1
|
Zhang M, Zhang SY, Zhang H, Liu Y, Dong Y, Han D, Chang L, Yang N, Tian J, Wang Y, Ye Q. Photocontrolled Bionic Micro-Nano Hydrogel System used Novel Functional Strategy for Cell Delivery and Large-Scale Corneal Repair. Adv Healthc Mater 2025; 14:e2403444. [PMID: 39865725 DOI: 10.1002/adhm.202403444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Reproducing the microstructure of the natural cornea remains a significant challenge in achieving the mechanical and biological functionality of artificial corneas. Therefore, the development of cascade structures that mimic the natural extracellular matrix (ECM), achieving both macro-stability and micro-structure, is of critical importance. This study proposes a novel, efficient, and general photo-functionalization strategy for modifying natural biomaterials. Collagen microfibers obtained through electrospinning are functionalized with an active N-Hydroxysuccinimide (NHS) ester, to impart light-curing ability. This approach expands the construction of photo-controllable hydrogel systems beyond conventional single methacrylate (MA) modifications or di-tyrosine bonding, enabling integration with other biomaterials for comprehensive ECM remodeling. Subsequently, the collagen microfibers are then photo-embedded into gelatin methacryloyl (GelMA) via covalent crosslinking to form a fibrous hydrogel, which supports both structural and functional requirements. In terms of biological functionality, the hydrogel promotes significant inward migration and retention of human corneal fibroblasts (hCFs), replicating ECM-like environments. Furthermore, its excellent burst resistance suggests potential as a bioadhesive. In a rabbit model, the hydrogel achieved effective repair of large-sized (6 mm) corneal defects, facilitates epithelial migration, and maintained long-term stability. This work provides valuable guidance for designing efficient and simplified bioactive materials for corneal repair and broader tissue engineering applications.
Collapse
Affiliation(s)
- Mingshan Zhang
- Institute of Modern Optics, Nankai University, Tianjin, 300350, China
- Nankai University Eye Institute, Nankai University, Tianjin, 300071, China
| | - Shi-Yao Zhang
- Nankai University Eye Institute, Nankai University, Tianjin, 300071, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
| | - Huiqin Zhang
- Nankai University Eye Institute, Nankai University, Tianjin, 300071, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
- Department of Ophthalmology Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| | - Youwei Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yipeng Dong
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, 300071, China
| | - Daobo Han
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, 300071, China
| | - Le Chang
- Nankai University Eye Institute, Nankai University, Tianjin, 300071, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Jianguo Tian
- Institute of Modern Optics, Nankai University, Tianjin, 300350, China
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, 300071, China
| | - Yan Wang
- Nankai University Eye Institute, Nankai University, Tianjin, 300071, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, 300020, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300070, China
| | - Qing Ye
- Nankai University Eye Institute, Nankai University, Tianjin, 300071, China
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
3
|
Le DCP, Bui HT, Vu YTH, Vo QD. Induced pluripotent stem cell therapies in heart failure treatment: a meta-analysis and systematic review. Regen Med 2024; 19:497-509. [PMID: 39263954 PMCID: PMC11487948 DOI: 10.1080/17460751.2024.2393558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Background: Heart failure (HF) causes over 266,400 deaths annually. Despite treatment advancements, HF mortality remains high. Induced pluripotent stem cells (iPSCs) offer promising new options. This review assesses iPSC-based treatments for HF.Method: the review included studies from PubMed, ScienceDirect and Web of Science.Results: Analysis of 25 studies with 553 animals showed a baseline ejection fraction (EF) of 39.2 ± 8.9%. iPSC treatment significantly improved EF (MD = 8.6, p < 0.001) and fractional shortening (MD = 6.38, p < 0.001), and reduced ventricular remodeling without increasing arrhythmia risk.Conclusion: iPSC-based therapy improves heart function and reduces ventricular volumes in HF animal models, aligning with promising early clinical trial outcomes.
Collapse
Affiliation(s)
- Duy Cao Phuong Le
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Hoa The Bui
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
| | - Yen Thi Hai Vu
- Faculty of Medicine, Thai Binh University of Medicine, Thai Binh, 61000, Vietnam
| | - Quan Duy Vo
- Departmentof Cardiovascular Intervention, Nguyen Tri Phuong Hospital, Ho Chi Minh city, 700000, Vietnam
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
- Cardiovascular Medicine Department, Okayama University, Okayama city, 7000000, Japan
| |
Collapse
|
4
|
Darwish M, El Hajj R, Khayat L, Alaaeddine N. Stem Cell Secretions as a Potential Therapeutic Agent for Autism Spectrum Disorder: A Narrative Review. Stem Cell Rev Rep 2024; 20:1252-1272. [PMID: 38630359 DOI: 10.1007/s12015-024-10724-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 07/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by impaired social interaction and restricted repetitive behaviors or interests. The rising prevalence of ASD diagnosis has triggered a surge in research into investigating the underlying neuropathological processes and finding new therapeutic approaches. ASD is characterized by neuroinflammation and dysregulation of neuro-immune cross-talk, which suggests that stem cell treatment might be a potential therapeutic approach. The beneficial and restorative effects of stem cells are mainly due to their paracrine activity, in which stem cells generate and release extracellular vesicles such as exosomes and distinct secreted non-vesicle soluble proteins, including, growth factors, chemokines, cytokines, and immunomodulatory molecules referred to as the Secretome. In this paper, we reviewed the existing research exploring the therapeutic potential of stem cell secretome focusing on their role in addressing ASD pathology. Furthermore, we proposed a comprehensive mechanism of action for stem cell secretions, encompassing the broader secretome as well as the specific contribution of exosomes, in alleviating ASD neuropathology. Across the reviewed studies, exosomes and secreted soluble factors of the transplanted stem cell demonstrate a potential efficacy in ameliorating autistic-like behaviors. The proposed mechanism of action involves the modulation of signaling pathways implicated in neuroinflammation, angiogenesis, cellular apoptosis, and immunomodulation.
Collapse
Affiliation(s)
- Mariam Darwish
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | | | | | - Nada Alaaeddine
- Dean of Health Sciences, Modern University for Business & Science, Beirut, Lebanon.
| |
Collapse
|
5
|
Choudhury S, Sivankutty I, Jung Y, Huang A, Araten S, Kenny C, An Z, Doan R, Foijer F, Matsu E, Rosen I, Marciano J, Jain A, Sun L, Hilal N, Lee E, Walsh C, Chen M. Single-nucleus multi-omic profiling of polyploid heart nuclei identifies fusion-derived cardiomyocytes in the human heart. RESEARCH SQUARE 2024:rs.3.rs-4414468. [PMID: 38853931 PMCID: PMC11160865 DOI: 10.21203/rs.3.rs-4414468/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Understanding the mechanisms of polyploidization in cardiomyocytes is crucial for advancing strategies to stimulate myocardial regeneration. Although endoreplication has long been considered the primary source of polyploid human cardiomyocytes, recent animal work suggests the potential for cardiomyocyte fusion. Moreover, the effects of polyploidization on the genomic-transcriptomic repertoire of human cardiomyocytes have not been studied previously. We applied single-nuclei whole genome sequencing, single nuclei RNA sequencing, and multiome ATAC + gene expression (from the same nuclei) techniques to nuclei isolated from 11 healthy hearts. Utilizing post-zygotic non-inherited somatic mutations occurring during development as "endogenous barcodes," to reconstruct lineage relationships of polyploid cardiomyocytes. Of 482 cardiomyocytes from multiple healthy donor hearts 75.7% can be sorted into several developmental clades marked by one or more somatic single-nucleotide variants (SNVs). At least ~10% of tetraploid cardiomyocytes contain cells from distinct clades, indicating fusion of lineally distinct cells, whereas 60% of higher-ploidy cardiomyocytes contain fused cells from distinct clades. Combined snRNA-seq and snATAC-seq revealed transcriptome and chromatin landscapes of polyploid cardiomyocytes distinct from diploid cardiomyocytes, and show some higher-ploidy cardiomyocytes with transcriptional signatures suggesting fusion between cardiomyocytes and endothelial and fibroblast cells. These observations provide the first evidence for cell and nuclear fusion of human cardiomyocytes, raising the possibility that cell fusion may contribute to developing or maintaining polyploid cardiomyocytes in the human heart.
Collapse
|
6
|
Chen X, Liu C, Wang J, Du C. Hematopoietic Stem Cells as an Integrative Hub Linking Lifestyle to Cardiovascular Health. Cells 2024; 13:712. [PMID: 38667327 PMCID: PMC11049205 DOI: 10.3390/cells13080712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite breakthroughs in modern medical care, the incidence of cardiovascular disease (CVD) is even more prevalent globally. Increasing epidemiologic evidence indicates that emerging cardiovascular risk factors arising from the modern lifestyle, including psychosocial stress, sleep problems, unhealthy diet patterns, physical inactivity/sedentary behavior, alcohol consumption, and tobacco smoking, contribute significantly to this worldwide epidemic, while its underpinning mechanisms are enigmatic. Hematological and immune systems were recently demonstrated to play integrative roles in linking lifestyle to cardiovascular health. In particular, alterations in hematopoietic stem cell (HSC) homeostasis, which is usually characterized by proliferation, expansion, mobilization, megakaryocyte/myeloid-biased differentiation, and/or the pro-inflammatory priming of HSCs, have been shown to be involved in the persistent overproduction of pro-inflammatory myeloid leukocytes and platelets, the cellular protagonists of cardiovascular inflammation and thrombosis, respectively. Furthermore, certain lifestyle factors, such as a healthy diet pattern and physical exercise, have been documented to exert cardiovascular protective effects through promoting quiescence, bone marrow retention, balanced differentiation, and/or the anti-inflammatory priming of HSCs. Here, we review the current understanding of and progression in research on the mechanistic interrelationships among lifestyle, HSC homeostasis, and cardiovascular health. Given that adhering to a healthy lifestyle has become a mainstream primary preventative approach to lowering the cardiovascular burden, unmasking the causal links between lifestyle and cardiovascular health from the perspective of hematopoiesis would open new opportunities to prevent and treat CVD in the present age.
