1
|
López-Guzmán C, Herrera J, Zapata J, Pabón A, Weis UK, Vásquez AM. Natural hemozoin and β-hematin induce tissue damage and apoptosis in human placental explants. Toxicol Rep 2025; 14:101857. [PMID: 39758805 PMCID: PMC11697793 DOI: 10.1016/j.toxrep.2024.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Hemozoin (HZ) is a waste product of hemoglobin digestion by Plasmodium and has been implicated in several pathological processes, including inflammation, oxidative stress, endothelial dysfunction, and immune dysregulation. Studying the effects of HZ on the human placenta is essential to understanding the impact of malaria infection during pregnancy. The present study explored the impact of HZ produced by Plasmodium and β-hematin, referred to here as natural HZ (nHZ) and synthetic HZ (sHZ), respectively, on human placental explants exposed in vitro. Methodology nHZ was derived from Plasmodium falciparum cultures and isolated using magnetic MACS® Separation Columns (Miltenyi Biotec, Auburn, CA) [1]. sHZ was synthesized from hemin closure in an aqueous solution. Both nHZ and sHZ were characterized by infrared spectroscopy and scanning electron microscopy. Human placental explants (HPE) were exposed to 5 and 10 μg/mL of nHZ and sHZ for 24 h, and tissue integrity was studied using histological and immunohistochemical techniques. Results The studies have demonstrated that the exposition of both the nHZ and sHZ to placental tissue are comparable and cause effects in increased STB detachment, dysregulation of collagen distribution in the villous stroma, and increase in the frequency of cell apoptosis. This contributes to the understanding of the pathophysiology of malaria in pregnancy using synthetic products such as β-hematin.
Collapse
Affiliation(s)
| | - Julieth Herrera
- Grupo Malaria, Universidad de Antioquia, Colombia
- Grupo de Estado Sólido, Universidad de Antioquia, Colombia
- Laboratorio Análisis de Residuos, Universidad de Antioquia, Colombia
| | - Julián Zapata
- Laboratorio Análisis de Residuos, Universidad de Antioquia, Colombia
| | | | | | - Ana María Vásquez
- Grupo Malaria, Universidad de Antioquia, Colombia
- Escuela de Microbiología, Universidad de Antioquia, Colombia
| |
Collapse
|
2
|
El Tabaa MM, Faheem H, Elballal MS, Rashad E, Mohsen M, El Tabaa MM. The PPAR-α agonist oleoyethanolamide (OEA) ameliorates valproic acid-induced steatohepatitis in rats via suppressing Wnt3a/β-catenin and activating PGC-1α: Involvement of network pharmacology and molecular docking. Eur J Pharmacol 2025; 991:177306. [PMID: 39880183 DOI: 10.1016/j.ejphar.2025.177306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Liver damage is one of the most severe side effects of valproic acid (VPA) therapy. Research indicates that PPAR-α prevents Wnt3a/β-catenin-induced PGC-1α dysregulation, which is linked to liver injury. Although PPAR-α activation has hepatoprotective effects, its role in preventing VPA-induced liver injury remains unclear. Our research used network analysis, molecular docking, and in-vivo validation to predict and assess targets and pathways associated with the hepatoprotective effects of oleoylethanolamide (OEA), a PPAR-α agonist, on VPA-induced steatohepatitis. For in-vivo experiments, 24 rats were assigned to V, OEA, VPA, and OEA + VPA. Liver functions, TGs, cholesterol, and LDL were tested. Hepatic levels of PPAR-α, ACO, TNF-α, IL-1β, HO-1, MDA, and TAC, along with Wnt3a/β-catenin, PGC-1α, and Nrf2 expression were assessed. Further, NF-κB, Bax, Bcl-2, and caspase-3 expression were detected immunohistochemically. Network pharmacology identified 258 targets for OEA-steatohepatitis connection, including NFKB1, PPARA, and NFE2L2, in addition to TNF, non-alcoholic fatty liver, NF-κB, PPAR, and WNT signaling, as contributing to steatohepatitis pathogenesis. The docking revealed a strong affinity between OEA and Wnt3a, β-catenin, and PGC-1α. Therefore, we postulated that the hepatoprotective effect of OEA may be due to Wnt3a/β-catenin-mediated inactivation of PGC1-α pathway. In vivo, OEA inhibited Wnt3a/β-catenin and increased PGC1-α by activating PPAR-α. Hence, PGC1-α reduced fat cell β-oxidation and NF-κB-mediated inflammation. OEA lessened MDA and raised TAC to mitigate oxidative damage. OEA additionally reduced apoptosis by lowering Bax/Bcl-2 ratio and caspase-3. In summary, PPAR-α involvement in the protective effects of OEA against VPA-induced steatohepatitis can be confirmed by suppressing Wnt3a/β-catenin and activating PGC-1α signaling.
Collapse
Affiliation(s)
| | - Heba Faheem
- Physiology Department, Faculty of Medicine, Tanta University, Egypt.
| | - Mohammed Salah Elballal
- Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mohamed Mohsen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt.
| |
Collapse
|
3
|
Gu Q, Patel A, Hanna MG, Lennerz JK, Garcia C, Zarella M, McClintock D, Hart SN. Bridging the Clinical-Computational Transparency Gap in Digital Pathology. Arch Pathol Lab Med 2025; 149:276-287. [PMID: 38871349 DOI: 10.5858/arpa.2023-0250-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/21/2024] [Indexed: 06/15/2024]
Abstract
CONTEXT.— Computational pathology combines clinical pathology with computational analysis, aiming to enhance diagnostic capabilities and improve clinical productivity. However, communication barriers between pathologists and developers often hinder the full realization of this potential. OBJECTIVE.— To propose a standardized framework that improves mutual understanding of clinical objectives and computational methodologies. The goal is to enhance the development and application of computer-aided diagnostic (CAD) tools. DESIGN.— This article suggests pivotal roles for pathologists and computer scientists in the CAD development process. It calls for increased understanding of computational terminologies, processes, and limitations among pathologists. Similarly, it argues that computer scientists should better comprehend the true use cases of the developed algorithms to avoid clinically meaningless metrics. RESULTS.— CAD tools improve pathology practice significantly. Some tools have even received US Food and Drug Administration approval. However, improved understanding of machine learning models among pathologists is essential to prevent misuse and misinterpretation. There is also a need for a more accurate representation of the algorithms' performance compared to that of pathologists. CONCLUSIONS.— A comprehensive understanding of computational and clinical paradigms is crucial for overcoming the translational gap in computational pathology. This mutual comprehension will improve patient care through more accurate and efficient disease diagnosis.
Collapse
Affiliation(s)
- Qiangqiang Gu
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Gu, Patel, Garcia, Zarella, McClintock, Hart)
| | - Ankush Patel
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Gu, Patel, Garcia, Zarella, McClintock, Hart)
| | - Matthew G Hanna
- the Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York (Hanna)
| | - Jochen K Lennerz
- the Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston (Lennerz)
| | - Chris Garcia
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Gu, Patel, Garcia, Zarella, McClintock, Hart)
| | - Mark Zarella
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Gu, Patel, Garcia, Zarella, McClintock, Hart)
| | - David McClintock
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Gu, Patel, Garcia, Zarella, McClintock, Hart)
| | - Steven N Hart
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Gu, Patel, Garcia, Zarella, McClintock, Hart)
| |
Collapse
|
4
|
Ahmed Taher H, Zalzala MH. Ellagic acid mitigates alpha-naphthyl isothiocyanate-induced cholestasis in rats via FXR activation and inflammatory pathway modulation. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0425. [PMID: 39924693 DOI: 10.1515/jcim-2024-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVES The liver is vital for metabolism, detoxification, storage, and secretion. Cholestasis, in which bile flow is hindered, can cause serious harm to the liver. This study examines the potential of ellagic acid to prevent cholestasis in male rats that has been caused by alpha-naphthyl isothiocyanate (ANIT). METHOD Male rats were divided into four groups for an 8-day study. The control group received 5 % dimethyl sulfoxide (DMSO) orally for eight days and maize oil (1 mL/kg, orally) 48 h before sacrifice. The ANIT Group received 5 % DMSO orally for 8 days, the ANIT (100 mg/kg, orally) administered on the 6th day, 48 h before sacrifice. The low-Dose Ellagic Acid + ANIT Group was given ellagic acid (5 mg/kg, orally) for eight days, with ANIT (100 mg/kg, orally) on the 6th day, 48 h prior to sacrifice. The high-Dose Ellagic Acid + ANIT Group received ellagic acid (10 mg/kg, orally) for eight days, the ANIT (100 mg/kg, orally) on the 6th day, 48 h before sacrifice. Different biochemical and histopathological analyses were conducted to assess the protective effects of ellagic acid on ANIT-induced liver injury. RESULTS ANIT significantly elevated serum of liver enzymes. It caused severe bile duct inflammation and reduced bile salt export pump (BSEP) and Na+-taurocholate cotransporting polypeptide (NTCP) expression, indicating liver injury. Ellagic acid treatment mitigated these changes, improving biochemical parameters and reducing liver damage. ANIT-induced cholestasis results in bile acid accumulation due to decreased BSEP and NTCP expression linked to impaired farnesoid X receptor (FXR) signaling. Ellagic acid restored BSEP and NTCP levels via FXR activation, reducing bile acids and inflammatory markers IL-1β and TNF-α. Ellagic acid also enhanced SIRT1 activity, further improving FXR function and bile acid homeostasis. CONCLUSIONS Ellagic acid exhibits protective effects against cholestasis by enhancing the FXR signaling and ntcp and bsep expression with mitigating liver damage and inflammation.
Collapse
Affiliation(s)
| | - Munaf Hashim Zalzala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
5
|
Owumi S, Oluwawibe BJ, Agbarogi H, Otunla MT, Owoeye O, Arunsi UO. Integrated In-silico and In-vivo Assessments of Betaine's Effect on the Hypothalamic-Pituitary-Testicular (HPT) Axis in Fluoride-Treated Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04519-y. [PMID: 39907888 DOI: 10.1007/s12011-025-04519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/28/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025]
Abstract
Toxicity is associated with undue sodium fluoride (NaF) exposure, and Betaine (BET) is recognised for its nutraceutical benefits. Although it is necessary to reduce toxic level exposure to fluoride, the literature lacks information on the role of BET in mitigating fluoride-induced reproductive toxicity. Therefore, this study assesses the impact of BET on NaF-induced reproductive perturbation in male rats. Wistar rats were treated with NaF (9 mg/kg) alone or co-treated with BET (50 or 100 mg/kg) for 28 d. Our findings indicate that BET significantly mitigated alterations in sperm functionality indices caused by NaF treatment. BET substantially increased reproductive hormone levels and averted NaF-induced increases in oxidative stress biomarkers and testicular enzymes. NaF-induced increases in inflammatory markers in the testis, epididymis, and hypothalamus were effectively reversed upon BET co-treatment. Also, co-treatment with BET protected genome integrity, as evidenced by p53 and apoptotic markers Bax and Bcl-2 levels, abating damages in the testes, epididymis, and hypothalamus of NaF-treated rats. Also, our findings from in-silico studies revealed that BET moderately inhibits the molecular activation of the inhibitor of nuclear factor-κB kinase, hypoxia-inducible factor -1 alpha, and proviral integration for the Moloney murine leukaemia virus-1 kinase. While it is preferable to reduce fluoride exposure, the relevant findings here indicate that BET exhibits anti-inflammatory, antioxidant, and anti-apoptotic properties that ameliorate inadvertent NaF-mediated toxicities in experimental rats exposed to NaF.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria.
| | - Bayode J Oluwawibe
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Harieme Agbarogi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Uche O Arunsi
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
6
|
Kovner A, Kapushchak Y, Hadieva E, Persidskij M, Pakharukova M. IgA nephropathy is associated with Opisthorchis felineus liver fluke infection: Retrospective 5-year analysis of human kidney samples. Trop Med Int Health 2025. [PMID: 39894678 DOI: 10.1111/tmi.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2025]
Abstract
OBJECTIVES Infection with the fish-borne liver fluke Opisthorchis felineus, which is transmitted through the consumption of raw or undercooked fish, results in serious liver damage in humans. Currently, limited clinical and experimental data reveal kidney damage co-occurring with chronic opisthorchiasis. We conducted a retrospective analysis of kidney autopsy samples over a five-year period (n = 84). The aim of the study was to assess pathomorphological changes in the kidneys and evaluate whether there is an association between IgA nephropathy and liver fluke infection. METHODS Histological analysis, immunohistochemistry, and statistical analysis were performed. RESULTS In this study, we demonstrated for the first time that chronic O. felineus infection in humans was associated with tubular dystrophy, the accumulation of renal tubular casts, and glomerulosclerosis. The hypertension increases the pathomorphological changes associated with chronic opisthorchiasis. We also detected IgA and the O. felineus total antigen in glomeruli of infected people. Fisher's test showed a significant association between O. felineus infection and IgA nephropathy, as well as between O. felineus infection and glomerulosclerosis. CONCLUSIONS Therefore, the findings of this study highlight the importance of recognising O. felineus infection as a more than hepatobiliary disease and emphasise the need for careful, personalised monitoring of kidney function in infected individuals.
