1
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
2
|
Kong L, Yu H, Deng M, Wu F, Chen SC, Luo T. Enantioselective Total Syntheses of Grayanane Diterpenoids and (+)-Kalmanol: Evolution of the Bridgehead Carbocation-Based Cyclization and Late-Stage Functional Group Manipulation Strategies. J Org Chem 2023; 88:6017-6038. [PMID: 37094797 DOI: 10.1021/acs.joc.3c00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Grayanane diterpenoids contain over 300 highly oxidized and structurally complex members, many of which possess important biological activities. Full details are provided for the development of the concise, enantioselective and divergent total syntheses of grayanane diterpenoids and (+)-kalmanol. The unique 7-endo-trig cyclization based on a bridgehead carbocation was designed and implemented to construct the 5/7/6/5 tetracyclic skeleton, demonstrating the practical value of the bridgehead carbocation-based cyclization strategy. Extensive studies of late-stage functional group manipulation were performed to forge the C1 stereogenic center, during which a photoexcited intramolecular hydrogen atom transfer reaction was discovered and the mechanism was further studied through density functional theory (DFT) calculations. The biomimetic 1,2-rearrangement from the grayanoid skeleton provided a 5/8/5/5 tetracyclic framework and resulted in the first total synthesis of (+)-kalmanol.
Collapse
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengping Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanrui Wu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Aga MB, Sharma V, Dar AH, Dash KK, Singh A, Shams R, Khan SA. Comprehensive review on functional and nutraceutical properties of honey. EFOOD 2023. [DOI: 10.1002/efd2.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Mohsin B. Aga
- Department of Food Technology Islamic University of Science and Technology Kashmir India
| | - Vaibhav Sharma
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Sonipat Haryana India
| | - Aamir H. Dar
- Department of Food Technology Islamic University of Science and Technology Kashmir India
| | - Kshirod K. Dash
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Malda West Bengal India
| | - Anurag Singh
- Department of Food Technology Harcourt Butler Technical University Nawabganj, Kanpur Uttar Pradesh India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Shafat A. Khan
- Department of Food Technology Islamic University of Science and Technology Kashmir India
| |
Collapse
|
4
|
Fay N, Blieck R, Kouklovsky C, de la Torre A. Total synthesis of grayanane natural products. Beilstein J Org Chem 2022; 18:1707-1719. [PMID: 36570567 PMCID: PMC9764858 DOI: 10.3762/bjoc.18.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Grayananes are a broad family of diterpenoids found in Ericaceae plants, comprising more than 160 natural products. Most of them exhibit interesting biological activities, often representative of Ericaceae use in traditional medicine. Over the last 50 years, various strategies were described for the total synthesis of these diterpenoids. In this review, we survey the literature for synthetic approaches to access grayanane natural products. We will focus mainly on completed total syntheses, but will also mention unfinished synthetic efforts. This work aims at providing a critical perspective on grayanane synthesis, highlighting the advantages and downsides of each strategy, as well as the challenges remaining to be tackled.
Collapse
Affiliation(s)
- Nicolas Fay
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 15, rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - Rémi Blieck
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 15, rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 15, rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - Aurélien de la Torre
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Université Paris-Saclay, CNRS, 15, rue Georges Clémenceau, 91405 Orsay Cedex, France
| |
Collapse
|
5
|
Abd Rashid N, Mohammed SNF, Syed Abd Halim SA, Ghafar NA, Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals (Basel) 2022; 15:1419. [PMID: 36422549 PMCID: PMC9696375 DOI: 10.3390/ph15111419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/01/2023] Open
Abstract