Collapse
Affiliation(s)
| | | | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| |
Collapse
|
7
|
Sun N, Sun Y, Xing Y, Xu L, Chen Z, Qing L, Wu P, Tang J. Knowledge mapping and research trends of stem cell in wound healing: A bibliometric analysis. Int Wound J 2024; 21:e14587. [PMCID: PMC10830390 DOI: 10.1111/iwj.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2025] Open
Abstract
Wound nonhealing is a common and difficult problem in clinic. Stem cells are pluripotent cells, and their undifferentiated and self‐replicating characteristics have attracted much attention in the regenerative medicine‐related researches. New treatment approaches might result from an understanding of the function of stem cells in wound healing. Using bibliometric techniques, this study proposed to analyse the research status, hotspots, and research trends in stem cell and wound healing. By using the Web of Science Core Collection (WoSCC), we conducted an in‐depth review of publications on stem cells in wound healing from 1999 to 2023. We used scientometric analysis methods to examine annual trends, institutions, countries, journals, authors, keywords, co‐occurrence references and their closed relationship, revealing present hotspots and potential future advancements in this field. We analysed 19 728 English studies and discovered a consistent rise in annual publications. The United States and China were the two countries with the most publications. The most three influential institutions in the field were Shanghai Jiao Tong University, Sun Yat‐sen University, and University of Pittsburgh. International Journal of Molecular Sciences and Biomaterials were considered the most influential journals in this field. International Journal of Molecular Sciences had the most publications, and the most quantity of citations and the highest H‐index were found in Biomaterials . The dual‐map overlay revealed that publications in Molecular/Biology/Genetics and Health/Nursing/Medicine co‐cited journals received the majority of the citations for studies from Molecular/Biology/Immunology and Medicine/Medical/Clinical. In terms of publication production and influence, Fu X stood out among the authors, and Pittenger MF took the top spot in co‐citations. According to the keywords from the analysis, future research should concentrate on the mechanisms through which stem cells promote wound healing. We conducted a thorough analysis of the general information, knowledge base and research hotspots in the field of stem cells and wound healing from 1999 to 2023 by using the VOSviewer, CiteSpace, and other bibliometric analysis tools. It not only provided valuable insights for scholars, but also served as a reliable reference that drives further development in the field and stimulates the interest of researchers.
Collapse
Affiliation(s)
- Nianzhe Sun
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Yu Sun
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Yixuan Xing
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
- Department of EmergencyXiangya Hospital, Central South UniversityChangshaChina
| | - Laiyu Xu
- Department of OrthopedicsThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouChina
| | - Zijie Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liming Qing
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Panfeng Wu
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Juyu Tang
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
8
|
Chowdhury MA, Zhang JJ, Rizk R, Chen WCW. Stem cell therapy for heart failure in the clinics: new perspectives in the era of precision medicine and artificial intelligence. Front Physiol 2024; 14:1344885. [PMID: 38264333 PMCID: PMC10803627 DOI: 10.3389/fphys.2023.1344885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Stem/progenitor cells have been widely evaluated as a promising therapeutic option for heart failure (HF). Numerous clinical trials with stem/progenitor cell-based therapy (SCT) for HF have demonstrated encouraging results, but not without limitations or discrepancies. Recent technological advancements in multiomics, bioinformatics, precision medicine, artificial intelligence (AI), and machine learning (ML) provide new approaches and insights for stem cell research and therapeutic development. Integration of these new technologies into stem/progenitor cell therapy for HF may help address: 1) the technical challenges to obtain reliable and high-quality therapeutic precursor cells, 2) the discrepancies between preclinical and clinical studies, and 3) the personalized selection of optimal therapeutic cell types/populations for individual patients in the context of precision medicine. This review summarizes the current status of SCT for HF in clinics and provides new perspectives on the development of computation-aided SCT in the era of precision medicine and AI/ML.
Collapse
Affiliation(s)
- Mohammed A. Chowdhury
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Department of Public Health and Health Sciences, Health Sciences Ph.D. Program, School of Health Sciences, University of South Dakota, Vermillion, SD, United States
- Department of Cardiology, North Central Heart, Avera Heart Hospital, Sioux Falls, SD, United States
| | - Jing J. Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Rodrigue Rizk
- Department of Computer Science, University of South Dakota, Vermillion, SD, United States
| | - William C. W. Chen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
9
|
Schubart JR, Zare A, Fernandez-de-Castro RM, Figueroa HR, Sarel I, Tuchman K, Esposito K, Henderson FC, von Schwarz E. Safety and outcomes analysis: transcatheter implantation of autologous angiogenic cell precursors for the treatment of cardiomyopathy. Stem Cell Res Ther 2023; 14:308. [PMID: 37880753 PMCID: PMC10601268 DOI: 10.1186/s13287-023-03539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Stem cell transplantation is an emerging therapy for severe cardiomyopathy, proffering stem cell recruitment, anti-apoptosis, and proangiogenic capabilities. Angiogenic cell precursors (ACP-01) are autologous, lineage-specific, cells derived from a multipotent progenitor cell population, with strong potential to effectively engraft, form blood vessels, and support tissue survival and regeneration. METHODS This IRB approved outcome analysis reports upon 74 consecutive patients who failed medical management for severe cardiomyopathy, and were selected to undergo transcatheter intramyocardial or intracoronary implantation of ACP-01. Serious adverse events (SAEs) were reported. Cell analysis was conducted for each treatment. The left ventricular ejection fraction (LVEF) was measured by multi-gated acquisition scan (MUGA) or echocardiogram at 4 months ± 1.9 months and 12 months ± 5.5 months. Patients reported quality of life statements at 6 months (± 5.6 months). RESULTS Fifty-four of 74 patients met requirements for inclusion (48 males and five females; age 68.1 ± 11.3 years). The mean treatment cell number of 57 × 106 ACP-01 included 7.7 × 106 CD34 + and 21 × 106 CD31 + cells with 97.6% viability. SAEs included one death (previously unrecognized silent MI), ventricular tachycardia (n = 2) requiring cardioversion, and respiratory infection (n = 2). LVEF in the ischemic subgroup (n = 41) improved by 4.7% ± 9.7 from pre-procedure to the first follow-up (4 months ± 1.9 months) (p < 0.004) and by 7.2% ± 10.9 at final follow-up (n = 25) at average 12 months (p < 0.004). The non-ischemic dilated cardiomyopathy subgroup (n = 8) improved by 7.5% ± 6.0 at the first follow-up (p < 0.017) and by 12.2% ± 6.4 at final follow-up (p < 0.003, n = 6). Overall improvement in LVEF from pre-procedure to post-procedure was significant (Fisher's exact test p < 0.004). LVEF improvement was most marked in the patients with the most severe cardiomyopathy (LVEF < 20%) improving from a mean 14.6% ± 3.4% pre-procedurally to 28.4% ± 8% at final follow-up. Quality of life statements reflected improvement in 33/50 (66%), no change in 14/50 (28%), and worse in 3/50 (6%). CONCLUSION Transcatheter implantation of ACP-01 for cardiomyopathy is safe and improves LVEF in the setting of ischemic and non-ischemic cardiomyopathy. The results warrant further investigation in a prospective, blinded, and controlled clinical study. TRIAL REGISTRATION IRB from Genetic Alliance #APC01-001, approval date July 25, 2022. Cardiomyopathy is common and associated with high mortality. Stem cell transplantation is an emerging therapy. Angiogenic cell precursors (ACP-01) are lineage-specific endothelial progenitors, with strong potential for migration, engraftment, angiogenesis, and support of tissue survival and regeneration. A retrospective outcomes analysis of 53 patients with ischemic and non-ischemic dilated cardiomyopathy undergoing transcatheter implantation of ACP-01 demonstrated improvements in the left ventricular ejection fraction of 7.2% ± 10.9 (p < 0.004) and 12.2% ± 6.4, respectively, at 12 months (± 5) follow-up. Quality of life statements reflected improvement in 33/50 (66%) patients.
Collapse
Affiliation(s)
- Jane R Schubart
- Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Amirhossein Zare
- Northern Ontario School of Medicine, Ontario, CA, USA
- Hemostemix Inc, Calgary, CA, Canada
| | | | | | | | - Kelly Tuchman
- The Metropolitan Neurosurgery Group, LLC, 1010 Wayne Ave Suite 420, Silver Spring, MD, 20910, USA.
| | - Kaitlyn Esposito
- The Bobby Jones Chiari Syringomyelia Foundation, New York, NY, USA
| | - Fraser C Henderson
- The Metropolitan Neurosurgery Group, LLC, 1010 Wayne Ave Suite 420, Silver Spring, MD, 20910, USA.