Collapse
Affiliation(s)
- Anna Kovner
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Yaroslav Kapushchak
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Elena Hadieva
- Clinical Hospital of the Khanty-Mansiysk Autonomous Okrug - Ugra, Khanty-Mansiysk, Russia
| | - Mikhail Persidskij
- Clinical Hospital of the Khanty-Mansiysk Autonomous Okrug - Ugra, Khanty-Mansiysk, Russia
| | - Maria Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| |
Collapse
|
7
|
Yeter B, Suleyman Z, Bulut S, Cicek B, Coban TA, Demir O, Suleyman H. Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats. Drug Chem Toxicol 2025:1-9. [PMID: 39881661 DOI: 10.1080/01480545.2025.2457386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
The purpose of this trial was to assess the effects of methylphenidate on the kidney tissues and to investigate the protective effect of adenosine triphosphate (ATP) against possible methylphenidate nephrotoxicity in rats. The rats were separated into; healthy control (HG), methylphenidate (MPHG), ATP (ATPG), and ATP+ methylphenidate (AMPG). The ATPG and AMPG groups were administered ATP 4 mg/kg bw/d, and the HG and MPHG groups received distilled water intraperitoneally. One hour from, ATP and distilled water administration, methylphenidate 10 mg/kg bw/d was applied via oral gavage to the AMPG and MPHG groups once daily for 30 d (1 × 1). Animals were euthanized after 30 d and tissues were collected. The levels of certain oxidant/antioxidant parameters, pro-inflammatory cytokines, and Blood urea nitrogen (BUN) and creatinine levels were measured. Kidneys were also examined histopathologically. ATP inhibited the increase in oxidant and decrease antioxidant levels induced by methylphenidate. The amounts of pro-inflammatory cytokines were increased in methylphenidate-treated kidney tissue compared with the HG and AMPG groups. However, ATP increased oxidative damage markers and cytokines levels close to the healthy group. Serum BUN and creatinine levels increased with methylphenidate but ATP prevented BUN and creatinine from rising in the ATPG and MPHG groups. ATP also reduced the histopathological damage increased by methylphenidate. The potential efficacy of ATP in treating kidney damage induced by methylphenidate use.
Collapse
Affiliation(s)
- Bahtinur Yeter
- Department of Child Health and Diseases, Faculty of Health Sciences, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Zeynep Suleyman
- Department of Nursing, Faculty of Health Sciences, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Taha Abdulkadir Coban
- Department of Medical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| |
Collapse
|
8
|
Elkomy NMIM, El-Shaibany A, Al-Mahbashi H, Abdelkhalek AS, Elnagar GM, Elaasser MM, Raslan AE. Evaluation of in-vitro antioxidant activity, acute oral toxicity, and pancreatic and hepatic protective effects of Aloe rubroviolacea flowers extract against CCl 4 toxicity in a rat model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118768. [PMID: 39218129 DOI: 10.1016/j.jep.2024.118768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe rubroviolacea (Arabian Aloe) was widely cultured and commonly used in traditional medicine. Aloe species was highly recommended in folk medicine for abdominal pain, intestinal infection, intestinal colic, obesity, and gynaecological pain after childbirth. AIM OF THE WORK The present work aimed to conduct chemical profiling, in-vitro antioxidant activity, in-vivo oral acute toxicity study of A. rubroviolacea flowers ethanolic extract (ARFEE) along with exploring pancreatic and hepatic protective effects of ARFEE against carbon tetrachloride (CCl4) toxicity in a rat model. Molecular docking study of ARFEE and 3D structure activity relationship was also demonstrated to investigate the proposed antioxidant mechanism. MATERIALS AND METHODS The chemical composition was analyzed using gas chromatography-mass spectrometry (GC-MS) and thin layer chromatography (TLC) techniques. Total phenolic and flavonoid contents in ARFEE were estimated by Folin-Ciocalteu and AlCl3 colorimetric methods, respectively. In-vitro antioxidant DPPH assay was performed using ascorbic acid as a reference standard. Moreover, In-vivo acute toxicity study using fixed doses of ARFEE (0.1, 0.5, 1, 2 and 3 g/kg orally) was conducted. CCl4 toxicity was induced by using a single dose of CCl4 (1 ml/kg, i.p.) on 5th day, silymarin (50 mg/kg/day, orally) as a standard and two different doses of ARFEE (250, 500 mg/kg, orally) daily for 5 days before CCl4 injection. RESULTS GC-MS analysis displayed the existence of 36 chemical compounds, the majority of which were fatty acids and their esters, in addition to phytosterols. The total phenolic content of ARFEE was 25.09 ± 1.65 mg of gallic acid equivalent/g extract dry weight (mg GAE/g DW), while the total flavonoid content was 17.48 ± 0.64 mg of quercetin equivalent/g extract dry weight (mg QE/g DW). Our results showed that the ARFEE had a potential in-vitro antioxidant activity as strong as ascorbic acid. No mortality or signs of toxicity were observed after ARFEE intake. Additionally, ARFEE ameliorated CCl4 toxicity on hepatic and pancreatic tissues. Molecular docking study resulted in potent promising natural compounds contained in ARFEE with anti-oxidant potential. CONCLUSION Based on oral safety, good anti-oxidant and pancreato- and hepato-protective activities of ARFEE against CCl4 toxicity, ARFEE is probably a potent agent for treatment of liver ailments.
Collapse
Affiliation(s)
- Nesreen M I M Elkomy
- Pharmacology and toxicology department, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Amina El-Shaibany
- Pharmacognosy Department, University of Sana'a, Pharmacy College, Yemen.
| | - Hassan Al-Mahbashi
- Department of Forensic Medicine and Clinical Toxicology, College of Medicine, Sana'a University, Sanaa, Yemen.
| | - Ahmed S Abdelkhalek
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Gehad M Elnagar
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Egypt; Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Egypt.
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787, Nasr City, Cairo, Egypt.
| | - Ali E Raslan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| |
Collapse
|
9
|
Amlie T, Dalum A, Stormoen M, Evensen Ø. Assessment of a semiquantitative scoring system for mild-to-moderate gill lesions in Atlantic salmon reared in recirculating aquaculture systems in Norway. J Vet Diagn Invest 2025:10406387241310900. [PMID: 39876026 PMCID: PMC11775946 DOI: 10.1177/10406387241310900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2025] Open
Abstract
Compromised gill health is a critical cause of forfeited welfare in Atlantic salmon farming. Detecting and quantifying the early onset of gill disease is important to reveal initial inflicting stimuli. We collected gill samples of 45 Atlantic salmon from 2 commercial recirculating aquaculture systems (RASs) spanning fry-to-market-size fish with no clinical signs of gill disease. Gill samples were assessed histologically by 3 independent raters with different levels of experience. Semiquantitative scoring for 7 types of gill changes was carried out for 10 filaments per gill (450 filaments total) over 3 rounds on anonymized samples. Scores were summarized for each type of gill change. The assumed clinical relevance for each change was transformed into a category score, followed by an assessment of agreement within (intra) and between (inter) raters. A generalized linear model estimated the difference in score levels between raters. For each rater, intra-rater agreement was high for 6 gill changes and moderate for 1 gill change. Inter-rater agreement was moderate to almost-perfect, except for 2 gill changes; generalized linear model regression revealed systematic differences in score usage between the raters. Our scoring protocol worked satisfactorily for mucous cell amount, lamellar clubbing, lamellar hypertrophy and/or hyperplasia, and aneurysms, despite different levels of expertise in histologic evaluation. Intra-rater agreement was consistent, but differences existed for interlamellar hypercellularity, lamellar inflammation, and degeneration. Scoring subclinical gill changes is a challenge, and our scoring system for mild-to-moderate lesions may enable early intervention to limit the detrimental effects of poor gill health in RAS farming.
Collapse
Affiliation(s)
- Thomas Amlie
- Åkerblå, Sistranda, Norway
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås, Norway
| | - Alf Dalum
- The Norwegian College of Fishery Science, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Marit Stormoen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås, Norway
| |
Collapse
|
10
|
Elemam NM, Nader MA, Abdelmageed ME. Ameliorative impact of sacubitril/valsartan on paraquat-induced acute lung injury: role of Nrf2 and TLR4/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03785-w. [PMID: 39869189 DOI: 10.1007/s00210-025-03785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025]
Abstract
Herbicides such as paraquat (PQ) are frequently utilized particularly in developing nations. The present research concentrated on the pulmonary lesions triggered by PQ and the beneficial effect of the angiotensin receptor neprilysin inhibitor (ARNI), sacubitril/valsartan, against such pulmonary damage. Five groups of rats were established: control, ARNI, PQ (10 mg/kg), ARNI 68 + PQ, and ARNI 34 + PQ. Following euthanasia, lungs were isolated and subjected to a histopathological test, and the ELISA technique was used to evaluate oxidative stress biomarkers, toll-like receptor 4 (TLR4), nuclear factor erythroid 2-related factor 2 (Nrf2), phosphatidylinositol-3-kinase (PI3K), phosphorylated protein kinase B (p-AKT), and inflammatory markers: nuclear factor kappa B p65 subunit (NF-κB p65), tumor necrosis factor α (TNFα), and interleukin 1beta (IL-1β). In conjunction with abnormally high levels of malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS), the PQ group also displayed low levels of reduced glutathione (GSH) and total antioxidant capacity (TAC). Additionally, TLR4, PI3K, and p-AKT were significantly elevated together with unusually low level of Nrf2. Moreover, inflammatory biomarkers, NF-κB p65, TNFα, and IL-1β, were abnormally elevated. Meanwhile, ARNI-treated groups reversed all alterations precipitated by PQ in a dose-dependent manner. ARNI could mitigate pulmonary damage triggered by PQ via potential antioxidant anti-inflammatory qualities.
Collapse
Affiliation(s)
- Nourhane M Elemam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| |
Collapse
|
11
|
Cross RW, Woolsey C, Prasad AN, Borisevich V, Agans KN, Deer DJ, Harrison MB, Dobias NS, Fenton KA, Cihlar T, Nguyen AQ, Babusis D, Bannister R, Vermillion MS, Chu VC, Geisbert TW. Oral obeldesivir provides postexposure protection against Marburg virus in nonhuman primates. Nat Med 2025:10.1038/s41591-025-03496-y. [PMID: 39805309 DOI: 10.1038/s41591-025-03496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
The recent outbreak of Marburg virus (MARV) in Rwanda underscores the need for effective countermeasures against this highly fatal pathogen, with case fatality rates reaching 90%. Currently, no vaccines or approved treatments exist for MARV infection, distinguishing it from related viruses such as Ebola. Our study demonstrates that the oral drug obeldesivir (ODV), a nucleoside analog prodrug, shows promising antiviral activity against filoviruses in vitro and offers significant protection in animal models. Here with cynomolgus macaques (n = 6), a 10 day regimen of once-daily ODV, initiated 24 h after exposure, provided 80% protection against a thousandfold lethal MARV challenge, delaying viral replication and disease onset. Transcriptome analysis revealed that early adaptive responses correlated with successful outcomes. Compared with intravenous options, oral antivirals such as ODV offer logistical advantages in outbreak settings, enabling easier administration and broader contact coverage. Our findings support the potential of ODV as a broad-spectrum, oral postexposure prophylaxis for filoviruses.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Eldeeb FA, Noseer EA, Abdelazeem S, Ali E, Basher AW, Abdalla MAA, Ibrahim HH. Effect of dietary supplementation of Lawsonia inermis and Acacia nilotica extract on growth performance, intestinal histopathology, and antioxidant status of broiler chickens challenged with coccidiosis. BMC Vet Res 2025; 21:2. [PMID: 39762829 PMCID: PMC11702094 DOI: 10.1186/s12917-024-04409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Avian coccidiosis is one of the many disorders that seriously harm birds' digestive systems. Nowadays the light is shed on using Phytochemical/herbal medicines as alternative natural anti-coccidial chemical-free standards. Consequently, this study aimed to investigate the impact of lawsonia inermis powder (LIP), and Acacia nilotica aqueous extract (ANAE), on growth performance, serum biochemical, antioxidant status, cytokine biomarkers, total oocyst count and intestinal histopathology of broiler chickens challenged with coccidiosis. Two hundred and forty-one-day-old Ross chicks were randomly distributed into 8 groups, four were challenged with coccidia, while the other four were unchallenged. Each group consisted of 3 replicates of 10 chicks each. The birds were challenged with Eimeria species orally on day 14 of age. Group 1B was unchallenged, and Group 2 A was challenged with coccidiosis and both were fed the basic diet without additives. Groups 3 A, 4 A, and 5 A were challenged and fed on the basic diet supplemented with LIP (40 g/kg of diet), ANAE (5 g/kg of diet), and LIP + ANAE combination, respectively. Groups 3B, 4B, and 5B were unchallenged and fed on the basic diet supplemented with LIP (40 g/kg of diet) and ANAE (5 g/kg of diet) and LIP + ANAE combination, respectively. The best results of growth performance parameters were recorded in G5B, and G5A followed by the group fed on ANAE and then the group fed on LIP compared with the control. All challenged broilers had higher aspartate aminotransferase (AST), alanine transaminase (ALT), urea, creatinine, glucose, MDA, IL-4 &TNF-α levels compared to all unchallenged broilers. Challenged broilers had lower serum cholesterol, triglycerides, total protein, albumin, globulin, SOD, GPX & IL-10 levels compared to non-challenged broilers. Histopathological examination of the small intestine and cecum of challenged treated groups with LIP + ANAE showed good mucosal integrity, few leukocytes infiltration, and low total oocyst count in broilers manure, followed by ANAE then LIP groups. In conclusion, dietary supplementation of lawsonia inermis powder and Acacia nilotica aqueous extract either alone or in combination had positive effects on broiler performance, blood metabolites, antioxidant status, cellular response, and intestinal morphology during the exposure to Eimeria spp. as a potential natural anti-coccidial.
