational analyses were used to test different activity patterns for the analyzed signal transducers. RESULTS Signaling pathways implicated in cell proliferation were differently dysregulated in CRC and, unexpectedly, several were downregulated in disease. Thus, levels of activated ERK1 (pERK1), but not pERK2, decreased in stage II and IV while total ERK1/2 expression remained unaffected. In addition, c-SRC expression was lower in CRC compared with normal tissues and phosphorylation on the activating residue Y418 was not detected. In contrast, PLCγ1 and AKT expression levels were elevated in disease. Immunoblotting of the different signal transducers, run in parallel to capillary isoelectric focusing, showed higher variability and lower sensitivity and resolution. Computational analyses showed that, while individual signaling changes lacked predictive power, using the combination of changes in three signaling components to create a "complex biomarker" allowed with very high accuracy, the correct diagnosis of tissues as either normal or cancerous. CONCLUSIONS We present techniques that allow rapid and sensitive determination of cancer signaling that can be used to differentiate colorectal cancer from normal tissue.
Collapse
Affiliation(s)
- Narendra Padhan
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Torbjörn E M Nordling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden.,Stockholm Bioinformatics Centre, Science for Life Laboratory, Box 1031, 171 21, Solna, Sweden.,Current address: Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 70101, Taiwan
| | - Magnus Sundström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Peter Åkerud
- Department Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Helgi Birgisson
- Department Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden.
| |
Collapse
|
19
|
Xiong J, Wu JS, Mao SS, Yu XN, Huang XX. Effect of saracatinib on pulmonary metastases from hepatocellular carcinoma. Oncol Rep 2016; 36:1483-90. [PMID: 27460949 DOI: 10.3892/or.2016.4968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2015] [Accepted: 05/31/2016] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Src is involved in multiple processes of cancer metastasis; however, its significance in HCC is not well defined. In the present study, overexpression of Src phosphorylation (Y416) was observed in the highly metastatic MHCC97H cell line; additionally, through inhibition of Src kinase activation, HCC cell proliferation, migration, invasion and colony formation were significantly reduced in vitro. Tumour growth was not affected in the orthotopic xenograft HCC model, but the metastasic potential was inhibited as revealed by reduced lung metastasic foci after administration of saracatinib. Phosphorylation level of Src pathway signalling molecules, such as Src, FAK and Stat3, were also reduced in vitro and in vivo, as a result of the anti-metastasic effects caused by saracatinib treatment. In conclusion, we demonstrated the pro-metastasic role of Src in HCC, and further experiments suggest the use of the Src inhibitor in combination with cytotoxic agents and other anticancer treatments to improve HCC prognosis.
Collapse
Affiliation(s)
- Ju Xiong
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, P.R. China
| | - Jin-Sheng Wu
- Department of Oncology, Hainan Nonken Nada Hospital, Danzhou, Hainan 571700, P.R. China
| | - Shan-Shan Mao
- Department of Gastroenterology, Haikou People's Hospital Affiliated to Central South University, Xiangya School of Medicine, Haikou 570028, P.R. China
| | - Xiang-Nan Yu
- Department of Gastroenterology, Haikou People's Hospital Affiliated to Central South University, Xiangya School of Medicine, Haikou 570028, P.R. China
| | - Xiao-Xi Huang
- Department of Gastroenterology, Haikou People's Hospital Affiliated to Central South University, Xiangya School of Medicine, Haikou 570028, P.R. China
| |
Collapse
|
20
|
Okuyama H, Kondo J, Sato Y, Endo H, Nakajima A, Piulats JM, Tomita Y, Fujiwara T, Itoh Y, Mizoguchi A, Ohue M, Inoue M. Dynamic Change of Polarity in Primary Cultured Spheroids of Human Colorectal Adenocarcinoma and Its Role in Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:899-911. [PMID: 26878211 DOI: 10.1016/j.ajpath.2015.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells possess apical-basal polarity, which governs the exchange of nutrients and waste. Perturbation of cell polarity appears to be a general feature of cancers, although most colorectal cancers are differentiated adenocarcinomas, in which polarity is maintained to some extent. Little is known about the role of dysregulated polarity in cancer. The cancer tissue-originated spheroid method was applied to the preparation and culture of spheroids. Spheroids were cultured in suspension or in type I collagen gel. Polarity was assessed by IHC of apical markers and electron microscopy. Two types of polarity status in spheroids were observed: apical-in, with apical membrane located at cavities inside the spheroids in type I collagen gel; and apical-out, with apical membrane located at the outermost layer of spheroids in suspension. These polarities were highly interchangeable. Inhibitors of Src and dynamin attenuated the polarity switch. In patients, clusters of cancer cells that invaded vessels had both apical-in and apical-out morphologic features, whereas primary and metastatic tumors had apical-in features. In a mouse liver metastasis model, apical-out spheroids injected into the portal vein became apical-in spheroids in the liver within a few days. Inhibitors of Src and dynamin significantly decreased liver metastasis. Polarity switching was observed in spheroids and human cancer. The polarity switch was critical in an experimental liver metastasis model.
Collapse
Affiliation(s)
- Hiroaki Okuyama
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Jumpei Kondo
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yumi Sato
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hiroko Endo
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Aya Nakajima
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Jose M Piulats
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yasuhiko Tomita
- Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Takeshi Fujiwara
- Department of Anatomy, Faculty of Medicine, Mie University, Tsu, Japan
| | - Yu Itoh
- Department of Anatomy, Faculty of Medicine, Mie University, Tsu, Japan
| | - Akira Mizoguchi
- Department of Anatomy, Faculty of Medicine, Mie University, Tsu, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Masahiro Inoue
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan.
| |
Collapse
|
21
|
Saeed M, Jacob S, Sandjo LP, Sugimoto Y, Khalid HE, Opatz T, Thines E, Efferth T. Cytotoxicity of the Sesquiterpene Lactones Neoambrosin and Damsin from Ambrosia maritima Against Multidrug-Resistant Cancer Cells. Front Pharmacol 2015; 6:267. [PMID: 26617519 PMCID: PMC4637410 DOI: 10.3389/fphar.2015.00267] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance is a prevailing phenomenon leading to chemotherapy treatment failure in cancer patients. In the current study two known cytotoxic pseudoguaianolide sesquiterpene lactones; neoambrosin (1) and damsin (2) that circumvent MDR were identified. The two cytotoxic compounds were isolated using column chromatography, characterized using 1D and 2D NMR, MS, and compared with literature values. The isolated compounds were investigated for their cytotoxic potential using resazurin assays and thereafter confirmed with immunoblotting and in silico studies. MDR cells overexpressing ABC transporters (P-glycoprotein, BCRP, ABCB5) did not confer cross-resistance toward (1) and (2), indicating that these compounds are not appropriate substrates for any of the three ABC transporters analyzed. Resistance mechanisms investigated also included; the loss of the functions of the TP53 and the mutated EGFR. The HCT116 p53-/- cells were sensitive to 1 but resistant to 2. It was interesting to note that resistant cells transfected with oncogenic ΔEGFR exhibited hypersensitivity CS toward (1) and (2) (degrees of resistances were 0.18 and 0.15 for (1) and (2), respectively). Immunoblotting and in silico analyses revealed that 1 and 2 silenced c-Src kinase activity. It was hypothesized that inhibition of c-Src kinase activity may explain CS in EGFR-transfected cells. In conclusion, the significant cytotoxicity of 1 and 2 against different drug-resistant tumor cell lines indicate that they may be promising candidates to treat refractory tumors.
