1
|
Shu Y, Wu X, Zhang D, Jiang S, Ma W. Exploring the Mechanisms of Iron Overload-Induced Liver Injury in Rats Based on Transcriptomics and Proteomics. BIOLOGY 2025; 14:81. [PMID: 39857310 PMCID: PMC11761193 DOI: 10.3390/biology14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Iron is a trace element that is indispensable for the growth and development of animals. Excessive iron supplementation may lead to iron overload and elevated reactive oxygen species (ROS) production in animals, causing cellular damage. Nevertheless, the precise mechanism by which iron overload causes cell injury remains to be fully elucidated. In this study, 16 male SD rats aged 6 to 7 weeks were randomly assigned to either a control group (CON) or an iron overload group (IO). Rats in the iron overload group received 150 mg/kg iron dextran injections every three days for a duration of four weeks. The results indicated that iron treatment with iron dextran significantly increased the scores of steatosis (p < 0.05) and inflammation (p < 0.05) in the NAS score. The integrated transcriptomic and proteomic analysis suggests that HO-1 and Lnc286.2 are potentially significant in iron overload-induced liver injury in rats. In vitro experiments utilizing ferric ammonium citrate (FAC) were conducted to establish an iron overload model in rat liver-derived BRL-3A cells. The result found that FAC treatment can significantly increase the BRL-3A cell's Fe2+ content (p < 0.05), ROS (p < 0.01), lipid ROS (p < 0.01) levels, and the expression of the HO-1 gene and protein (p < 0.01), aligning with proteomic and transcriptomic findings. HO-1 inhibition can significantly decrease BRL-3A cell vitality (p < 0.01) and promote ROS (p < 0.05) and lipid ROS (p < 0.01), thus aggravating FAC-induced BRL-3A cell iron overload damage. Using the agonist of HO-1 agonist cobalt protoporphyrin (CoPP) to induce HO-1 overexpression can significantly alleviate the decrease in FAC-induced BRL-3A cell viability (p < 0.01), ROS (p < 0.01), and lipid ROS (p < 0.01). In addition, siLnc286.2 treatment can increase HO-1 expression, alleviate the decline of FAC-induced BRL-3A cell activity, and increase lipid ROS (p < 0.05) content. In conclusion, the findings of this study suggest that by suppressing the expression of Lnc286.2, we can enhance the expression of HO-1, which in turn alleviates lipid peroxidation in cells and increases their antioxidant capacity, thereby exerting a protective effect against liver cell injury induced by iron overload.
Collapse
Affiliation(s)
- Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Ghosh S, Chigicherla KV, Dasgupta S, Goto Y, Mukherjee B. Oxidative stress-driven enhanced iron production and scavenging through Ferroportin reorientation worsens anemia in antimony-resistant Leishmania donovani infection. PLoS Pathog 2025; 21:e1012858. [PMID: 39888953 PMCID: PMC11785346 DOI: 10.1371/journal.ppat.1012858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025] Open
Abstract
Despite the withdrawal of pentavalent-antimonials in treating Visceral leishmaniasis from India, recent clinical isolates of Leishmania donovani (LD) exhibit unresponsiveness towards pentavalent-antimony (LD-R). This antimony-unresponsiveness points towards a genetic adaptation that underpins LD-R's evolutionary persistence and dominance over sensitive counterparts (LD-S). This study highlights how LD evolutionarily tackled antimony exposure and gained increased potential of scavenging host-iron within its parasitophorous vacuoles (PV) to support its aggressive proliferation. Even though anti-leishmanial activity of pentavalent antimonials relies on triggering oxidative outburst, LD-R exhibits a surprising strategy of promoting reactive oxygen species (ROS) generation in infected macrophages. An inherent metabolic shift from glycolysis to Pentose Phosphate shunt allows LD-R to withstand elevated ROS by sustaining heightened levels of NADPH. Elevated ROS levels on the other hand trigger excess iron production, and LD-R capitalizes on this surplus iron by selectively reshuffling macrophage-surface iron exporter, Ferroportin, around its PV thereby gaining a survival edge as a heme-auxotroph. Higher iron utilization by LD-R leads to subsequent iron insufficiency, compensated by increased erythrophagocytosis through the breakdown of SIRPα-CD47 surveillance, orchestrated by a complex interplay of two proteases, Furin and ADAM10. Understanding these mechanisms is crucial for managing LD-R-infections and their associated complications like severe anemia, and may also provide valuable mechanistic insights into understanding drug unresponsiveness developed in other intracellular pathogens that rely on host iron.
Collapse
Affiliation(s)
- Souradeepa Ghosh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | | - Shirin Dasgupta
- Dr B C Roy Multispeciality Medical Research Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
3
|
Rubio-Hernández M, Alcolea V, Barbosa da Silva E, Giardini MA, M Fernandes TH, Martínez-Sáez N, O'Donoghue AJ, Siqueira-Neto JL, Pérez-Silanes S. Synthesis and Biological Evaluation of New Chalcogen Semicarbazone ( S, Se) and Their Azole Derivatives against Chagas Disease. J Med Chem 2024; 67:19038-19056. [PMID: 39485736 DOI: 10.1021/acs.jmedchem.4c01535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Chagas disease is caused by the eukaryote parasite Trypanosoma cruzi. Current treatment exhibits limited efficacy and selenium-based compounds emerged as promising candidates for new therapies which is surpassing its bioisoster, sulfur. We designed new thiosemicarbazones, thiazoles, selenosemicarbazones and selenazoles, using isosteric substitution. We synthesized 57 new chalcogen compounds which were evaluated against T. cruzi, C2C12 cells and cruzain, the main target of this parasite. Additionally, human cathepsin L, was tested for selectivity. Three compounds were selected, based on their activity against the intracellular amastigotes (EC50 < 1 μM, SI > 10) and cruzain (IC50 < 100 nM, SI > 5.55) which compared favorably with the approved drug, Benznidazole, and the well-established cruzain inhibitor K777. Seleno-compounds demonstrated enhanced activity and selenazoles showed a decrease in selenium-associated toxicity. Compound 4-methyl-2-(2-(1-(3-nitrophenyl)ethylidene)hydrazineyl)-1,3-selenazole (Se2h) emerged as a promising candidate, and its binding to cruzain was investigated. Pharmacokinetic assessment was conducted, showing a favorable profile for subsequent in vivo assays.
Collapse
Affiliation(s)
- Mercedes Rubio-Hernández
- ISTUN Institute of Tropical Health, Department of Pharmaceutical Sciences, Universidad de Navarra, 31008 Pamplona, Spain
| | - Verónica Alcolea
- ISTUN Institute of Tropical Health, Department of Pharmaceutical Sciences, Universidad de Navarra, 31008 Pamplona, Spain
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Miriam A Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Thaís H M Fernandes
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Nuria Martínez-Sáez
- Department of Pharmaceutical Sciences, Universidad de Navarra, 31008 Pamplona, Spain
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Silvia Pérez-Silanes
- ISTUN Institute of Tropical Health, Department of Pharmaceutical Sciences, Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
4
|
Mata-Santos HA, Sousa Oliveira CV, Feijo DF, Vanzan DF, Vilar-Pereira G, Ramos IP, Carneiro VC, Moreno-Loaiza O, Silverio JC, Lannes-Vieira J, Medei E, Bozza MT, Paiva CN. Heart function enhancement by an Nrf2-activating antioxidant in acute Y-strain Chagas disease, but not in chronic Colombian or Y-strain. PLoS Negl Trop Dis 2024; 18:e0012612. [PMID: 39509468 PMCID: PMC11588235 DOI: 10.1371/journal.pntd.0012612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/25/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Oxidative stress promotes T. cruzi growth and development of chronic Chagas heart dysfunction. However, the literature contains gaps that must be fulfilled, largely due to variations in parasite DTU sources, cell types, mouse strains, and tools to manipulate redox status. We assessed the impact of oxidative environment on parasite burden in cardiomyoblasts and the effects of the Nrf2-inducer COPP on heart function in BALB/c mice infected with either DTU-II Y or DTU-I Colombian T. cruzi strains. Treatment with antioxidants CoPP, apocynin, resveratrol, and tempol reduced parasite burden in cardiomyoblasts H9C2 for both DTUI- and II-strains, while H2O2 increased it. CoPP treatment improved electrical heart function when administered during acute stage of Y-strain infection, coinciding with an overall trend towards increased survival and reduced heart parasite burden. These beneficial effects surpassed those of trypanocidal benznidazole, implying that CoPP directly affects heart physiology. CoPP treatment had beneficial impact on heart systolic function when performed during acute and evaluated during chronic stage. No impact of CoPP on heart parasite burden, electrical, or mechanical function was observed during the chronic stage of Colombian-strain infection, despite previous demonstrations of improvement with other antioxidants. Treatment with CoPP also did not improve heart function of mice chronically infected with Y-strain. Our findings indicate that amastigote growth is responsive to changes in oxidative environment within heart cells regardless of the DTU source, but CoPP influence on heart parasite burden in vivo and heart function is mostly confined to the acute phase. The nature of the antioxidant employed, T. cruzi DTU, and the stage of disease, emerge as crucial factors to consider in heart function studies.
Collapse
Affiliation(s)
| | | | - Daniel F. Feijo
- Instituto de Microbiologia Paulo de Goes, UFRJ, Rio de Janeiro, Brazil
| | | | | | - Isalira P. Ramos
- Centro Nacional de Biologia Estrutural e Bioimagem, UFRJ, Rio de Janeiro, Brazil
| | | | | | | | | | - Emiliano Medei
- Institute of Biophysics Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Instituto de Microbiologia Paulo de Goes, UFRJ, Rio de Janeiro, Brazil
| | - Claudia N. Paiva
- Instituto de Microbiologia Paulo de Goes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Lv W, Hu S, Yang F, Lin D, Zou H, Zhang W, Yang Q, Li L, Chen X, Wu Y. Heme oxygenase-1: potential therapeutic targets for periodontitis. PeerJ 2024; 12:e18237. [PMID: 39430558 PMCID: PMC11488498 DOI: 10.7717/peerj.18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Periodontitis is one of the most prevalent inflammatory disease worldwide, which affects 11% of the global population and is a major cause of tooth loss. Recently, oxidative stress (OS) has been found to be the pivital pathophysiological mechanism of periodontitis, and overactivated OS will lead to inflammation, apoptosis, pyroptosis and alveolar bone resorption. Interestingly, heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme degradation, can exert antioxidant activites through its products-carbon monoxide (CO), Fe2+, biliverdin and bilirubin in the inflammatory microenvironment, thus exhibiting anti-inflammatory, anti-apoptotic, anti-pyroptosis and bone homeostasis-regulating properties. In this review, particular focus is given to the role of HO-1 in periodontitis, including the spatial-temporal expression in periodental tissues and pathophysiological mechanisms of HO-1 in periodontitis, as well as the current therapeutic applications of HO-1 targeted drugs for periodontitis. This review aims to elucidate the potential applications of various HO-1 targeted drug therapy in the management of periodontitis, investigate the influence of diverse functional groups on HO-1 and periodontitis, and pave the way for the development of a new generation of therapeutics that will benefit patients suffering from periodontitis.