- Department Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Hemostemix Inc, Calgary, CA, Canada.
| | - Ernst von Schwarz
- School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 PMCID: PMC11410020 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
11
|
Lintao RCV, Kammala AK, Radnaa E, Bettayeb M, Vincent KL, Patrikeev I, Yaklic J, Bonney EA, Menon R. Characterization of fetal microchimeric immune cells in mouse maternal hearts during physiologic and pathologic pregnancies. Front Cell Dev Biol 2023; 11:1256945. [PMID: 37808080 PMCID: PMC10556483 DOI: 10.3389/fcell.2023.1256945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: During pregnancy, fetal cells can be incorporated into maternal tissues (fetal microchimerism), where they can persist postpartum. Whether these fetal cells are beneficial or detrimental to maternal health is unknown. This study aimed to characterize fetal microchimeric immune cells in the maternal heart during pregnancy and postpartum, and to identify differences in these fetal microchimeric subpopulations between normal and pregnancies complicated by spontaneous preterm induced by ascending infection. Methods: A Cre reporter mouse model, which when mated with wild-type C57BL/6J females resulted in cells and tissues of progeny expressing red fluorescent protein tandem dimer Tomato (mT+), was used to detect fetal microchimeric cells. On embryonic day (E)15, 104 colony-forming units (CFU) E. coli was administered intravaginally to mimic ascending infection, with delivery on or before E18.5 considered as preterm delivery. A subset of pregnant mice was sacrificed at E16 and postpartum day 28 to harvest maternal hearts. Heart tissues were processed for immunofluorescence microscopy and high-dimensional mass cytometry by time-of-flight (CyTOF) using an antibody panel of immune cell markers. Changes in cardiac physiologic parameters were measured up to 60 days postpartum via two-dimensional echocardiography. Results: Intravaginal E. coli administration resulted in preterm delivery of live pups in 70% of the cases. mT + expressing cells were detected in maternal uterus and heart, implying that fetal cells can migrate to different maternal compartments. During ascending infection, more fetal antigen-presenting cells (APCs) and less fetal hematopoietic stem cells (HSCs) and fetal double-positive (DP) thymocytes were observed in maternal hearts at E16 compared to normal pregnancy. These HSCs were cleared while DP thymocytes persisted 28 days postpartum following an ascending infection. No significant changes in cardiac physiologic parameters were observed postpartum except a trend in lowering the ejection fraction rate in preterm delivered mothers. Conclusion: Both normal pregnancy and ascending infection revealed distinct compositions of fetal microchimeric immune cells within the maternal heart, which could potentially influence the maternal cardiac microenvironment via (1) modulation of cardiac reverse modeling processes by fetal stem cells, and (2) differential responses to recognition of fetal APCs by maternal T cells.
Collapse
Affiliation(s)
- Ryan C. V. Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mohamed Bettayeb
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kathleen L. Vincent
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Igor Patrikeev
- Biomedical Engineering and Imaging Sciences Group, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Jerome Yaklic
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
12
|
Pezhouman A, Nguyen NB, Kay M, Kanjilal B, Noshadi I, Ardehali R. Cardiac regeneration - Past advancements, current challenges, and future directions. J Mol Cell Cardiol 2023; 182:75-85. [PMID: 37482238 DOI: 10.1016/j.yjmcc.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity worldwide. Despite improvements in the standard of care for patients with heart diseases, including innovation in pharmacotherapy and surgical interventions, none have yet been proven effective to prevent the progression to heart failure. Cardiac transplantation is the last resort for patients with severe heart failure, but donor shortages remain a roadblock. Cardiac regenerative strategies include cell-based therapeutics, gene therapy, direct reprogramming of non-cardiac cells, acellular biologics, and tissue engineering methods to restore damaged hearts. Significant advancements have been made over the past several decades within each of these fields. This review focuses on the advancements of: 1) cell-based cardiac regenerative therapies, 2) the use of noncoding RNA to induce endogenous cell proliferation, and 3) application of bioengineering methods to promote retention and integration of engrafted cells. Different cell sources have been investigated, including adult stem cells derived from bone marrow and adipose cells, cardiosphere-derived cells, skeletal myoblasts, and pluripotent stem cells. In addition to cell-based transplantation approaches, there have been accumulating interest over the past decade in inducing endogenous CM proliferation for heart regeneration, particularly with the use of noncoding RNAs such as miRNAs and lncRNAs. Bioengineering applications have focused on combining cell-transplantation approaches with fabrication of a porous, vascularized scaffold using biomaterials and advanced bio-fabrication techniques that may offer enhanced retention of transplanted cells, with the hope that these cells would better engraft with host tissue to improve cardiac function. This review summarizes the present status and future challenges of cardiac regenerative therapies.
Collapse
Affiliation(s)
- Arash Pezhouman
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States
| | - Ngoc B Nguyen
- Baylor College of Medicine, Department of Internal Medicine, Houston, Texas 77030, United States
| | - Maryam Kay
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, United States
| | - Baishali Kanjilal
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Reza Ardehali
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States.
| |
Collapse
|
13
|
Wang J, An M, Haubner BJ, Penninger JM. Cardiac regeneration: Options for repairing the injured heart. Front Cardiovasc Med 2023; 9:981982. [PMID: 36712238 PMCID: PMC9877631 DOI: 10.3389/fcvm.2022.981982] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiac regeneration is one of the grand challenges in repairing injured human hearts. Numerous studies of signaling pathways and metabolism on cardiac development and disease pave the way for endogenous cardiomyocyte regeneration. New drug delivery approaches, high-throughput screening, as well as novel therapeutic compounds combined with gene editing will facilitate the development of potential cell-free therapeutics. In parallel, progress has been made in the field of cell-based therapies. Transplantation of human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) can partially rescue the myocardial defects caused by cardiomyocyte loss in large animals. In this review, we summarize current cell-based and cell-free regenerative therapies, discuss the importance of cardiomyocyte maturation in cardiac regenerative medicine, and envision new ways of regeneration for the injured heart.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Bernhard Johannes Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Josef M. Penninger
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC – Vienna BioCenter, Vienna, Austria
| |
Collapse
|
14
|
Extracellular Vesicles and Cellular Ageing. Subcell Biochem 2023; 102:271-311. [PMID: 36600137 DOI: 10.1007/978-3-031-21410-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ageing is a complex process characterized by deteriorated performance at multiple levels, starting from cellular dysfunction to organ degeneration. Stem cell-based therapies aim to administrate stem cells that eventually migrate to the injured site to replenish the damaged tissue and recover tissue functionality. Stem cells can be easily obtained and cultured in vitro, and display several qualities such as self-renewal, differentiation, and immunomodulation that make them suitable candidates for stem cell-based therapies. Current animal studies and clinical trials are being performed to assess the safety and beneficial effects of stem cell engraftments for regenerative medicine in ageing and age-related diseases.Since alterations in cell-cell communication have been associated with the development of pathophysiological processes, new research is focusing on the modulation of the microenvironment. Recent research has highlighted the important role of some microenvironment components that modulate cell-cell communication, thus spreading signals from damaged ageing cells to neighbor healthy cells, thereby promoting systemic ageing. Extracellular vesicles (EVs) are small-rounded vesicles released by almost every cell type. EVs cargo includes several bioactive molecules, such as lipids, proteins, and genetic material. Once internalized by target cells, their specific cargo can induce epigenetic modifications and alter the fate of the recipient cells. Also, EV's content is dependent on the releasing cells, thus, EVs can be used as biomarkers for several diseases. Moreover, EVs have been proposed to be used as cell-free therapies that focus on their administration to slow or even reverse some hallmarks of physiological ageing. It is not surprising that EVs are also under study as next-generation therapies for age-related diseases.
Collapse
|
15
|
Diversity of the Origin of Cancer Stem Cells in Oral Squamous Cell Carcinoma and Its Clinical Implications. Cancers (Basel) 2022; 14:cancers14153588. [PMID: 35892847 PMCID: PMC9332248 DOI: 10.3390/cancers14153588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Oral squamous cell carcinoma (OSCC) histopathologically accounts for ≥90% of oral cancer. In this review article, we focus on the diversity of the origin of OSCC and also discuss cancer stem cells (CSCs). CSCs are a subset of cancer cells that occupy a very small portion of the cancer mass and have characteristics of stem cells. When gene abnormalities accumulate in somatic stem cells, those cells transform into CSCs. CSCs as the origin of cancer then autonomously grow and develop into cancer. The histopathological phenotype of cancer cells is determined by the original characteristics of the somatic stem cells and/or surrounding environment. OSCC may be divided into the following three categories with different malignancy based on the origin of CSCs: cancer from oral epithelial stem cell-derived CSCs, cancer from stem cells in salivary gland-derived CSCs, and cancer from bone marrow-derived stem cell-derived CSCs. Abstract Oral squamous cell carcinoma (OSCC) histopathologically accounts for ≥90% of oral cancer. Many clinicopathological risk factors for OSCC have also been proposed, and postoperative therapy is recommended in guidelines based on cancer stage and other risk factors. However, even if the standard treatment is provided according to the guidelines, a few cases rapidly recur or show cervical and distant metastasis. In this review article, we focus on the diversity of the origin of OSCC. We also discuss cancer stem cells (CSCs) as a key player to explain the malignancy of OSCC. CSCs are a subset of cancer cells that occupy a very small portion of the cancer mass and have characteristics of stem cells. When gene abnormalities accumulate in somatic stem cells, those cells transform into CSCs. CSCs as the origin of cancer then autonomously grow and develop into cancer. The histopathological phenotype of cancer cells is determined by the original characteristics of the somatic stem cells and/or surrounding environment. OSCC may be divided into the following three categories with different malignancy based on the origin of CSCs: cancer from oral epithelial stem cell-derived CSCs, cancer from stem cells in salivary gland-derived CSCs, and cancer from bone marrow-derived stem cell-derived CSCs.