Collapse
Affiliation(s)
- Fares A Eldeeb
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Enas A Noseer
- Department of Biochemistry, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Shimaa Abdelazeem
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Esraa Ali
- Department of parasitology, Animal Health Research Institute (AHRI), Agricultural Research Centre (ARC), Qena branch, Qena, Egypt
| | - Asmaa W Basher
- Department of pharmacology, Faculty of Veterinary Medicine, South valley University, Qena, Egypt
| | - M A A Abdalla
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hytham H Ibrahim
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| |
Collapse
|
13
|
Kanika, Ahmad A, Kumar A, Rahul, Mishra RK, Ali N, Navik U, Parvez S, Khan R. Leveraging thiol-functionalized biomucoadhesive hybrid nanoliposome for local therapy of ulcerative colitis. Biomaterials 2025; 312:122747. [PMID: 39142219 DOI: 10.1016/j.biomaterials.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N4N1, Canada
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Rahul
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Rakesh Kumar Mishra
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Ghudda, Punjab, 151401, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
14
|
Mao N, Yu Y, Cui J, He J, Yang Y, Wang D. Effect of Matrine on growth performance, gut health, and gut microbiota in chickens infected with avian pathogenic Escherichia coli. Poult Sci 2025; 104:104520. [PMID: 39546922 PMCID: PMC11609370 DOI: 10.1016/j.psj.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major cause of avian colibacillosis. Matrine, a natural component derived from Sophora flavescens, exhibits various pharmacological effects, including anti-inflammatory and antioxidant activities. However, its role in mitigating APEC-induced intestinal damage in chickens remains insufficiently understood. This study aimed to explore the protective effects and potential mechanisms of matrine against APEC-induced intestinal damage. Chickens were administered matrine (10 or 20 mg/kg) from 6 days old for 5 days, followed by an APEC intraperitoneal injection on day 10. After 72 h of APEC infection, tissues were collected for analysis. Results indicated that pretreatment with matrine alleviated the symptoms of APEC infection in chickens, improving survival rates and promoting weight gain. Additionally, pretreatment with matrine reduced the secretion and gene expression of IL-1β, IL-6, and TNF-α in intestinal tissues, while enhancing serum SOD, GSH, and CAT activity, as well as gene expression levels in the intestine. Pretreatment with matrine reduced the levels of TLR4, MyD88, and NF-κB in intestinal tissues. Moreover, pretreatment with matrine ameliorated intestinal inflammation and pathological damage, restoring the expression of ZO-1, Occludin, and MUC2 in the intestine during APEC infection. Furthermore, pretreatment with matrine alleviated gut microbiota dysbiosis by lowering the abundance of harmful bacteria. In summary, matrine alleviated APEC-induced intestinal inflammation and damage, potentially by inhibiting NF-κB signaling pathway and reshaping the gut microbiota. These findings provide promising insights into the prevention and treatment of avian colibacillosis.
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiqin Cui
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
15
|
Fikry H, Saleh LA, Sadek DR, Alkhalek HAA. The possible protective effect of luteolin on cardiovascular and hepatic changes in metabolic syndrome rat model. Cell Tissue Res 2025; 399:27-60. [PMID: 39514020 DOI: 10.1007/s00441-024-03927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
The metabolic syndrome, or MetS, is currently a global health concern. The anti-inflammatory, anti-proliferative, and antioxidant properties of luteolin are some of its advantageous pharmacological characteristics. This research was designed to establish a MetS rat model and investigate the possible protective effect of luteolin on cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. Forty adult male albino rats were split into four groups: a negative control group, a group treated with luteolin, a group induced MetS (fed 20% fructose), and a group treated with luteolin (fed 20% fructose and given luteolin). Following the experiment after 8 weeks, biochemical, histological (light and electron), and immunohistochemistry analyses were performed on liver and heart tissues. Serum levels of cTnI, CK-MB, and LDH were significantly elevated in response to the cardiovascular effect of MetS. Furthermore, compared to the negative control group, the MetS group showed a marked increase in lipid peroxidation in the cardiac and hepatic tissues, as evidenced by elevated levels of MDA and a decline in the antioxidant defense system, as demonstrated by lower activities of GSH and SOD. The fatty liver-induced group exhibited histological alterations, including disrupted hepatic architecture, dilated and congested central veins, blood sinusoids, and portal veins. In addition to nuclear structural alterations, most hepatocytes displayed varying degrees of cytoplasmic vacuolation, mitochondrial alterations, and endoplasmic reticulum dilatation. These alterations were linked to inflammatory cellular infiltrations, collagen fiber deposition, active hepatic stellate cells, and scattered hypertrophied Kupffer cells, as demonstrated by electron microscopy and validated by immunohistochemical analysis. It is interesting to note that eosinophils were seen between the liver cells and in dilated blood sinusoids. Moreover, the biochemical (hepatic and cardiac) and histological (liver) changes were significantly less severe in luteolin-treated rat on a high-fructose diet. These results suggested that luteolin protects against a type of metabolic syndrome that is produced experimentally.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| | - Doaa Ramadan Sadek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| | - Hadwa Ali Abd Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| |
Collapse
|
16
|
Larsen A, Timmermann AM, Kring M, Weltz TK, Ørholt M, Vester-Glowinski P, Elberg JJ, Trillingsgaard J, Mielke LV, Hölmich LR, Damsgaard TE, Roslind A, Herly M. A Histological Assessment Tool for Breast Implant Capsules Validated in 480 Patients with and Without Capsular Contracture. Aesthetic Plast Surg 2025; 49:497-508. [PMID: 38849553 DOI: 10.1007/s00266-024-04128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2023] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Understanding the impact of breast implants on the histological response in the surrounding fibrous capsule is important; however, consensus is lacking on how to analyze implant capsules histologically. We aimed to develop a standardized histological assessment tool to be used in research potentially improving diagnostic accuracy and treatment strategies for capsular contracture. METHODS Biopsies of breast implant capsules from 480 patients who had undergone breast augmentation or reconstruction were collected and stained with hematoxylin and eosin. Initially, biopsies from 100 patients were analyzed to select histological parameters demonstrating the highest relevance and reproducibility. Then, biopsies from the remaining 380 patients were used to determine intra- and interobserver agreements of two blinded observers and agreement with a pathologist. Finally, we tested the association between the parameters and capsular contracture. RESULTS The histological assessment tool included ten parameters assessing the inflammatory, fibrotic, and foreign-body reaction to breast implants, each graded on two-, three-, or four-point scales. Intra- and interobserver agreements were almost perfect (0.83 and 0.80), and agreement with the pathologist was substantial (0.67). Four parameters were significantly correlated with capsular contracture, namely chronic inflammation with lymphocyte infiltration (p < 0.01), thickness of the collagen layer (p < 0.0001), fiber organization (p < 0.01), and calcification (p < 0.001). CONCLUSIONS This is the first validated histological assessment tool for breast implant capsules. The validated tool not only advances our understanding of capsular contracture but also sets a new standard for histological evaluation in breast implant research and clinical diagnostics. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Andreas Larsen
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Adam Mandrup Timmermann
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Mikela Kring
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Tim Kongsmark Weltz
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Mathias Ørholt
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Peter Vester-Glowinski
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | | | | | | | - Lisbet Rosenkrantz Hölmich
- Department of Plastic and Reconstructive Surgery, Herlev and Gentofte, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tine Engberg Damsgaard
- Department of Plastic and Reconstructive Surgery, Odense and Little Belt Hospital, Odense University Hospital, Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Anne Roslind
- Department of Pathology, Herlev and Gentofte, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mikkel Herly
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Aydin I, Erisgin Z, Cinar E, Barak MZ, Tekelioglu Y, Usta M, Mutlu HS, Turkoglu I. Should combined MTX and CoQ10 use be reconsidered in terms of steatosis? A biochemical, flow cytometry, histopathological experimental study. Drug Chem Toxicol 2024:1-14. [PMID: 39734089 DOI: 10.1080/01480545.2024.2442660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024]
Abstract
In the present study, the effects of coenzyme Q10 (CoQ10), which is widely used in daily life, on the methotrexate (MTX)-induced hepatotoxicity, which is widely used today in malignancies and autoimmune diseases, were examined. Twenty-four female Wistar albino rats were divided into four groups. The group 1 (n = 6) was given 1 mL corn oil by oral gavage (p.o.) during seven days. Group 2 was given 20 mg/kg intraperitoneal (i.p.) MTX only on the first day of the experiment. Group 3 was given 20 mg/kg (i.p.) MTX on the first day of the experiment and 100 mg/kg CoQ10 dissolved in 1 mL corn oil were given by oral gavage during seven days, and group 4 was given 100 mg/kg CoQ10 dissolved in 1 mL corn oil by oral gavage during seven days. At the end of experiment, all animals were euthanized under anesthesia. In the liver tissue, histopathologic analysis on the hematoxylin and eosin (H&E), Masson trichrome, and periodic acid Schiff (PAS) stained sections, apoptotic analysis (% Annexin V positivity) by flow cytometry, and biochemical analysis for oxidative stress markers (GSH, CAT, and TBARS) was performed. According to histopathological analysis, apoptosis, concession, fibrosis, and inflammatory cell infiltration increased in the MTX group and those results significantly decreased in the MTX + CoQ10 groups. As an interesting result, fatty degeneration and TBARS elevation were observed in the MTX + CoQ10 group. As a result, although CoQ10 has protective effects on MTX-induced hepatotoxicity, fatty degeneration due to the combined usage of MTX and CoQ10 should be investigated with further studies.
Collapse
Affiliation(s)
- Ismail Aydin
- Department of General Surgery, Faculty of Medicine, Giresun University, Giresun, Turkiye
| | - Zuleyha Erisgin
- Department of Histology and Embryology, Faculty of Medicine, Giresun University, Giresun, Turkiye
| | - Esma Cinar
- Department of Pathology, Faculty of Medicine, Giresun University, Giresun, Turkiye
| | - M Zuhal Barak
- Department of Business, Adana Science and Technic University, Adana, Turkiye
| | - Yavuz Tekelioglu
- Department of Histology and Embryology, Faculty of Medicine, Black Sea Technical University, Trabzon, Turkiye
| | - Murat Usta
- Department of Medical Biochemistry, Faculty of Medicine, Giresun University, Giresun, Turkiye
| | - Hasan Serdar Mutlu
- Department of Histology and Embryology, Faculty of Medicine, Giresun University, Giresun, Turkiye
| | - Ismail Turkoglu
- Department of Histology and Embryology, Faculty of Medicine, Giresun University, Giresun, Turkiye
| |
Collapse
|
18
|
Macêdo AKS, da Silva JRP, Brighenti LS, de Azambuja Ribeiro RI, Dos Santos HB, Thomé RG. Variations in liver histology and P-gp expression among fish species in Doce River Basin, Brazil: implications for pollution sensitivity. J Mol Histol 2024; 56:47. [PMID: 39695022 DOI: 10.1007/s10735-024-10334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Fish may have different sensitivity to pollutants present in the water. We analyzed the liver histology, and P-gp expression in six species of fish from the Doce River basin. Fish were caught at six different points in the Doce River, and liver samples were taken for histological analysis. P-gp expression was analyzed using an immunohistochemical technique. In Astyanax lacustris, Hoplias intermedius, Hypostomus affinis, Trachelyopterus striatulus and Oligosarcus acutirostris, a double arrangement of hepatocyte plates was generally observed (tubular-form), while in Deutorodon taeniatus, a single arrangement of hepatocyte plates was frequently observed (cord-like). Histological changes, such as cytoplasmic vacuolation and nuclear alteration, were observed in the livers of all species analyzed, however, the species A. lacustris (34.1%) and H. affinis (33.3%) were those with the fewest individuals with histological changes. The H. intermedius, T. striatulus, and O. acutirostris were the species that presented more than 80% of their individuals with histological changes. The A. lacustris and H. affinis were the species that showed the highest P-pg immunolabeling in the liver, while the T. striatulus and O. acutirostris had the lowest levels. These results support the hypothesis that levels of P-gp expression could respond to the resistance or sensitivity of each species to environmental pollutants.
Collapse
Affiliation(s)
- Anderson Kelvin Saraiva Macêdo
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Jicaury Roberta Pereira da Silva
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Ludmila Silva Brighenti
- Universidade do Estado de Minas Gerais, Campus Divinópolis, Avenida Paraná, 3001, Divinópolis, Minas Gerais, 35501- 170, Brazil
| | - Rosy Iara de Azambuja Ribeiro
- Laboratório de Patologia Experimental - LAPATEX, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil.
| |
Collapse
|
19
|
Bandstein S, De Miguel-Gómez L, Sehic E, Thorén E, López-Martínez S, Cervelló I, Akouri R, Oltean M, Brännström M, Hellström M. Uterine Repair Mechanisms Are Potentiated by Mesenchymal Stem Cells and Decellularized Tissue Grafts Through Elevated Vegf, Cd44, and Itgb1 Gene Expression. Bioengineering (Basel) 2024; 11:1268. [PMID: 39768086 PMCID: PMC11673270 DOI: 10.3390/bioengineering11121268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Transplantation of decellularized uterus tissue showed promise in supporting regeneration following uterine injury in animal models, suggesting an alternative to complete uterus transplantation for uterine factor infertility treatment. However, most animal studies utilized small grafts, limiting their clinical relevance. Hence, we used larger grafts (20 × 10 mm), equivalent to nearly one uterine horn in rats, to better evaluate the bioengineering challenges associated with structural support, revascularization, and tissue regeneration. We analyzed histopathology, employed immunohistochemistry, and investigated gene expression discrepancies in growth-related proteins over four months post-transplantation in acellular grafts and those recellularized (RC) with bone marrow-derived mesenchymal stem cells (bmMSCs). RC grafts exhibited less inflammation and faster epithelialization and migration of endogenous cells into the graft compared with acellular grafts. Despite the lack of a significant difference in the density of CD31 positive blood vessels between groups, the RC group demonstrated a better organized myometrial layer and an overall faster regenerative progress. Elevated gene expression for Vegf, Cd44, and Itgb1 correlated with the enhanced tissue regeneration in this group. Elevated Tgfb expression was noted in both groups, potentially contributing to the rapid revascularization. Our findings suggest that large uterine injuries can be regenerated using decellularized tissue, with bmMSCs enhancing the endogenous repair mechanisms.
Collapse
Affiliation(s)
- Sara Bandstein
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (S.B.); (L.D.M.-G.); (E.S.); (E.T.); (R.A.); (M.O.); (M.B.)
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Lucia De Miguel-Gómez
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (S.B.); (L.D.M.-G.); (E.S.); (E.T.); (R.A.); (M.O.); (M.B.)
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Edina Sehic
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (S.B.); (L.D.M.-G.); (E.S.); (E.T.); (R.A.); (M.O.); (M.B.)
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Emy Thorén
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (S.B.); (L.D.M.-G.); (E.S.); (E.T.); (R.A.); (M.O.); (M.B.)
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Sara López-Martínez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain; (S.L.-M.); (I.C.)
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain; (S.L.-M.); (I.C.)