Honey and propolis have recently become the key target of attention for treating certain diseases and promoting overall health and well-being. A high content of flavonoids and phenolic acids found in both honey and propolis contributes to the antioxidant properties to scavenge free radicals. Honey and propolis also exhibited antibacterial effects where they act in two ways, namely the production of hydrogen peroxide (H2O2) and gluconic acids following the enzymatic activities of glucose oxidase, which exerts oxidative damage on the bacteria. Additionally, the anti-inflammatory effects of honey and propolis are mainly by reducing proinflammatory factors such as interleukins and tumor necrosis factor alpha (TNF-α). Their effects on pain were discovered through modulation at a peripheral nociceptive neuron or binding to an opioid receptor in the higher center. The aforementioned properties of honey have been reported to possess potential therapeutic topical application on the exterior parts of the eyes, particularly in treating conjunctivitis, keratitis, blepharitis, and corneal injury. In contrast, most of the medicinal values of propolis are beneficial in the internal ocular area, such as the retina, optic nerve, and uvea. This review aims to update the current discoveries of honey and propolis in treating various ocular diseases, including their antioxidant, anti-inflammatory, antibacterial, and anti-nociceptive properties. In conclusion, research has shown that propolis and honey have considerable therapeutic promise for treating various eye illnesses, although the present study designs are primarily animal and in vitro studies. Therefore, there is an urgent need to translate this finding into a clinical setting.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Siti Nur Farhana Mohammed
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Kong L, Yu H, Deng M, Wu F, Jiang Z, Luo T. Enantioselective Total Syntheses of Grayanane Diterpenoids: (-)-Grayanotoxin III, (+)-Principinol E, and (-)-Rhodomollein XX. J Am Chem Soc 2022; 144:5268-5273. [PMID: 35297610 DOI: 10.1021/jacs.2c01692] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enantioselective total syntheses of (-)-grayanotoxin III, (+)-principinol E, and (-)-rhodomollein XX were accomplished based on a convergent strategy. The left- and right-wing fragments were assembled via the diastereoselective Mukaiyama aldol reaction catalyzed by a chiral hydrogen bond donor. The unique 7-endo-trig cyclization based on a bridgehead carbocation forged the 5/7/6/5 tetracyclic skeleton that underwent redox manipulations and 1,2-migration to access different grayanane diterpenoids.
Collapse
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengping Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanrui Wu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Jiang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
7
|
Rezaei M, Karimian L, Shafaghi B, Noubarani M, Salecheh M, Shafi Dehghani M, Eskandari MR, Pourahmad J. Evaluation of Molecular and Cellular Alterations Induced by Neuropathic Pain in Rat Brain Glial cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:359-370. [PMID: 34400965 PMCID: PMC8170759 DOI: 10.22037/ijpr.2020.113052.14089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neuropathic pain originates from illness or damage of the nervous system and affects the somatosensory system. Recently, many efforts have been made to illuminate the influences of neuropathic pain in different parts of central nervous system (CNS). However, the toxic consequences of neuropathic pain in glial cells, which involve in the control of pain is poorly understood. Therefore, the present study aimed to assess the molecular and cellular effects of neuropathic pain in the glial cells of rat brain. Induction of neuropathic pain in rats was associated with oxidative stress as evident by elevated reactive oxygen species (ROS) formation as well as reversible glutathione (GSH) depletion in the glial cells. Moreover, neuropathic pain caused mitochondrial membrane potential collapse (∆Ψm%), lysosomal membrane rapture, and proteolysis, probably due to ROS-induced MPT pore opening. These toxic events could cause cytochrome c release from intermembrane space into the cytosole and trigger caspase activation pathway. Our finding confirmed that the activity of caspase-3 was significantly increased in the glial cells as a core component of the apoptotic machinery. In conclusion, the neuropathic pain induces ROS generation as the major cause of GSH depletion along with mutual mitochondrial/lysosomal potentiation (cross-talk) of oxidative stress in the glial cells. Subsequently, this toxic cross-talk can induce proteolysis and trigger apoptosis by caspase-3 activation in the glial cells of rat brain.