Collapse
|
16
|
Munderere R, Kim SH, Kim C, Park SH. The Progress of Stem Cell Therapy in Myocardial-Infarcted Heart Regeneration: Cell Sheet Technology. Tissue Eng Regen Med 2022; 19:969-986. [PMID: 35857259 DOI: 10.1007/s13770-022-00467-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Various tissues, including the heart, cornea, bone, esophagus, bladder and liver, have been vascularized using the cell sheet technique. It overcomes the limitations of existing techniques by allowing small layers of the cell sheet to generate capillaries on their own, and it can also be used to vascularize tissue-engineered transplants. Cell sheets eliminate the need for traditional tissue engineering procedures such as isolated cell injections and scaffold-based technologies, which have limited applicability. While cell sheet engineering can eliminate many of the drawbacks, there are still a few challenges that need to be addressed. The number of cell sheets that can be layered without triggering core ischemia or hypoxia is limited. Even when scaffold-based technologies are disregarded, strategies to tackle this problem remain a substantial impediment to the efficient regeneration of thick, living three-dimensional cell sheets. In this review, we summarize the cell sheet technology in myocardial infarcted tissue regeneration.
Collapse
Affiliation(s)
- Raissa Munderere
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Seon-Hwa Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Changsu Kim
- Department of Orthopedics Surgery, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea. .,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea. .,Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
17
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
18
|
Vadakke‐Madathil S, Chaudhry HW. Concepts of Cell Therapy and Myocardial Regeneration. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
20
|
Sano T, Ito T, Ishigami S, Bandaru S, Sano S. Intrinsic activation of cardiosphere-derived cells enhances myocardial repair. J Thorac Cardiovasc Surg 2022; 163:1479-1490.e5. [PMID: 32682583 DOI: 10.1016/j.jtcvs.2020.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Permanent loss of cardiomyocytes after myocardial infarction results in irreversible damage to cardiac function. The present study aims to enhance the cardiomyogenic efficiency of cardiosphere-derived cells (CDCs) to develop into large populations of cardiomyocytes by intrinsic activation of cardio-specific differentiation factors (Gata4, Mef2c, Nkx2-5, Hand2, and Tnnt2) by a CRISPR/dCas9 assisted transcriptional enhancement system. METHODS Exhaustive screening was performed to identify the specific sequences in endogenous regulatory regions (enhancers and promoters) responsible for transcriptional activation of the target genes, via a CRISPR/dCas9 system fused with transcriptional activator VP64 (CRISPR-dCas9-VP64). In a rat model of acute myocardial infarction, we compared the regenerative potential and functional benefits of CDCs with or without transcriptional activation. RESULTS We identified a panel of specific CRISPR RNA targeting the enhancers and promoters, which demonstrated significantly higher expression of differentiation factors of Gata4, Hand2, and Tnnt2. The group of CDCs with transcriptional activator VP64 (CDC with VP64) showed significant improvement in the left ventricular ejection fraction (61.9% vs 52.5% and 44.1% in the CDC without transcriptional activation group and control) and decreased scar area in the heart. CONCLUSIONS We have identified endogenous regulatory regions responsible for an intrinsic activation of cardio-specific differentiation factors assisted via a CRISPR/dCas9 gene transcriptional system. The CRISPR/dCas9 system may provide an efficient and effective means of regulating Tnnt2 gene activation within stem cells. Subsequently, this system can be used to enhance transplanted CDCs differentiation potential within ischemic myocardia to better therapeutic outcomes of patients with ischemic heart disease.
Collapse
Affiliation(s)
- Toshikazu Sano
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, University of California at San Francisco, San Francisco, Calif
| | - Tatsuo Ito
- Department of Hygiene, Kawasaki Medical University, Okayama, Japan
| | - Shuta Ishigami
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, University of California at San Francisco, San Francisco, Calif
| | - Srinivas Bandaru
- Department of Hygiene, Kawasaki Medical University, Okayama, Japan
| | - Shunji Sano
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, University of California at San Francisco, San Francisco, Calif.
| |
Collapse
|
21
|
Garbern JC, Lee RT. Heart regeneration: 20 years of progress and renewed optimism. Dev Cell 2022; 57:424-439. [PMID: 35231426 PMCID: PMC8896288 DOI: 10.1016/j.devcel.2022.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide, and thus there remains great interest in regenerative approaches to treat heart failure. In the past 20 years, the field of heart regeneration has entered a renaissance period with remarkable progress in the understanding of endogenous heart regeneration, stem cell differentiation for exogenous cell therapy, and cell-delivery methods. In this review, we highlight how this new understanding can lead to viable strategies for human therapy. For the near term, drugs, electrical and mechanical devices, and heart transplantation will remain mainstays of cardiac therapies, but eventually regenerative therapies based on fundamental regenerative biology may offer more permanent solutions for patients with heart failure.
Collapse
Affiliation(s)
- Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA,Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA,Corresponding author and lead contact: Richard T. Lee, Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, Phone: 617-496-5394, Fax: 617-496-8351,
| |
Collapse
|
22
|
Goonoo N. Tunable Biomaterials for Myocardial Tissue Regeneration: Promising New Strategies for Advanced Biointerface Control and Improved Therapeutic Outcomes. Biomater Sci 2022; 10:1626-1646. [DOI: 10.1039/d1bm01641e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following myocardial infarction (MI) and the natural healing process, the cardiac mechanostructure changes significantly leading to reduced contractile ability and putting additional pressure on the heart muscle thereby increasing the...
Collapse
|
23
|
Buja LM, Mitchell RN. Basic pathobiology of cell-based therapies and cardiac regenerative medicine. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions. J Cardiovasc Dev Dis 2021; 8:jcdd8110148. [PMID: 34821701 PMCID: PMC8622843 DOI: 10.3390/jcdd8110148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great promise for cardiovascular regeneration following ischemic injury. Considerable effort has been made toward the development and optimization of methods to differentiate hiPSCs into vascular cells, such as endothelial and smooth muscle cells (ECs and SMCs). In particular, hiPSC-derived ECs have shown robust potential for promoting neovascularization in animal models of cardiovascular diseases, potentially achieving significant and sustained therapeutic benefits. However, the use of hiPSC-derived SMCs that possess high therapeutic relevance is a relatively new area of investigation, still in the earlier investigational stages. In this review, we first discuss different methodologies to derive vascular cells from hiPSCs with a particular emphasis on the role of key developmental signals. Furthermore, we propose a standardized framework for assessing and defining the EC and SMC identity that might be suitable for inducing tissue repair and regeneration. We then highlight the regenerative effects of hiPSC-derived vascular cells on animal models of myocardial infarction and hindlimb ischemia. Finally, we address several obstacles that need to be overcome to fully implement the use of hiPSC-derived vascular cells for clinical application.
Collapse
|
25
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Vasam G, S SJ, Miyat SY, Adam H, Jarajapu YP. Early onset of aging phenotype in vascular repair by Mas receptor deficiency. GeroScience 2021; 44:311-327. [PMID: 34661816 DOI: 10.1007/s11357-021-00473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022] Open
Abstract
Aging is associated with impaired vascular repair following ischemic insult, largely due to reparative dysfunctions of progenitor cells. Activation of Mas receptor (MasR) was shown to reverse aging-associated vasoreparative dysfunction. This study tested the impact of MasR-deficiency on mobilization and vasoreparative functions with aging. Wild type (WT) or MasR-deficient mice (MasR-/- or MasR+/-) at 12-14 weeks (young) or middle age (11-12 months) (MA) were used in the study. Mobilization of lineage-negative, Sca-1-positive cKit-positive (LSK) cells in response to G-CSF or plerixafor was determined. Hindlimb ischemia (HLI) was induced by femoral artery ligation. Mobilization and blood flow recovery were monitored post-HLI. Radiation chimeras were made by lethal irradiation of WT or MasR-/- mice followed by administration of bone marrow cells from MasR-/- or WT mice, respectively. Nitric oxide (NO) generation by stromal-derived factor-1α (SDF) and mitochondrial reactive oxygen species (mitoROS) levels were determined by flow cytometry. Effect of A779 treatment on mobilization, blood flow recovery, and NO and ROS levels were determined in young WT and MasR+/- mice. Circulating LSK cells in basal or in response to plerixafor or G-CSF or in response to ischemic injury were lower in MasR-/- mice compared to the WT. Responses in MasR+/- mice were similar to the WT at young age but at the middle age, impairments were observed. Impaired mobilization to ischemia or G-CSF was rescued in WT → MasR-/- chimeras. NO levels were lower and mitoROS were higher in MasR-/- LSK cells compared to WT cells. A779 precipitated dysfunctions in young-MasR+/- mice similar to that observed in MA-MasR+/-, and this accompanied decreased NO generation by SDF and enhanced mitoROS levels. This study shows that mice at MA do not exhibit vasoreparative dysfunction. Either partial or total loss of MasR precipitates advanced-aging phenotype likely due to lack of NO and oxidative stress.