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (S.B.); (L.D.M.-G.); (E.S.); (E.T.); (R.A.); (M.O.); (M.B.)
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (S.B.); (L.D.M.-G.); (E.S.); (E.T.); (R.A.); (M.O.); (M.B.)
- Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (S.B.); (L.D.M.-G.); (E.S.); (E.T.); (R.A.); (M.O.); (M.B.)
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Stockholm IVF-EUGIN, Hammarby allé 93, SE-120 63 Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (S.B.); (L.D.M.-G.); (E.S.); (E.T.); (R.A.); (M.O.); (M.B.)
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Health Innovation Labs by Sahlgrenska Science Park, Medicinaregatan 9C, SE-413 90 Gothenburg, Sweden
| |
Collapse
|
20
|
Zaparina OG, Kapushchak YK, Lishai EA, Hong SJ, Sripa B, Pakharukova MY. Species-specific renal and liver responses during infection with food-borne trematodes Opisthorchis felineus, Opisthorchis viverrini, or Clonorchis sinensis. PLoS One 2024; 19:e0311481. [PMID: 39637122 PMCID: PMC11620611 DOI: 10.1371/journal.pone.0311481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 12/07/2024] Open
Abstract
Three food-borne trematodes-Opisthorchis felineus, Opisthorchis viverrini, and Clonorchis sinensis-are closely related epidemiologically important species. Despite the similarity of their life cycles, these liver flukes also have marked differences in the geographical range, helminth biology, and hepatobiliary disorders. O. viverrini and C. sinensis are classified as Group 1 biological carcinogens while O. felineus is not. Direct comparisons of systemic response to the liver fluke infections are unexplored aspects. This study was carried out to identify species-specific liver and kidney responses in the hamster models after the infection with one of the three liver flukes. Liver periductal-fibrosis development was similar between hamsters infected with O. felineus or C. sinensis, whereas biliary intraepithelial neoplasia development was noticed predominantly in O. viverrini-infected ones. Species-specific renal damage was detected, including progression of interstitial fibrosis and IgA deposition in glomeruli of O. felineus-infected hamsters and C. sinensis-infected ones. A strong correlation (R = 0.63; P = 0.0001) was found between periductal fibrosis in the liver and kidney interstitial fibrosis. Future comparative studies are needed to elucidate the development of serious complications during the long term of the infection, as well as under the influence of additional factors, including concomitant infections and the use of dimethylnitrosamine to clarify the mechanisms underlying the liver fluke-associated carcinogenesis. Thus, our findings may stimulate new comparative studies on the pathogenicity.
Collapse
Affiliation(s)
- Oxana G. Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Yaroslav K. Kapushchak
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Ekaterina A. Lishai
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Sung-Jong Hong
- Center for Infectious Diseases and Vectors, Incheon National University, Incheon, Korea
| | - Banchob Sripa
- Faculty of Medicine, Department of Pathology, WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Maria Y. Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
21
|
El-Reda GA, Mahmoud UT, Ali FAZ, Abdel-Maksoud FM, Mahmoud MAM, El-Hossary FM. Neurobehavioral toxicity of Cold plasma activated water following oral gavage in mice. Neurotoxicology 2024; 105:45-57. [PMID: 39216604 DOI: 10.1016/j.neuro.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.
Collapse
Affiliation(s)
- Ghada Abd El-Reda
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt; Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Usama T Mahmoud
- Department of Animal, poultry and aquatic life behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
| | - Manal A M Mahmoud
- Department of Animal Hygiene and environmental pollution, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - F M El-Hossary
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
22
|
Abdul BA, Isa HI, Shittu M, Oladele SB. Insight into didecyl dimethyl ammonium bromide toxicity following acute exposure in pullets (Gallus gallusdomesticus). Vet Res Commun 2024; 48:3909-3919. [PMID: 39365554 DOI: 10.1007/s11259-024-10564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Didecyl dimethyl ammonium bromide (DDAB) is a quaternary ammonium compound used for the sanitation of drinking water of poultry and water pipelines in farms. There is scarcity of information on the toxicology of DDAB in poultry. This study set out to profile the acute toxicity of DDAB in poultry. Issa brown pullets (n = 34) as experimental birds were orally administered varying doses of DDAB, using a syringe, after 12 h fasting, and observed for toxicity over 14 days. Control birds (n = 10) were similarly given normal saline orally. Toxic signs in the experimental birds were depression, anorexia, adipsia, vocalization with foamy salivation, later emaciation and death. The LD50 was calculated as 458.00 mg/kg. Birds given 2151 mg/kg DDAB died within 24 h, while those treated with 516 mg/kg succumbed on Day 14. At necropsy, grossly, there were necrosis and sloughing of the oesophagus and intestines, pale and friable liver, congested and necrotic lungs, friable popped out kidneys and emaciated carcasses. Microscopically, desquamation and necrosis of the oesophagus, crop, proventriculus and intestines and disruption of the koilin membrane of the gizzard were observed. The lungs, liver and kidneys were congested with mononuclear cellular infiltration plus loss of architecture in the lungs and liver. In conclusion, at high doses, DDAB caused significant toxicity in chickens and these findings provide new information which could serve as a guide in the diagnosis of quaternary ammonium toxicity in chicken. The results could be extrapolated to other quaternary ammonium toxicities in related avian species.
Collapse
Affiliation(s)
- Bello Ayema Abdul
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
- Department of Veterinary Pharmacology and Toxicology, Bayero University, Kano, Nigeria
| | - Hamza Ibrahim Isa
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria.
| | - Muftau Shittu
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
23
|
Lishai EA, Zaparina OG, Kapushchak YK, Sripa B, Hong SJ, Cheng G, Pakharukova MY. Comparative liver transcriptome analysis in hamsters infected with food-borne trematodes Opisthorchis felineus, Opisthorchis viverrini, or Clonorchis sinensis. PLoS Negl Trop Dis 2024; 18:e0012685. [PMID: 39652576 PMCID: PMC11627427 DOI: 10.1371/journal.pntd.0012685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Epidemiologically important food-borne trematodes Opisthorchis viverrini and Clonorchis sinensis are recognized as biological carcinogens of Group 1A, while Opisthorchis felineus is in Group 3 as noncarcinogenic to humans. Mechanisms of the biological carcinogenesis are still elusive. Some studies highlight chronic inflammation as a key factor and common pathway for cancer initiation and progression. Nonetheless, the chronic inflammation alone does not explain why these three species differ in carcinogenicity. We focused this study on genome-wide landscapes of liver gene expression and activation of cellular pathways in Mesocricetus auratus golden hamsters infected with C. sinensis (South Korea), O. viverrini (Thailand), or O. felineus (Russia) at 1 and 3 months after infection initiation. METHODOLOGY/PRINCIPAL FINDINGS Liver transcriptomes of golden hamsters (HiSeq Illumina, 2X150 bp) were sequenced at 1 and 3 months postinfection. Data processing was carried out using the following bioinformatic and experimental approaches: analysis of differential gene expression, estimates of proportions of affected liver cell types, liver histopathology, and examination of weighted gene coexpression networks. All infections caused enrichment with inflammatory response signaling pathways, fibrogenesis and cell proliferation, and IL2-STAT5, TNF-NF-κB, TGF-β, Hippo, MAPK, and PI3K-Akt signaling pathways. Nevertheless, species-specific responses to each infection were noted too. We also identified species-specific responses of liver cell types, differentially expressed gene clusters, and cellular pathways associated with structural liver damage (such as periductal fibrosis, epithelial neoplasia, and inflammation). CONCLUSIONS/SIGNIFICANCE This is the first comparative analysis of gene expression landscapes in the liver of experimental animals infected with O. viverrini, O. felineus, or C. sinensis. The trematodes have species-specific effects on the hepatobiliary system by triggering signaling pathways, thereby leading to differences in the severity of hepatobiliary structural lesions and contributing to the pathogenicity of closely related foodborne trematodes.
Collapse
Affiliation(s)
- Ekaterina A. Lishai
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oxana G. Zaparina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Yaroslav K. Kapushchak
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Banchob Sripa
- Chung-Ang University College of Medicine, Seoul, Korea
| | - Sun-Jong Hong
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Guofeng Cheng
- Shanghai Tenth People’s Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Maria Y. Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
24
|
Sabbagh S, Rayatpishe P, Goudarzi M, Behvandi MM, Norouzirad R. Protective effect of beta-carotene on hepato-nephrotoxicity of gentamicin in male Wistar rats. Tissue Cell 2024; 91:102613. [PMID: 39522182 DOI: 10.1016/j.tice.2024.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Despite causing significant tissue damage at the molecular and cellular levels, partly due to its induction of oxidative stress, it remains of interest in medical applications. Beta-carotene, found in fruits and vegetables, is being studied for its antioxidant properties. This study aimed to explore beta-carotene's protective effects against gentamicin-induced hepatorenal toxicity. METHOD Thirty male Wistar-rats were divided into five groups. Control group received normal-saline, while the canola group received canola oil (beta-carotene solvent). Gentamicin group received 100 mg/kg gentamicin injections for seven days. Beta-carotene groups were treated with beta-carotene at doses of 10 and 20 mg/kg for 10 days, along with gentamicin from the fourth day for 7 days. Serum and tissue hepatorenal function tests were performed at the end of the study. RESULTS Gentamicin resulted in hepatorenal damage. Beta-carotene alongside gentamicin significantly decreased serum SGOT (152.3 ± 12.7 vs. 264.8 ± 9.3 IU/L), SGPT (65.7 ± 2.5 vs. 98.0 ± 4.8 IU/L), creatinine (0.74 ± 0.0 vs. 1.5 ± 0.1 mg/dL), and urea (78.1 ± 10.7 vs. 207.4 ± 23.6 mg/dL) in comparison to gentamicin alone (p < 0.05). Beta-carotene caused a significant decrease in vacuolar degeneration, interstitial nephritis and infiltration of lymphocytes in kidney, and cell necrosis, vacuolar degeneration and infiltration of leukocytes compared to the gentamicin group; additionally, beta-carotene prevented increase in oxidative stress in gentamicin group. CONCLUSION Administration of gentamicin alone resulted in hepatorenal toxicity, whereas beta-carotene could prevent gentamicin-induced oxidative stress imbalance and tissue damage. Therefore, beta-carotene could serve as an adjunctive therapy to mitigate hepatorenal toxicity in patients undergoing gentamicin treatment.
Collapse
Affiliation(s)
- Susan Sabbagh
- Department of Anatomical Science, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Parisa Rayatpishe
- School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Reza Norouzirad
- Department of Biochemistry, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
25
|
Hamed AM, Ali FAZ, Mohammed AEME, Alrasheedi M, Ragab I, Aldoghaim M, Soliman SS. The ameliorative effect of chrysin on ovarian toxicity caused by methidathion in female rats. Front Mol Biosci 2024; 11:1470711. [PMID: 39669673 PMCID: PMC11635302 DOI: 10.3389/fmolb.2024.1470711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction: Methidathion (MD) is commonly used in agriculture and has adverse effects on reproduction. Chrysin (CHR) has several advantageous properties, such as anti-inflammatory, anti-cancer, and antioxidant properties. The purpose of the current investigation was to assess CHR's therapeutic efficacy in reducing ovarian toxicity brought on by MD. Methods: Twenty-four female rats were divided into four groups of six animals each. Group 1 served as a control, while group 2 rats received MD (5 mg/kg). Rats in Group 3 received CHR at a dose of 50 mg/kg. Rats in group 4 received treatment with CHR after MD intoxication. Results and Discussion: Our research revealed that MD significantly (p < 0.001) increased the levels of MDA, caspase-3, FSH, LH, CA-125, and TNF-α but significantly (p < 0.001) decreased the levels of SOD, GSH, E2, and progesterone when compared to the control and CHR groups. After receiving CHR therapy, damage induced by MD was significantly (p < 0.001) repaired. Conclusion: This study showed that CHR could mitigate the adverse effects that MD causes to the ovaries by decreasing oxidative stress, inflammation, and apoptosis; improving antioxidant status; and restoring the correct ratio of sex hormones.
Collapse
Affiliation(s)
- Amany M. Hamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | | | - Muneera Alrasheedi
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Islam Ragab
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Maryam Aldoghaim
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Safaa S. Soliman
- Department of Zoology, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
26
|
Alhegaili AS, Bafail DA, Bawahab AA, Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Khalifa NE, Elhamouly M, Dahran N, El Shetry ES. The interplay of oxidative stress, apoptotic signaling, and impaired mitochondrial function in the pyrethroid-induced cardiac injury: Alleviative role of curcumin-loaded chitosan nanoparticle. Food Chem Toxicol 2024; 194:115095. [PMID: 39515510 DOI: 10.1016/j.fct.2024.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study assessed the consequence of exposure to a pyrethroid insecticide, fenpropathrin (FPN), on the heart and the probable underlying mechanisms in rats. Moreover, the probable protective effect of curcumin-loaded chitosan nanoparticles (CMN-CNP) was evaluated. Forty male Sprague Dawley rats were distributed into four groups orally given corn oil, CMN-CNP (50 mg/kg b.wt), FPN (15 mg/kg b.wt), or CMN-CNP + FPN for 60 days. The results revealed that FPN exposure increased serum cardiac damage indicators. In addition, a substantial increase in the reactive oxygen species and malondialdehyde content but reduced enzymatic and non-enzymatic antioxidants and altered architecture was recorded in the cardiac tissue of FPN-exposed rats. Additionally, a significant down-regulation of expression of the mitochondrial complexes I-V, mitochondrial dynamics, and antioxidants-related genes but up-regulation of apoptosis-related genes was detected in the FPN-exposed group. Immunofluorescence analyses revealed higher amounts of the harmful protein 4-hydroxynonenal in the heart tissue of FPN-exposed rats. Nevertheless, the earlier disturbances were significantly rescued in the FPN + CMN-CNP treated group. Conclusively, our findings reported the cardiotoxic activity of FPN and the involvement of several mitochondrial imbalances as a probable underlying mechanism. Also, the study findings proved the efficacy of CMN-CNP in combating FPN cardiotoxic effects.