Collapse
Affiliation(s)
- Weiwei Lv
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shichen Hu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fei Yang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dong Lin
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Haodong Zou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wanyan Zhang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qin Yang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihua Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaowen Chen
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
6
|
Lucas da Silva HF, Sarto MPM, de Abreu AP, Fernandes NDS, Santos IGMD, de Souza Trovo JV, da Silva AF, Souza-Kaneshima AM, Comar JF, Toledo MJDO. Impact of gastrointestinal inoculation and benznidazole treatment on infection by Trypanosoma cruzi (Y strain, DTU TcII) in Swiss mice. Exp Parasitol 2024; 265:108810. [PMID: 39134115 DOI: 10.1016/j.exppara.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/08/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
In Brazil, where Chagas disease is endemic, the most frequent form of transmission of the parasite is the oral route, associated with greater severity and worse response to benznidazole (BZ), the drug used in its treatment. This study aimed to evaluate the impact of gastrointestinal infection (GI) and BZ treatment on the parasitological and histopathological parameters in mice inoculated with a strain of T. cruzi II. Swiss mice were inoculated by GI and intraperitoneal (IP) routes with 2x106 culture-derived metacyclic trypomastigotes of the Y strain (TcII) of T. cruzi and were treated with BZ in the acute phase of the infection. Fresh blood examination, qPCR, histopathological and biochemical evaluations (enzymatic dosages and oxidative stress-OS) were performed. BZ treatment of uninfected animals caused changes in the liver, increased the activity of aspartate aminotransferase and alanine aminotransferase enzymes and OS, showing that the drug alone affects this organ. Inflammation and necrosis in the cardiac tissue were less intense and deaths occurred later in animals inoculated via the GI route than the animals inoculated via the IP route. BZ reduced the intensity of tissue lesions and avoided lethality in animals inoculated via the GI route, and decreased parasitemia and OS in those inoculated via both routes. Although BZ alone caused liver damage, it was less intense than that caused by both routes of inoculation. Infection with the Y strain of T. cruzi II via the GI route proved to be less virulent and pathogenic and responded better to treatment than the infection acquired via the IP route.
Collapse
Affiliation(s)
| | - Marcella Paula Mansano Sarto
- Postgraduate Program in Health Sciences, Health Sciences Center, State University of Maringá, Maringá, 87.020.900, Brazil.
| | - Ana Paula de Abreu
- Postgraduate Program in Health Sciences, Health Sciences Center, State University of Maringá, Maringá, 87.020.900, Brazil.
| | - Nilma de Souza Fernandes
- Postgraduate Program in Biological Sciences, Biological Sciences Center, State University of Maringá, Maringá, 87.020.900, Brazil.
| | | | - João Vitor de Souza Trovo
- Postgraduate Program in Health Sciences, Health Sciences Center, State University of Maringá, Maringá, 87.020.900, Brazil.
| | - Aline Francieli da Silva
- Postgraduate Program in Biological Sciences, Biological Sciences Center, State University of Maringá, Maringá, 87.020.900, Brazil.
| | - Alice Maria Souza-Kaneshima
- Department of Basic Health Sciences, Health Sciences Center, State University of Maringá, Maringá, 87.020.900, Brazil.
| | - Jurandir Fernando Comar
- Postgraduate Program in Biological Sciences, Biological Sciences Center, State University of Maringá, Maringá, 87.020.900, Brazil.
| | - Max Jean de Ornelas Toledo
- Postgraduate Program in Health Sciences, Health Sciences Center, State University of Maringá, Maringá, 87.020.900, Brazil; Postgraduate Program in Biological Sciences, Biological Sciences Center, State University of Maringá, Maringá, 87.020.900, Brazil; Department of Basic Health Sciences, Health Sciences Center, State University of Maringá, Maringá, 87.020.900, Brazil.
| |
Collapse
|
7
|
Vatankhah M, Panahizadeh R, Safari A, Ziyabakhsh A, Mohammadi-Ghalehbin B, Soozangar N, Jeddi F. The role of Nrf2 signaling in parasitic diseases and its therapeutic potential. Heliyon 2024; 10:e32459. [PMID: 38988513 PMCID: PMC11233909 DOI: 10.1016/j.heliyon.2024.e32459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
In response to invading parasites, one of the principal arms of innate immunity is oxidative stress, caused by reactive oxygen species (ROS). However, oxidative stresses play dual functions in the disease, whereby free radicals promote pathogen removal, but they can also trigger inflammation, resulting in tissue injuries. A growing body of evidence has strongly supported the notion that nuclear factor erythroid 2-related factor 2 (NRF) signaling is one of the main antioxidant pathways to combat this oxidative burst against parasites. Given the important role of NRF2 in oxidative stress, in this review, we investigate the activation mechanism of the NRF2 antioxidant pathway in different parasitic diseases, such as malaria, leishmaniasis, trypanosomiasis, toxoplasmosis, schistosomiasis, entamoebiasis, and trichinosis.
Collapse
Affiliation(s)
- Mohammadamin Vatankhah
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Safari
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
8
|
Tian Y, Cheng Z, Ge D, Xu Z, Wang H, Li X, Tian H, Liu F, Luo D, Wang Y. ROS are required for the germinative cell proliferation and metacestode larval growth of Echinococcus multilocularis. Front Microbiol 2024; 15:1410504. [PMID: 38912347 PMCID: PMC11190091 DOI: 10.3389/fmicb.2024.1410504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
The potentially lethal zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode larval stages of the tapeworm Echinococcus multilocularis. Metacestode growth and proliferation occurs within the inner organs of mammalian hosts, which is associated with complex molecular parasite-host interactions. The host has developed various ways to resist a parasitic infection, and the production of reactive oxygen species (ROS) is one of the most important strategies. Here, we found that scavenging of ROS reduced metacestode larval growth and germinative cell proliferation in in vivo models. Furthermore, using in vitro-cultured metacestode vesicles, we found that increased ROS levels enhanced metacestode growth and germinative cell proliferation, which was achieved by positively activating the ROS-EmERK-EmHIF1α axis. These results indicate that, beside its capacity to damage the parasite, ROS also play critical roles in metacestode growth and germinative cell proliferation. This study suggests that the effects of ROS on parasite may be bidirectional during AE infection, reflecting the parasite's adaptation to the oxidative stress microenvironment.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhe Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Defeng Ge
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhijian Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huijuan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiazhen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huimin Tian
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Fan Liu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Damin Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanhai Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
9
|
Uribe-Querol E, Rosales C. Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba. Microorganisms 2024; 12:827. [PMID: 38674770 PMCID: PMC11051968 DOI: 10.3390/microorganisms12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
10
|
Costa TFR, Catta-Preta CMC, Goundry A, Carvalho DB, Rodrigues NS, Vivarini AC, de Abreu MF, Reis FCG, Lima APCA. The ecotin-like peptidase inhibitor of Trypanosoma cruzi prevents TMPRSS2-PAR2-TLR4 crosstalk downmodulating infection and inflammation. FASEB J 2024; 38:e23566. [PMID: 38526868 DOI: 10.1096/fj.202302091rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.
Collapse
Affiliation(s)
- Tatiana F R Costa
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M C Catta-Preta
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amy Goundry
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle B Carvalho
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia S Rodrigues
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aislan C Vivarini
- Departamento de Biologia Celular e Molecular, Insituto de Biologia, Universidade Federal Fluminense, Niteroi, Brazil
| | - Mayra Fonseca de Abreu
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia C G Reis
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula C A Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Ribeiro LR, Magalhães EP, Barroso Gomes ND, Cavalcante JW, Gomes Maia MM, Marinho MM, Dos Santos HS, Marinho ES, Sampaio TL, Costa Martins AM, Paula Pessoa Bezerra de Menezes RR. Elongation on aliphatic chain improves selectivity of 2-hydroxy-3,4,6-trimethoxyphenyl chalcone on Trypanosoma cruzi. Future Med Chem 2024; 16:11-26. [PMID: 38084595 DOI: 10.4155/fmc-2023-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/09/2023] [Indexed: 01/17/2024] Open
Abstract
Aim: Our objective was to investigate the trypanocidal effect of the chalcone (2E,4E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-5-phenylpenta-2,4-dien-1-one (CPNC). Material & methods: Cytotoxicity toward LLC-MK2 host cells was assessed by MTT assay, and the effect on Trypanosoma cruzi life forms (epimastigotes, trypomastigotes and amastigotes) was evaluated by counting. Flow cytometry analysis was performed to evaluate the possible mechanisms of action. Finally, molecular docking simulations were performed to evaluate interactions between CPNC and T. cruzi enzymes. Results: CPNC showed activity against epimastigote, trypomastigote and amastigote life forms, induced membrane damage, increased cytoplasmic reactive oxygen species and mitochondrial dysfunction on T. cruzi. Regarding molecular docking, CPNC interacted with both trypanothione reductase and TcCr enzymes. Conclusion: CPNC presented a trypanocidal effect, and its effect is related to oxidative stress, mitochondrial impairment and necrosis.
Collapse
Affiliation(s)
- Lyanna Rodrigues Ribeiro
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Emanuel Paula Magalhães
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | - Márcia Machado Marinho
- State University of Vale do Acaraú, Center for Exact Sciences & Technology, Sobral, CE, Brazil
| | - Hélcio Silva Dos Santos
- State University of Vale do Acaraú, Center for Exact Sciences & Technology, Sobral, CE, Brazil
| | - Emmanuel Silva Marinho
- Theoretical & Eletrochemical Chemistry Research Group, State University of Ceará, Fortaleza, CE, Brazil
| | - Tiago Lima Sampaio
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical & Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alice Maria Costa Martins
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical & Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ramon Róseo Paula Pessoa Bezerra de Menezes
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical & Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
12
|
Ferreira AZL, de Araújo CN, Cardoso ICC, de Souza Mangabeira KS, Rocha AP, Charneau S, Santana JM, Motta FN, Bastos IMD. Metacyclogenesis as the Starting Point of Chagas Disease. Int J Mol Sci 2023; 25:117. [PMID: 38203289 PMCID: PMC10778605 DOI: 10.3390/ijms25010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024] Open
Abstract
Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular stages. To ensure its survival in these diverse environments, T. cruzi undergoes extreme morphological and molecular changes. The metacyclic trypomastigote (MT) form, which arises from the metacyclogenesis (MTG) process in the triatomine hindgut, serves as a crucial link between the insect and human hosts and can be considered the starting point of Chagas disease. This review provides an overview of the current knowledge regarding the parasite's life cycle, molecular pathways, and mechanisms involved in metabolic and morphological adaptations during MTG, enabling the MT to evade the immune system and successfully infect human cells.