Collapse
Affiliation(s)
- Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Lida Karimian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bizhan Shafaghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noubarani
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Salecheh
- Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shafi Dehghani
- Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Eskandari
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Rasgele PG, Gokalp FD, Kaya ST, Kekecoglu M, Acar MK. Investigation of genotoxic effects of rhododendron honey using three mammalian bioassays in vivo. Drug Chem Toxicol 2021; 45:2301-2310. [PMID: 34100323 DOI: 10.1080/01480545.2021.1935421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Rhododendron honey (RH) is obtained from the rhododendron plants are grown in many regions around the world, causes poisoning in humans due to the grayanotoxin (GTX) compound in its structure. It is used by the public as a therapeutic for some diseases. It was aimed to study the genotoxic and cytotoxic effects of RH in mouse bone-marrow and sperm cells by using three mammalian bioassays. 25, 50 and 75 mg kg-1 concentrations of RH given to male mice via gavage for 24 and 48 h treatment periods and its active ingredient Grayanatoxin (GTX-III) 0.01 mg kg-1 by i.p. injection. Chromosome aberrations (CA), polychromatic erythrocytes (PCE)/normochromatic erythrocytes (NCE), micronucleated polychromatic erythrocytes (MNPCE) and sperm abnormalities were investigated. The results demonstrated that all the tested concentrations of RH significantly induced total abnormal cell frequency including chromosomal breaks for two time periods. In the MN assay, 75 mg kg-1 RH and 0.01 mg kg-1 GTX-III significantly increased % MNPCE and significantly reduced PCE/NCE ratios after 24 and 48 h treatments on mice demonstrating potential genotoxic and cytotoxic effect. Although there was a concentration-related increase in the percentage of total sperm abnormalities, this increase was not statistically significant compared to control. As a result, microscopic genotoxicity and cytotoxicity marker tests showed that RH and its active ingredient GTX-III have potential genotoxic and cytotoxic effect on mice bone marrow cells. It is understood that RH that is used to treat some diseases by public, should be handled carefully and used in a controlled manner.HighlightsChromosome aberration, micronucleus and sperm morphology assays are recommended as reliable biological indicators.RH and its active ingredient GTX-III have potential genotoxic and cytotoxic effect on mice bone marrow cells.Significant changes were observed upon the treatment of 75 mg kg-1 MH for MN assay.
Collapse
Affiliation(s)
- Pinar Goc Rasgele
- Department of Biosystems Engineering, Faculty of Agriculture, Duzce University, Duzce, Turkey
| | - Fulya Dilek Gokalp
- Department of Biology, Faculty of Science, Trakya University, Edirne, Turkey
| | - Salih Tunc Kaya
- Department of Biology, Faculty of Science and Letters, Duzce University, Duzce, Turkey
| | - Meral Kekecoglu
- Department of Biology, Faculty of Science and Letters, Duzce University, Duzce, Turkey
| | | |
Collapse
|
9
|
Kalekhan F, Kudva AK, Raghu SV, Rao S, Hegde SK, Simon P, Baliga MS. Traditionally Used Natural Products in Preventing Ionizing Radiation-Induced Dermatitis: First Review on the Clinical Studies. Anticancer Agents Med Chem 2021; 22:64-82. [PMID: 33820524 DOI: 10.2174/1871520621666210405093236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
In the treatment of cancer, the use of ionizing radiation is an important modality. However, on the downside, radiation, when used for curative purposes, causes acute dermatitis or radiodermatitis at the site of radiation in most individuals. From a clinical viewpoint, severe dermatitis causes a burning and itching sensation is very painful, and severely affects the quality of life of the individual undergoing treatment. In worse situations, acute radiation dermatitis can cause gaps or breaks in the planned treatment and this can adversely affect the treatment objective and outcome. BACKGROUND In various traditional and folk systems of medicine, plants and plant products have been used since time immemorial for treating various skin ailments. Further, many cosmeceutical creams formulated based on knowledge from ethnomedicinal use are marketed and used to treat various ailments. In the current review, an attempt is made at summarizing the beneficial effects of some plants and plant products in mitigating acute radiation dermatitis in humans undergoing curative radiotherapy. Additionally, the emphasis is also placed on the mechanism/s responsible for the beneficial effects. OBJECTIVE The objective of this review is to summarize the clinical observations on the prevention of radiodermatitis by plant products. In this review, the protective effects of Adlay (Coix lachryma-jobi L.) bran extract, Aloe vera, Calendula officinalis, Cucumis sativus, green tea constituent the epigallocatechin-3-gallate, honey, Achillea millefolium, Matricaria chamomilla, olive oil and some polyherbal creams are addressed by also addressing on the mechanism of action for the beneficial effects. METHODS Two authors' data mined for information in Google Scholar, PubMed, Embase and the Cochrane Library for publications in the field from 1901 up to July 2020. The focus was on acute radiation dermatitis, ionizing radiation, curative radiotherapy, human cancer. The articles were collected and analyzed. RESULTS For the first time, this review addresses the usefulness of natural products like adlay bran, Aloe vera, Calendula officinalis, Cucumis sativus, green tea constituent the epigallocatechin-3-gallate, honey, Achillea millefolium, Matricaria chamomilla, olive oil and some experimentally constituted and commercially available polyherbal creams as skincare agents against the deleterious effects of ionizing radiation on the skin. The protective effects are possibly due to the free radical scavenging, antioxidant, anti-inflammatory, wound healing and skin protective effects. CONCLUSION The authors suggest that these plants have been used since antiquity as medicinal agents and require in-depth investigation with both clinical and preclinical validated models of study. The results of these studies will be extremely useful to cancer patients requiring curative radiotherapy, the dermatology fraternity, agro-based and pharmaceutical sectors at large.