Collapse
Affiliation(s)
- Alaa S Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Naief Dahran
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman S El Shetry
- Department of Anatomy, College of Medicine, University of Hail, Hail, Saudi Arabia; Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
27
|
Bozkurt I, Halici Z, Bahador Zirh E, Palabiyik-Yucelik SS. EGCG alleviates Ochratoxin A-induced pyroptosis in rat's kidney by inhibiting NLRP3/Caspase-1/GSDMD signaling pathway. Food Chem Toxicol 2024; 193:115006. [PMID: 39299375 DOI: 10.1016/j.fct.2024.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Ochratoxin A (OTA) exposure is inevitable due to its contamination in foods, and there is no treatment for the OTA induced organ toxicity. We evaluate the effect of epigallocatechin gallate (EGCG) on the nephrotoxicity caused by OTA, and to reveal the relationship of this effect with the NLRP3/Caspase-1/GSDMD pathway dependent pyroptosis. 40 male Wistar albino rats divided into 5 groups (n = 8, per group) 0.5 mg/kg/day OTA were administered to the rats and 50 mg/kg and 100 mg/kg EGCG were administered to the groups by gavage orally for 14 days. Serum urea and creatinine levels increased significantly with OTA exposure. Similarly, it was determined that significant changes in oxidative stress parameters with OTA exposure in kidney tissue. Also, there was a significant increase in kidney tissue TGF-β, NF-κB, IL-1β, IL-18, NLRP3, Caspase-1 and GSDMD mRNA expressions with OTA exposure. EGCG administration augmented a dose-dependent decrease in the aforementioned parameters. NLRP3/Caspase-1/GSDMD pathway is induced in the kidneys due to OTA exposure were shown with this study. Potent antioxidant EGCG could alleviate the pathways specified with this study in OTA nephrotoxicity and its supplementation may be effective strategies for the protection.
Collapse
Affiliation(s)
- Ilyas Bozkurt
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Elham Bahador Zirh
- Department of Histology and Embryology, Faculty of Medicine, TOBB University of Economics and Technology, 06510, Ankara, Turkey
| | | |
Collapse
|
28
|
Elgohary MK, Abo-Ashour MF, Abd El Hadi SR, El Hassab MA, Abo-El Fetoh ME, Afify H, Abdel-Aziz HA, Abou-Seri SM. Novel anti-inflammatory agents featuring phenoxy acetic acid moiety as a pharmacophore for selective COX-2 inhibitors: Synthesis, biological evaluation, histopathological examination and molecular modeling investigation. Bioorg Chem 2024; 152:107727. [PMID: 39167872 DOI: 10.1016/j.bioorg.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Inflammation management presents a critical challenge in modern medicine, with nonsteroidal anti-inflammatory drugs (NSAIDs) being a widely used therapeutic option. However, their efficacy is often accompanied by significant gastrointestinal adverse effects, necessitating the exploration of safer alternatives, particularly through the investigation of cyclooxygenase-2 (COX-2) inhibitors. This study endeavors to address this imperative through the synthesis and evaluation of pyrazoline-phenoxyacetic acid derivatives. Among the synthesized compounds, 6a and 6c emerged as promising candidates, demonstrating potent COX-2 inhibition with IC50 values of 0.03 µM for both and selectivity index = 365.4 and 196.9, respectively. Furthermore, these compounds exhibited efficacy in mitigating formalin-induced edema in male Wistar rats, accompanied by favorable safety profiles upon histological examination of vital organs. Comprehensive safety assessments, including evaluation of creatinine, AST, and ALT enzymatic as well as troponin T and creatine kinase-MB levels, further reinforce the promising attributes of the synthetic candidates. Molecular docking studies endorsed by molecular dynamic simulations corroborate the biological findings, elucidating significant protein-ligand interactions at COX-2 active sites indicative of therapeutic potential.
Collapse
Affiliation(s)
- Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, El Saleheya El Gadida University, Egypt
| | - Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Mohammed E Abo-El Fetoh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hassan Afify
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
29
|
Parajuli A, Mäkelä I, Roslund MI, Ringqvist E, Manninen J, Sun Y, Nurminen N, Oikarinen S, Laitinen OH, Hyöty H, Flodström-Tullberg M, Sinkkonen A. Production, analysis, and safety assessment of a soil and plant-based natural material with microbiome- and immune-modulatory effects. Methods 2024; 231:94-102. [PMID: 39306218 DOI: 10.1016/j.ymeth.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
It has been suggested that reduced contact with microbiota from the natural environment contributes to the rising incidence of immune-mediated inflammatory disorders (IMIDs) in western, highly urbanized societies. In line with this, we have previously shown that exposure to environmental microbiota in the form of a blend comprising of soil and plant-based material (biodiversity blend; BDB) enhances the diversity of human commensal microbiota and promotes immunoregulation that may be associated with a reduced risk for IMIDs. To provide a framework for future preclinical studies and clinical trials, this study describes how the preparation of BDB was standardized, its microbial content analysed and safety assessments performed. Multiple batches of BDB were manufactured and microbial composition analysed using 16S rRNA gene sequencing. We observed a consistently high alpha diversity and relative abundance of bacteria normally found in soil and vegetation. We also found that inactivation of BDB by autoclaving effectively inactivates human and murine bacteria, viruses and parasites. Finally, we demonstrate that experimental mice prone to develop IMIDs (non-obese diabetic, NOD, mouse model) can be exposed to BDB without causing adverse effects on animal health and welfare. Our study provides insights into a potentially safe, sustainable, and cost-effective approach for simulating exposure to natural microbiota, which could have substantial impacts on health and socio-economic factors.
Collapse
Affiliation(s)
- Anirudra Parajuli
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Iida Mäkelä
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland
| | - Marja I Roslund
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Juulia Manninen
- Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Yan Sun
- Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | - Aki Sinkkonen
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland.
| |
Collapse
|
30
|
Elazab ST, Eldin REAG. α-Bisabolol and royal jelly differentially mitigate thioacetamide-induced hepatic fibrosis in rats associated with the inhibition of TGF-β1/FAK/α-SMA signaling. Food Chem Toxicol 2024; 193:115069. [PMID: 39442747 DOI: 10.1016/j.fct.2024.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2024] [Revised: 10/13/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Hepatic fibrosis is a global health burden that accounts for high mortality. No definitive therapy to suppress the fibrosis so far. Thus, looking for an effective remedy to address the unmet medical need is crucial. We aimed to scrutinize the efficacy of royal jelly (RJ) and/or α-Bisabolol (BISA) in the regression of fibrosis provoked by thioacetamide (TAA), focusing on their action on redox status, NF-κBp65, apoptosis, and TGF-β1/FAK/α-SMA pathway. TAA was injected intraperitoneally twice weekly to trigger hepatic fibrosis. Rats were gavaged with RJ (100 mg/kg) and/or BISA (50 mg/kg) daily for 8 weeks. The findings elucidated that RJ and/or BISA alleviated TAA-provoked fibrosis mirrored by the improvement of hepatotoxicity serum indices, abolishing oxidative stress, and repair the morphological alterations. Additionally, RJ and BISA suppressed the hepatic inflammation induced by TAA through downregulating NF-κBp65 expression, reducing TNF-α and IL-6 concentrations, and elevating IL-10 level. Their anti-fibrotic effect was emphasized from the decline in FAK, Smad3, COL-III, hydroxyproline levels, and TGF-β1, α-SMA immunoexpression. BISA displayed better ameliorative action than RJ. Conclusively, RJ and/or BISA possess a hepatoprotective activity against TAA-mediated fibrosis by enhancing antioxidant defense, inhibiting NF-κBp65, and modulating TGF-β1/FAK/α-SMA signaling. RJ and BISA might be prospective candidates to combat hepatic fibrosis.
Collapse
Affiliation(s)
- Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
31
|
Elazab ST, Hsu WH. Ferulic acid ameliorates concanavalin A-induced hepatic fibrosis in mice via suppressing TGF-β/smad signaling. Toxicol Appl Pharmacol 2024; 492:117099. [PMID: 39260469 DOI: 10.1016/j.taap.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIM Hepatic fibrosis, one of the main reasons for death globally, is a serious complication of chronic liver disorders. However, the available therapies for liver fibrosis are limited, ineffective, and often associated with adverse events. Hence, seeking for a novel, effective therapy is warranted. Our objective was to investigate the potential efficacy of ferulic acid (FA), a phenolic phytochemical, at different doses in hindering the progress of concanavalin A (Con A)-induced hepatic fibrosis and explore the involved mechanisms. METHODS Thirty-six mice were assorted into 6 groups (n = 6): Group I (control); group II received FA (20 mg/kg/day orally for 4 weeks); group III received Con A (6 mg/kg/week/i.v.) for 4 weeks; groups IV, V, and VI received Con A and were offered FA at 5, 10, and 20 mg/kg/day, respectively. RESULTS The data showed the palliative effect of FA against Con A-induced fibrosis in a dose-dependent manner. This was obvious from the recovery of liver markers and hepatic architecture with the regression of fibrosis in FA-treated mice. FA abolished Con A-mediated oxidative insults and promoted the antioxidant enzyme activities, which run through the Nrf2/HO-1 signaling. Additionally, FA suppressed Con A-induced increase in NF-kB and IL-β levels, and TNF-α immune-expression. The anti-fibrotic effect of FA was evident from the drop in TGF-β, smad3 levels, α-SMA expression, and hydroxyproline content. CONCLUSION FA attenuated Con A-induced liver fibrosis through stimulating Nrf2 signaling, suppressing NF-kB, and inhibiting the TGF-β/smad3 signaling pathway. Thus FA can be considered as a promising therapy for combating liver fibrosis.
Collapse
Affiliation(s)
- Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Walter H Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
32
|
Abd-Elhakim YM, El-Fatah SSA, Behairy A, Saber TM, El-Sharkawy NI, Moustafa GG, Abdelgawad FE, Saber T, Samaha MM, El Euony OI. Pumpkin seed oil lessens the colchicine-induced altered sex male hormone balance, testicular oxidative status, sperm abnormalities, and collagen deposition in male rats via Caspase3/Desmin/PCNA modulation. Food Chem Toxicol 2024; 193:115029. [PMID: 39362398 DOI: 10.1016/j.fct.2024.115029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
This study examined the efficiency of pumpkin seed oil (PSO) to rescue the colchicine (CHC)-induced adverse impacts on sperm characteristics, male sex hormones, testicular architecture, oxidative status, DNA content, collagen deposition, and immune expression of desmin and PCNA. Male Sprague Dawley rats were divided into four experimental groups (n = 10 each): control (distilled water), CHC (0.6 mg/kg b.wt), PSO (4 mL/kg b.wt), and CHC + PSO. After 60 days of dosing, CHC significantly reduced sperm motility (19%), sperm concentration (38%), estradiol (52%), testosterone (37%), luteinizing hormone (54%), and follicle-stimulating hormone (29%) compared to the control. Yet, the testicular tissues of CHC-administered rats exhibited elevated abnormal sperms (156%), malondialdehyde (354%), lactate dehydrogenase (73%), Caspase-3 (66%), and 8-hydroxyguanosine (65%) but lower reduced glutathione (74%), catalase (73%), and superoxide dismutase (78%) compared to the control group. Moreover, CHC induced testicular degeneration, distorted seminiferous tubules, apoptotic cells, exfoliated spermatogenic cells, reduced DNA content, decreased PCNA and desmin immune-expression, and increased collagen deposition. PSO effectively reversed the CHC-induced alterations in sperm quality and testicular function and architecture, likely through its antioxidant, antifibrotic, anti-apoptotic, and DNA-protective properties. These results suggest that PSO may be a beneficial intervention for long-term CHC users and may protect against CHC-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nabela I El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Fathy Elsayed Abdelgawad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mariam M Samaha
- Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Omnia I El Euony
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| |
Collapse
|
33
|
Shawki MM, Abido OY, Saif MA, Sobh MS, Gado AR, Elnaggar A, Nassif SA, El-Shall NA. Comparative pathogenicity of duck hepatitis A virus genotype 3 in different duck breeds: Implications of the diagnosis and prevention of duck viral hepatitis. Comp Immunol Microbiol Infect Dis 2024; 114:102256. [PMID: 39437532 DOI: 10.1016/j.cimid.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Duck hepatitis A virus (DHAV) infection in ducklings causes acute hepatitis with considerable economic losses. In this study, Pekin and Muscovy duckling flocks (n=9) suffering from high mortality and hepatic lesions were examined by RT-PCR for DVHA. 44.4 % (4/9) of samples were positive for DHAV (5' UTR region), of which 100 % (4/4) were DVHA-3 (VP1 gene). VP1 sequencing and phylogenetic analysis of an isolate originated from Muscovy ducklings showed that it shared 96.8 % -100 %, 88.5-89.2 %, and 86.5-88.2 % nucleotide similarity (ns) with the Egyptian, Korean-Vietnamese, and Chinese DVHA-3 strains, respectively. It was distinguished from the DHAV-1 vaccine (67.6 % ns). The sequenced DVHA-3 isolate was used to experimentally infect 5-day-old Pekin and Muscovy ducklings vs. control groups. No apparent clinical signs or deaths were reported in the experimentally-infected groups. Pekin ducklings showed greater cloacal viral shedding than Muscovy until the 6th dpi (P<0.05). DVHA-3 induced a significant rise in IFN-β and IL-1β serum levels, where Muscovy ducklings' levels were higher than Pekin ducklings. Among the biochemical parameters, AST was only increased on the 4th dpi in both breeds vs. control (P<0.05). Compared to Muscovy ducklings at 2, 4, and 6 day post infection (dpi), the infected Pekin group had lower lipase levels (P≥0.05, p<0.05, and p<0.05, respectively), while ALT was higher at 4 and 6 dpi (P<0.05). The histopathological lesions supported the gross lesions, and their scores were dominant at 2 and 4 dpi in both breeds. At 6 and 8 dpi, Pekin showed more severe histopathological changes compared to Muscovy for the liver, heart, brain, and intestines; the pancreas, kidney, and lung showed the opposite pattern. In conclusion, Pekin ducklings displayed distinct DHAV-3 infection results from Muscovy ducklings, and more research utilizing a variety of DHAV-3 strains has to be carried out.