Collapse
Affiliation(s)
- Mohamed Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Stefan Jacob
- Institut für Biotechnologie und Wirkstoff-Forschung Kaiserslautern, Germany
| | - Louis P Sandjo
- Department of Pharmaceutical Sciences, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina Florianópolis, Brazil ; Institute of Organic Chemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University Tokyo, Japan
| | - Hassan E Khalid
- Department of Pharmacognosy, University of Khartoum Khartoum, Sudan
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung Kaiserslautern, Germany ; Institute of Biotechnology and Drug Research, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| |
Collapse
|
22
|
Sandilands E, Schoenherr C, Frame MC. p70S6K is regulated by focal adhesion kinase and is required for Src-selective autophagy. Cell Signal 2015; 27:1816-23. [PMID: 26071201 PMCID: PMC4508348 DOI: 10.1016/j.cellsig.2015.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/23/2022]
Abstract
Here we report that focal adhesion kinase (FAK) is required for optimal signalling to the Akt-p70S6K-S6 pathway in squamous cell carcinoma (SCC) cells. Specifically, in SCCs that are genetically deficient for FAK, there is reduced phosphorylation of Akt, p70S6K and S6, and signalling to Akt-p70S6K-S6 is more sensitive to inhibition by multiple agents that suppress the pathway. By contrast, mTOR is unaffected. Indeed, pharmacological agents that inhibit the Akt-p70S6K-S6 pathway, and PDK1 that lies upstream of Akt, also impair the autophagic targeting of activated c-Src (p-Src) in FAK deficient cells. This is associated with loss of a complex between p-Src and the autophagy protein LC3, a biochemical surrogate of impaired Src-selective autophagy. In keeping with a vital role for p70S6K, inhibition by a selective inhibitor and specific siRNA also impaired Src-selective autophagy. Finally, components of the PDK1-Akt-p70S6K signalling pathway were co-located with p-Src at autophagosomes, and Src and p70S6K co-exist in the same biochemical complex. We therefore deduce that the FAK-regulated signalling module PDK1-Akt-p70S6K that controls Src's intracellular trafficking operates at Src-containing autophagosomes.
Collapse
Affiliation(s)
- Emma Sandilands
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Christina Schoenherr
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Margaret C Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, United Kingdom.
| |
Collapse
|
23
|
Asbagh LA, Vazquez I, Vecchione L, Budinska E, De Vriendt V, Baietti MF, Steklov M, Jacobs B, Hoe N, Singh S, Imjeti NS, Zimmermann P, Sablina A, Tejpar S. The tyrosine phosphatase PTPRO sensitizes colon cancer cells to anti-EGFR therapy through activation of SRC-mediated EGFR signaling. Oncotarget 2015; 5:10070-83. [PMID: 25301722 PMCID: PMC4259406 DOI: 10.18632/oncotarget.2458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023] Open
Abstract
Inappropriate activation of epidermal growth factor receptor (EGFR) plays a causal role in many cancers including colon cancer. The activation of EGFR by phosphorylation is balanced by receptor kinase and protein tyrosine phosphatase activities. However, the mechanisms of negative EGFR regulation by tyrosine phosphatases remain largely unexplored. Our previous results indicate that protein tyrosine phosphatase receptor type O (PTPRO) is down-regulated in a subset of colorectal cancer (CRC) patients with a poor prognosis. Here we identified PTPRO as a phosphatase that negatively regulates SRC by directly dephosphorylating Y416 phosphorylation site. SRC activation triggered by PTPRO down-regulation induces phosphorylation of both EGFR at Y845 and the c-CBL ubiquitin ligase at Y731. Increased EGFR phosphorylation at Y845 promotes its receptor activity, whereas enhanced phosphorylation of c-CBL triggers its degradation promoting EGFR stability. Importantly, hyperactivation of SRC/EGFR signaling triggered by loss of PTPRO leads to high resistance of colon cancer to EGFR inhibitors. Our results not only highlight the PTPRO contribution in negative regulation of SRC/EGFR signaling but also suggest that tumors with low PTPRO expression may be therapeutically targetable by anti-SRC therapies.