Collapse
Affiliation(s)
- Goutham Vasam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Shrinidh Joshi S
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Su Yamin Miyat
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Hashim Adam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Yagna P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
27
|
Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021; 118:94-106. [PMID: 34144893 PMCID: PMC8968240 DOI: 10.1016/j.semcdb.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]). Cardiac differentiation is the process whereby cells become progressively more dedicated in a trajectory through the cardiac lineage towards mature cardiomyocytes. Defects in cardiac differentiation have been linked to CHD, although how the complex control of cardiac differentiation prevents CHD is just beginning to be understood. The stages of cardiac differentiation are highly stereotyped and have been well-characterized (Kattman et al. (2011) [9], Wamstad et al. (2012) [10], Luna-Zurita et al. (2016) [11], Loh et al. (2016) [12], DeLaughter et al. (2016) [13]); however, the developmental and molecular mechanisms that promote or delay the transition of a cell through these stages have not been as deeply investigated. Tight temporal control of progenitor differentiation is critically important for normal organ size, spatial organization, and cellular physiology and homeostasis of all organ systems (Raff et al. (1985) [14], Amthor et al. (1998) [15], Kopan et al. (2014) [16]). This review will focus on the action of signaling pathways in the control of cardiomyocyte differentiation timing. Numerous signaling pathways, including the Wnt, Fibroblast Growth Factor, Hedgehog, Bone Morphogenetic Protein, Insulin-like Growth Factor, Thyroid Hormone and Hippo pathways, have all been implicated in promoting or inhibiting transitions along the cardiac differentiation trajectory. Gaining a deeper understanding of the mechanisms controlling cardiac differentiation timing promises to yield insights into the etiology of CHD and to inform approaches to restore function to damaged hearts.
Collapse
|
28
|
Vaka R, Davis DR. State-of-play for cellular therapies in cardiac repair and regeneration. Stem Cells 2021; 39:1579-1588. [PMID: 34448513 PMCID: PMC9290630 DOI: 10.1002/stem.3446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is the primary cause of death around the world. For almost two decades, cell therapy has been proposed as a solution for heart disease. In this article, we report on the “state‐of‐play” of cellular therapies for cardiac repair and regeneration. We outline the progression of new ideas from the preclinical literature to ongoing clinical trials. Recent data supporting the mechanics and mechanisms of myogenic and paracrine therapies are evaluated in the context of long‐term cardiac engraftment. This discussion informs on promising new approaches to indicate future avenues for the field.
Collapse
Affiliation(s)
- Ramana Vaka
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
| | - Darryl R Davis
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
29
|
Beliën H, Evens L, Hendrikx M, Bito V, Bronckaers A. Combining stem cells in myocardial infarction: The road to superior repair? Med Res Rev 2021; 42:343-373. [PMID: 34114238 DOI: 10.1002/med.21839] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/29/2021] [Indexed: 12/25/2022]
Abstract
Myocardial infarction irreversibly destroys millions of cardiomyocytes in the ventricle, making it the leading cause of heart failure worldwide. Over the past two decades, many progenitor and stem cell types were proposed as the ideal candidate to regenerate the heart after injury. The potential of stem cell therapy has been investigated thoroughly in animal and human studies, aiming at cardiac repair by true tissue replacement, by immune modulation, or by the secretion of paracrine factors that stimulate endogenous repair processes. Despite some successful results in animal models, the outcome from clinical trials remains overall disappointing, largely due to the limited stem cell survival and retention after transplantation. Extensive interest was developed regarding the combinational use of stem cells and various priming strategies to improve the efficacy of regenerative cell therapy. In this review, we provide a critical discussion of the different stem cell types investigated in preclinical and clinical studies in the field of cardiac repair. Moreover, we give an update on the potential of stem cell combinations as well as preconditioning and explore the future promises of these novel regenerative strategies.
Collapse
Affiliation(s)
- Hanne Beliën
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Lize Evens
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Marc Hendrikx
- Faculty of Medicine and Life Sciences, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Virginie Bito
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| |
Collapse
|
30
|
Yeganeh A, Alibhai FJ, Tobin SW, Lim F, Wu J, Li S, Weisel RD, Li RK. Age-related defects in autophagy alter the secretion of paracrine factors from bone marrow mononuclear cells. Aging (Albany NY) 2021; 13:14687-14708. [PMID: 34088884 PMCID: PMC8221303 DOI: 10.18632/aging.203127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023]
Abstract
Bone marrow mononuclear cell therapy improves cardiac repair after myocardial infarction (MI), in-part through signaling to resident cardiac cells, such as fibroblasts, which regulate scar formation. The efficacy of cell therapy declines with age, as aging of both donor and recipient cells decreases repair responses. Autophagy regulates the microenvironment by both extracellular vesicle (EV)-dependent and independent secretion pathways. We hypothesized that age-related autophagy changes in bone marrow cells (BMCs) alter paracrine signaling, contributing to lower cell therapy efficacy. Here, we demonstrate that young Sca-1+ BMCs exhibited a higher LC3II/LC3I ratio compared to old Sca-1+ BMCs, which was accentuated when BMCs were cultured under hypoxia. To examine the effect on paracrine signaling, old cardiac fibroblasts were cultured with conditioned medium (CM) from young and old Sca-1+ BMCs. Young, but not old CM, enhanced fibroblast proliferation, migration, and differentiation, plus reduced senescence. These beneficial effects were lost when autophagy or EV secretion in BMCs was blocked pharmacologically, or by siRNA knockdown of Atg7. Therefore, both EV-dependent and -independent paracrine signaling from young BMCs is responsible for paracrine stimulation of old cardiac fibroblasts. In vivo, bone marrow chimerism of old mice with young BMCs increased the number of LC3b+ cells in the heart compared to old mice reconstituted with old BMCs. These data suggest that the deterioration of autophagy with aging negatively impacts the paracrine effects of BMCs, and provide mechanistic insight into the age-related decline in cell therapy efficacy that could be targeted to improve the function of old donor cells.
Collapse
Affiliation(s)
- Azadeh Yeganeh
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Faisal J. Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Stephanie W. Tobin
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Fievel Lim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Shuhong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Richard D. Weisel
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Iske J, Matsunaga T, Zhou H, Tullius SG. Donor and Recipient Age-Mismatches: The Potential of Transferring Senescence. Front Immunol 2021; 12:671479. [PMID: 33995411 PMCID: PMC8113632 DOI: 10.3389/fimmu.2021.671479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
In transplantation, donor and recipients frequently differ in age. Senescent cells accumulate in donor organs with aging and have the potential to promote senescence in adjacent cells when transferred into recipient animals. Characteristically, senescent cells secrete a myriad of pro-inflammatory, soluble molecules as part of their distinct secretory phenotype that have been shown to drive senescence and age-related co-morbidities. Preliminary own data show that the transplantation of old organs limits the physical reserve of recipient animals. Here, we review how organ age may affect transplant recipients and discuss the potential of accelerated aging.
Collapse
Affiliation(s)
- Jasper Iske
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States
| | - Tomohisa Matsunaga
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States.,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Hao Zhou
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Povsic TJ, Gersh BJ. Stem Cells in Cardiovascular Diseases: 30,000-Foot View. Cells 2021; 10:cells10030600. [PMID: 33803227 PMCID: PMC8001267 DOI: 10.3390/cells10030600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Stem cell and regenerative approaches that might rejuvenate the heart have immense intuitive appeal for the public and scientific communities. Hopes were fueled by initial findings from preclinical models that suggested that easily obtained bone marrow cells might have significant reparative capabilities; however, after initial encouraging pre-clinical and early clinical findings, the realities of clinical development have placed a damper on the field. Clinical trials were often designed to detect exceptionally large treatment effects with modest patient numbers with subsequent disappointing results. First generation approaches were likely overly simplistic and relied on a relatively primitive understanding of regenerative mechanisms and capabilities. Nonetheless, the field continues to move forward and novel cell derivatives, platforms, and cell/device combinations, coupled with a better understanding of the mechanisms that lead to regenerative capabilities in more primitive models and modifications in clinical trial design suggest a brighter future.
Collapse
Affiliation(s)
- Thomas J. Povsic
- Department of Medicine, and Duke Clinical Research Institute, Duke University, Durham, NC 27705, USA
- Correspondence:
| | - Bernard J. Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| |
Collapse
|
33
|
Prasad M, Corban MT, Henry TD, Dietz AB, Lerman LO, Lerman A. Promise of autologous CD34+ stem/progenitor cell therapy for treatment of cardiovascular disease. Cardiovasc Res 2021; 116:1424-1433. [PMID: 32022845 DOI: 10.1093/cvr/cvaa027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
CD34+ cells are haematopoietic stem cells used therapeutically in patients undergoing radiation or chemotherapy due to their regenerative potential and ability to restore the haematopoietic system. In animal models, CD34+ cells have been associated with therapeutic angiogenesis in response to ischaemia. Several trials have shown the potential safety and efficacy of CD34+ cell delivery in various cardiovascular diseases. Moreover, Phase III trials have now begun to explore the potential role of CD34+ cells in treatment of both myocardial and peripheral ischaemia. CD34+ cells have been shown to be safe and well-tolerated in the acute myocardial infarction (AMI), heart failure, and angina models. Several studies have suggested potential benefit of CD34+ cell therapy in patients with coronary microvascular disease as well. In this review, we will discuss the therapeutic potential of CD34+ cells, and describe the pertinent trials that have used autologous CD34+ cells in no-options refractory angina, AMI, and heart failure. Lastly, we will review the potential utility of autologous CD34+ cells in coronary endothelial and microvascular dysfunction.