Collapse
Affiliation(s)
- Faizan Kalekhan
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Avinash K Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka. India
| | - Shamprasad V Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka. India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka. India
| | - Sanath K Hegde
- Radiation Oncology, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Paul Simon
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Manjeshwar S Baliga
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| |
Collapse
|
10
|
Baliga MS, Rao S, Hegde SK, Rao P, Simon P, George T, Venkatesh P, Baliga-Rao MP, Thilakchand KR. Usefulness of Honey as an Adjunct in the Radiation Treatment for Head and Neck Cancer: Emphasis on Pharmacological and Mechanism/s of Actions. Anticancer Agents Med Chem 2021; 22:20-29. [PMID: 33573581 DOI: 10.2174/1871520621666210126094509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the treatment of head and neck cancer (HNC), ionizing radiation is an important modality in achieving curative objectives. However, the effective use of radiation is compromised by the side effects resulting from the damage to the adjacent normal tissue. Preclinical studies carried out in the recent past have shown that the age old dietary agent honey, which also possess myriad medicinal use is beneficial in mitigating diverse radiation-induced side effects like mucositis, xerostomia, fatigue, weight loss and to promote healing of refractory wounds. OBJECTIVE The objective of this memoir is to review the beneficial effects of honey in mitigating radiation-induced side effects in HNC and to emphasize on the underlying mechanism of action for the beneficial effects Methods: Two authors searched Google Scholar, PubMed, Embase, and the Cochrane Library for publications up to December 2019 to assess the ability of honey in reducing the severity of radiation-induced ill effects in the treatment of HNC. Subsequently, the adjunct pharmacological effects and mechanism/s responsible were also searched for and appropriately used to substantiate the underlying mechanism/s of action for the beneficial effects. RESULTS The existing data is suggestive that honey is beneficial in mitigating the radiation-induced mucositis, xerostomia, healing of recalcitrant wounds in radiation exposed regions and multiple pathways mediate the beneficial effects especially, free radical scavenging, antioxidant, wound healing, anticancer, analgesic, anti-inflammatory, anabolic, anti-fatigue and anti-anaemic effects that add additional value to the use of honey as an adjunct in cancer therapy. CONCLUSION For the first time this review addresses the underlying pharmacological effects related to the beneficial effects of honey in radiation-induced damage, and attempts at emphasizes the lacunae that need further studies for optimizing the use of honey as an adjunct in radiotherapy of HNC. The authors suggest that future studies should be directed at understanding the detail molecular mechanisms responsible for the beneficial effects using validated cell culture and animal models of study. Large multi centric clinical trials with standardised honey is also needed to understand the clinical use of honey.
Collapse
Affiliation(s)
- Manjeshwar S Baliga
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Sanath K Hegde
- Radiation Oncology, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Pratima Rao
- Department of Orodental Pathology, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Paul Simon
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Thomas George
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Ponemone Venkatesh
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | | | - Karadka R Thilakchand
- Department of Anesthesiology, Karnataka Institute of Medical Sciences, Hubballi 580022. India
| |
Collapse
|
11
|
Doǧanyiǧit Z, Kaymak E, Silici S. The cardiotoxic effects of acute and chronic grayanotoxin-III in rats. Hum Exp Toxicol 2019; 39:374-383. [DOI: 10.1177/0960327119889668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study is to histologically and immunohistochemically determine the changes created by grayanotoxin-III (GTX-III), which is a sodium channel neurotoxin, on heart tissues in different dosages. Rats were randomly divided into 10 groups to determine the acute and chronic effects of GTX-III. While the rats in groups 1 and 6 were control rats, the rats in groups 2–5 (1, 2, 4, and 8 μg/kg bw GTX-III) received a single dose of intraperitoneal GTX-III, and the rats in groups 7–10 received GTX-III every day for 3 weeks. As a result of the trial, in the heart tissues, histopathological changes were determined by hematoxylin–eosin staining, interleukin-1 (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and brain natriuretic peptide (BNP) were determined by the avidin–biotin peroxidase method, and apoptosis was examined by immunohistochemistry (IHC) analysis and the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining method. In the immunohistochemistry sense, while the BNP level in the AGTX-III groups did not vary significantly, an increase in dosage significantly increased the IL-6, IL-1β, and TNF-α levels in comparison to the control groups. In their comparison to the control groups, the BNP levels increase and the IL-6 and IL-1β levels decreased in the CGTX-III groups. TUNEL analysis revealed that apoptosis increased in both the acute and chronic groups.