Collapse
Affiliation(s)
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | - Isabela Cunha Costa Cardoso
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Amanda Pereira Rocha
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Flávia Nader Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
13
|
Goto Y, Ito T, Ghosh S, Mukherjee B. Access and utilization of host-derived iron by Leishmania parasites. J Biochem 2023; 175:17-24. [PMID: 37830941 PMCID: PMC10771036 DOI: 10.1093/jb/mvad082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Iron is involved in many biochemical processes including oxygen transport, ATP production, DNA synthesis and antioxidant defense. The importance of iron also applies to Leishmania parasites, an intracellular protozoan pathogen causing leishmaniasis. Leishmania are heme-auxotrophs, devoid of iron storage proteins and the heme synthesis pathway. Acquisition of iron and heme from the surrounding niche is thus critical for the intracellular survival of Leishmania inside the host macrophages. Moreover, Leishmania parasites are also exposed to oxidative stress within phagolysosomes of macrophages in mammalian hosts, and they need iron superoxide dismutase for overcoming this stress. Therefore, untangling the strategy adopted by these parasites for iron acquisition and utilization can be good targets for the development of antileishmanial drugs. Here, in this review, we will address how Leishmania parasites acquire and utilize iron and heme during infection to macrophages.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsumi Ito
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Souradeepa Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
14
|
Hu Y, He B, Cao Q, Li Y, Tang Y, Cao T, Peng B, Zhou X, Liu S. Crosstalk of ferroptosis and oxidative stress in infectious diseases. Front Mol Biosci 2023; 10:1315935. [PMID: 38131014 PMCID: PMC10733455 DOI: 10.3389/fmolb.2023.1315935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Ferroptosis is a type of programmed cell death that pathogens can leverage to enhance their replication, transmission, and pathogenicity. Hosts typically combat pathogenic infections by utilizing oxidative stress as a defense mechanism. Nonetheless, some pathogens can trigger considerable oxidative stress while infecting, inducing an intense inflammatory response in the host's immune system and activating cell death. The process of ferroptosis is closely linked to oxidative stress, with their interaction exerting a substantial impact on the outcome of infectious diseases. This article presents an overview of the interrelated mechanisms of both Ferroptosis and oxidative stress in infectious diseases, identifying potential targets for treating such diseases in the context of their interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
15
|
Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, Haghdoost S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants (Basel) 2023; 12:1371. [PMID: 37507911 PMCID: PMC10376708 DOI: 10.3390/antiox12071371] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The coordinating role of nuclear factor erythroid-2-related factor 2 (Nrf2) in cellular function is undeniable. Evidence indicates that this transcription factor exerts massive regulatory functions in multiple signaling pathways concerning redox homeostasis and xenobiotics, macromolecules, and iron metabolism. Being the master regulator of antioxidant system, Nrf2 controls cellular fate, influencing cell proliferation, differentiation, apoptosis, resistance to therapy, and senescence processes, as well as infection disease success. Because Nrf2 is the key coordinator of cell defence mechanisms, dysregulation of its signaling has been associated with carcinogenic phenomena and infectious and age-related diseases. Deregulation of this cytoprotective system may also interfere with immune response. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during the initial phagocytosis of pathogens, which could lead to the successful establishment of infection and promote susceptibility to infectious diseases. There is still a knowledge gap to fill regarding the molecular mechanisms by which Nrf2 orchestrates such complex networks involving multiple pathways. This review describes the role of Nrf2 in non-pathogenic and pathogenic cells.
Collapse
Affiliation(s)
- Mira Hammad
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Mohammad Raftari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rute Cesário
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rima Salma
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Paulo Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Natural Resources Institute, University of Greenwich, London ME4 4TB, UK
| | - Siamak Haghdoost
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| |
Collapse
|
16
|
Dick CF, Alcantara CL, Carvalho-Kelly LF, Lacerda-Abreu MA, Cunha-E-Silva NL, Meyer-Fernandes JR, Vieyra A. Iron Uptake Controls Trypanosoma cruzi Metabolic Shift and Cell Proliferation. Antioxidants (Basel) 2023; 12:antiox12050984. [PMID: 37237850 DOI: 10.3390/antiox12050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Ionic transport in Trypanosoma cruzi is the object of intense studies. T. cruzi expresses a Fe-reductase (TcFR) and a Fe transporter (TcIT). We investigated the effect of Fe depletion and Fe supplementation on different structures and functions of T. cruzi epimastigotes in culture. (2) Methods: We investigated growth and metacyclogenesis, variations of intracellular Fe, endocytosis of transferrin, hemoglobin, and albumin by cell cytometry, structural changes of organelles by transmission electron microscopy, O2 consumption by oximetry, mitochondrial membrane potential measuring JC-1 fluorescence at different wavelengths, intracellular ATP by bioluminescence, succinate-cytochrome c oxidoreductase following reduction of ferricytochrome c, production of H2O2 following oxidation of the Amplex® red probe, superoxide dismutase (SOD) activity following the reduction of nitroblue tetrazolium, expression of SOD, elements of the protein kinase A (PKA) signaling, TcFR and TcIT by quantitative PCR, PKA activity by luminescence, glyceraldehyde-3-phosphate dehydrogenase abundance and activity by Western blotting and NAD+ reduction, and glucokinase activity recording NADP+ reduction. (3) Results: Fe depletion increased oxidative stress, inhibited mitochondrial function and ATP formation, increased lipid accumulation in the reservosomes, and inhibited differentiation toward trypomastigotes, with the simultaneous metabolic shift from respiration to glycolysis. (4) Conclusion: The processes modulated for ionic Fe provide energy for the T. cruzi life cycle and the propagation of Chagas disease.
Collapse
Affiliation(s)
- Claudia F Dick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
| | - Carolina L Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luiz F Carvalho-Kelly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marco Antonio Lacerda-Abreu
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
| | - José R Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Adalberto Vieyra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro/CENABIO, Rio de Janeiro 21941-902, RJ, Brazil
- Programa de Pós-Graduação em Biomedicina Translacional /BIOTRANS, Universidade do Grande Rio, Duque de Caxias 25071-202, RJ, Brazil
| |
Collapse
|
17
|
Oliveira AC, Vicentino ARR, Andrade D, Pereira IR, Saboia-Vahia L, Moreira ODC, Carvalho-Pinto CE, Mota JBD, Maciel L, Vilar-Pereira G, Pesquero JB, Lannes-Vieira J, Sirois P, Campos de Carvalho AC, Scharfstein J. Genetic Ablation and Pharmacological Blockade of Bradykinin B1 Receptor Unveiled a Detrimental Role for the Kinin System in Chagas Disease Cardiomyopathy. J Clin Med 2023; 12:jcm12082888. [PMID: 37109224 PMCID: PMC10144326 DOI: 10.3390/jcm12082888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Chagas disease, the parasitic infection caused by Trypanosoma cruzi, afflicts about 6 million people in Latin America. Here, we investigated the hypothesis that T. cruzi may fuel heart parasitism by activating B1R, a G protein-coupled (brady) kinin receptor whose expression is upregulated in inflamed tissues. Studies in WT and B1R-/- mice showed that T. cruzi DNA levels (15 days post infection-dpi) were sharply reduced in the transgenic heart. FACS analysis revealed that frequencies of proinflammatory neutrophils and monocytes were diminished in B1R-/- hearts whereas CK-MB activity (60 dpi) was exclusively detected in B1R+/+ sera. Since chronic myocarditis and heart fibrosis (90 dpi) were markedly attenuated in the transgenic mice, we sought to determine whether a pharmacological blockade of the des-Arg9-bradykinin (DABK)/B1R pathway might alleviate chagasic cardiomyopathy. Using C57BL/6 mice acutely infected by a myotropic T. cruzi strain (Colombian), we found that daily treatment (15-60 dpi) with R-954 (B1R antagonist) reduced heart parasitism and blunted cardiac injury. Extending R-954 treatment to the chronic phase (120-160 dpi), we verified that B1R targeting (i) decreased mortality indexes, (ii) mitigated chronic myocarditis, and (iii) ameliorated heart conduction disturbances. Collectively, our study suggests that a pharmacological blockade of the proinflammatory KKS/DABK/B1R pathway is cardioprotective in acute and chronic Chagas disease.
Collapse
Affiliation(s)
- Ana Carolina Oliveira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Daniele Andrade
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Isabela Resende Pereira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Leonardo Saboia-Vahia
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Otacílio da Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Carla Eponina Carvalho-Pinto
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Julia Barbalho da Mota
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Maciel
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias Campus, Rio de Janeiro 21941-902, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Pierre Sirois
- Department of Microbiology and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Antônio Carlos Campos de Carvalho
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bio-Imagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro 21941-902, Brazil
| | - Julio Scharfstein
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
18
|
Alvim JM, Venturini G, Oliveira TGM, Seidman JG, Seidman CE, Krieger JE, Pereira AC. mTOR signaling inhibition decreases lysosome migration and impairs the success of Trypanosoma cruzi infection and replication in cardiomyocytes. Acta Trop 2023; 240:106845. [PMID: 36709791 DOI: 10.1016/j.actatropica.2023.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi (T. cruzi) and, among all the chronic manifestations of the disease, Chronic Chagas Cardiomyopathy (CCC) is the most severe outcome. Despite high burden and public health importance in Latin America, there is a gap in understanding the molecular mechanisms that results in CCC development. Previous studies showed that T. cruzi uses the host machinery for infection and replication, including the repurposing of the responses to intracellular infection such as mitochondrial activity, vacuolar membrane, and lysosomal activation in benefit of parasite infection and replication. One common signaling upstream to many responses to parasite infection is mTOR pathway, previous associated to several downstream cellular mechanisms including autophagy, mitophagy and lysosomal activation. Here, using human iPSC derived cardiomyocytes (hiPSCCM), we show the mTOR pathway is activated in hiPSCCM after T. cruzi infection, and the inhibition of mTOR with rapamycin reduced number of T. cruzi 48 h post infection (hpi). Rapamycin treatment also reduced lysosome migration from nuclei region to cell periphery resulting in less T. cruzi inside the parasitophorous vacuole (PV) in the first hour of infection. In addition, the number of parasites leaving the PV to the cytoplasm to replicate in later times of infection was also lower after rapamycin treatment. Altogether, our data suggest that host's mTOR activation concomitant with parasite infection modulates lysosome migration and that T. cruzi uses this mechanism to achieve infection and replication. Modulating this mechanism with rapamycin impaired the success of T. cruzi life cycle independent of mitophagy.