Collapse
Affiliation(s)
- Megha Prasad
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Michel T Corban
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Timothy D Henry
- The Christ Hospital Heart and Vascular Center, The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH 45219, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lilach O Lerman
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA.,Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Hasegawa T, Nakashiro KI, Fukumoto C, Hyodo T, Sawatani Y, Shimura M, Kamimura R, Kuribayashi N, Fujita A, Uchida D, Kawamata H. Oral squamous cell carcinoma may originate from bone marrow-derived stem cells. Oncol Lett 2021; 21:170. [PMID: 33552287 PMCID: PMC7798092 DOI: 10.3892/ol.2021.12431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 01/11/2023] Open
Abstract
Molecules that demonstrate a clear association with the aggressiveness of oral squamous cell carcinoma (OSCC) have not yet been identified. The current study hypothesized that tumor cells in OSCC have three different origins: Epithelial stem cells, oral tissue stem cells from the salivary gland and bone marrow (BM) stem cells. It was also hypothesized that carcinomas derived from less-differentiated stem cells have a greater malignancy. In the present study, sex chromosome analysis by fluorescence in situ hybridization and/or microdissection PCR was performed in patients with OSCC that developed after hematopoietic stem cell transplantation (HSCT) from the opposite sex. OSCC from 3 male patients among the 6 total transplanted patients were considered to originate from donor-derived BM cells. A total of 2/3 patients had distant metastasis, resulting in a poor prognosis. In a female patient with oral potentially malignant disorder who underwent HSCT, there were 10.7% Y-containing cells in epithelial cells, suggesting that some epithelial cells were from the donor. Subsequently, gene expression patterns in patients with possible BM stem cell-derived OSCC were compared with those in patients with normally developed OSCC by microarray analysis. A total of 3 patients with BM stem cell-derived OSCC exhibited a specific pattern of gene expression. Following cluster analysis by the probes identified on BM stem cell-derived OSCC, 2 patients with normally developed OSCC were included in the cluster of BM stem cell-derived OSCC. If the genes that could discriminate the origin of OSCC were identified, OSCCs were classified into the three aforementioned categories. If diagnosis can be performed based on the origin of the cancer cells, a more specific therapeutic strategy may be implemented to improve prognosis. This would be a paradigm shift in diagnostic and therapeutic strategies for OSCC.
Collapse
Affiliation(s)
- Tomonori Hasegawa
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Koh-Ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Chonji Fukumoto
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Toshiki Hyodo
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Yuta Sawatani
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Michiko Shimura
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Ryouta Kamimura
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Nobuyuki Kuribayashi
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Atsushi Fujita
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Daisuke Uchida
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Hitoshi Kawamata
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| |
Collapse
|
35
|
Rahman HS, Tan BL, Othman HH, Chartrand MS, Pathak Y, Mohan S, Abdullah R, Alitheen NB. An Overview of In Vitro, In Vivo, and Computational Techniques for Cancer-Associated Angiogenesis Studies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8857428. [PMID: 33381591 PMCID: PMC7748901 DOI: 10.1155/2020/8857428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Angiogenesis is a crucial area in scientific research because it involves many important physiological and pathological processes. Indeed, angiogenesis is critical for normal physiological processes, including wound healing and embryonic development, as well as being a component of many disorders, such as rheumatoid arthritis, obesity, and diabetic retinopathies. Investigations of angiogenic mechanisms require assays that can activate the critical steps of angiogenesis as well as provide a tool for assessing the efficacy of therapeutic agents. Thus, angiogenesis assays are key tools for studying the mechanisms of angiogenesis and identifying the potential therapeutic strategies to modulate neovascularization. However, the regulation of angiogenesis is highly complex and not fully understood. Difficulties in assessing the regulators of angiogenic response have necessitated the development of an alternative approach. In this paper, we review the standard models for the study of tumor angiogenesis on the macroscopic scale that include in vitro, in vivo, and computational models. We also highlight the differences in several modeling approaches and describe key advances in understanding the computational models that contributed to the knowledge base of the field.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, 46001 Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Chaq Chaq Qularaesee, 46001 Sulaymaniyah, Iraq
| | - Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, 46001 Sulaymaniyah, Iraq
| | | | - Yashwant Pathak
- College of Pharmacy, University of South Florida, Tampa, USA and Adjunct Professor at Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Rasedee Abdullah
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bio-Molecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
36
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
37
|
Ahangar P, Mills SJ, Cowin AJ. Mesenchymal Stem Cell Secretome as an Emerging Cell-Free Alternative for Improving Wound Repair. Int J Mol Sci 2020; 21:ijms21197038. [PMID: 32987830 PMCID: PMC7583030 DOI: 10.3390/ijms21197038] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem cells (MSC) for the treatment of cutaneous wounds is currently of enormous interest. However, the broad translation of cell therapies into clinical use is hampered by their efficacy, safety, manufacturing and cost. MSCs release a broad repertoire of trophic factors and immunomodulatory cytokines, referred to as the MSC secretome, that has considerable potential for the treatment of cutaneous wounds as a cell-free therapy. In this review, we outline the current status of MSCs as a treatment for cutaneous wounds and introduce the potential of the MSC secretome as a cell-free alternative for wound repair. We discuss the challenges and provide insights and perspectives for the future development of the MSC secretome as well as identify its potential clinical translation into a therapeutic treatment.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia; (P.A.); (S.J.M.)
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Stuart J. Mills
- Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia; (P.A.); (S.J.M.)
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia; (P.A.); (S.J.M.)
- Correspondence: ; Tel.: +61-8-8302-5018
| |
Collapse
|
38
|
White SJ, Chong JJH. Mesenchymal Stem Cells in Cardiac Repair: Effects on Myocytes, Vasculature, and Fibroblasts. Clin Ther 2020; 42:1880-1891. [PMID: 32938532 DOI: 10.1016/j.clinthera.2020.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Cardiac pathologies remain a dominant cause of morbidity and mortality within the community. The drive to develop therapies capable of repairing damaged heart tissue to achieve clinically significant restoration of function has motivated the pursuit of novel approaches such as cell therapy. To this end, evidence of therapeutic benefits achieved by using mesenchymal stem cells (MSCs) has captured considerable interest despite a relative lack of information regarding the mechanisms involved. This narrative review synthesizes and interprets the current literature describing mechanisms by which MSCs can elicit cardiac repair, thereby directing attention to avenues of further inquiry. METHODS OVID versions of MEDLINE and EMBASE were searched for studies describing the role of MSCs in mammalian cardiac repair. Additional studies were sourced from the reference lists of relevant articles and other personal files. FINDINGS MSCs elicit cardiac repair in a range of in vitro systems and animal models of diseases such as myocardial infarction and heart failure. Important mechanisms include the preservation of myocardial contractility, the promotion of angiogenesis, and the modulation of fibrosis. Exposing in vitro MSCs to a microenvironment reflective of that encountered in the injured heart seems to potentiate these therapeutic mechanisms. IMPLICATIONS Promising results in animal studies warrant continuation of clinical MSC cardiac therapy studies. Paracrine functions of MSCs seem to be the dominant mechanism of cardiac repair over direct cellular effects. Although integral, the MSC secretome remains poorly defined. In addition, most of the mechanistic data within the literature have been derived from animal MSC research, necessitating more human MSC-based work.
Collapse
Affiliation(s)
- Samuel J White
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
39
|
Sampaio-Pinto V, Ruiz-Villalba A, Nascimento DS, Pérez-Pomares JM. Bone marrow contribution to the heart from development to adulthood. Semin Cell Dev Biol 2020; 112:16-26. [PMID: 32591270 DOI: 10.1016/j.semcdb.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Cardiac chamber walls contain large numbers of non-contractile interstitial cells, including fibroblasts, endothelial cells, pericytes and significant populations of blood lineage-derived cells. Blood cells first colonize heart tissues a few days before birth, although their recruitment from the bloodstream to the cardiac interstitium is continuous and extends throughout adult life. The bone marrow, as the major hematopoietic site of adult individuals, is in charge of renewing all circulating cell types, and it therefore plays a pivotal role in the incorporation of blood cells to the heart. Bone marrow-derived cells are instrumental to tissue homeostasis in the steady-state heart, and are major effectors in cardiac disease progression. This review will provide a comprehensive approach to bone marrow-derived blood cell functions in the heart, and discuss aspects related to hot topics in the cardiovascular field like cell-based heart regeneration strategies.