Collapse
Affiliation(s)
- Mohamed M Shawki
- Colleague of Avian and Rabbit Diseases, Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Ola Y Abido
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Abbasia, Cairo, Egypt.
| | - Mohamed A Saif
- Senior Researcher of Virology, Reference Laboratory for Veterinary Quality Control on Poultry Production (Gamasa branch)- Animal Health Research Institute, Agricultural Research Center, 7 Nadi El-Seid Street, Giza, Dokki 12618, Egypt.
| | - Mohammed S Sobh
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Ahmed R Gado
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Arwa Elnaggar
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Abbasia, Cairo, Egypt.
| | - Samir A Nassif
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Abbasia, Cairo, Egypt.
| | - Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria 21944, Egypt.
| |
Collapse
|
34
|
Fernández-Moya A, Oviedo B, Liempi A, Guerrero-Muñoz J, Rivas C, Arregui R, Araneda S, Cornet-Gomez A, Maya JD, Müller M, Osuna A, Castillo C, Kemmerling U. Trypanosoma cruzi-derived exovesicles contribute to parasite infection, tissue damage, and apoptotic cell death during ex vivo infection of human placental explants. Front Cell Infect Microbiol 2024; 14:1437339. [PMID: 39469456 PMCID: PMC11513395 DOI: 10.3389/fcimb.2024.1437339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, can be congenitally transmitted by crossing the placental barrier. This study investigates the role of T. cruzi-derived exovesicles (TcEVs) in facilitating parasite infection and the consequent tissue damage and apoptotic cell death in human placental explants (HPEs). Our findings demonstrate that TcEVs significantly enhance the parasite load and induce tissue damage in HPEs, both in the presence and absence of the parasite. Through histopathological and immunohistochemical analyses, we show that TcEVs alone can disrupt the placental barrier, affecting the basal membrane and villous stroma. The induction of apoptotic cell death is evidenced by DNA fragmentation, caspase 8 and 3, and p18 fragment immunodetection. This damage is exacerbated when TcEVs are combined with T. cruzi infection. These findings suggest that TcEVs play a critical role in the pathogenesis of congenital Chagas disease by disrupting the placental barrier and facilitating parasite transmission to the fetus. This study provides new insights into the mechanisms of transplacental transmission of T. cruzi and highlights the potential of targeting TcEVs as a therapeutic strategy against congenital Chagas disease.
Collapse
Affiliation(s)
- Alejandro Fernández-Moya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Bielca Oviedo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristian Rivas
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rocío Arregui
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Alberto Cornet-Gomez
- Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Antonio Osuna
- Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Mitra A, Das A, Ghosh S, Sarkar S, Bandyopadhyay D, Gangopadhyay S, Chattopadhyay S. Metformin instigates cellular autophagy to ameliorate high-fat diet-induced pancreatic inflammation and fibrosis/EMT in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167313. [PMID: 38901652 DOI: 10.1016/j.bbadis.2024.167313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Chronic pancreatic dysfunction is frequently observed as a consequence of prolonged high-fat diet consumption and is a serious public health concern. This pro-diabetic insult aggravates inflammation-influenced fibrotic lesions and is associated with deregulated autophagy. Metformin, a conventional anti-hyperglycemic drug, might be beneficial for pancreatic health, but the complex molecular regulations are not clarified. Considering the worldwide prevalence of chronic pancreatic dysfunction in obese individuals, we aimed to unwind the molecular intricacies explaining the involvement of oxidative stress, inflammation and fibrosis and to approbate metformin as a plausible intervention in this crossroad. MAIN METHODS Age-matched Swiss Albino mice were exposed to high-fat diet (60 kcal%) against control diet (10 kcal%) to establish diet-induced stress model. Metformin treatment was introduced after 4 weeks to metformin-control and HFD-exposed metformin groups. After 8 weeks, metabolic and molecular outcomes were assessed to establish the impact of metformin on chronic consequences of HFD-mediated injury. KEY FINDINGS High-fat diet administration to healthy mice primes oxidative stress-mediated chronic inflammation through Nrf2/Keap1/NF-κB interplay. Besides, pro-inflammatory cytokine bias leading to fibrotic (increased TGF-β, α-SMA, and MMP9) and pro-EMT (Twist1, Slug, Vimentin, E-cadherin) repercussions in pancreatic lobules were evident. Metformin distinctly rescues high-fat diet-induced remodeling of pancreatic pro-diabetic alterations and cellular survival/death switch. Further, metformin abrogates the p62-Twist1 crosstalk in an autophagy-dependent manner (elevated beclin1, LC3-II/I, Lamp2) to restore pancreatic homeostasis. CONCLUSION Our research validates the therapeutic potential of metformin in the inflammation-fibrosis nexus to ameliorate high-fat diet-induced pancreatic dysfunction and related metabolic alterations.
Collapse
Affiliation(s)
- Ankan Mitra
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Ankur Das
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Sourav Ghosh
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Swaimanti Sarkar
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Debasish Bandyopadhyay
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Somnath Gangopadhyay
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India
| | - Sreya Chattopadhyay
- Department of Physiology, University College of Science, Technology and Agriculture, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata 700098, West Bengal, India.
| |
Collapse
|
36
|
Martínez-Bartolomé I, Masot J, Serres C. Development of an equine endometrial histology scoring system to complement the Kenney-Doig scale. Reprod Domest Anim 2024; 59 Suppl 3:e14614. [PMID: 39396872 DOI: 10.1111/rda.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 10/15/2024]
Abstract
Kenney-Doig scale is considered the international standard method for classifying uterine biopsies in mares; however, its objectivity has been questioned by various studies. In the present study, we analysed the degree of agreement between two pathologists when assessing the same set of 201 uterine biopsies, obtaining a slight to moderate level of agreement (κ = .34/κw = .57). Subsequently, we developed a numerical scale based on the evaluation of histological parameters, including inflammation, fibrosis, glandular density and lymphatic lacunae. Partial scores were summed to obtain a fifth parameter called Summation. The correlation between both scales was demonstrated (p < .0001), and their combined use resulted in a notable increase in the degree of agreement between the two pathologists (κ = .53/κw = .67).
Collapse
Affiliation(s)
| | - J Masot
- Facultad de Veterinaria, UEX, Cáceres, Spain
| | - C Serres
- Animal Medicine and Surgery Department, Veterinary Faculty, UCM, Madrid, Spain
| |
Collapse
|
37
|
Sultan HA, Talaat S, Amer SAM, Tantawy L, El-Zanaty AEI, Albadrani GM, Al-Ghadi MQ, Abdel-Daim MM, Elfeil WK. Experimental infection of Clades 2.2.1.2 (H5N1) and 2.3.4.4b (H5N8) of highly pathogenic avian influenza virus infection in commercial broilers. Comp Immunol Microbiol Infect Dis 2024; 113:102229. [PMID: 39332166 DOI: 10.1016/j.cimid.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/29/2024]
Abstract
In this study the pathogenicity, infectivity, and transmissibility of H5N1 highly pathogenic avian influenza (HPAI) clade 2.2.1.2 and H5N8 HPAI clade 2.3.4.4b viruses were evaluated in commercial broilers on days 24 and 31. The mortality rate was 100 % in both challenge viruses and in contact birds either on day 24 or day 31 which confirmed the highly pathogenicity of both clades (2.2.1.2/ 2.3.4.4b) in commercial broilers. Both clades (H5N8 clade 2.3.4.4b/ H5N1 clade 2.2.1.2 viruses) were efficiently replicate within and transmitted between commercial broilers. The H5N8-infected birds shed high titer of viruses from oropharynx and cloaca, which associated with the field spread of AIV-H5N8 in commercial broilers. Mean lesion score in both challenged clades showed similar scores, which confirmed the pathogenicity of both clades in commercial broilers' organs (mainly spleen, cerebellum, thymus, Bursa, Lung) which confirm the neurogenic affinity of the virus. In the central nervous system, non-suppurative encephalitis consisting in multifocal areas of necrosis in cerebral hemispheres, intense spongiosis, neuronal chromatolysis and gliosis were commonly observed. In cerebrum, chromatolysis of Purkinje neurons was a common finding. In the lung, interstitial pneumonia consisting of moderate to severe increase of the cellularity (macrophages and lymphoid cells) in air capillaries and focal areas of necrosis associated with intense viral replication was commonly observed. In lymphoid tissues, including spleen, thymus, and bursa of Fabricius, multifocal areas of necrosis/apoptosis of variable intensity in mononuclear cells were present. Particularly, diffuse necrotic areas were present in the spleen. In the liver, we detected focal areas of necrosis with mild distention of hepatic sinusoids. To conclude the AIV either H5N1 or H5N8 have neurological affinity with immune suppression effect based on necrosis and apoptosis of lymphoid tissues.
Collapse
Affiliation(s)
- Hesham A Sultan
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Shaimaa Talaat
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Sameh Abdel-Moez Amer
- Department of Poultry Diseases, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Laila Tantawy
- Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | | | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Wael K Elfeil
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
38
|
Wang H, You X, Wang J, Chen X, Gao Y, Wang M, Zhang W, Zhang J, Yu Y, Han B, Qi M, Liu X, Lou H, Dong T. MFSD7C protects hemolysis-induced lung impairments by inhibiting ferroptosis. Nat Commun 2024; 15:8226. [PMID: 39300060 PMCID: PMC11413235 DOI: 10.1038/s41467-024-52537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Hemolysis drives susceptibility to lung injury and predicts poor outcomes in diseases, such as malaria and sickle cell disease (SCD). However, the underlying pathological mechanism remains elusive. Here, we report that major facilitator superfamily domain containing 7 C (MFSD7C) protects the lung from hemolytic-induced damage by preventing ferroptosis. Mechanistically, MFSD7C deficiency in HuLEC-5A cells leads to mitochondrial dysfunction, lipid remodeling and dysregulation of ACSL4 and GPX4, thereby enhancing lipid peroxidation and promoting ferroptosis. Furthermore, systemic administration of MFSD7C mRNA-loaded nanoparticles effectively prevents lung injury in hemolytic mice, such as HbSS-Townes mice and PHZ-challenged 7 C-/- mice. These findings present the detailed link between hemolytic complications and ferroptosis, providing potential therapeutic targets for patients with hemolytic disorders.
Collapse
Affiliation(s)
- Huirui Wang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Xiaona You
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jingcheng Wang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Xinyi Chen
- Division of Infection and Immunity, University College London, London, USA
| | - Yinghui Gao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Mengmeng Wang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Wenru Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Jiaozhen Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Yang Yu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Han
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu hospital, Jinan, China
| | - Xiaohui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China.
| | - Ting Dong
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China.
| |
Collapse
|
39
|
Hu Y, Zhang SY, Sun WC, Feng YR, Gong HR, Ran DL, Zhang BZ, Liu JH. Breaking Latent Infection: How ORF37/38-Deletion Mutants Offer New Hope against EHV-1 Neuropathogenicity. Viruses 2024; 16:1472. [PMID: 39339948 PMCID: PMC11437417 DOI: 10.3390/v16091472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Equid alphaherpesvirus 1 (EHV-1) has been linked to the emergence of neurological disorders, with the horse racing industry experiencing significant impacts from outbreaks of equine herpesvirus myeloencephalopathy (EHM). Building robust immune memory before pathogen exposure enables rapid recognition and elimination, preventing infection. This is crucial for effectively managing EHV-1. Removing neuropathogenic factors and immune evasion genes to develop live attenuated vaccines appears to be a successful strategy for EHV-1 vaccines. We created mutant viruses without ORF38 and ORF37/38 and validated their neuropathogenicity and immunogenicity in hamsters. The ∆ORF38 strain caused brain tissue damage at high doses, whereas the ∆ORF37/38 strain did not. Dexamethasone was used to confirm latent herpesvirus infection and reactivation. Dexamethasone injection increased viral DNA load in the brains of hamsters infected with the parental and ∆ORF38 strains, but not in those infected with the ∆ORF37/38 strain. Immunizing hamsters intranasally with the ∆ORF37/38 strain as a live vaccine produced a stronger immune response compared to the ∆ORF38 strain at the same dose. The hamsters demonstrated effective protection against a lethal challenge with the parental strain. This suggests that the deletion of ORF37/38 may effectively inhibit latent viral infection, reduce the neuropathogenicity of EHV-1, and induce a protective immune response.
Collapse
Affiliation(s)
- Yue Hu
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Si-Yu Zhang
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Wen-Cheng Sun
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Ya-Ru Feng
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Hua-Rui Gong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Duo-Liang Ran
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian-Hua Liu
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| |
Collapse
|
40
|
Da Silva Filho J, Herder V, Gibbins MP, Dos Reis MF, Melo GC, Haley MJ, Judice CC, Val FFA, Borba M, Tavella TA, de Sousa Sampaio V, Attipa C, McMonagle F, Wright D, de Lacerda MVG, Costa FTM, Couper KN, Marcelo Monteiro W, de Lima Ferreira LC, Moxon CA, Palmarini M, Marti M. A spatially resolved single-cell lung atlas integrated with clinical and blood signatures distinguishes COVID-19 disease trajectories. Sci Transl Med 2024; 16:eadk9149. [PMID: 39259811 DOI: 10.1126/scitranslmed.adk9149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2023] [Revised: 02/15/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
COVID-19 is characterized by a broad range of symptoms and disease trajectories. Understanding the correlation between clinical biomarkers and lung pathology during acute COVID-19 is necessary to understand its diverse pathogenesis and inform more effective treatments. Here, we present an integrated analysis of longitudinal clinical parameters, peripheral blood markers, and lung pathology in 142 Brazilian patients hospitalized with COVID-19. We identified core clinical and peripheral blood signatures differentiating disease progression between patients who recovered from severe disease compared with those who succumbed to the disease. Signatures were heterogeneous among fatal cases yet clustered into two patient groups: "early death" (<15 days until death) and "late death" (>15 days). Progression to early death was characterized systemically and in lung histopathological samples by rapid endothelial and myeloid activation and the presence of thrombi associated with SARS-CoV-2+ macrophages. In contrast, progression to late death was associated with fibrosis, apoptosis, and SARS-CoV-2+ epithelial cells in postmortem lung tissue. In late death cases, cytotoxicity, interferon, and T helper 17 (TH17) signatures were only detectable in the peripheral blood after 2 weeks of hospitalization. Progression to recovery was associated with higher lymphocyte counts, TH2 responses, and anti-inflammatory-mediated responses. By integrating antemortem longitudinal blood signatures and spatial single-cell lung signatures from postmortem lung samples, we defined clinical parameters that could be used to help predict COVID-19 outcomes.