Collapse
Affiliation(s)
- Juliana M Alvim
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil
| | - Gabriela Venturini
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Department of Genetics, Harvard Medical School, United States.
| | - Theo G M Oliveira
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Fundação Pró-Sangue Hemocentro de São Paulo, Brazil
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, United States; Brigham and Women's Hospital, Harvard Medical School, United States; Howard Hughes Medical Institute (HHMI), United States
| | - José E Krieger
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil
| | - Alexandre C Pereira
- Heart Institute, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Brazil; Department of Genetics, Harvard Medical School, United States
| |
Collapse
|
19
|
Martinez MZ, Olmo F, Taylor MC, Caudron F, Wilkinson SR. Dissecting the interstrand crosslink DNA repair system of Trypanosoma cruzi. DNA Repair (Amst) 2023; 125:103485. [PMID: 36989950 DOI: 10.1016/j.dnarep.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
DNA interstrand crosslinks (ICLs) are toxic lesions that can block essential biological processes. Here we show Trypanosoma cruzi, the causative agent of Chagas disease, is susceptible to ICL-inducing compounds including mechlorethamine and novel nitroreductase-activated prodrugs that have potential in treating this infection. To resolve such lesions, cells co-opt enzymes from "classical" DNA repair pathways that alongside dedicated factors operate in replication-dependent and -independent mechanisms. To assess ICL repair in T. cruzi, orthologues of SNM1, MRE11 and CSB were identified and their function assessed. The T. cruzi enzymes could complement the mechlorethamine susceptibility phenotype displayed by corresponding yeast and/or T. brucei null confirming their role as ICL repair factors while GFP-tagged TcSNM1, TcMRE11 and TcCSB were shown to localise to the nuclei of insect and/or intracellular form parasites. Gene disruption demonstrated that while each activity was non-essential for T. cruzi viability, nulls displayed a growth defect in at least one life cycle stage with TcMRE11-deficient trypomastigotes also compromised in mammalian cell infectivity. Phenotyping revealed all nulls were more susceptible to mechlorethamine than controls, a trait complemented by re-expression of the deleted gene. To assess interplay, the gene disruption approach was extended to generate T. cruzi deficient in TcSNM1/TcMRE11 or in TcSNM1/TcCSB. Analysis demonstrated these activities functioned across two ICL repair pathways with TcSNM1 and TcMRE11 postulated to operate in a replication-dependent system while TcCSB helps resolve transcription-blocking lesions. By unravelling how T. cruzi repairs ICL damage, specific inhibitors targeting repair components could be developed and used to increase the potency of trypanocidal ICL-inducing compounds.
Collapse
Affiliation(s)
- Monica Zavala Martinez
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Fabrice Caudron
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
20
|
Omar M, Abdelal HO. Nitric oxide in parasitic infections: a friend or foe? J Parasit Dis 2022; 46:1147-1163. [PMID: 36457767 PMCID: PMC9606182 DOI: 10.1007/s12639-022-01518-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
The complex interaction between the host and the parasite remains a puzzling question. Control of parasitic infections requires an efficient immune response that must be balanced against destructive pathological consequences. Nitric oxide is a nitrogenous free radical which has many molecular targets and serves diverse functions. Apart from being a signaling messenger, nitric oxide is critical for controlling numerous infections. There is still controversy surrounding the exact role of nitric oxide in the immune response against different parasitic species. It proved protective against intracellular protozoa, as well as extracellular helminths. At the same time, it plays a pivotal role in stimulating detrimental pathological changes in the infected hosts. Several reports have discussed the anti-parasitic and immunoregulatory functions of nitric oxide, which could directly influence the control of the infection. Nevertheless, there is scarce literature addressing the harmful cytotoxic impacts of this mediator. Thus, this review provides insights into the most updated concepts and controversies regarding the dual nature and opposing sides of nitric oxide during the course of different parasitic infections.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, City of Zagazig, 44511 Sharkia Governorate Egypt
| | - Heba O. Abdelal
- LIS: Cross-National Data Center, Maison des Sciences Humaines - 5e étage, 11- porte des Sciences, L-4366 Esch-Belval, Luxembourg
| |
Collapse
|
21
|
Sousa Oliveira CV, Moreno-Loaiza O, Figueiredo-Vanzan D, Peroba Ramos I, Mata-Santos H, Torres Bozza M, Neto Paiva C, Medei E. IL-1β is not critical to chronic heart dysfunction in mice with Chagas disease. Front Immunol 2022; 13:1010257. [PMID: 36341442 PMCID: PMC9627615 DOI: 10.3389/fimmu.2022.1010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Long after Trypanosoma cruzi infection, 40% of individuals develop a progressive chronic chagasic cardiomyopathy (CCC), with systolic dysfunction and arrhythmias. Since we previously showed IL-1β mediates the development of systolic dysfunction and cardiac arrhythmias in diabetes mellitus and cardiorenal syndrome, and IL-1β remains elevated in Chagas disease patients, here we tested the role of IL-1β in CCC using a mouse model. Mice deficient in IL-1R expression (Il-1r−/−) survived acute T. cruzi infection with greater parasitemia than controls but did not lose weight as wild-type (WT) did. At the chronic stage, WT presented prolonged ventricular repolarization intervals (QJ), while Il-1r−/− presented intervals like noninfected controls. Infected Il-1r−/− and WT did not differ in stroke volume (SV), the incidence of cardiac arrhythmias on electrocardiography (EKG), whole heart action potential duration (APD), or the incidence of triggered activity after S1–S2 protocol, which is a measure of susceptibility to cardiac arrhythmias. We also treated chronically infected WT mice with an IL-1R antagonist, anakinra. Treatment shortened the QJ interval but did not improve the SV or the incidence of cardiac arrhythmias on EKG. Anakinra failed to reduce triggered activity following the electrical extra-stimulation protocol. In conclusion, the absence of functional IL-1β/IL-1R signaling did not prevent or reverse the decrease of SV or the incidence of cardiac arrhythmias induced by chronic T. cruzi infection, implying this is not a critical mechanism in generating or maintaining CCC. Since similar cardiac abnormalities were previously credited to IL-1β signaling, ruling out this mechanism is important to discourage further attempts of IL-1β blockade as a therapeutical measure.
Collapse
Affiliation(s)
- Camila Victória Sousa Oliveira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Oscar Moreno-Loaiza
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Isalira Peroba Ramos
- National Center for Structural Biology and Bioimage (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Hilton Mata-Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo Torres Bozza
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia Neto Paiva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Emiliano Medei, ; Claudia Neto Paiva,
| | - Emiliano Medei
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimage (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- *Correspondence: Emiliano Medei, ; Claudia Neto Paiva,
| |
Collapse
|
22
|
Lobo-Rojas Á, Quintero-Troconis E, Rondón-Mercado R, Pérez-Aguilar. MC, Concepción JL, Cáceres AJ. Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress. Pathogens 2022; 11:1174. [PMID: 36297231 PMCID: PMC9611177 DOI: 10.3390/pathogens11101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we demonstrate that Trypanosoma cruzi epimastigotes previously grown in LIT medium supplemented with 20 mM galactose and exposed to sub-lethal concentrations of hydrogen peroxide (100 μM) showed two-fold and five-fold viability when compared to epimastigotes grown in LIT medium supplemented with two different glucose concentrations (20 mM and 1.5 mM), respectively. Similar results were obtained when exposing epimastigotes from all treatments to methylene blue 30 μM. Additionally, through differential centrifugation and the selective permeabilization of cellular membranes with digitonin, we found that phosphoglucomutase activity (a key enzyme in galactose metabolism) occurs predominantly within the cytosolic compartment. Furthermore, after partially permeabilizing epimastigotes with digitonin (0.025 mg × mg-1 of protein), intact glycosomes treated with 20 mM galactose released a higher hexose phosphate concentration to the cytosol in the form of glucose-1-phosphate, when compared to intact glycosomes treated with 20 mM glucose, which predominantly released glucose-6-phosphate. These results shine a light on T. cruzi's galactose metabolism and its interplay with mechanisms that enable resistance to oxidative stress.
Collapse
Affiliation(s)
- Ángel Lobo-Rojas
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Ender Quintero-Troconis
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | | | | | | |
Collapse
|
23
|
Silva RCMC, Vasconcelos LR, Travassos LH. The different facets of heme-oxygenase 1 in innate and adaptive immunity. Cell Biochem Biophys 2022; 80:609-631. [PMID: 36018440 DOI: 10.1007/s12013-022-01087-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Heme oxygenase (HO) enzymes are responsible for the main oxidative step in heme degradation, generating equimolar amounts of free iron, biliverdin and carbon monoxide. HO-1 is induced as a crucial stress response protein, playing protective roles in physiologic and pathological conditions, due to its antioxidant, anti-apoptotic and anti-inflammatory effects. The mechanisms behind HO-1-mediated protection are being explored by different studies, affecting cell fate through multiple ways, such as reduction in intracellular levels of heme and ROS, transcriptional regulation, and through its byproducts generation. In this review we focus on the interplay between HO-1 and immune-related signaling pathways, which culminate in the activation of transcription factors important in immune responses and inflammation. We also discuss the dual interaction of HO-1 and inflammatory mediators that govern resolution and tissue damage. We highlight the dichotomy of HO-1 in innate and adaptive immune cells development and activation in different disease contexts. Finally, we address different known anti-inflammatory pharmaceuticals that are now being described to modulate HO-1, and the possible contribution of HO-1 in their anti-inflammatory effects.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Ricardo Vasconcelos
- Cellular Signaling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Rodriguez ME, Tekiel V, Campo VA. In vitro evaluation of Resveratrol as a potential pre-exposure prophylactic drug against Trypanosoma cruzi infection. Int J Parasitol Drugs Drug Resist 2022; 20:54-64. [PMID: 36099853 PMCID: PMC9474288 DOI: 10.1016/j.ijpddr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Chagas' disease or American trypanosomiasis, caused by Trypanosoma cruzi infection, is an endemic disease in Latin America, which has spread worldwide in the past years. The drugs presently used for treatment have shown limited efficacy due to the appearance of resistant parasites and severe side effects. Some of the most recent studies on anti-parasitic drugs have been focused on protein acetylation, a reversible reaction modulated by Acetyl Transferases (KATs) and Deacetylases (KDACs). We have previously reported the anti-parasite activity of resveratrol (RSV), an activator of KDACs type III (or sirtuins), and showed that this drug can reduce the growth of T. cruzi epimastigotes and the infectivity of trypomastigotes. Since RSV is now widely used in humans due to its beneficial effects as an antioxidant, it has become an attractive candidate as a repurposing drug. In this context, the aim of the present study was to evaluate the ability of this drug to protect three different types of host cells from parasite infection. RSV treatment before parasite infection reduced the percentage of infected cells by 50-70% depending on the cell type. Although the mammalian cell lines tested showed different sensitivity to RSV, apoptosis was not significantly affected, showing that RSV was able to protect cells from infection without the activation of this process. Since autophagy has been described as a key process in parasite invasion, we also monitored this process on host cells pretreated with RSV. The results showed that, at the concentrations and incubation times tested, autophagy was not induced in any of the cell types evaluated. Our results show a partial protective effect of RSV in vitro, which justifies extending studies to an in vivo model to elucidate the mechanism by which this effect occurs.