Collapse
Affiliation(s)
- Z Doǧanyiǧit
- Department of Histology–Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - E Kaymak
- Department of Histology–Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - S Silici
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| |
Collapse
|
12
|
Doğanyiğit Z, Silici S, Demirtaş A, Kaya E, Kaymak E. Determination of histological, immunohistochemical and biochemical effects of acute and chronic grayanotoxin III administration in different doses in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1323-1335. [PMID: 30426365 DOI: 10.1007/s11356-018-3700-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Grayanotoxin (GTX)-III is a Na-channel neurotoxin. Grayanotoxins can be found in the nectar, pollen, and other plant parts of the Rhododendron genus plants from the Ericaceae family. It is widely believed that honey produced from these plants, which are concentrated in the Black Sea region, is traditionally characterized as enhancing sexual performance. It is thought that the effective factor is dose for this compound, which has both beneficial and toxic effects reported. Therefore, it is aimed to evaluate the histological, immunohistochemical, and biochemical effects of acute and chronic impact of GTX-III in different doses on testes tissue in this study. For this purpose, 100 Sprague-Dawley male rats were divided into 5 separate groups for acute and chronic research. While dose groups were (control, 0.1, 0.2, 0.4, ve 0.8 μg/kg/bw) for experimental groups, a single dose (i.p.) was administered for acute impact whereas the same doses were administered daily for 3 weeks to assess chronic effect. At the end of the experiment, Johnsen testicular biopsy scoring was performed on testicular tissue samples, seminiferous tubule diameters were measured, and apoptotic cells were evaluated by TUNEL method. Testosterone, LH, and FSH levels were measured by ELISA method in serum and tissue specimens. It was found that Johnsen score of acute doses was significantly lower than the control group, and the diameter of the seminiferous tubules decreased significantly in acute and chronic dose-administered groups compared to the control. Hemorrhage, epithelial shedding, irregularity in seminiferous epithelium, and vacuolization were observed in acute and chronic dose-administered groups, and increase in apoptotic cells was determined. Hormone levels varied depending on the dose. In conclusion, it was found that dose-dependent acute and chronic effects of GTX-III are different, and this factor should be taken into account in studies to be carried out due to the adverse effects of high doses.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Faculty of Medicine Histology-Embryology Department, Bozok University, Yozgat, Turkey
| | - Sibel Silici
- Seyrani Agricultural Faculty Agricultural Biotechnology Department, Erciyes University, Kayseri, Turkey.
| | - Abdullah Demirtaş
- Faculty of Medicine Urology Department, Erciyes University, Kayseri, Turkey
| | - Ertuğrul Kaya
- Faculty of Medicine Pharmacology Department, Düzce University, Düzce, Turkey
| | - Emin Kaymak
- Faculty of Medicine Histology-Embryology Department, Bozok University, Yozgat, Turkey
| |
Collapse
|
13
|
Sahin A, Turkmen S, Guzel N, Mentese A, Turedi S, Karahan SC, Yulug E, Demir S, Aynaci O, Deger O, Gunduz A. A Comparison of the Effects of Grayanotoxin-Containing Honey (Mad Honey), Normal Honey, and Propolis on Fracture Healing. Med Princ Pract 2018; 27:99-106. [PMID: 29428933 PMCID: PMC5968227 DOI: 10.1159/000487552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/11/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Delayed healing and non-union of fractures have a significant effect upon patient morbidity. Studies have therefore largely concentrated on accelerating fracture healing. This study was intended to compare the effect of "mad honey" and propolis on fracture healing using radiological and histopathological analysis. SUBJECTS AND METHODS Femur fracture was surgically performed on 48 rats, followed by fixation. Animals were then divided into 8 groups: 2 control groups (15- and 30-day) and 6 treatment groups (15- and 30-day normal honey, 15- and 30-day "mad honey," and 15- and 30-day propolis). Rats were sacrificed at the end of these periods, and radiological and histological examinations were performed. RESULTS Radiological healing in the propolis group after 15-day therapy was statistically better than in the control (p = 0.004) and normal honey (p = 0.006) groups. After 30-day therapy, healing in the propolis group (p = 0.005) and grayanotoxin-containing "mad honey" group (p = 0.007) were significantly better than in the control group. Histologically, there was a statistically significant difference between the 15-day propolis group and the other groups (control, honey, mad honey: p = 0.003, p = 0.003, and p = 0.002, respectively). We also found a statistically significant difference when the 30-day propolis group (p = 0.005) and "mad honey" group (p = 0.007) were compared to the control group. CONCLUSIONS This study shows that grayanotoxin-containing "mad honey" and propolis can accelerate fracture healing.