Collapse
Affiliation(s)
- Layka Abbasi Asbagh
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium. Laboratory for Mechanisms of Cell Transformation, VIB Center for the Biology of Disease, VIB, Belgium. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Iria Vazquez
- Laboratory for Mechanisms of Cell Transformation, VIB Center for the Biology of Disease, VIB, Belgium. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Loredana Vecchione
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Eva Budinska
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veerle De Vriendt
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maria Francesca Baietti
- Laboratory for Mechanisms of Cell Transformation, VIB Center for the Biology of Disease, VIB, Belgium. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Mikhail Steklov
- Laboratory for Mechanisms of Cell Transformation, VIB Center for the Biology of Disease, VIB, Belgium. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Jacobs
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | | | - Naga-Sailaja Imjeti
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Anna Sablina
- Laboratory for Mechanisms of Cell Transformation, VIB Center for the Biology of Disease, VIB, Belgium. Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Pelissier-Rota MA, Chartier NT, Jacquier-Sarlin MR. Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. INTERCELLULAR COMMUNICATION IN CANCER 2015:53-149. [DOI: 10.1007/978-94-017-7380-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
25
|
Kopetz S, Morris VK, Parikh N, Overman MJ, Jiang ZQ, Maru D, Elvin P, Gallick G. Src activity is modulated by oxaliplatin and correlates with outcomes after hepatectomy for metastatic colorectal cancer. BMC Cancer 2014; 14:660. [PMID: 25208577 PMCID: PMC4167273 DOI: 10.1186/1471-2407-14-660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2014] [Accepted: 08/22/2014] [Indexed: 11/25/2022] Open
Abstract
Background The nonreceptor tyrosine kinase Src regulates multiple pathways critical to tumor proliferation, chemoresistance, and epithelial-to-mesenchymal transition. It is robustly activated after acute oxaliplatin exposure and in acquired oxaliplatin resistance in vitro and in vivo, but not after 5-fluorouracil (5-FU) alone. However, activation of Src and its substrate focal adhesion kinase (FAK) in metastatic colorectal cancer treated with oxaliplatin has not been investigated. We retrospectively evaluated the activation of Src and FAK in hepatic metastases of colorectal cancer and correlated these findings with the clinical outcomes of patients treated with oxaliplatin. Methods Samples from 170 hepatic resections from patients with metastatic colorectal cancer from two cohorts were examined by IHC for expression of Src, activated Src (pSrc), FAK, and activated FAK (pFAK). Patients in the first cohort (120 patients) were analyzed for immunohistochemical protein expression and for survival outcomes. In the second cohort, tissue was collected from 25 patients undergoing sequential hepatic metastasectomies (n = 50). Results In the first cohort, Src activation was positively correlated with pFAK expression (P = 0.44, P < 0.001). Patients pretreated with oxaliplatin and 5-FU demonstrated increased expression of pFAK (P = 0.017) compared with patients treated with 5-FU alone or irinotecan/5-FU. Total Src expression was associated with the number of neoadjuvant cycles of oxaliplatin (P = 0.047). In the second cohort, pFAK expression was higher following exposure to oxaliplatin. When patients were stratified by expression of pFAK and pSrc, an inverse relationship was observed between relapse-free survival rates and levels of both pFAK (21.1 months, 16.5 months, and 7.4 months for low, medium, and high levels of pFAK, respectively; P = 0.026) and pSrc (19.6 months, 13.6 months, and 8.2 months, respectively; P = 0.013). No differences in overall survival were detected. Conclusions Patients administered neoadjuvant oxaliplatin demonstrated higher levels of Src pathway signaling in hepatic metastases, a finding associated with poorer relapse-free survival. These results are consistent with prior in vitro studies and support the idea that combining Src inhibition with platinum chemotherapy warrants further investigation in metastatic colorectal cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-660) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gary Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0018-4, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Strickler JH, McCall S, Nixon AB, Brady JC, Pang H, Rushing C, Cohn A, Starodub A, Arrowood C, Haley S, Meadows KL, Morse MA, Uronis HE, Blobe GC, Hsu SD, Zafar SY, Hurwitz HI. Phase I study of dasatinib in combination with capecitabine, oxaliplatin and bevacizumab followed by an expanded cohort in previously untreated metastatic colorectal cancer. Invest New Drugs 2014; 32:330-9. [PMID: 24173967 PMCID: PMC4108590 DOI: 10.1007/s10637-013-0042-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2013] [Accepted: 10/16/2013] [Indexed: 01/07/2023]
Abstract
PURPOSE Dasatinib inhibits src family kinases and has anti-angiogenic properties. We conducted a phase I study of dasatinib, capecitabine, oxaliplatin, and bevacizumab (CapeOx/bevacizumab), with an expansion cohort in metastatic colorectal cancer (CRC). METHODS Patients were enrolled in a dose escalation cohort to establish the maximum tolerated dose (MTD) and the recommended phase II dose (RP2D). Using a "3 + 3" design, twelve patients with advanced solid tumors received dasatinib (50 mg twice daily or 70 mg daily), capecitabine (850 mg/m(2) twice daily, days 1-14), oxaliplatin (130 mg/m(2) on day 1) and bevacizumab (7.5 mg/kg on day1), every 3 weeks. Ten patients with previously untreated metastatic CRC were then enrolled in an expansion cohort. Activated src (src(act)) expression was measured by immunohistochemistry, using an antibody that selectively recognizes the active conformation of src (clone 28). RESULTS Twenty-two patients were enrolled between June 2009 and May 2011. Two DLTs were observed in the 50 mg bid dasatinib cohort, and one DLT was observed in the 70 mg daily dasatinib cohort. The MTD and RP2D for dasatinib was 70 mg daily. The most common treatment-related adverse events were fatigue (20; 91 %) and diarrhea (18; 82 %). Biomarker analysis of src(act) expression demonstrated that the overall response rate (ORR) was 75 % (6/8) for patients with high src(act) expression (IHC ≥ 2), compared to 0 % (0/8) for patients with low srcact expression (IHC 0 or 1); (p = 0.007). CONCLUSIONS The RP2D of dasatinib is 70 mg daily in combination with CapeOx/bevacizumab. High levels of srcact expression may predict those patients most likely to benefit from dasatinib.
Collapse
Affiliation(s)
| | | | | | - John C. Brady
- Duke University Medical Center, Durham, NC, 27710, USA
| | - Herbert Pang
- Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Allen Cohn
- Rocky Mountain Cancer Centers Denver, CO, 80218, USA
| | - Alexander Starodub
- Duke University Medical Center, Durham, NC, 27710, USA
- Indiana University Health Goshen Cancer Center, Goshen, IN, 46526, USA
| | | | - Sherri Haley
- Duke University Medical Center, Durham, NC, 27710, USA
| | | | | | | | | | - S. David Hsu
- Duke University Medical Center, Durham, NC, 27710, USA
| | | | | |
Collapse
|
27
|
Chen J, Elfiky A, Han M, Chen C, Saif MW. The Role of Src in Colon Cancer and Its Therapeutic Implications. Clin Colorectal Cancer 2014; 13:5-13. [DOI: 10.1016/j.clcc.2013.10.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
|
28
|
Abstract
Clinical therapies for cancer have evolved from toxic, nontargeted agents to manageable, highly targeted therapies. Protein tyrosine kinases are a family of signaling molecules implicated in nearly every cancer type and are the foundation for the development of modern targeted agents. Recent genomic analyses have identified activating mutations, translocations, and amplifications of tyrosine kinases. Selective targeting of these genetically altered tyrosine kinases has resulted in significant clinical advances, including increased patient survival. This indicates that altered protein tyrosine kinases are the main drivers of many different cancers. However, lost during analyses of genetic lesions are the contributions of activated, wild-type kinases on tumor-dependent pathways. New approaches in phosphoproteomic technologies have identified several wild-type tyrosine kinase activation states, suggesting that non-genetically altered kinases can be essential "nodes" for signal transduction. Here, we summarize the evidence supporting the common mechanisms of protein tyrosine kinase activation in cancer and provide a personal perspective on the kinases BCR-ABL and BTK, as well as nonmutated kinase targets in prostate cancer, through our work. We outline the mechanisms of tyrosine kinase activation in the absence of direct mutation and discuss whether non-genetically altered tyrosine kinases or their associated downstream signaling pathways can be effectively targeted.