Collapse
Affiliation(s)
| | | | - Vanina A. Campo
- Corresponding author. IIB: Instituto de Investigaciones Biotecnologicas, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Brazão V, Colato RP, Santello FH, Duarte A, Goulart A, Sampaio PA, Pacheco Silva CB, Tirapelli CR, Costa RM, Tostes RC, do Prado JC. Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2-dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Exp Gerontol 2022; 167:111895. [PMID: 35843349 DOI: 10.1016/j.exger.2022.111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda Goulart
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla B Pacheco Silva
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil; Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Cellular Stress and Senescence Induction during Trypanosoma cruzi Infection. Trop Med Infect Dis 2022; 7:tropicalmed7070129. [PMID: 35878141 PMCID: PMC9323233 DOI: 10.3390/tropicalmed7070129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Chagas disease (CD) is a neglected tropical disease caused by Trypanosoma cruzi infection that, despite being discovered over a century ago, remains a public health problem, mainly in developing countries. Since T. cruzi can infect a wide range of mammalian host cells, parasite–host interactions may be critical to infection outcome. The intense immune stimulation that helps the control of the parasite’s replication and dissemination may also be linked with the pathogenesis and symptomatology worsening. Here, we discuss the findings that support the notion that excessive immune system stimulation driven by parasite persistence might elicit a progressive loss and collapse of immune functions. In this context, cellular stress and inflammatory responses elicited by T. cruzi induce fibroblast and other immune cell senescence phenotypes that may compromise the host’s capacity to control the magnitude of T. cruzi-induced inflammation, contributing to parasite persistence and CD progression. A better understanding of the steps involved in the induction of this chronic inflammatory status, which disables host defense capacity, providing an extra advantage to the parasite and predisposing infected hosts prematurely to immunosenescence, may provide insights to designing and developing novel therapeutic approaches to prevent and treat Chagas disease.
Collapse
|
27
|
Skariah S, Sultan AA, Mordue DG. IFN-induced cell-autonomous immune mechanisms in the control of intracellular protozoa. Parasitol Res 2022; 121:1559-1571. [DOI: 10.1007/s00436-022-07514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
28
|
Yang S, Ouyang J, Lu Y, Harypursat V, Chen Y. A Dual Role of Heme Oxygenase-1 in Tuberculosis. Front Immunol 2022; 13:842858. [PMID: 35281042 PMCID: PMC8913507 DOI: 10.3389/fimmu.2022.842858] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Iron metabolism is vital for the survival of both humans and microorganisms. Heme oxygenase-1 (HO-1) is an essential stress-response enzyme highly expressed in the lungs, and catabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV)/bilirubin (BR), especially in pathological conditions which cause oxidative stress and inflammation. Ferrous iron (Fe2+) is an important raw material for the synthesis of hemoglobin in red blood cells, and patients with iron deficiency are often associated with decreased cellular immunity. CO and BR can inhibit oxidative stress and inflammation. Thus, HO-1 is regarded as a cytoprotective molecule during the infection process. However, recent study has unveiled new information regarding HO-1. Being a highly infectious pathogenic bacterium, Mycobacterium tuberculosis (MTB) infection causes acute oxidative stress, and increases the expression of HO-1, which may in turn facilitate MTB survival and growth due to increased iron availability. Moreover, in severe cases of MTB infection, excessive reactive oxygen species (ROS) and free iron (Fe2+) due to high levels of HO-1 can lead to lipid peroxidation and ferroptosis, which may promote further MTB dissemination from cells undergoing ferroptosis. Therefore, it is important to understand and illustrate the dual role of HO-1 in tuberculosis. Herein, we critically review the interplay among HO-1, tuberculosis, and the host, thus paving the way for development of potential strategies for modulating HO-1 and iron metabolism.
Collapse
|
29
|
Vellasco L, Svensjö E, Bulant CA, Blanco PJ, Nogueira F, Domont G, de Almeida NP, Nascimento CR, Silva-dos-Santos D, Carvalho-Pinto CE, Medei EH, Almeida IC, Scharfstein J. Sheltered in Stromal Tissue Cells, Trypanosoma cruzi Orchestrates Inflammatory Neovascularization via Activation of the Mast Cell Chymase Pathway. Pathogens 2022; 11:pathogens11020187. [PMID: 35215131 PMCID: PMC8878313 DOI: 10.3390/pathogens11020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Microangiopathy may worsen the clinical outcome of Chagas disease. Given the obstacles to investigating the dynamics of inflammation and angiogenesis in heart tissues parasitized by Trypanosoma cruzi, here we used intravital microscopy (IVM) to investigate microcirculatory alterations in the hamster cheek pouch (HCP) infected by green fluorescent protein-expressing T. cruzi (GFP-T. cruzi). IVM performed 3 days post-infection (3 dpi) consistently showed increased baseline levels of plasma extravasation. Illustrating the reciprocal benefits that microvascular leakage brings to the host-parasite relationship, these findings suggest that intracellular amastigotes, acting from inside out, stimulate angiogenesis while enhancing the delivery of plasma-borne nutrients and prosurvival factors to the infection foci. Using a computer-based analysis of images (3 dpi), we found that proangiogenic indexes were positively correlated with transcriptional levels of proinflammatory cytokines (pro-IL1β and IFN-γ). Intracellular GFP-parasites were targeted by delaying for 24 h the oral administration of the trypanocidal drug benznidazole. A classification algorithm showed that benznidazole (>24 h) blunted angiogenesis (7 dpi) in the HCP. Unbiased proteomics (3 dpi) combined to pharmacological targeting of chymase with two inhibitors (chymostatin and TY-51469) linked T. cruzi-induced neovascularization (7 dpi) to the proangiogenic activity of chymase, a serine protease stored in secretory granules from mast cells.
Collapse
Affiliation(s)
- Lucas Vellasco
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Erik Svensjö
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Carlos Alberto Bulant
- Department of Mathematical and Computational Methods, National Laboratory for Scientific Computing, Petrópolis 25651-075, Brazil; (C.A.B.); (P.J.B.)
| | - Pablo Javier Blanco
- Department of Mathematical and Computational Methods, National Laboratory for Scientific Computing, Petrópolis 25651-075, Brazil; (C.A.B.); (P.J.B.)
| | - Fábio Nogueira
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (F.N.); (G.D.); (N.P.d.A.)
| | - Gilberto Domont
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (F.N.); (G.D.); (N.P.d.A.)
| | - Natália Pinto de Almeida
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (F.N.); (G.D.); (N.P.d.A.)
| | - Clarissa Rodrigues Nascimento
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Danielle Silva-dos-Santos
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | | | - Emiliano Horácio Medei
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Julio Scharfstein
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
- Correspondence:
| |
Collapse
|
30
|
Dick CF, Rocco-Machado N, Dos-Santos ALA, Carvalho-Kelly LF, Alcantara CL, Cunha-E-Silva NL, Meyer-Fernandes JR, Vieyra A. An Iron Transporter Is Involved in Iron Homeostasis, Energy Metabolism, Oxidative Stress, and Metacyclogenesis in Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 11:789401. [PMID: 35083166 PMCID: PMC8785980 DOI: 10.3389/fcimb.2021.789401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
The parasite Trypanosoma cruzi causes Chagas’ disease; both heme and ionic Fe are required for its optimal growth, differentiation, and invasion. Fe is an essential cofactor in many metabolic pathways. Fe is also harmful due to catalyzing the formation of reactive O2 species; for this reason, all living systems develop mechanisms to control the uptake, metabolism, and storage of Fe. However, there is limited information available on Fe uptake by T. cruzi. Here, we identified a putative 39-kDa Fe transporter in T. cruzi genome, TcIT, homologous to the Fe transporter in Leishmania amazonensis and Arabidopsis thaliana. Epimastigotes grown in Fe-depleted medium have increased TcIT transcription compared with controls grown in regular medium. Intracellular Fe concentration in cells maintained in Fe-depleted medium is lower than in controls, and there is a lower O2 consumption. Epimastigotes overexpressing TcIT, which was encountered in the parasite plasma membrane, have high intracellular Fe content, high O2 consumption—especially in phosphorylating conditions, high intracellular ATP, very high H2O2 production, and stimulated transition to trypomastigotes. The investigation of the mechanisms of Fe transport at the cellular and molecular levels will assist in elucidating Fe metabolism in T. cruzi and the involvement of its transport in the differentiation from epimastigotes to trypomastigotes, virulence, and maintenance/progression of the infection.
Collapse
Affiliation(s)
- Claudia F Dick
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathália Rocco-Machado
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L A Dos-Santos
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz F Carvalho-Kelly
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina L Alcantara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Narcisa L Cunha-E-Silva
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program in Translational Biomedicine/BIOTRANS, Unigranrio University, Duque de Caxias, Brazil
| |
Collapse
|
31
|
Benzaldehyde Attenuates the Fifth Stage Larval Excretory–Secretory Product of Angiostrongylus cantonensis-Induced Injury in Mouse Astrocytes via Regulation of Endoplasmic Reticulum Stress and Oxidative Stress. Biomolecules 2022; 12:biom12020177. [PMID: 35204678 PMCID: PMC8961544 DOI: 10.3390/biom12020177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Excretory–secretory products (ESPs) are the main research targets for investigating the hosts and helminths interaction. Parasitic worms can migrate to parasitic sites and avoid the host immune response by secreting this product. Angiostrongylus cantonensis is an important food-borne zoonotic parasite that causes severe neuropathological damage and symptoms, including eosinophilic meningitis or meningoencephalitis in humans. Benzaldehydes are organic compounds composed of a benzene ring and formyl substituents. This compound has anti-inflammatory and antioxidation properties. Previous studies showed that 3-hydroxybenzaldehyde (3-HBA) and 4-hydroxybenzaldehyde (4-HBA) can reduce apoptosis in A. cantonensis ESP-treated astrocytes. These results on the protective effect underlying benzaldehyde have primarily focused on cell survival. The study was designed to investigate the molecular mechanisms of endoplasmic reticulum stress (ER stress) and oxidative stress in astrocytes in A. cantonensis ESP-treated astrocytes and to evaluate the therapeutic consequent of 3-HBA and 4-HBA. First, we initially established the RNA-seq dataset in each group, including normal, ESPs, ESPs + 3-HBA, and ESPs + 4-HBA. We also found that benzaldehyde (3-HBA and 4-HBA) can stimulate astrocytes to express ER stress-related molecules after ESP treatment. The level of oxidative stress could also be decreased in astrocytes by elevating antioxidant activity and reducing ROS generation. These results suggested that benzaldehyde may be a potential therapeutic compound for human angiostrongyliasis to support brain cell survival by inducing the expression levels of ER stress- and oxidative stress-related pathways.