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - José M Pérez-Pomares
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain.
| |
Collapse
|
40
|
Dong W, Li R, Yang H, Lu Y, Zhou L, Sun L, Wang D, Duan J. Mesenchymal-endothelial transition-derived cells as a potential new regulatory target for cardiac hypertrophy. Sci Rep 2020; 10:6652. [PMID: 32313043 PMCID: PMC7170918 DOI: 10.1038/s41598-020-63671-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/03/2020] [Indexed: 01/27/2023] Open
Abstract
The role of Mesenchymal-endothelial transition (MEndoT) in cardiac hypertrophy is unclear. To determine the difference between MEndoT-derived and coronary endothelial cells is essential for understanding the revascularizing strategy in cardiac repair. Using lineage tracing we demonstrated that MEndoT-derived cells exhibit highly heterogeneous which were characterized with highly expression of endothelial markers such as vascular endothelial cadherin(VECAD) and occludin but low expression of Tek receptor tyrosine kinase(Tek), isolectin B4, endothelial nitric oxide synthase(eNOS), von Willebrand factor(vWF), and CD31 after cardiac hypertrophy. RNA-sequencing showed altered expression of fibroblast lineage commitment genes in fibroblasts undergoing MEndoT. Compared with fibroblasts, the expression of p53 and most endothelial lineage commitment genes were upregulated in MEndoT-derived cells; however, the further analysis indicated that MEndoT-derived cells may represent an endothelial-like cell sub-population. Loss and gain function study demonstrated that MEndoT-derived cells are substantial sources of neovascularization, which can be manipulated to attenuate cardiac hypertrophy and preserve cardiac function by improving the expression of endothelial markers in MEndoT-derived cells. Moreover, fibroblasts undergoing MEndoT showed significantly upregulated anti-hypertrophic factors and downregulated pro-hypertrophic factors. Therefore MEndoT-derived cells are an endothelial-like cell population that can be regulated to treat cardiac hypertrophy by improving neovascularization and altering the paracrine effect of fibroblasts.
Collapse
Affiliation(s)
- Wenyan Dong
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Ruiqi Li
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Haili Yang
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yan Lu
- Department of Pathology, University of Washington, Seattle, 98109, WA, USA
| | - Longhai Zhou
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Sun
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Dianliang Wang
- Stem Cell and Tissue Engineering Research Laboratory, Department of Pharmacy, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China.
| | - Jinzhu Duan
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
41
|
Wing TT, Erikson DW, Burghardt RC, Bazer FW, Bayless KJ, Johnson GA. OPN binds alpha V integrin to promote endothelial progenitor cell incorporation into vasculature. Reproduction 2020; 159:465-478. [PMID: 31990676 PMCID: PMC10792589 DOI: 10.1530/rep-19-0358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022]
Abstract
Angiogenesis is fundamental to the expansion of the placental vasculature during pregnancy. Integrins are associated with vascular formation; and osteopontin is a candidate ligand for integrins to promote angiogenesis. Endothelial progenitor cells (EPCs) are released from bone marrow into the blood and incorporate into newly vascularized tissue where they differentiate into mature endothelium. Results of studies in women suggest that EPCs may play an important role in maintaining placental vascular integrity during pregnancy, although little is known about how EPCs are recruited to these tissues. Our goal was to determine the αv integrin mediated effects of osteopontin on EPC adhesion and incorporation into angiogenic vascular networks. EPCs were isolated from 6 h old piglets. RT-PCR revealed that EPCs initially had a monocyte-like phenotype in culture that became more endothelial-like with cell passage. Immunofluorescence microscopy confirmed that the EPCs express platelet endothelial cell adhesion molecule, vascular endothelial cadherin, and von Willebrand factor. When EPCs were cultured on OPN-coated slides, the αv integrin subunit was observed in focal adhesions at the basal surface of EPCs. Silencing of αv integrin reduced EPC binding to OPN and focal adhesion assembly. In vitro siRNA knockdown in EPCs,demonstrated that OPN stimulates EPC incorporation into human umbilical vein endothelial cell (HUVEC) networks via αv-containing integrins. Finally, in situ hybridization and immunohistochemistry localized osteopontin near placental blood vessels. In summary, OPN binds the αv integrin subunit on EPCs to support EPC adhesion and increase EPC incorporation into angiogenic vascular networks.
Collapse
Affiliation(s)
- Theodore T. Wing
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - David W. Erikson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Robert C. Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843
| | - Greg A. Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| |
Collapse
|
42
|
Lee JY, Hong SH. Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. Int J Stem Cells 2020; 13:1-12. [PMID: 31887851 PMCID: PMC7119209 DOI: 10.15283/ijsc19127] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are regarded as one of essential cell sources for treating regenerative diseases. Among many stem cells, the feasibility of using adult-derived hematopoietic stem cells in therapeutic approaches is very diverse, and is unarguably regarded as an important cell source in stem cell biology. So far, many investigators are exploring HSCs and modified HSCs for use in clinical and basic science. In the present review, we briefly summarized HSCs and their application in pathophysiologic conditions, including non-hematopoietic tissue regeneration as well as blood disorders. HSCs and HSCs-derived progenitors are promising cell sources in regenerative medicine and their contributions can be properly applied to treat pathophysiologic conditions. Among many adult stem cells, HSCs are a powerful tool to treat patients with diseases such as hematologic malignancies and liver disease. Since HSCs can be differentiated into diverse progenitors including endothelial progenitors, they may be useful for constructing strategies for effective therapy.
Collapse
Affiliation(s)
- Ji Yoon Lee
- CHA Advanced Research Institute, CHA University, Seongnam, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
43
|
Nakao S, Tsukamoto T, Ueyama T, Kawamura T. STAT3 for Cardiac Regenerative Medicine: Involvement in Stem Cell Biology, Pathophysiology, and Bioengineering. Int J Mol Sci 2020; 21:ijms21061937. [PMID: 32178385 PMCID: PMC7139789 DOI: 10.3390/ijms21061937] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
Heart disease is the most common cause of death in developed countries, but the medical treatments for heart failure remain limited. In this context, the development of cardiac regeneration therapy for severe heart failure is important. Owing to their unique characteristics, including multiple differentiation and infinitive self-renewal, pluripotent stem cells can be considered as a novel source for regenerative medicine. Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling plays critical roles in the induction, maintenance, and differentiation of pluripotent stem cells. In the heart, JAK/STAT3 signaling has diverse cellular functions, including myocardial differentiation, cell cycle re-entry of matured myocyte after injury, and anti-apoptosis in pathological conditions. Therefore, regulating STAT3 activity has great potential as a strategy of cardiac regeneration therapy. In this review, we summarize the current understanding of STAT3, focusing on stem cell biology and pathophysiology, as they contribute to cardiac regeneration therapy. We also introduce a recently reported therapeutic strategy for myocardial regeneration that uses engineered artificial receptors that trigger endogenous STAT3 signal activation.
Collapse
Affiliation(s)
- Shu Nakao
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tasuku Tsukamoto
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tomoe Ueyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Teruhisa Kawamura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
- Correspondence: ; Tel.: +81-75-599-4327
| |
Collapse
|
44
|
Wu WQ, Peng S, Song ZY, Lin S. Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration. Drug Deliv Transl Res 2020; 9:920-934. [PMID: 30877625 DOI: 10.1007/s13346-019-00627-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myocardial infarction (MI) remains one of the leading cause of mortality over the world. However, current treatments are more palliative than curative, which only stall the progression of the disease, but not reverse the disease. While stem cells or bioactive molecules therapy is promising, the limited survival and engraftment of bioactive agent due to a hostile environment is a bottleneck for MI treatment. In order to maximize the utility of stem cells and bioactive molecules for myocardial repair and regeneration, various types of biomaterials have been developed. Among them, collagen-based biomaterial is widely utilized for cardiac tissue engineering and regeneration due to its optimal physical and chemical properties. In this review, we summarize the properties of collagen-based biomaterial. Then, we discuss collagen-based biomaterial currently being applied to treat MI alone, or together with stem cells and/or bioactive molecules. Finally, the delivery system of collagen-based biomaterial will also be discussed.
Collapse
Affiliation(s)
- Wei-Qiang Wu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Song Peng
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China.
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China. .,School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Keiraville, NSW, 2522, Australia.
| |
Collapse
|
45
|
Lou X, Zhao M, Fan C, Fast VG, Valarmathi MT, Zhu W, Zhang J. N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts. Cardiovasc Res 2020; 116:671-685. [PMID: 31350544 PMCID: PMC8204485 DOI: 10.1093/cvr/cvz179] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/29/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022] Open
Abstract
AIMS In regenerative medicine, cellular cardiomyoplasty is one of the promising options for treating myocardial infarction (MI); however, the efficacy of such treatment has shown to be limited due to poor survival and/or functional integration of implanted cells. Within the heart, the adhesion between cardiac myocytes (CMs) is mediated by N-cadherin (CDH2) and is critical for the heart to function as an electromechanical syncytium. In this study, we have investigated whether the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) can be enhanced through CDH2 overexpression. METHODS AND RESULTS CDH2-hiPSC-CMs and control wild-type (WT)-hiPSC-CMs were cultured in myogenic differentiation medium for 28 days. Using a mouse MI model, the cell survival/engraftment rate, infarct size, and cardiac functions were evaluated post-MI, at Day 7 or Day 28. In vitro, conduction velocities were significantly greater in CDH2-hiPSC-CMs than in WT-hiPSC-CMs. While, in vivo, measurements of cardiac functions: left ventricular (LV) ejection fraction, reduction in infarct size, and the cell engraftment rate were significantly higher in CDH2-hiPSC-CMs treated MI group than in WT-hiPSC-CMs treated MI group. Mechanistically, paracrine activation of ERK signal transduction pathway by CDH2-hiPSC-CMs, significantly induced neo-vasculogenesis, resulting in a higher survival of implanted cells. CONCLUSION Collectively, these data suggest that CDH2 overexpression enhances not only the survival/engraftment of cultured CDH2-hiPSC-CMs, but also the functional integration of these cells, consequently, the augmentation of the reparative properties of implanted CDH2-hiPSC-CMs in the failing hearts.