Collapse
|
29
|
Global phosphotyrosine proteomics identifies PKCδ as a marker of responsiveness to Src inhibition in colorectal cancer. PLoS One 2013; 8:e80207. [PMID: 24260357 PMCID: PMC3832668 DOI: 10.1371/journal.pone.0080207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
Sensitive and specific biomarkers of protein kinase inhibition can be leveraged to accelerate drug development studies in oncology by associating early molecular responses with target inhibition. In this study, we utilized unbiased shotgun phosphotyrosine (pY) proteomics to discover novel biomarkers of response to dasatinib, a small molecule Src-selective inhibitor, in preclinical models of colorectal cancer (CRC). We performed unbiased mass spectrometry shotgun pY proteomics to reveal the pY proteome of cultured HCT-116 colonic carcinoma cells, and then extended this analysis to HCT-116 xenograft tumors to identify pY biomarkers of dasatinib-responsiveness in vivo. Major dasatinib-responsive pY sites in xenograft tumors included sites on delta-type protein kinase C (PKCδ), CUB-domain-containing protein 1 (CDCP1), Type-II SH2-domain-containing inositol 5-phosphatase (SHIP2), and receptor protein-tyrosine phosphatase alpha (RPTPα). The pY313 site PKCδ was further supported as a relevant biomarker of dasatinib-mediated Src inhibition in HCT-116 xenografts by immunohistochemistry and immunoblotting with a phosphospecific antibody. Reduction of PKCδ pY313 was further correlated with dasatinib-mediated inhibition of Src and diminished growth as spheroids of a panel of human CRC cell lines. These studies reveal PKCδ pY313 as a promising readout of Src inhibition in CRC and potentially other solid tumors and may reflect responsiveness to dasatinib in a subset of colorectal cancers.
Collapse
|
30
|
Abe H, Mochizuki S, Ohara K, Ueno M, Ochiai H, Kitagawa Y, Hino O, Sato H, Okada Y. Src plays a key role in ADAM28 expression in v-src-transformed epithelial cells and human carcinoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1667-1678. [PMID: 24007880 DOI: 10.1016/j.ajpath.2013.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/01/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
ADAM28, a disintegrin and metalloproteinase 28, is overexpressed by carcinoma cells with direct correlations with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, the molecular mechanisms of ADAM28 gene expression in carcinoma cells remain elusive. Herein, we investigated the expression of ADAM28 in Madin-Darby canine kidney epithelial cells transformed by oncogenes, including v-src, LMP1, ErbB2, Ha-Ras, and c-Fos, and found that v-src transformants selectively induce ADAM28. Implantation of the v-src transformants showed a progressively growing tumor, which was significantly suppressed by local injections of anti-ADAM28 antibody. ADAM28 expression in v-src transformants was partially inhibited by treatment with inhibitors to Src kinase, mitogen-activated protein kinase kinase (MEK), phosphatidylinositol 3-kinase (PI3K), or mammalian target of rapamycin, and abrogated by v-Src kinase inhibitor, radicicol, or a mixture of MEK and PI3K inhibitors. Human carcinoma cell lines of the lung, breast, ovary, kidney, and colon showed ADAM28 expression, which was correlated with phosphorylation of c-Src and suppressed by the inhibitors in a similar way to v-src transformants. IHC of the human tumor tissues demonstrated co-expression of ADAM28 and phosphorylated Src in neoplastic cells of the breast, lung, and colon carcinomas and some adenomas of the colon, but not in nonneoplastic colon mucosa. Our data provide, to the best of our knowledge, the first evidence that Src is an inducer of ADAM28 gene expression through the MEK/extracellular signal-regulated kinase and PI3K/mammalian target of rapamycin pathways.
Collapse
Affiliation(s)
- Hitoshi Abe
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan; Department of Pathology and Oncology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Satsuki Mochizuki
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Kentaro Ohara
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Mari Ueno
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroki Ochiai
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Okio Hino
- Department of Pathology and Oncology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroshi Sato
- Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yasunori Okada
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
31
|
Abstract
Although c-Abl and Arg non-receptor tyrosine kinases are well known for driving leukemia development, their role in solid tumors has not been appreciated until recently. Accumulating evidence now indicates that c-Abl and/or Arg are activated in some solid tumor cell lines via unique mechanisms that do not involve gene mutation/translocation, and c-Abl/Arg activation promotes matrix degradation, invasion, proliferation, tumorigenesis, and/or metastasis, depending on the tumor type. However, some data suggest that c-Abl also may suppress invasion, proliferation, and tumorigenesis in certain cell contexts. Thus, c-Abl/Arg may serve as molecular switches that suppress proliferation and invasion in response to some stimuli (e.g., ephrins) or when inactive/regulated, or as promote invasion and proliferation in response to other signals (e.g., activated growth factor receptors, loss of inhibitor expression), which induce sustained activation. Clearly, more data are required to determine the extent and prevalence of c-Abl/Arg activation in primary tumors and during progression, and additional animal studies are needed to substantiate in vitro findings. Furthermore, c-Abl/Arg inhibitors have been used in numerous solid tumor clinical trials; however, none of these trials were restricted to patients whose tumors expressed highly activated c-Abl/Arg (targeted trial). Targeted trials are critical for determining whether c-Abl/Arg inhibitors can be effective treatment options for patients whose tumors are driven by c-Abl/Arg.
Collapse
|
32
|
Spatiotemporal regulation of Src and its substrates at invadosomes. Eur J Cell Biol 2012; 91:878-88. [PMID: 22823952 DOI: 10.1016/j.ejcb.2012.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 01/07/2023] Open
Abstract
In the past decade, substantial progress has been made in understanding how Src family kinases regulate the formation and function of invadosomes. Invadosomes are organized actin-rich structures that contain an F-actin core surrounded by an adhesive ring and mediate invasive migration. Src kinases orchestrate, either directly or indirectly, each phase of the invadosome life cycle including invadosome assembly, maturation and matrix degradation and disassembly. Complex arrays of Src effector proteins are involved at different stages of invadosome maturation and their spatiotemporal activity must be tightly regulated to achieve effective invasive migration. In this review, we highlight some recent progress and the challenges of understanding how Src is regulated temporally and spatially to orchestrate the dynamics of invadosomes and mediate cell invasion.