Collapse
|
32
|
The Oxidative Stress and Chronic Inflammatory Process in Chagas Disease: Role of Exosomes and Contributing Genetic Factors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4993452. [PMID: 34976301 PMCID: PMC8718323 DOI: 10.1155/2021/4993452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the flagellated protozoa Trypanosoma cruzi that affects several million people mainly in Latin American countries. Chagas disease has two phases, which are acute and chronic, both separated by an indeterminate time period in which the infected individual is relatively asymptomatic. The acute phase extends for 40-60 days with atypical and mild symptoms; however, about 30% of the infected patients will develop a symptomatic chronic phase, which is characterized by either cardiac, digestive, neurological, or endocrine problems. Cardiomyopathy is the most important and severe result of Chagas disease, which leads to left ventricular systolic dysfunction, heart failure, and sudden cardiac death. Most deaths are due to heart failure (70%) and sudden death (30%) resulting from cardiomyopathy. During the chronic phase, T. cruzi-infected macrophages respond with the production of proinflammatory cytokines and production of superoxide and nitric oxide by the NADPH oxidase 2 (NOX2) and inducible nitric oxide synthase (iNOS) enzymes, respectively. During the chronic phase, myocardial changes are produced as a result of chronic inflammation, oxidative stress, fibrosis, and cell death. The cellular inflammatory response is mainly the result of activation of the NF-κB-dependent pathway, which activates gene expression of inflammatory cytokines, leading to progressive tissue damage. The persisting production of reactive oxygen species (ROS) is the result of mitochondrial dysfunction in the cardiomyocytes. In this review, we will discuss inflammation and oxidative damage which is produced in the heart during the chronic phase of Chagas disease and recent evidence on the role of macrophages and the production of proinflammatory cytokines during the acute phase and the origin of macrophages/monocytes during the chronic phase of Chagas disease. We will also discuss the contributing factors and mechanisms leading to the chronic inflammation of the cardiac tissue during the chronic phase of the disease as well as the innate and adaptive host immune response. The contribution of genetic factors to the progression of the chronic inflammatory cardiomyopathy of chronic Chagas disease is also discussed. The secreted extracellular vesicles (exosomes) produced for both T. cruzi and infected host cells can play key roles in the host immune response, and those roles are described. Lastly, we describe potential treatments to attenuate the chronic inflammation of the cardiac tissue, designed to improve heart function in chagasic patients.
Collapse
|
33
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1748-1752. [DOI: 10.1093/jac/dkac093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
|
34
|
Hassan W, Noreen H, Rehman S, Kamal MA, Teixeira da Rocha JB. Association of Oxidative Stress with Neurological Disorders. Curr Neuropharmacol 2022; 20:1046-1072. [PMID: 34781871 PMCID: PMC9886831 DOI: 10.2174/1570159x19666211111141246] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGORUND Oxidative stress is one of the main contributing factors involved in cerebral biochemical impairment. The higher susceptibility of the central nervous system to reactive oxygen species mediated damage could be attributed to several factors. For example, neurons use a greater quantity of oxygen, many parts of the brain have higher concentraton of iron, and neuronal mitochondria produce huge content of hydrogen peroxide. In addition, neuronal membranes have polyunsaturated fatty acids, which are predominantly vulnerable to oxidative stress (OS). OS is the imbalance between reactive oxygen species generation and cellular antioxidant potential. This may lead to various pathological conditions and diseases, especially neurodegenerative diseases such as, Parkinson's, Alzheimer's, and Huntington's diseases. OBJECTIVES In this study, we explored the involvement of OS in neurodegenerative diseases. METHODS We used different search terms like "oxidative stress and neurological disorders" "free radicals and neurodegenerative disorders" "oxidative stress, free radicals, and neurological disorders" and "association of oxidative stress with the name of disorders taken from the list of neurological disorders. We tried to summarize the source, biological effects, and physiologic functions of ROS. RESULTS Finally, it was noted that more than 190 neurological disorders are associated with oxidative stress. CONCLUSION More elaborated studies in the future will certainly help in understanding the exact mechanism involved in neurological diseases and provide insight into revelation of therapeutic targets.
Collapse
Affiliation(s)
- Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Hamsa Noreen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Shakila Rehman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Joao Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
35
|
Liang Z, Chen Y, Wang Z, Wu X, Deng C, Wang C, Yang W, Tian Y, Zhang S, Lu C, Yang Y. Protective effects and mechanisms of psoralidin against adriamycin-induced cardiotoxicity. J Adv Res 2021; 40:249-261. [PMID: 36100330 PMCID: PMC9481943 DOI: 10.1016/j.jare.2021.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
|
36
|
Rose E, Moraes A, Shiroma T, Nitz N, Rosa ADC, Pratesi R, Hagström L, de Carvalho JL, Hecht M. Host DNA repair response to oxidative damage is modulated by Trypanosoma cruzi in a strain-dependent manner. Acta Trop 2021; 224:106127. [PMID: 34509459 DOI: 10.1016/j.actatropica.2021.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
The conservation of genomic integrity and stability is essential for cell survival. DNA Damage Responses (DDRs) are considered of paramount importance for all living beings and involve mechanisms of cell cycle regulation and damage-specific DNA repair pathways. Hydrogen peroxide (H2O2) is a compound that, in supraphysiological concentrations, damages biomolecules including the DNA, causing base modifications and strand breaks. There is evidence that Trypanosoma cruzi, the protozoan that causes Chagas disease, interferes in the host cell's DNA metabolism. In order to investigate the influence of T. cruzi infection over the host cell capacity to withstand and repair DNA damage, we analyzed L6 cells infected with Berenice, and Colombiana T. cruzi strains according to their viability, proliferation, morphology, DNA degradation, expression of DNA repair, and cell cycle genes following H2O2 treatment. It was noted that T. cruzi infection might act as either a stressor or a protective element of host DNA, depending on the strain and H2O2 concentration. Cells infected with Berenice strain and treated with 0.8 mM H2O2 presented a reduced DNA damage response intensity (e.g., BER and HR). Infection with T. cruzi Colombiana prevented the activation of DNA repair pathways in response to 0.8mM and 1.6mM H2O2 (NER and MMR). Nevertheless, since cellular viability was not significantly compromised in Colombiana-infected cells following the oxidative insult, it is possible that the parasite directly influenced the host DNA repair machinery. Our results support the notion that T. cruzi is able to modulate the host cell DNA metabolism in a strain-dependent manner, an event which can be explored in future drug development strategies.
Collapse
Affiliation(s)
- Ester Rose
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil.
| | - Aline Moraes
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Tatiana Shiroma
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Ana de Cássia Rosa
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Riccardo Pratesi
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Juliana Lott de Carvalho
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
37
|
Pedra-Rezende Y, Barbosa JMC, Bombaça ACS, Dantas-Pereira L, Gibaldi D, Vilar-Pereira G, Dos Santos HAM, Ramos IP, Silva-Gomes NL, Moreira OC, Lannes-Vieira J, Menna-Barreto RFS. Physical Exercise Promotes a Reduction in Cardiac Fibrosis in the Chronic Indeterminate Form of Experimental Chagas Disease. Front Immunol 2021; 12:712034. [PMID: 34804007 PMCID: PMC8599157 DOI: 10.3389/fimmu.2021.712034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/15/2021] [Indexed: 01/14/2023] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a neglected tropical disease and a health problem in Latin America. Etiological treatment has limited effectiveness in chronic CD; thus, new therapeutic strategies are required. The practice of physical exercises has been widely advocated to improve the quality of life of CD patients. The most frequent clinical CD manifestation is the chronic indeterminate form (CIF), and the effect of physical exercises on disease progression remains unknown. Here, in a CIF model, we aimed to evaluate the effect of physical exercises on cardiac histological, parasitological, mitochondrial, and oxidative metabolism, electro and echocardiographic profiles, and immunological features. To establish a CIF model, BALB/c and C57BL/6 mice were infected with 100 and 500 trypomastigotes of the Y T. cruzi strain. At 120 days postinfection (dpi), all mouse groups showed normal PR and corrected QT intervals and QRS complexes. Compared to BALB/c mice, C57BL/6 mice showed a lower parasitemia peak, mortality rate, and less intense myocarditis. Thus, C57BL/6 mice infected with 500 parasites were used for subsequent analyses. At 120 dpi, a decrease in cardiac mitochondrial oxygen consumption and an increase in reactive oxygen species (ROS) were detected. When we increased the number of analyzed mice, a reduced heart rate and slightly prolonged corrected QT intervals were detected, at 120 and 150 dpi, which were then normalized at 180 dpi, thus characterizing the CIF. Y-infected mice were subjected to an exercise program on a treadmill for 4 weeks (from 150 to 180 dpi), five times per week in a 30–60-min daily training session. At 180 dpi, no alterations were detected in cardiac mitochondrial and oxidative metabolism, which were not affected by physical exercises, although ROS production increased. At 120 and 180 dpi, comparing infected and non-infected mice, no differences were observed in the levels of plasma cytokines, indicating that a crucial biomarker of the systemic inflammatory profile was absent and not affected by exercise. Compared with sedentary mice, trained Y-infected mice showed similar parasite loads and inflammatory cells but reduced cardiac fibrosis. Therefore, our data show that physical exercises promote beneficial changes that may prevent CD progression.
Collapse
Affiliation(s)
- Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Juliana M C Barbosa
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Cristina S Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luiza Dantas-Pereira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil.,Instituto Brasileiro de Medicina de Reabilitação, Rio de Janeiro, Brazil
| | - Hílton Antônio Mata Dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Análise e Desenvolvimento de Inibidores Enzimáticos e Laboratório Multiusuário de Análises por RMN, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isalira Peroba Ramos
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Lins Silva-Gomes
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Biologia Molecular de Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Otacilio C Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Biologia Molecular de Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Bichiou H, Rabhi S, Ben Hamda C, Bouabid C, Belghith M, Piquemal D, Trentin B, Rabhi I, Guizani-Tabbane L. Leishmania Parasites Differently Regulate Antioxidant Genes in Macrophages Derived From Resistant and Susceptible Mice. Front Cell Infect Microbiol 2021; 11:748738. [PMID: 34722338 PMCID: PMC8554229 DOI: 10.3389/fcimb.2021.748738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
Macrophage-Leishmania interactions are central to parasite growth and disease outcome. Macrophages have developed various strategies to fight invaders, including oxidative burst. While some microorganisms seem to survive and even thrive in an oxidative environment, others are susceptible and get killed. To counter oxidative stress, macrophages switch the expressions of cytoprotective and detoxifying enzymes, which are downstream targets of the nuclear factor erythroid 2-related factor 2 (Nrf2), to enhance cell survival. We have explored the transcription of NRF2 and of its target genes and compared the effect of the parasite on their transcription in bone marrow-derived macrophages (BMdMs) from Leishmania-resistant and Leishmania-susceptible mice. While heme oxygenase 1 (HO-1) transcription is independent of the genetic background, the transcription of glutathione reductase (Gsr) and of cysteine/glutamate exchange transporter (Slc7a11), involved in glutathione accumulation, was differentially regulated in BMdMs from both mouse strains. We also show that, except for HO-1, known to favor the survival of the parasite, the transcription of the selected genes, including Gsr, CD36, and catalase (CAT), was actively repressed, if not at all time points at least at the later ones, by the parasite, especially in Balb/c BMdMs. Consistent with these results, we found that the silencing of NRF2 in this study increases the survival and multiplication of the parasite.