Collapse
Affiliation(s)
- João Da Silva Filho
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Parasitology Zurich (IPZ), VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Matthew P Gibbins
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Parasitology Zurich (IPZ), VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Monique Freire Dos Reis
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Brazil
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Federal University of Amazonas, Manaus, Brazil
- Amazonas Oncology Control Center Foundation, Manaus, Brazil
| | | | - Michael J Haley
- Department of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Carla Cristina Judice
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Fernando Fonseca Almeida Val
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Mayla Borba
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Delphina Rinaldi Abdel Aziz Emergency Hospital (HPSDRA), Manaus, Brazil
| | - Tatyana Almeida Tavella
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
- INSERM U1016, CNRS UMR8104, University of Paris Cité, Institut Cochin, Paris, France
| | | | - Charalampos Attipa
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Fiona McMonagle
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Glasgow Imaging Facility/School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Derek Wright
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Marcus Vinicius Guimaraes de Lacerda
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
- University of Texas Medical Branch, Galveston, TX, USA
| | | | - Kevin N Couper
- Department of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Wuelton Marcelo Monteiro
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Luiz Carlos de Lima Ferreira
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Christopher Alan Moxon
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- (C.A.M.)
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- (M.P.)
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Parasitology Zurich (IPZ), VetSuisse Faculty, University of Zurich, Zurich, Switzerland
- (M.M.)
| |
Collapse
|
41
|
Ramos RL, De Heredia MMB, Zhang Y, Stout RF, Tindi JO, Wu L, Schwartz GJ, Botbol YM, Sidoli S, Poojari A, Rakowski-Anderson T, Shafit-Zagardo B. Patient-specific mutation of Dync1h1 in mice causes brain and behavioral deficits. Neurobiol Dis 2024; 199:106594. [PMID: 39025270 DOI: 10.1016/j.nbd.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
AIMS Cytoplasmic dynein heavy chain (DYNC1H1) is a multi-subunit protein complex that provides motor force for movement of cargo on microtubules and traffics them back to the soma. In humans, mutations along the DYNC1H1 gene result in intellectual disabilities, cognitive delays, and neurologic and motor deficits. The aim of the study was to generate a mouse model to a newly identified de novo heterozygous DYNC1H1 mutation, within a functional ATPase domain (c9052C > T(P3018S)), identified in a child with motor deficits, and intellectual disabilities. RESULTS P3018S heterozygous (HET) knockin mice are viable; homozygotes are lethal. Metabolic and EchoMRI™ testing show that HET mice have a higher metabolic rate, are more active, and have less body fat compared to wildtype mice. Neurobehavioral studies show that HET mice perform worse when traversing elevated balance beams, and on the negative geotaxis test. Immunofluorescent staining shows neuronal migration abnormalities in the dorsal and lateral neocortex with heterotopia in layer I. Neuron-subtype specific transcription factors CUX1 and CTGF identified neurons from layers II/III and VI respectively in cortical layer I, and abnormal pyramidal neurons with MAP2+ dendrites projecting downward from the pial surface. CONCLUSION The HET mice are a good model for the motor deficits seen in the child, and highlights the importance of cytoplasmic dynein in the maintenance of cortical function and dendritic orientation relative to the pial surface. Our results are discussed in the context of other dynein mutant mice and in relation to clinical presentation in humans with DYNC1H1 mutations.
Collapse
Affiliation(s)
- Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Riland Academic Health Center, Room 26, Old Westbury, NY 11568, United States of America
| | | | - Yongwei Zhang
- Cancer Center, Albert Einstein College of Medicine, 1301 Morris Park Ave, Price Building, Rm 269, Bronx, NY 10461, United States of America.
| | - Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Riland Academic Health Center, Room 22, Old Westbury, NY 11568, United States of America.
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Rm 501, 1410 Pelham Parkway S., Bronx, NY 10461, United States of America.
| | - Liching Wu
- Dept of Medicine, Albert Einstein College of Medicine, United States of America.
| | - Gary J Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, United States of America.
| | - Yair M Botbol
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer Building, Rm 520, Bronx, NY 10461, United States of America.
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein, United States of America.
| | - Ankita Poojari
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States of America.
| | - Tammy Rakowski-Anderson
- Institute for Animal Studies, Albert Einstein College of Medicine, Van Etten Building, Room 463, Bronx, NY 10461, United States of America.
| | - Bridget Shafit-Zagardo
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer Building 514, Bronx, NY 10461, United States of America.
| |
Collapse
|
42
|
Fernandes E Mendonça LM, Joshi AB, Bhandarkar A, Shaikh S, Fernandes S, Joshi H, Joshi S. Potential anxiolytic therapeutics from Hybanthus enneaspermus (L.) F. Muell. - mitigate anxiety by plausibly modulating the GABA A-Cl - channel. Neurochem Int 2024; 178:105804. [PMID: 39002759 DOI: 10.1016/j.neuint.2024.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Anxiety is a commonly prevailing psychological disorder that requires effective treatment, wherein phytopharmaceuticals and nutraceuticals could offer a desirable therapeutic profile. Hybanthus enneaspermus (L.) F. Muell. is a powerful medicinal herb, reportedly effective against several ailments, including psychological disorders. The current research envisaged evaluating the anxiolytic potential of the ethanolic extract of Hybanthus enneaspermus (EEHE) and its toluene insoluble biofraction (ITHE) employing experimental and computational approaches. Elevated Plus Maze, Light and Dark Transition, Mirror Chamber, Hole board and Open field tests were used as screening models to assess the antianxiety potential of 100, 200 and 400 mg/kg body weight of EEHE and ITHE in rats subjected to social isolation, using Diazepam as standard. The brains of rats exhibiting significant anxiolytic activity were dissected for histopathological and biochemical studies. Antioxidant enzymes like catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase; and neurotransmitters viz. monoamines (serotonin, noradrenaline, dopamine), Gamma-aminobutyric acid (GABA), and glutamate were quantified in the different regions of rats' brain (cortex, hippocampus, pons, medulla oblongata, cerebellum). Chromatographic techniques were used to isolate phytoconstituents from the fraction exhibiting significant activity that were characterized by spectroscopic methods and subjected to in silico molecular docking. ITHE at 400 mg/kg body weight significantly mitigated anxiety in all the screening models (p < 0.05), reduced the inflammatory vacuoles and necrosis (p < 0.05) and potentiated the antioxidant enzymes (p < 0.05). It enhanced the monoamines and GABA levels while attenuating glutamate levels (p < 0.01) in the brain. Three significant flavonoids viz. Quercitrin, Rutin and Hesperidin were isolated from ITHE. In silico docking studies of these flavonoids revealed that the compounds exhibited substantial binding to the GABAA receptor. ITHE displayed a promising pharmacological profile in combating anxiety and modulating oxidative stress, attributing its therapeutic virtues to the flavonoids present.
Collapse
Affiliation(s)
| | - Arun Bhimrao Joshi
- Department of Pharmacognosy and Phytochemistry, Goa College of Pharmacy, 18th June Road, Panaji, Goa, 403001, India.
| | - Anant Bhandarkar
- Department of Pharmacognosy and Phytochemistry, Goa College of Pharmacy, 18th June Road, Panaji, Goa, 403001, India.
| | - Shamshad Shaikh
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Taleigao, Goa, 403206, India.
| | - Samantha Fernandes
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Taleigao, Goa, 403206, India.
| | - Himanshu Joshi
- Department of Pharmacology, College of Pharmacy, Graphic Era Hill University, Bhimtal Campus, Uttarakhand, 263156, India.
| | - Shrinivas Joshi
- Department of Pharmaceutical Chemistry, S.E.T.'s College of Pharmacy, Sangolli Rayanna Nagar, Dharwad, Karnataka, 580002, India.
| |
Collapse
|
43
|
Almukainzi M, El-Masry TA, Ibrahim HA, Saad HM, El Zahaby EI, Saleh A, El-Nagar MMF. Ameliorative Effect of Chitosan/ Spirulina platensis Ethanolic Extract Nanoformulation against Cyclophosphamide-Induced Ovarian Toxicity: Role of PPAR-γ/Nrf-2/HO-1 and NF-kB/TNF-α Signaling Pathways. Mar Drugs 2024; 22:395. [PMID: 39330276 PMCID: PMC11433581 DOI: 10.3390/md22090395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Cyclophosphamide (CP) is an anticancer drug that causes infertility disorders. This study was designed to evaluate a nanoformulation of chitosan with an ethanolic extract from Spirulina platensis in terms of its protection against cyclophosphamide-induced ovarian toxicity. Nine groups of female Wistar rats were randomly assigned as follows: 1: control vehicle, 2: chitosan polymer, 3: telmisartan, 4: Spirulina platensis extract, 5: nanoformulation of the Spirulina platensis, and 6: single injection of CP; groups 7, 8, and 9 received the same treatments as those used in groups 3, 4, and 5, respectively, with a single dose of CP (200 mg/kg, I.P). The results displayed that the CP treatment decreased estradiol, progesterone, anti-mullerian hormone, and GSH content, and it downregulated PPAR-γ, Nrf-2, and HO-1 gene expression. In addition, the CP treatment caused an increase in the FSH, LH, and MDA levels. In the same manner, the protein expression of caspase-3, NF-kB, and TNF-α was upregulated in response to the CP treatment, while PPAR-γ was downregulated in comparison with the control. The rats treated with SPNPs exhibited a substantial reduction in the detrimental effects of oxidative stress and inflammation of the ovarian tissue. This study's conclusions showed that SPNPs counteracted the effects of CP, preventing the death of ovarian follicles and restoring the gonadotropin hormone balance and normal ovarian histological appearance.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (M.A.); (A.S.)
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Cairo 51511, Egypt;
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (M.A.); (A.S.)
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| |
Collapse
|
44
|
Mladinich MC, Himmler GE, Conde JN, Gorbunova EE, Schutt WR, Sarkar S, Tsirka SAE, Kim HK, Mackow ER. Age-dependent Powassan virus lethality is linked to glial cell activation and divergent neuroinflammatory cytokine responses in a murine model. J Virol 2024; 98:e0056024. [PMID: 39087762 PMCID: PMC11334436 DOI: 10.1128/jvi.00560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 08/02/2024] Open
Abstract
Powassan virus (POWV) is an emergent tick-borne flavivirus that causes fatal encephalitis in the elderly and long-term neurologic sequelae in survivors. How age contributes to severe POWV encephalitis remains an enigma, and no animal models have assessed age-dependent POWV neuropathology. Inoculating C57BL/6 mice with a POWV strain (LI9) currently circulating in Ixodes ticks resulted in age-dependent POWV lethality 10-20 dpi. POWV infection of 50-week-old mice was 82% fatal with lethality sequentially reduced by age to 7.1% in 10-week-old mice. POWV LI9 was neuroinvasive in mice of all ages, causing acute spongiform CNS pathology and reactive gliosis 5-15 dpi that persisted in survivors 30 dpi. High CNS viral loads were found in all mice 10 dpi. However, by 15 dpi, viral loads decreased by 2-4 logs in 10- to 40-week-old mice, while remaining at high levels in 50-week-old mice. Age-dependent differences in CNS viral loads 15 dpi occurred concomitantly with striking changes in CNS cytokine responses. In the CNS of 50-week-old mice, POWV induced Th1-type cytokines (IFNγ, IL-2, IL-12, IL-4, TNFα, IL-6), suggesting a neurodegenerative pro-inflammatory M1 microglial program. By contrast, in 10-week-old mice, POWV-induced Th2-type cytokines (IL-10, TGFβ, IL-4) were consistent with a neuroprotective M2 microglial phenotype. These findings correlate age-dependent CNS cytokine responses and viral loads with POWV lethality and suggest potential neuroinflammatory therapeutic targets. Our results establish the age-dependent lethality of POWV in a murine model that mirrors human POWV severity and long-term CNS pathology in the elderly. IMPORTANCE Powassan virus is an emerging tick-borne flavivirus causing lethal encephalitis in aged individuals. We reveal an age-dependent POWV murine model that mirrors human POWV encephalitis and long-term CNS damage in the elderly. We found that POWV is neuroinvasive and directs reactive gliosis in all age mice, but at acute stages selectively induces pro-inflammatory Th1 cytokine responses in 50-week-old mice and neuroprotective Th2 cytokine responses in 10-week-old mice. Our findings associate CNS viral loads and divergent cytokine responses with age-dependent POWV lethality and survival outcomes. Responses of young mice suggest potential therapeutic targets and approaches for preventing severe POWV encephalitis that may be broadly applicable to other neurodegenerative diseases. Our age-dependent murine POWV model permits analysis of vaccines that prevent POWV lethality, and therapeutics that resolve severe POWV encephalitis.