Collapse
|
33
|
Arshad N, Visweswariah SS. The multiple and enigmatic roles of guanylyl cyclase C in intestinal homeostasis. FEBS Lett 2012; 586:2835-40. [PMID: 22819815 DOI: 10.1016/j.febslet.2012.07.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 12/15/2022]
Abstract
Guanylyl cyclase C (GC-C) is predominantly expressed in intestinal epithelial cells and serves as the receptor for the gastrointestinal hormones guanylin and uroguanylin, and the heat-stable enterotoxin, the causative agent for Travellers' Diarrhea. Activation of GC-C results in an increase in intracellular levels of cGMP, which can regulate fluid and ion secretion, colon cell proliferation, and the gut immune system. This review highlights recent findings arising from studies in the GC-C knock-out mouse, along with enigmatic results obtained from the first descriptions of human disease caused by mutations in the GC-C gene. We provide some insight into these new findings and comment on areas of future study, which may enhance our knowledge of this evolutionarily conserved receptor and signaling system.
Collapse
Affiliation(s)
- Najla Arshad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
34
|
Bragado MJ, Gil MC, Martin-Hidalgo D, Hurtado de Llera A, Bravo N, Moreno AD, Garcia-Marin LJ. Src family tyrosine kinase regulates acrosome reaction but not motility in porcine spermatozoa. Reproduction 2012; 144:67-75. [DOI: 10.1530/rep-11-0075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
During the capacitation process, spermatozoa acquire the ability to fertilize an oocyte, and upregulation of cAMP-dependent protein tyrosine phosphorylation occurs. Recently, Src family tyrosine kinase (SFK) has been involved in spermatozoa capacitation as a key PKA-dependent tyrosine kinase in several species. This work investigates the expression and role of SFK in porcine spermatozoa. SFK members Lyn and Yes are identified in porcine spermatozoa by western blotting as well as two proteins named SFK1 and SFK2 were also detected by their tyrosine 416 phosphorylation, a key residue for SFK activation. Spermatozoa with SFK1 and SFK2 increase their Y416 phosphorylation time-dependently under capacitating conditions compared with noncapacitating conditions. The specific SFK inhibitor SU6656 unaffected porcine spermatozoa motility or viability. Moreover, SFK inhibition in spermatozoa under capacitating conditions leads to a twofold increase in both nonstimulated and calcium-induced acrosome reaction. Our data show that capacitating conditions lead to a time-dependent increase in actin polymerization in boar spermatozoa and that long-term incubation with SFK inhibitor causes a reduction in the F-actin content. In summary, this work shows that the SFK members Lyn and Yes are expressed in porcine spermatozoa and that SFK1 and SFK2 are phosphorylated (activated) during capacitation. Our results point out the important role exerted by SFK in the acrosome reaction, likely mediated in part by its involvement in the actin polymerization process that accompanies capacitation, and rule out its involvement in porcine spermatozoa motility.
Collapse
|
35
|
Sandilands E, Serrels B, McEwan DG, Morton JP, Macagno JP, McLeod K, Stevens C, Brunton VG, Langdon WY, Vidal M, Sansom OJ, Dikic I, Wilkinson S, Frame MC. Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol 2011; 14:51-60. [PMID: 22138575 DOI: 10.1038/ncb2386] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2011] [Accepted: 10/24/2011] [Indexed: 12/11/2022]
Abstract
Here we describe a mechanism that cancer cells use to survive when flux through the Src/FAK pathway is severely perturbed. Depletion of FAK, detachment of FAK-proficient cells or expression of non-phosphorylatable FAK proteins causes sequestration of active Src away from focal adhesions into intracellular puncta that co-stain with several autophagy regulators. Inhibition of autophagy results in restoration of active Src at peripheral adhesions, and this leads to cancer cell death. Autophagic targeting of active Src is associated with a Src-LC3B complex, and is mediated by c-Cbl. However, this is independent of c-Cbl E3 ligase activity, but is mediated by an LC3-interacting region. Thus, c-Cbl-mediated autophagic targeting of active Src can occur in cancer cells to maintain viability when flux through the integrin/Src/FAK pathway is disrupted. This exposes a previously unrecognized cancer cell vulnerability that may provide a new therapeutic opportunity.
Collapse
Affiliation(s)
- Emma Sandilands
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Inoue H, Miyazaki Y, Kikuchi K, Yoshida N, Ide F, Ohmori Y, Tomomura A, Sakashita H, Kusama K. Podoplanin expression during dysplasia–carcinoma sequence in the oral cavity. Tumour Biol 2011; 33:183-94. [DOI: 10.1007/s13277-011-0261-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2011] [Accepted: 10/25/2011] [Indexed: 01/22/2023] Open
|
37
|
Bai L, Yang JC, Ok JH, Mack PC, Kung HJ, Evans CP. Simultaneous targeting of Src kinase and receptor tyrosine kinase results in synergistic inhibition of renal cell carcinoma proliferation and migration. Int J Cancer 2011; 130:2693-702. [PMID: 21792888 DOI: 10.1002/ijc.26303] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2011] [Accepted: 06/20/2011] [Indexed: 12/31/2022]
Abstract
There have been recent improvements in the treatment for metastatic renal cell carcinoma (RCC) with receptor tyrosine kinase (RTK) inhibitors being one of newer treatment options. We hypothesized that simultaneous targeting of Src kinase and the RTK may have synergistic effects to further improve therapies on metastatic RCC. The effects of Src kinase inhibitor saracatinib and multiple RTK inhibitor sunitinib on RCC cell line (ACHN) and Caki-1 were studied. Saracatinib alone or in combination with sunitinib inhibited the migration of ACHN and Caki-1 cells in vitro. Activation of migration related components FAK, P130Cas and Paxillin were blocked by saracatinib at 0.05- to 3-μM concentrations. Combined treatment resulted in improved growth inhibition, greater loss of the S phase cell population and decreased clonogenic colony formation compared to sunitinib alone in the metastatic Caki-1 line. Molecular studies in Caki-1 showed that saracatinib alone and in combination with sunitinib inhibited phosphorylation of the cell progression regulator c-Myc in a dose-dependent manner. Sunitinib alone or in combination suppressed cyclin-D1 expression with the combination showing greater dose-dependent effect. Sunitinib inhibited vascular endothelial growth factor (VEGF) secretion through the inhibition of STAT3 signaling and VEGF biosynthesis. HIF1-α expression in normoxic and hypoxic conditions in Caki-1 cells was inhibited by either saracatinib or sunitinib when administered alone, however, a greater reduction occurred when these compounds were given in combination. Targeting Src kinase and RTK simultaneously with saracatinib and sunitinib resulted in 70-80% blockade of RCC cell migration, synergistic inhibition of cell growth and reduction of acquired drug resistance in Caki-1 cells. The results show promise for combination targeted therapy of RCC.