Collapse
Affiliation(s)
- Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Sameh Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia
| | - Cherif Ben Hamda
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia
| | - Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Meriam Belghith
- Department of Immunology, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia
| | | | | | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia.,Higher Institute of Biotechnology at Sidi-Thabet, Biotechpole Sidi-Thabet, University of Manouba, Sidi-Thabet, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis-Belvedere, Tunisia
| |
Collapse
|
39
|
Mitochondria as a Cellular Hub in Infection and Inflammation. Int J Mol Sci 2021; 22:ijms222111338. [PMID: 34768767 PMCID: PMC8583510 DOI: 10.3390/ijms222111338] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the energy center of the cell. They are found in the cell cytoplasm as dynamic networks where they adapt energy production based on the cell’s needs. They are also at the center of the proinflammatory response and have essential roles in the response against pathogenic infections. Mitochondria are a major site for production of Reactive Oxygen Species (ROS; or free radicals), which are essential to fight infection. However, excessive and uncontrolled production can become deleterious to the cell, leading to mitochondrial and tissue damage. Pathogens exploit the role of mitochondria during infection by affecting the oxidative phosphorylation mechanism (OXPHOS), mitochondrial network and disrupting the communication between the nucleus and the mitochondria. The role of mitochondria in these biological processes makes these organelle good targets for the development of therapeutic strategies. In this review, we presented a summary of the endosymbiotic origin of mitochondria and their involvement in the pathogen response, as well as the potential promising mitochondrial targets for the fight against infectious diseases and chronic inflammatory diseases.
Collapse
|
40
|
Choudhuri S, Rios L, Vázquez-Chagoyán JC, Garg NJ. Oxidative stress implications for therapeutic vaccine development against Chagas disease. Expert Rev Vaccines 2021; 20:1395-1406. [PMID: 34406892 DOI: 10.1080/14760584.2021.1969230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Pathogenesis of Chagas disease (CD) caused by the protozoan parasite Trypanosoma cruzi (T. cruzi) involves chronic oxidative and inflammatory stress. In this review, we discuss the research efforts in therapeutic vaccine development to date and the potential challenges imposed by oxidative stress in achieving an efficient therapeutic vaccine against CD. AREAS COVERED This review covers the immune and nonimmune mechanisms of reactive oxygen species production and immune response patterns during T. cruzi infection in CD. A discussion on immunotherapy development efforts, the efficacy of antigen-based immune therapies against T. cruzi, and the role of antioxidants as adjuvants is discussed to provide promising insights to developing future treatment strategies against CD. EXPERT OPINION Administration of therapeutic vaccines can be a good option to confront persistent parasitemia in CD by achieving a rapid, short-lived stimulation of type 1 cell-mediated immunity. At the same time, adjunct therapies could play a critical role in the preservation of mitochondrial metabolism and cardiac muscle contractility in CD. We propose combined therapy with antigen-based vaccine and small molecules to control the pathological oxidative insult would be effective in the conservation of cardiac structure and function in CD.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados En Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Nisha Jain Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Tx, USA
| |
Collapse
|
41
|
Prolo C, Estrada D, Piacenza L, Benítez D, Comini MA, Radi R, Álvarez MN. Nox2-derived superoxide radical is crucial to control acute Trypanosoma cruzi infection. Redox Biol 2021; 46:102085. [PMID: 34454164 PMCID: PMC8397891 DOI: 10.1016/j.redox.2021.102085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 01/16/2023] Open
Abstract
Trypanosoma cruzi is a flagellated protozoan that undergoes a complex life cycle between hematophagous insects and mammals. In humans, this parasite causes Chagas disease, which in thirty percent of those infected, would result in serious chronic pathologies and even death. Macrophages participate in the first stages of infection, mounting a cytotoxic response which promotes massive oxidative damage to the parasite. On the other hand, T. cruzi is equipped with a robust antioxidant system to repeal the oxidative attack from macrophages. This work was conceived to explicitly assess the role of mammalian cell-derived superoxide radical in a murine model of acute infection by T. cruzi. Macrophages derived from Nox2-deficient (gp91phox-/-) mice produced marginal amounts of superoxide radical and were more susceptible to parasite infection than those derived from wild type (wt) animals. Also, the lack of superoxide radical led to an impairment of parasite differentiation inside gp91phox-/- macrophages. Biochemical or genetic reconstitution of intraphagosomal superoxide radical formation in gp91phox-/- macrophages reverted the lack of control of infection. Along the same line, gp91phox-/- infected mice died shortly after infection. In spite of the higher lethality, parasitemia did not differ between gp91phox-/- and wt animals, recapitulating an observation that has led to conflicting interpretations about the importance of the mammalian oxidative response against T. cruzi. Importantly, gp91phox-/- mice presented higher and disseminated tissue parasitism, as evaluated by both qPCR- and bioimaging-based methodologies. Thus, this work supports that Nox2-derived superoxide radical plays a crucial role to control T. cruzi infection in the early phase of a murine model of Chagas disease. Nox2 derived-superoxide radical is required to control Trypanosoma cruzi infection in macrophages ∙Nox2-deficient mice (gp91phox-/-) are highly susceptible to Trypanosoma cruzi infection ∙Parasitemia does not reflect the level of organ infection observed in wt and gp91phox-/- mice. ∙gp91phox-/- mice collapse to infection due to uncontrolled parasite proliferation in tissues
Collapse
Affiliation(s)
- Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Damián Estrada
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Educación Médica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
42
|
Shu M, Lei W, Su S, Wen Y, Luo F, Zhao L, Chen L, Lu C, Zhou Z, Li Z. Chlamydia trachomatis Pgp3 protein regulates oxidative stress via activation of the Nrf2/NQO1 signal pathway. Life Sci 2021; 277:119502. [PMID: 33891941 DOI: 10.1016/j.lfs.2021.119502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 01/10/2023]
Abstract
AIM Chlamydia trachomatis has evolved various strategies to alleviate oxidative stress of host cells to maintain their intracellular survival. However, the exact mechanism of anti-oxidative stress of C. trachomatis is still unclear. The activation of nuclear factor erythroid 2-related factor 2/quinone oxidoreductase (Nrf2/NQO1) signal pathway has been identified as an efficient antioxidant defensive mechanism used by host cells to counteract oxidative stress. Pgp3 is a pivotal virulence factor of C. trachomatis involved in intracellular survival. The aim of this study is to explore the role of Pgp3 on Nrf2/NQO1 signal pathway against oxidative stress. MAIN METHODS After HeLa cells were stimulated with Pgp3 protein, Nrf2 location and the inclusion bodies of C. trachomatis were detected by indirect immunofluorescence, western blotting and Oxidative stress assay kits were used to separately determine the protein expression and the content of malondialdehyde (MDA), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) before and after the interference of Nrf-2 and NQO1. KEY FINDINGS Pgp3 promoted the nuclear translocation of Nrf2 to increase NQO1 expression and reduced oxidative stress induced by LPS to contribute to the survival of C. trachomatis. Inhibition of Nrf2/NQO1 signal pathway with Nrf2 inhibitor and down-regulation of NQO1 with siRNA-NQO1 suppressed oxidative stress resistance induced by Pgp3. SIGNIFICANCE Here we found that Pgp3 alleviated oxidative stress to promote the infectivity of C. trachomatis through activation of Nrf2/NQO1 signal pathway, which provided a novel understanding of the effects of Pgp3 in the pathogenesis of C. trachomatis.
Collapse
Affiliation(s)
- Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Wenbo Lei
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Lili Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Zhou Zhou
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China.
| |
Collapse
|
43
|
Bichiou H, Bouabid C, Rabhi I, Guizani-Tabbane L. Transcription Factors Interplay Orchestrates the Immune-Metabolic Response of Leishmania Infected Macrophages. Front Cell Infect Microbiol 2021; 11:660415. [PMID: 33898331 PMCID: PMC8058464 DOI: 10.3389/fcimb.2021.660415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis is a group of heterogenous diseases considered as an important public health problem in several countries. This neglected disease is caused by over 20 parasite species of the protozoa belonging to the Leishmania genus and is spread by the bite of a female phlebotomine sandfly. Depending on the parasite specie and the immune status of the patient, leishmaniasis can present a wide spectrum of clinical manifestations. As an obligate intracellular parasite, Leishmania colonize phagocytic cells, mainly the macrophages that orchestrate the host immune response and determine the fate of the infection. Once inside macrophages, Leishmania triggers different signaling pathways that regulate the immune and metabolic response of the host cells. Various transcription factors regulate such immune-metabolic responses and the associated leishmanicidal and inflammatory reaction against the invading parasite. In this review, we will highlight the most important transcription factors involved in these responses, their interactions and their impact on the establishment and the progression of the immune response along with their effect on the physiopathology of the disease.
Collapse
Affiliation(s)
- Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Biotechnology Department, Higher Institute of Biotechnology at Sidi-Thabet (ISBST), Biotechpole Sidi-Thabet- University of Manouba, Tunis, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
44
|
Florentino PTV, Mendes D, Vitorino FNL, Martins DJ, Cunha JPC, Mortara RA, Menck CFM. DNA damage and oxidative stress in human cells infected by Trypanosoma cruzi. PLoS Pathog 2021; 17:e1009502. [PMID: 33826673 PMCID: PMC8087042 DOI: 10.1371/journal.ppat.1009502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/30/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease. Infected cells with T. cruzi activate several responses that promote unbalance of reactive oxygen species (ROS) that may cause DNA damage that activate cellular responses including DNA repair processes. In this work, HeLa cells and AC16 human cardiomyocyte cell line were infected with T. cruzi to investigate host cell responses at genome level during parasites intracellular life cycle. In fact, alkaline sensitive sites and oxidized DNA bases were detected in the host cell genetic material particularly in early stages of infection. These DNA lesions were accompanied by phosphorylation of the histone H2Ax, inducing γH2Ax, a marker of genotoxic stress. Moreover, Poly [ADP-ribose] polymerase-1 (PARP1) and 8-oxoguanine glycosylase (OGG1) are recruited to host cell nuclei, indicating activation of the DNA repair process. In infected cells, chromatin-associated proteins are carbonylated, as a possible consequence of oxidative stress and the nuclear factor erythroid 2-related factor 2 (NRF2) is induced early after infection, suggesting that the host cell antioxidant defenses are activated. However, at late stages of infection, NRF2 is downregulated. Interestingly, host cells treated with glutathione precursor, N-acetyl cysteine, NRF2 activator (Sulforaphane), and also Benznidonazol (BNZ) reduce parasite burst significantly, and DNA damage. These data indicate that the balance of oxidative stress and DNA damage induction in host cells may play a role during the process of infection itself, and interference in these processes may hamper T. cruzi infection, revealing potential target pathways for the therapy support.