Collapse
Affiliation(s)
- Megan C. Mladinich
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Jonas N. Conde
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Shayan Sarkar
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Styliani-Anna E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| |
Collapse
|
45
|
Albaqami A, Alosaimi ME, Jafri I, Mohamed AAR, Abd El-Hakim YM, Khamis T, Elazab ST, Noreldin AE, Elhamouly M, El-Far AH, Eskandrani AA, Alotaibi BS, M Abdelnour H, Saleh AA. Pulmonary damage induction upon Acrylic amide exposure via activating miRNA-223-3p and miRNA-325-3p inflammasome/pyroptosis and fibrosis signaling pathway: New mechanistic approaches of A green-synthesized extract. Toxicology 2024; 506:153869. [PMID: 38909937 DOI: 10.1016/j.tox.2024.153869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Exposure to acrylic amide (AD) has garnered worldwide attention due to its potential adverse health effects, prompting calls from the World Health Organization for intensified research into associated risks. Despite this, the relationship between oral acrylic amide (acrylamide) (AD) exposure and pulmonary dysfunction remains poorly understood. Our study aimed to investigate the correlation between internal oral exposure to AD and the decline in lung function, while exploring potential mediating factors such as tissue inflammation, oxidative stress, pyroptosis, and apoptosis. Additionally, we aimed to evaluate the potential protective effect of zinc oxide nanoparticles green-synthesized moringa extract (ZNO-MONPs) (10 mg/kg b.wt) against ACR toxicity and conducted comprehensive miRNA expression profiling to uncover novel targets and mechanisms of AD toxicity (miRNA 223-3 P and miRNA 325-3 P). Furthermore, we employed computational techniques to predict the interactions between acrylic amide and/or MO-extract components and tissue proteins. Using a rat model, we exposed animals to oral acrylamide (20 mg/kg b.wt for 2 months). Our findings revealed that AD significantly downregulated the expression of miRNA 223-3 P and miRNA 325-3 P, targeting NLRP-3 & GSDMD, respectively, indicating the induction of pyroptosis in pulmonary tissue via an inflammasome activating pathway. Moreover, AD exposure resulted in lipid peroxidative damage and reduced levels of GPX, CAT, GSH, and GSSG. Notably, AD exposure upregulated apoptotic, pyroptotic, and inflammatory genes, accompanied by histopathological damage in lung tissue. Immunohistochemical and immunofluorescence techniques detected elevated levels of indicative harmful proteins including vimentin and 4HNE. Conversely, concurrent administration of ZNO-MONPs with AD significantly elevated the expression of miRNA 223-3 P and miRNA 325-3 P, protecting against oxidative stress, apoptosis, pyroptosis, inflammation, and fibrosis in rat lungs. In conclusion, our study highlights the efficacy of ZNO-MONPs NPs in protecting pulmonary tissue against the detrimental impacts of foodborne toxin AD.
Collapse
Affiliation(s)
- Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif 21944, Saudi Arabia
| | - Manal E Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Yasmina M Abd El-Hakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ali H El-Far
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, P.O. Box 344, Medina 30002, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanim M Abdelnour
- Department of Biochemistry, Faculty of Medicine, Zagazig University, Egypt
| | - Ayman A Saleh
- Department of Pathology, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| |
Collapse
|
46
|
Yaseen F, Taj M, Ravindran R, Zaffar F, Luciw PA, Ikram A, Zafar SI, Gill T, Hogarth M, Khan IH. An exploratory deep learning approach to investigate tuberculosis pathogenesis in nonhuman primate model: Combining automated radiological analysis with clinical and biomarkers data. J Med Primatol 2024; 53:e12722. [PMID: 38949157 DOI: 10.1111/jmp.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Tuberculosis (TB) kills approximately 1.6 million people yearly despite the fact anti-TB drugs are generally curative. Therefore, TB-case detection and monitoring of therapy, need a comprehensive approach. Automated radiological analysis, combined with clinical, microbiological, and immunological data, by machine learning (ML), can help achieve it. METHODS Six rhesus macaques were experimentally inoculated with pathogenic Mycobacterium tuberculosis in the lung. Data, including Computed Tomography (CT), were collected at 0, 2, 4, 8, 12, 16, and 20 weeks. RESULTS Our ML-based CT analysis (TB-Net) efficiently and accurately analyzed disease progression, performing better than standard deep learning model (LLM OpenAI's CLIP Vi4). TB-Net based results were more consistent than, and confirmed independently by, blinded manual disease scoring by two radiologists and exhibited strong correlations with blood biomarkers, TB-lesion volumes, and disease-signs during disease pathogenesis. CONCLUSION The proposed approach is valuable in early disease detection, monitoring efficacy of therapy, and clinical decision making.
Collapse
Affiliation(s)
- Faisal Yaseen
- Department of Biomedical and Health Informatics, University of Washington, Seattle, Washington, USA
| | - Murtaza Taj
- Department of Computer Science, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, California, USA
| | - Fareed Zaffar
- Department of Computer Science, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Paul A Luciw
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, California, USA
| | - Aamer Ikram
- National Institutes of Health, Islamabad, Pakistan
| | - Saerah Iffat Zafar
- Armed Forces Institute of Radiology and Imaging (AFIRI), Rawalpindi, Pakistan
| | - Tariq Gill
- Albany Medical Center, Albany, New York, USA
| | - Michael Hogarth
- Department of Medicine, University of California, San Diego, California, USA
| | - Imran H Khan
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, California, USA
| |
Collapse
|
47
|
Czekaj P, Król M, Kolanko E, Wieczorek P, Bogunia E, Hermyt M, Grajoszek A, Prusek A. Optimization of methods for intrasplenic administration of human amniotic epithelial cells in order to perform safe and effective cell-based therapy for liver diseases. Stem Cell Rev Rep 2024; 20:1599-1617. [PMID: 38769232 PMCID: PMC11319411 DOI: 10.1007/s12015-024-10735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
In animal experimental models the administration of stem cells into the spleen should ensure high effectiveness of their implantation in the liver due to a direct vascular connection between the two organs. The aim of this study was to update the methods of experimental intrasplenic cell transplantation using human amniotic epithelial cells (hAECs) which are promising cells in the treatment of liver diseases. BALB/c mice were administered intrasplenically with 0.5, 1, and 2 million hAECs by direct bolus injection (400 µl/min) and via a subcutaneous splenic port by fast (20 μl/min) and slow (10 μl/min) infusion. The port was prepared by translocating the spleen to the skin pocket. The spleen, liver, and lungs were collected at 3 h, 6 h, and 24 h after the administration of cells. The distribution of hAECs, histopathological changes in the organs, complete blood count, and biochemical markers of liver damage were assessed. It has been shown that the method of intrasplenic cell administration affects the degree of liver damage. The largest number of mice showing significant liver damage was observed after direct administration and the lowest after slow administration through a port. Liver damage increased with the number of administered cells, which, paradoxically, resulted in increased liver colonization efficiency. It was concluded that the administration of 1 × 106 hAECs by slow infusion via a subcutaneous splenic port reduces the incidence of complications at the expense of a slight decrease in the effectiveness of implantation of the transplanted cells in the liver.
Collapse
Affiliation(s)
- Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.
| | - Mateusz Król
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Emanuel Kolanko
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Patrycja Wieczorek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Edyta Bogunia
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Mateusz Hermyt
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| | - Aniela Grajoszek
- Department of Experimental Medicine, Medical University of Silesia in Katowice, Medyków 4, Katowice, 40-752, Poland
| | - Agnieszka Prusek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland
| |
Collapse
|
48
|
Li H, Wu D, Zhang H, Liu S, Zhen J, Yan Y, Li P. Autophagy-mediated ferroptosis is involved in development of severe acute pancreatitis. BMC Gastroenterol 2024; 24:245. [PMID: 39090535 PMCID: PMC11292871 DOI: 10.1186/s12876-024-03345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Ferroptosis is a newly recognized form of regulatory cell death characterized by severe lipid peroxidation triggered by iron overload and the production of reactive oxygen species (ROS). However, the role of ferroptosis in severe acute pancreatitis(SAP) has not been fully elucidated. METHODS We established four severe acute pancreatitis models of rats including the sham control group, the SAP group, the Fer -1-treated SAP (SAP + Fer-1) group, the 3-MA-treated SAP (SAP + 3-MA) group. The SAP group was induced by retrograde injection of sodium taurocholate into the pancreatic duct. The other two groups were intraperitoneally injected with ferroptosis inhibitor (Fer-1) and autophagy inhibitor (3-MA), respectively. The model of severe acute pancreatitis with amylase crest-related inflammatory factors was successfully established. Then we detected ferroptosis (GPX4, SLC7A1 etc.) and autophagy-related factors (LC3II, p62 ect.) to further clarify the relationship between ferroptosis and autophagy. RESULTS Our study found that ferroptosis occurs during the development of SAP, such as iron and lipid peroxidation in pancreatic tissues, decreased levels of reduced glutathione peroxidase 4 (GPX 4) and glutathione (GSH), and increased malondialdehyde(MDA) and significant mitochondrial damage. In addition, ferroptosis related proteins such as GPX4, solute carrier family 7 member 11(SLC7A11) and ferritin heavy chain 1(FTH1) were significantly decreased. Next, the pathogenesis of ferroptosis in SAP was studied. First, treatment with the ferroptosis inhibitor ferrostatin-1(Fer-1) significantly alleviated ferroptosis in SAP. Interestingly, autophagy occurs during the pathogenesis of SAP, and autophagy promotes the occurrence of ferroptosis in SAP. Moreover, 3-methyladenine (3-MA) inhibition of autophagy can significantly reduce iron overload and ferroptosis in SAP. CONCLUSIONS Our results suggest that ferroptosis is a novel pathogenesis of SAP and is dependent on autophagy. This study provides a new theoretical basis for the study of SAP.
Collapse
Affiliation(s)
- Hongyao Li
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Ding Wu
- Guangyuan First People's Hospital, Sichuan, 628000, China
| | - Haidan Zhang
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Shixian Liu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Jiahui Zhen
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Yufen Yan
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Peiwu Li
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
49
|
Ram AS, Matuszewska K, McKenna C, Petrik J, Oblak ML. Validation of a semi-quantitative scoring system and workflow for analysis of fluorescence quantification in companion animals. Front Vet Sci 2024; 11:1392504. [PMID: 39144083 PMCID: PMC11322124 DOI: 10.3389/fvets.2024.1392504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
Significance Many commercially available near-infrared (NIR) fluorescence imaging systems lack algorithms for real-time quantifiable fluorescence data. Creation of a workflow for clinical assessment and post hoc analysis may provide clinical researchers with a method for intraoperative fluorescence quantification to improve objective outcome measures. Aim Scoring systems and verified image analysis are employed to determine the amount and intensity of fluorescence within surgical specimens both intra and postoperatively. Approach Lymph nodes from canine cancer patients were obtained during lymph node extirpation following peritumoral injection of indocyanine green (ICG). First, a semi-quantitative assessment of surface fluorescence was evaluated. Images obtained with a NIR exoscope were analysed to determine fluorescence thresholds and measure fluorescence amount and intensity. Results Post hoc fluorescence quantification (threshold of Hue = 165-180, Intensity = 30-255) displayed strong agreement with semi-quantitative scoring (k = 0.9734, p < 0.0001). Fluorescence intensity with either threshold of 35-255 or 45-255 were significant predictors of fluorescence and had high sensitivity and specificity (p < 0.05). Fluorescence intensity and quantification had a strong association (p < 0.001). Conclusion The validation of the semi-quantitative scoring system by image analysis provides a method for objective in situ observation of tissue fluorescence. The utilization of thresholding for ICG fluorescence intensity allows post hoc quantification of fluorescence when not built into the imaging system.
Collapse
Affiliation(s)
- Ann S. Ram
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Charly McKenna
- Department of Clinical Studies, University of Guelph, Guelph, ON, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Michelle L. Oblak
- Department of Clinical Studies, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
50
|
Alqahtani LS, Alosaimi ME, Abdel-Rahman Mohamed A, Abd-Elhakim YM, Khamis T, Noreldin AE, El-Far AH, Alotaibi BS, Hakami MA, Dahran N, Babteen NA. Acrylamide-targeting renal miR-21a-5p/Fibrotic and miR122-5p/ inflammatory signaling pathways and the role of a green approach for nano-zinc detected via in silico and in vivo approaches. Front Pharmacol 2024; 15:1413844. [PMID: 39086388 PMCID: PMC11289894 DOI: 10.3389/fphar.2024.1413844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction: Any disruption in renal function can have cascading effects on overall health. Understanding how a heat-born toxicant like acrylamide (ACR) affects kidney tissue is vital for realizing its broader implications for systemic health. Methods: This study investigated the ACR-induced renal damage mechanisms, particularly focusing on the regulating role of miR-21a-5p/fibrotic and miR-122-5p/inflammatory signaling pathways via targeting Timp-3 and TP53 proteins in an In silico preliminary study. Besides, renal function assessment, oxidative status, protein profile, and the expression of renal biomarkers (Timp-1, Keap-1, Kim-1, P53, TNF-α, Bax, and Caspase3) were assessed in a 60-day experiment. The examination was additionally extended to explore the potential protective effects of green-synthesized zinc oxide nanoparticles (ZNO-MONPs). A four-group experiment including control, ZNO-MONPs (10 mg/kg b.wt.), ACR (20 mg/kg b.wt.), and ZNO-MONPs + ACR was established encompassing biochemical, histological, and molecular levels. The study further investigated the protein-binding ability of ZNO and MONPs to inactivate caspase-3, Keap-1, Kim-1, and TNFRS-1A. Results: ZNO-MONPs significantly reduced ACR-induced renal tissue damage as evidenced by increased serum creatinine, uric acid, albumin, and oxidative stress markers. ACR-induced oxidative stress, apoptosis, and inflammationare revealed by biochemical tests, gene expression, and the presence of apoptotic nuclei microscopically. Also, molecular docking revealed binding affinity between ACR-BCL-2 and glutathione-synthetase, elucidating the potential mechanisms through which ACR induces renal damage. Notably, ZNO-MONPs revealed a protective potential against ACR-induced damage. Zn levels in the renal tissues of ACR-exposed rats were significantly restored in those treated with ACR + ZNO-MONPs. In conclusion, this study establishes the efficacy of ZNO-MONPs in mitigating ACR-induced disturbances in renal tissue functions, oxidative stress, inflammation, and apoptosis. The findings shed light on the potential renoprotective activity of green-synthesized nanomaterials, offering insights into novel therapeutic approaches for countering ACR-induced renal damage.
Collapse
Affiliation(s)
- Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Manal E. Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ali H. El-Far
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf A. Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|