Collapse
Affiliation(s)
- Lanfang Bai
- Department of Urology, University of California, Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
38
|
Role of Src in breast cancer cell migration and invasion in a breast cell/bone-derived cell microenvironment. Breast Cancer Res Treat 2011; 133:201-14. [PMID: 21894461 DOI: 10.1007/s10549-011-1753-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
Abstract
The preferential metastasis of breast cancer cells to bone comprises a complex set of events including homing and preferential growth, which may require unique factors produced by bone or other cells in the immediate microenvironment. In this study, an in vitro co-culture system composed of bone mesenchymal stem cells and breast cancer cell lines is used to examine the role of Src kinase on breast cancer cell migration and invasion in the presence of bone-derived cells. This research shows that Src kinase activity in breast cancer cell lines with either high or low levels of endogenous Src activity is increased by bone-derived cell-conditioned medium but not HS68 fibroblast-conditioned medium. Breast cancer cells exhibit enhanced migration in co-culture with bone-derived cells but not HS68 fibroblasts or no co-cultured cells. Inhibition of Src kinase activity using the inhibitors PP2 or saracatinib or using siRNA abrogates the preferential migration of the breast cancer cell lines in response to bone-derived cells. Inhibition of Src activity with saracatinib does not have any significant effect on breast cancer cell invasion in the presence of bone-derived cells. Factors are identified that are produced preferentially by bone-derived cells over HS68 cells that may impact breast cancer cell behavior. This research implicates Src kinase as an important effector of bone-derived cell signals on breast cancer cell migration.
Collapse
|
39
|
Takahashi S, Miyazaki M, Okamoto I, Ito Y, Ueda K, Seriu T, Nakagawa K, Hatake K. Phase I study of dasatinib (BMS-354825) in Japanese patients with solid tumors. Cancer Sci 2011; 102:2058-64. [PMID: 21781226 DOI: 10.1111/j.1349-7006.2011.02041.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
Dasatinib is a potent oral inhibitor of tyrosine kinases including the SRC family kinases, which are activated in tumors, and implicated in invasion and bone metastasis. This phase I dose-escalation study assessed safety, tolerability, maximum tolerated dose (MTD), antitumor activity, pharmacokinetics and pharmacodynamics in Japanese patients with refractory, advanced solid tumors. Dasatinib was administered once daily at 100, 150 and 200 mg/day. Sixteen patients were treated with dasatinib in the following doses: 100 mg (nine patients), 150 mg (three patients) and 200 mg (four patients). The most frequent adverse events (AE; ≥ 50%) were anorexia, fatigue, pleural effusion, anemia, constipation, diarrhea, vomiting and increased aspartate aminotransferase (AST). The most frequent AE of grade ≥ 3 (≥ 10%) were anemia, decreased lymphocyte count, fatigue and increased blood magnesium. Dose-limiting toxicities were observed in two patients: grade 2 pleural effusion and bronchial wall thickening at the 100-mg level and grade 3 dyspnea at the 200-mg level. In addition, grade 2 pleural effusion was observed in all four patients treated with 200 mg. Therefore, 150 mg was determined to be the MTD. The pharmacokinetic parameters were comparable among the dose levels. As a pharmacodynamic study, markers of bone metabolism were assessed. Bone resorption markers, NTx and TRACP-5b, showed a decrease of 46.3% and 22.2%, respectively. No objective responses were observed, but three patients had stable disease that lasted for over 6 months. In this study population, the safety profile of dasatinib was generally acceptable and 150 mg of dasatinib administered once daily was determined to be the MTD.
Collapse
Affiliation(s)
- Shunji Takahashi
- The Cancer Institute Hospital of JFCR, Medical Oncology, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
SRC is dephosphorylated at tyrosine 530 in human colon carcinomas. Chin J Cancer Res 2011; 23:229-31. [PMID: 23467908 DOI: 10.1007/s11670-011-0229-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2011] [Accepted: 07/07/2011] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Src is a protein tyrosine kinase that plays important roles in cancer development, and Src kinase activity has been found to be elevated in several types of cancers. However, the cause of the elevation of Src kinase activity in the majority of human colon carcinomas is still largely unknown. We aim at finding the cause of elevated Src kinase activity in human colon carcinomas. METHODS We employed normal colon epithelial FHC cells and examined Src activation in human colon carcinoma specimens from 8 patients. Protein expression levels were determined by Western blotting, and the activity of Src kinase by kinase assay. RESULTS Actin levels were different between tumor and normal tissues, demonstrating the complexities and inhomogeneities of the tissue samples. Src kinase activities were increased in the majority of the colon carcinomas as compared with normal colon epithelial cells (range 13-29). Src protein levels were reduced in the colon carcinomas. Src Y530 phosphorylation levels were reduced to a higher extent than protein levels in the carcinomas. CONCLUSION The results suggest that Src specific activities were highly increased in human colon carcinomas; phosphorylation at Src Y530 was reduced, contributing to the highly elevated Src specific activity and Src kinase activity.
Collapse
|
41
|
Abstract
Multiple SRC-family kinases (SFKs) are commonly activated in carcinoma and appear to have a role in metastasis through incompletely understood mechanisms. Recent studies have shown that CDCP1 (CUB (complement C1r/C1s, Uegf, Bmp1) Domain-Containing Protein-1) is a transmembrane protein and an SRC substrate potentially involved in metastasis. Here we show that increased SFK and CDCP1 tyrosine phosphorylation is, surprisingly, associated with a decrease in FAK phosphorylation. This appears to be true in human tumors as shown by our correlation analysis of a mass spectrometric data set of affinity-purified phosphotyrosine peptides obtained from normal and cancer lung tissue samples. Induction of tyrosine phosphorylation of CDCP1 in cell culture, including by a mAb that binds to its extracellular domain, promoted changes in SFK and FAK tyrosine phosphorylation, as well as in PKC(TM), a protein known to associate with CDCP1, and these changes are accompanied by increases in adhesion and motility. Thus, signaling events that accompany the CDCP1 tyrosine phosphorylation observed in cell lines and human lung tumors may explain how the CDCP1/SFK complex regulates motility and adhesion.
Collapse
|
42
|
Serrels A, Canel M, Brunton VG, Frame MC. Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement: insights from in vivo imaging. Cell Adh Migr 2011; 5:360-5. [PMID: 21836391 DOI: 10.4161/cam.5.4.17290] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023] Open
Abstract
Recent advances in confocal and multi-photon microscopy, together with fluorescent probe development, have enabled cancer biology studies to go beyond the culture dish and interrogate cancer-associated processes in the complex in vivo environment. Regulation of the tumor suppressor protein E-cadherin plays an important role in cancer development and progression and may contribute to the decision between 'single cell' and 'collective invasion' in vivo. Mounting evidence from in vitro and in vivo experiments places the two non-receptor protein tyrosine kinases Src and Focal Adhesion Kinase, at the heart of E-cadherin regulation, and the crosstalk between integrins and cadherins. Here we discuss recent insights, attained using high resolution fluorescent in vivo imaging, into the regulation of E-cadherin and collective invasion. We focus on the regulatory crosstalk between the Src/FAK signaling axis and E-cadherin in vivo.