Collapse
Affiliation(s)
- Pilar T. V. Florentino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Davi Mendes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Davi J. Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julia P. C. Cunha
- Special Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
| | - Renato A. Mortara
- Department of Microbiology, Imunology & Parasitology, Escola Paulista de Medicina Federal University of São Paulo, São Paulo, Brazil
| | - Carlos F. M. Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Ferri G, Edreira MM. All Roads Lead to Cytosol: Trypanosoma cruzi Multi-Strategic Approach to Invasion. Front Cell Infect Microbiol 2021; 11:634793. [PMID: 33747982 PMCID: PMC7973469 DOI: 10.3389/fcimb.2021.634793] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
T. cruzi has a complex life cycle involving four developmental stages namely, epimastigotes, metacyclic trypomastigotes, amastigotes and bloodstream trypomastigotes. Although trypomastigotes are the infective forms, extracellular amastigotes have also shown the ability to invade host cells. Both stages can invade a broad spectrum of host tissues, in fact, almost any nucleated cell can be the target of infection. To add complexity, the parasite presents high genetic variability with differential characteristics such as infectivity. In this review, we address the several strategies T. cruzi has developed to subvert the host cell signaling machinery in order to gain access to the host cell cytoplasm. Special attention is made to the numerous parasite/host protein interactions and to the set of signaling cascades activated during the formation of a parasite-containing vesicle, the parasitophorous vacuole, from which the parasite escapes to the cytosol, where differentiation and replication take place.
Collapse
Affiliation(s)
- Gabriel Ferri
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina
| | - Martin M Edreira
- CONICET-Universidad de Buenos Aires, IQUIBICEN, Ciudad de Buenos Aires, Argentina.,Laboratorio de Biología Molecular de Trypanosoma, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Ciudad de Buenos Aires, Argentina.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Pérez‐Mazliah D, Ward AI, Lewis MD. Host-parasite dynamics in Chagas disease from systemic to hyper-local scales. Parasite Immunol 2021; 43:e12786. [PMID: 32799361 PMCID: PMC11475410 DOI: 10.1111/pim.12786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Trypanosoma cruzi is a remarkably versatile parasite. It can parasitize almost any nucleated cell type and naturally infects hundreds of mammal species across much of the Americas. In humans, it is the cause of Chagas disease, a set of mainly chronic conditions predominantly affecting the heart and gastrointestinal tract, which can progress to become life threatening. Yet around two thirds of infected people are long-term asymptomatic carriers. Clinical outcomes depend on many factors, but the central determinant is the nature of the host-parasite interactions that play out over the years of chronic infection in diverse tissue environments. In this review, we aim to integrate recent developments in the understanding of the spatial and temporal dynamics of T. cruzi infections with established and emerging concepts in host immune responses in the corresponding phases and tissues.
Collapse
Affiliation(s)
- Damián Pérez‐Mazliah
- York Biomedical Research InstituteHull York Medical SchoolUniversity of YorkYorkUK
| | - Alexander I. Ward
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Michael D. Lewis
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
47
|
Nrf2-ARE Signaling Partially Attenuates Lipopolysaccharide-Induced Mammary Lesions via Regulation of Oxidative and Organelle Stresses but Not Inflammatory Response in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8821833. [PMID: 33505589 PMCID: PMC7810562 DOI: 10.1155/2021/8821833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 11/30/2022]
Abstract
The incidence of mastitis is high during the postpartum stage, which causes severe pain and hinders breast feeding in humans and reduces milk production in dairy cows. Studies suggested that inflammation in multiple organs is associated with oxidative stress and nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element pathway is one of the most important antioxidant pathways, but the effects of Nrf2 on antioxidation in the mammary gland during mastitis are still unclear. In this study, intramammary lipopolysaccharide (LPS) challenge was carried out in wild-type (WT) and Nrf2 knockout mice. Results showed that the expression of Nrf2 affected the expression of milk protein genes (Csn2 and Csn3). Importantly, LPS treatment increased the expression of Nrf2 and HO-1 and the content of glutathione in the mammary gland of WT mice, but not in Nrf2(-/-) mice. The expression levels of glutathione synthesis genes (GCLC, GCLM, and xCT) were lower in Nrf2(-/-) mice than in WT mice. Moreover, mitochondrial-dependent apoptotic and endoplasmic reticulum stress were significantly relieved in WT mice compared with that in Nrf2(-/-) mice. In summary, the expression of Nrf2 may play an important role in prevention of oxidative and organelle stresses during endotoxin-induced mastitis in mouse mammary gland.
Collapse
|
48
|
Maldonado E, Rojas DA, Morales S, Miralles V, Solari A. Dual and Opposite Roles of Reactive Oxygen Species (ROS) in Chagas Disease: Beneficial on the Pathogen and Harmful on the Host. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8867701. [PMID: 33376582 PMCID: PMC7746463 DOI: 10.1155/2020/8867701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022]
Abstract
Chagas disease is a neglected tropical disease, which affects an estimate of 6-7 million people worldwide. Chagas disease is caused by Trypanosoma cruzi, which is a eukaryotic flagellate unicellular organism. At the primary infection sites, these parasites are phagocytized by macrophages, which produce reactive oxygen species (ROS) in response to the infection with T. cruzi. The ROS produce damage to the host tissues; however, macrophage-produced ROS is also used as a signal for T. cruzi proliferation. At the later stages of infection, mitochondrial ROS is produced by the infected cardiomyocytes that contribute to the oxidative damage, which persists at the chronic stage of the disease. The oxidative damage leads to a functional impairment of the heart. In this review article, we will discuss the mechanisms by which T. cruzi is able to deal with the oxidative stress and how this helps the parasite growth at the acute phase of infection and how the oxidative stress affects the cardiomyopathy at the chronic stage of the Chagas disease. We will describe the mechanisms used by the parasite to deal with ROS and reactive nitrogen species (RNS) through the trypanothione and the mechanisms used to repair the damaged DNA. Also, a description of the events produced by ROS at the acute and chronic stages of the disease is presented. Lastly, we discuss the benefits of ROS for T. cruzi growth and proliferation and the possible mechanisms involved in this phenomenon. Hypothesis is put forward to explain the molecular mechanisms by which ROS triggers parasite growth and proliferation and how ROS is able to produce a long persisting damage on cardiomyocytes even in the absence of the parasite.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego A. Rojas
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Sebastian Morales
- Programa Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Vicente Miralles
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Aldo Solari
- Programa Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
49
|
Dos Santos GP, Abukawa FM, Souza-Melo N, Alcântara LM, Bittencourt-Cunha P, Moraes CB, Jha BK, McGwire BS, Moretti NS, Schenkman S. Cyclophilin 19 secreted in the host cell cytosol by Trypanosoma cruzi promotes ROS production required for parasite growth. Cell Microbiol 2020; 23:e13295. [PMID: 33222354 DOI: 10.1111/cmi.13295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/06/2023]
Abstract
Infection by Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, depends on reactive oxygen species (ROS), which has been described to induce parasite proliferation in mammalian host cells. It is unknown how the parasite manages to increase host ROS levels. Here, we found that intracellular T. cruzi forms release in the host cytosol its major cyclophilin of 19 kDa (TcCyp19). Parasites depleted of TcCyp19 by using CRISPR/Cas9 gene replacement proliferate inefficiently and fail to increase ROS, compared to wild type parasites or parasites with restored TcCyp19 gene expression. Expression of TcCyp19 in L6 rat myoblast increased ROS levels and restored the proliferation of TcCyp19 depleted parasites. These events could also be inhibited by cyclosporin A, (a cyclophilin inhibitor), and by polyethylene glycol-linked to antioxidant enzymes. TcCyp19 was found more concentrated in the membrane leading edges of the host cells in regions that also accumulate phosphorylated p47phox , as observed to the endogenous cyclophilin A, suggesting some mechanisms involved with the translocation process of the regulatory subunit p47phox in the activation of the NADPH oxidase enzymatic complex. We concluded that cyclophilin released in the host cell cytosol by T. cruzi mediates the increase of ROS, required to boost parasite proliferation in mammalian hosts.
Collapse
Affiliation(s)
- Gregory Pedroso Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Midori Abukawa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Normanda Souza-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Laura Maria Alcântara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Paula Bittencourt-Cunha
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Carolina Borsoi Moraes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Bijay Kumar Jha
- Division of Infectious Diseases/Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bradford S McGwire
- Division of Infectious Diseases/Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Nilmar Silvio Moretti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
50
|
Costa DL, Amaral EP, Andrade BB, Sher A. Modulation of Inflammation and Immune Responses by Heme Oxygenase-1: Implications for Infection with Intracellular Pathogens. Antioxidants (Basel) 2020; 9:antiox9121205. [PMID: 33266044 PMCID: PMC7761188 DOI: 10.3390/antiox9121205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme molecules releasing equimolar amounts of biliverdin, iron and carbon monoxide. Its expression is induced in response to stress signals such as reactive oxygen species and inflammatory mediators with antioxidant, anti-inflammatory and immunosuppressive consequences for the host. Interestingly, several intracellular pathogens responsible for major human diseases have been shown to be powerful inducers of HO-1 expression in both host cells and in vivo. Studies have shown that this HO-1 response can be either host detrimental by impairing pathogen control or host beneficial by limiting infection induced inflammation and tissue pathology. These properties make HO-1 an attractive target for host-directed therapy (HDT) of the diseases in question, many of which have been difficult to control using conventional antibiotic approaches. Here we review the mechanisms by which HO-1 expression is induced and how the enzyme regulates inflammatory and immune responses during infection with a number of different intracellular bacterial and protozoan pathogens highlighting mechanistic commonalities and differences with the goal of identifying targets for disease intervention.
Collapse
Affiliation(s)
- Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3315-3061
| | - Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (E.P.A.); (A.S.)
| | - Bruno B. Andrade
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa;
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Bahia, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (UniFTC), Salvador 41741-590, Bahia, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Laureate International Universities, Salvador 41770-235, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-000, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (E.P.A.); (A.S.)
| |
Collapse
|