Collapse
MESH Headings
- Action Potentials
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Cadherins/genetics
- Cadherins/metabolism
- Cell Differentiation
- Cell Line
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/transplantation
- Mice, Inbred NOD
- Mice, SCID
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/surgery
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/transplantation
- Neovascularization, Physiologic
- Paracrine Communication
- Proto-Oncogene Proteins c-akt/metabolism
- Recovery of Function
- Regeneration
- Signal Transduction
- Stroke Volume
- Up-Regulation
- Ventricular Function, Left
Collapse
Affiliation(s)
- Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Meng Zhao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Chengming Fan
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Vladimir G Fast
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Mani T Valarmathi
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Wuqiang Zhu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| |
Collapse
|
46
|
Yellamilli A, Ren Y, McElmurry RT, Lambert JP, Gross P, Mohsin S, Houser SR, Elrod JW, Tolar J, Garry DJ, van Berlo JH. Abcg2-expressing side population cells contribute to cardiomyocyte renewal through fusion. FASEB J 2020; 34:5642-5657. [PMID: 32100368 DOI: 10.1096/fj.201902105r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
The adult mammalian heart has a limited regenerative capacity. Therefore, identification of endogenous cells and mechanisms that contribute to cardiac regeneration is essential for the development of targeted therapies. The side population (SP) phenotype has been used to enrich for stem cells throughout the body; however, SP cells isolated from the heart have been studied exclusively in cell culture or after transplantation, limiting our understanding of their function in vivo. We generated a new Abcg2-driven lineage-tracing mouse model with efficient labeling of SP cells. Labeled SP cells give rise to terminally differentiated cells in bone marrow and intestines. In the heart, labeled SP cells give rise to lineage-traced cardiomyocytes under homeostatic conditions with an increase in this contribution following cardiac injury. Instead of differentiating into cardiomyocytes like proposed cardiac progenitor cells, cardiac SP cells fuse with preexisting cardiomyocytes to stimulate cardiomyocyte cell cycle reentry. Our study is the first to show that fusion between cardiomyocytes and non-cardiomyocytes, identified by the SP phenotype, contribute to endogenous cardiac regeneration by triggering cardiomyocyte cell cycle reentry in the adult mammalian heart.
Collapse
Affiliation(s)
- Amritha Yellamilli
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yi Ren
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ron T McElmurry
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jonathan P Lambert
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Polina Gross
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jop H van Berlo
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, USA.,Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
47
|
Alessio N, Brigida AL, Peluso G, Antonucci N, Galderisi U, Siniscalco D. Stem Cell-Derived Exosomes in Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:944. [PMID: 32033002 PMCID: PMC7037429 DOI: 10.3390/ijerph17030944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023]
Abstract
Neurodevelopmental lifelong pathologies defined by problems with social interaction, communication capacity and presence of repetitive/stereotyped clusters of behavior and interests are grouped under the definition of autism spectrum disorder (ASD). ASD prevalence is still increasing, indicating the need to identify specific biomarkers and novel pharmacotherapies. Neuroinflammation and neuro-immune cross-talk dysregulation are specific hallmarks of ASD, offering the possibility of treating these disorders by stem cell therapy. Indeed, cellular strategies have been postulated, proposed and applied to ASD. However, less is known about the molecular action mechanisms of stem cells. As a possibility, the positive and restorative effects mediated by stem cells could be due to their paracrine activity, by which stem cells produce and release several ameliorative and anti-inflammatory molecules. Among the secreted complex tools, exosomes are sub-organelles, enriched by RNA and proteins, that provide cell-to-cell communication. Exosomes could be the mediators of many stem cell-associated therapeutic activities. This review article describes the potential role of exosomes in alleviating ASD symptoms.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
| | | | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), via P. Castellino 111, 80131 Naples, Italy;
| | - Nicola Antonucci
- Biomedical Centre for Autism Research and Therapy, 70126 Bari, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
| | - Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
- Centre for Autism—La Forza del Silenzio, 81036 Caserta, Italy
| |
Collapse
|
48
|
Liu T, Wang Q, Yao K. Huoxue Wentong Formula ameliorates myocardial infarction in rats through inhibiting CaMKII oxidation and phosphorylation. Chin Med 2020; 15:3. [PMID: 31938036 PMCID: PMC6954496 DOI: 10.1186/s13020-020-0285-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background The Chinese medicine Huoxue Wentong Formula (HXWTF) was used to treat thoracic obstruction and angina pectoris in clinic, which has not been investigated in myocardial ischemia-induced apoptosis and angiogenic function. Here we aimed to investigate the roles of HXWTF in rats with myocardial ischemia-induced apoptosis and angiogenesis disorders, as well as to reveal the potential mechanisms. Methods Male SD rats were subjected to coronary artery ligation followed by HXWTF (420, 840 and 1680 mg/kg/day, p.o.) or isosorbide mononitrate (6.3 mg/kg/day, p.o.) treatment for 4 weeks. Electrocardiogram (ECG) and Echocardiography (ECHO) were used to measure cardiac function. Hematoxylin and eosin (H&E) staining and CD34/α-SMA immunohistochemical staining were performed to observe the ischemic heart sections pathological changes and angiogenesis. Then, the effects on cardiomyocyte apoptosis of H9c2 and tube formation of HCMECs were observed, as well as the changes in the levels of total calmodulin dependent protein kinase II (t-CaMKII), phosphorylated CaMKII (p-CaMKII), oxidized CaMKII (ox-CaMKII), CD34, and Bcl-2/Bax ratio were detected. Results Rats with coronary artery ligation exhibited abnormal cardiac function, enlarged myocardial space, disorderly arranged myocardial fibers, inflammatory cells infiltrated, and aggravated myocardial cell apoptosis, along with angiogenesis dysfunction. The expressions of CD34, p-CaMKII, and ox-CaMKII were elevated and Bcl-2/Bax ratio was diminished in ischemic hearts and H/SD-treated H9c2 or HCMECs, while HXWTF treatment completely rescued angiogenic dysfunction, inhibited cardiomyocyte apoptosis, and down-regulated cardiac CaMKII oxidation and phosphorylation activities. Conclusion Our study demonstrates that HXWTF improves myocardial infarction possibly through inhibiting CaMKII oxidation and phosphorylation levels, facilitating angiogenic function and alleviating cardiomyocyte apoptosis. Thus, therapeutics targeting CaMKII activities may be a promising strategy for rescuing ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian'ge, District of Xi Cheng, Beijing, 100053 China
| | - Qingqing Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian'ge, District of Xi Cheng, Beijing, 100053 China
| | - Kuiwu Yao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian'ge, District of Xi Cheng, Beijing, 100053 China
| |
Collapse
|
49
|
Stem cell-derived cell sheet transplantation for heart tissue repair in myocardial infarction. Stem Cell Res Ther 2020; 11:19. [PMID: 31915074 PMCID: PMC6950817 DOI: 10.1186/s13287-019-1536-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Stem cell-derived sheet engineering has been developed as the next-generation treatment for myocardial infarction (MI) and offers attractive advantages in comparison with direct stem cell transplantation and scaffold tissue engineering. Furthermore, induced pluripotent stem cell-derived cell sheets have been indicated to possess higher potential for MI therapy than other stem cell-derived sheets because of their capacity to form vascularized networks for fabricating thickened human cardiac tissue and their long-term therapeutic effects after transplantation in MI. To date, stem cell sheet transplantation has exhibited a dramatic role in attenuating cardiac dysfunction and improving clinical manifestations of heart failure in MI. In this review, we retrospectively summarized the current applications and strategy of stem cell-derived cell sheet technology for heart tissue repair in MI.
Collapse
|
50
|
Gorabi AM, Bianconi V, Pirro M, Banach M, Sahebkar A. Regulation of cardiac stem cells by microRNAs: State-of-the-art. Biomed Pharmacother 2019; 120:109447. [PMID: 31580971 DOI: 10.1016/j.biopha.2019.109447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
Stem cells have a therapeutic potential in various medical conditions. In cases without sufficient response to conventional drug treatments, stem cells represent a next generation therapeutic strategy in cardiovascular diseases. Cardiac stem cells (CSCs), among a wide variety of stem cell sources, have been identified as a valid option for stem cell-based therapy in cardiovascular diseases. CSCs mainly act as a cell source to supply the physiological need for cardiovascular cells. However, they have been demonstrated to reproduce the myocardial cells under pathological settings. Despite their roles and functions have somewhat been clarified, molecular pathways underlying the regulatory mechanisms of CSCs are still not fully elucidated. Several studies have recently shown that different microRNAs (miRNAs) play a substantial role in regulating and controlling both the physiological and pathological proliferation and differentiation of stem cells. MiRNAs are small non-coding RNA molecules that regulate gene expression and may undergo aberrant expression levels during pathological conditions. Understanding the way through which miRNAs regulate CSC behavior may open up new horizons in modulating these cells in vitro to devise sophisticated approaches for treating patients with cardiovascular diseases. In this review article, we tried to discuss available evidence about the role of miRNAs in regulating CSCs.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|