Collapse
Affiliation(s)
- Alan Serrels
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
43
|
Organ SL, Tong J, Taylor P, St-Germain JR, Navab R, Moran MF, Tsao MS. Quantitative phospho-proteomic profiling of hepatocyte growth factor (HGF)-MET signaling in colorectal cancer. J Proteome Res 2011; 10:3200-11. [PMID: 21609022 DOI: 10.1021/pr200238t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of death from cancer. The MET receptor tyrosine kinase and/or its ligand HGF are frequently amplified or overexpressed in CRC. It is known that tyrosine phosphorylated proteins are involved in progression and metastasis of colorectal cancer; however, little is known about the MET phospho-proteome in CRC. High resolution mass spectrometry was used to characterize immunoaffinity-purified, phosphotyrosine (pY)-containing tryptic peptides of the MET-expressing CRC cell model, DLD1. A total of 266 unambiguously identified pY sites spanning 168 proteins were identified. Quantification of mass spectrometry ion currents identified 161 pY sites, including many not previously linked to MET signaling, that were modulated in abundance by HGF stimulation. Overlay of these data with protein-protein interaction data sets suggested that many of the identified HGF-modulated phospho-proteins may be directly or indirectly associated with MET. Analysis of pY sequence motifs indicated a prevalence of Src family kinase consensus sequences, and reciprocal signaling between Src and MET was confirmed by using selective small molecule inhibitors of these kinases. Therefore, using quantitative phospho-proteomics profiling, kinase modulation by ligand and inhibitors, and data integration, an outline of the MET signaling network was generated for the CRC model.
Collapse
Affiliation(s)
- Shawna L Organ
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Kuroiwa M, Oneyama C, Nada S, Okada M. The guanine nucleotide exchange factor Arhgef5 plays crucial roles in Src-induced podosome formation. J Cell Sci 2011; 124:1726-38. [DOI: 10.1242/jcs.080291] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023] Open
Abstract
Podosomes and invadopodia are actin-rich membrane protrusions that play a crucial role in cell adhesion and migration, and extracellular matrix remodeling in normal and cancer cells. The formation of podosomes and invadopodia is promoted by upregulation of some oncogenic molecules and is closely related to the invasive potential of cancer cells. However, the molecular mechanisms underlying the podosome and invadopodium formation still remain unclear. Here, we show that a guanine nucleotide exchange factor (GEF) for Rho family GTPases (Arhgef5) is crucial for Src-induced podosome formation. Using an inducible system for Src activation, we found that Src-induced podosome formation depends upon the Src SH3 domain, and identified Arhgef5 as a Src SH3-binding protein. RNA interference (RNAi)-mediated depletion of Arhgef5 caused robust inhibition of Src-dependent podosome formation. Overexpression of Arhgef5 promoted actin stress fiber remodeling through activating RhoA, and the activation of RhoA or Cdc42 was required for Src-induced podosome formation. Arhgef5 was tyrosine-phosphorylated by Src and bound to Src to positively regulate its activity. Furthermore, the pleckstrin homology (PH) domain of Arhgef5 was required for podosome formation, and Arhgef5 formed a ternary complex with Src and phosphoinositide 3-kinase when Src and/or Arhgef5 were upregulated. These findings provide novel insights into the molecular mechanisms of podosome and invadopodium formation induced by Src upregulation.
Collapse
Affiliation(s)
- Miho Kuroiwa
- Department of Oncogene Research, Research institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chitose Oneyama
- Department of Oncogene Research, Research institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Okada
- Department of Oncogene Research, Research institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Regulation of SRC family kinases in human cancers. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:865819. [PMID: 21776389 PMCID: PMC3135246 DOI: 10.1155/2011/865819] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/15/2010] [Accepted: 02/08/2011] [Indexed: 11/22/2022]
Abstract
The nonreceptor protein tyrosine kinase Src plays a crucial role in the signal transduction pathways involved in cell division, motility, adhesion, and survival in both normal and cancer cells. Although the Src family kinases (SFKs) are activated in various types of cancers, the exact mechanisms through which they contribute to the progression of individual tumors remain to be defined. The activation of Src in human cancers may occur through a variety of mechanisms that include domain interaction and structural remodeling in response to various activators or upstream kinases and phosphatastes. Because of Src's prominent roles in invasion and tumor progression, epithelial-to-mesenchymal transition, angiogenesis, and the development of metastasis, Src is a promising target for cancer therapy. Several small molecule inhibitors of Src are currently being investigated in clinical trials. In this article, we will summarize the mechanisms regulating Src kinase activity in normal and cancer cells and discuss the status of Src inhibitor development against various types of cancers.
Collapse
|
46
|
Nautiyal J, Kanwar SS, Majumdar APN. EGFR(s) in aging and carcinogenesis of the gastrointestinal tract. Curr Protein Pept Sci 2011; 11:436-50. [PMID: 20491625 DOI: 10.2174/138920310791824110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2010] [Accepted: 05/20/2010] [Indexed: 12/24/2022]
Abstract
Cells of the gastrointestinal (GI) mucosa are subject to a constant process of renewal which, in normal adults, reflects a balance between the rates of cell production and cell loss. Detailed knowledge of these events is, therefore, essential for a better understanding of the normal aging processes as well as many GI diseases, particularly malignancy, that represent disorders of tissue growth. In general, many GI dysfunctions, including malignancy, increase with advancing age, and aging itself is associated with alterations in structural and functional integrity of the GI tract. Although the regulatory mechanisms for age-related increase in the incidence of GI-cancers are yet to be fully delineated, recent evidence suggests a role for epidermal growth family receptors and its family members {referred to as EGFR(s)} in the development and progression of carcinogenesis during aging. The present communication discusses the involvement of EGFR(s) in regulating events of GI cancers during advancing age and summarizes the current available therapeutics targeting these receptors. The current review also describes the effectiveness of ErbB inhibitors as well as combination therapies. Additionally, the involvement of GI stem cells in the development of the age-related rise in GI cancers is emphasized.
Collapse
Affiliation(s)
- Jyoti Nautiyal
- Veterans Affairs Medical Center, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
47
|
Nagaprashantha LD, Vatsyayan R, Lelsani PCR, Awasthi S, Singhal SS. The sensors and regulators of cell-matrix surveillance in anoikis resistance of tumors. Int J Cancer 2011; 128:743-52. [PMID: 20949625 PMCID: PMC3292620 DOI: 10.1002/ijc.25725] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2010] [Accepted: 09/28/2010] [Indexed: 01/08/2023]
Abstract
Normal cells continuously monitor the nature of their respective cellular microenvironment. They are equipped with an inherent molecular defense to detect changes that can precipitate and trigger an oncogenic cascade in the internal and external environment of cells. The process called anoikis unleashes many a characteristic molecular change in the cells which eventually program to cell death in response to cell detachment and inappropriate cellular attachment, both of which can otherwise potentiate the ability of cells to preferentially pursue a malignant course due to the release of molecular discipline which conforms them to a benign structural and functional spectrum. The initiation and propagation of signaling that serves as a switch to cell survival or cell death mediated by surveillance of cell microenvironment is comprised of many heterogeneous sets of molecules interacting mainly at the interface of cell-extracellular matrix. Transforming cells continuously reprogram their signaling characteristics in sensing and modulating the stimuli from cell surface molecules like integrins, cadherins and immunoglobulin family of cell adhesion molecules at adhesion complexes, which enables them to resist anoikis and metastasize to different organs. Actin cytoskeleton binds BIM and Bcl2 modifying factor (BMF), which are regulated by the adhesion status and consequent conformation of cytoskeleton in the cells. This review aims at an integrated synopsis of fundamental mechanisms of the critical interactions of cell surface molecules to facilitate a focused analysis of the differential regulation of signaling processes at cell-ECM junctions that collectively rein the anoikis resistance, which in turn impacts metastatic aggressiveness and drug resistance of tumors originating from respective organs.
Collapse
Affiliation(s)
| | - Rit Vatsyayan
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Poorna Chandra Rao Lelsani
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Sanjay Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Sharad S. Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
48
|
Dunn EF, Iida M, Myers RA, Campbell DA, Hintz KA, Armstrong EA, Li C, Wheeler DL. Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab. Oncogene 2010; 30:561-74. [PMID: 20956938 PMCID: PMC3025039 DOI: 10.1038/onc.2010.430] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
KRAS mutation is a predictive biomarker for resistance to cetuximab (Erbitux®) in metastatic colorectal cancer (mCRC). This study sought to determine if KRAS mutant CRC lines could be sensitized to cetuximab using dasatinib (BMS-354825, sprycel®) a potent, orally bioavailable inhibitor of several tyrosine kinases, including the Src Family Kinases. We analyzed 16 CRC lines for: 1) KRAS mutation status, 2) dependence on mutant KRAS signaling, 3) expression level of EGFR and SFKs. From these analyses, we selected three KRAS mutant (LS180, LoVo, and HCT116) cell lines, and two KRAS wild type cell lines (SW48 and CaCo2). In vitro, using Poly-D-Lysine/laminin plates, KRAS mutant cell lines were resistant to cetuximab whereas parental controls showed sensitivity to cetuximab. Treatment with cetuximab and dasatinib showed a greater anti-proliferative effect on KRAS mutant line as compared to either agent alone both in vitro and in vivo. To investigate potential mechanisms for this anti-proliferative response in the combinatorial therapy we performed Human Phospho-kinase Antibody Array analysis measuring the relative phosphorylation levels of phosphorylation of 39 intracellular proteins in untreated, cetuximab, dasatinib or the combinatorial treatment in LS180, LoVo and HCT116 cells. The results of this experiment showed a decrease in a broad spectrum of kinases centered on the β-catenin pathway, the classical MAPK pathway, AKT/mTOR pathway and the family of STAT transcription factors when compared to the untreated control or monotherapy treatments. Next we analyzed tumor growth with cetuximab, dasatinib or the combination in vivo. KRAS mutant xenografts showed resistance to cetuximab therapy, whereas KRAS wild type demonstrated an anti-tumor response when treated with cetuximab. KRAS mutant tumors exhibited minimal response to dasatinib monotherapy. However, as in vitro, KRAS mutant lines exhibited a response to the combination of cetuximab and dasatinib. Combinatorial treatment of KRAS mutant xenografts resulted in decreased cell proliferation as measured by Ki67 and higher rates of apoptosis as measured by TUNEL. The data presented herein indicate that dasatinib can sensitize KRAS mutant CRC tumors to cetuximab and may do so by altering the activity of several key-signaling pathways. Further, these results suggest that signaling via the EGFR and SFKs may be necessary for cell proliferation and survival of KRAS mutant CRC tumors. This data strengthen the rationale for clinical trials in this genetic setting combining cetuximab and dasatinib.
Collapse
Affiliation(s)
- E F Dunn
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Boschelli F, Arndt K, Gambacorti-Passerini C. Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur J Cancer 2010; 46:1781-9. [PMID: 20399641 DOI: 10.1016/j.ejca.2010.02.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2009] [Revised: 02/11/2010] [Accepted: 02/17/2010] [Indexed: 11/19/2022]
Abstract
Bosutinib (SKI-606) is an orally active Src and Abl kinase inhibitor presently in Phase III trials for treatment of chronic myelogenous leukaemia (CML), and in Phase II trials for treatment of breast cancer. Bosutinib is a potent antiproliferative and proapoptotic agent in CML cells and inhibits Bcr-Abl mediated signalling at nanomolar concentrations. Short-term administration of bosutinib causes regression of K562 and KU812 CML tumour xenografts. BaF3 murine myeloid cells expressing wild-type Bcr-Abl are sensitive to bosutinib treatment, as are BaF3 cells expressing many imatinib-resistant forms of Bcr-Abl. Recent studies indicate that bosutinib is active against a broader spectrum of kinases than originally believed. These additional inhibitory activities have interesting possibilities for further clinical development. This review will focus on preclinical studies supporting the clinical development of bosutinib for treatment of CML, with a discussion on the broader potential of this agent in other oncology indications.
Collapse
Affiliation(s)
- Frank Boschelli
- Department of Oncology, Wyeth Research (Wyeth Research is Now Pfizer Research), Pearl River, NY, USA.
| | | | | |
Collapse
|
50
|
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer death in the United States. Research has led to an explosion of knowledge into the molecular basis of CRC in the past decades. Numerous receptors and intracellular proteins have been identified and implicated in the growth and progression of metastatic CRC, thus creating novel targets for drug development. Many agents are under development and have begun to enter early and even later-stage clinical trials. Results of these agents have demonstrated some encouraging activity but in a small number of patients. Research into predictive biomarkers aims to select the patients who may benefit from these novel agents. This review will address several of these promising new agents, their potential relevance to CRC, results from early clinical studies, and their incorporation into future and ongoing CRC clinical trials. Clearly, there is an urgent need for new agents in this disease, but as we learned from the experience with epidermal growth factor receptor-targeted antibodies, patient selection will be increasingly be required for individualized therapy to become a reality in CRC.
Collapse
|