Collapse
Affiliation(s)
- Aynur Sahin
- Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
- *Aynur Sahin, Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, TR-61080 Trabzon (Turkey), E-Mail
| | - Suha Turkmen
- Department of Emergency Medicine, Faculty of Medicine, Acıbadem University, Istanbul, Turkey
| | - Nizamettin Guzel
- Department of Orthopaedics and Traumatology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Ahmet Mentese
- Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Suleyman Turedi
- Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Suleyman Caner Karahan
- Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Osman Aynaci
- Department of Orthopaedics and Traumatology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Orhan Deger
- Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| | - Abdulkadir Gunduz
- Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
14
|
Eraslan G, Kanbur M, Karabacak M, Arslan K, Siliğ Y, Soyer Sarica Z, Tekeli MY, Taş A. Effect on oxidative stress, hepatic chemical metabolizing parameters, and genotoxic damage of mad honey intake in rats. Hum Exp Toxicol 2017; 37:991-1004. [DOI: 10.1177/0960327117745691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A total of 66 male Wistar rats were used and six groups (control: 10 animals and experimental: 12 animals) were formed. While a separate control group was established for each study period, mad honey application to the animals in the experimental group was carried out with a single dose (12.5 g kg−1 body weight (b.w.); acute stage), at a dose of 7.5 g kg−1 b.w. for 21 days (subacute stage), and at a dose of 5 g kg−1 b.w. for 60 days (chronic stage). Tissue and blood oxidative stress markers (malondialdehyde (MDA), nitric oxide (NO), 4-hydroxynonenal (HNE), superoxide dismutase, catalase, glutathione (GSH) peroxidase, and glucose-6-phosphate dehydrogenase), hepatic chemical metabolizing parameters in the liver (cytochrome P450 2E1, nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase, nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome c reductase (CYTC), GSH S-transferase (GST), and GSH), and micronucleus and comet test in some samples were examined. Findings from the study showed that single and repeated doses given over the period increased MDA, NO, and HNE levels while decreasing/increasing tissue and blood antioxidant enzyme activities. From hepatic chemical metabolizing parameters, GST activity increased in the subacute and chronic stages and CYTC activity increased in the acute period, whereas GSH level decreased in the subacute stage. Changes in tail and head intensities were found in most of the comet results. Mad honey caused oxidative stresses for each exposure period and made some significant changes on the comet test in certain periods for some samples obtained. In other words, according to the available research results obtained, careless consumption of mad honey for different medical purposes is not appropriate.
Collapse
Affiliation(s)
- G Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - M Kanbur
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - M Karabacak
- Department of Animal Health, Safiye Çıkrıkçıoğlu Vocational Collage, Erciyes University, Kayseri, Turkey
| | - K Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Y Siliğ
- Department of Medical Biochemistry, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Z Soyer Sarica
- Experimental Research and Application Center, Erciyes University, Kayseri, Turkey
| | - MY Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - A Taş
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
15
|
Li Y, Liu YB, Zhang JJ, Liu Y, Ma SG, Qu J, Lv HN, Yu SS. Antinociceptive Grayanoids from the Roots of Rhododendron molle. JOURNAL OF NATURAL PRODUCTS 2015; 78:2887-95. [PMID: 26599832 DOI: 10.1021/acs.jnatprod.5b00456] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nine new grayanoids (1-9), together with 11 known compounds, were isolated from the roots of Rhododendron molle. The structures of the new compounds (1-9) were determined on the basis of spectroscopic analysis, including HRESIMS, and 1D and 2D NMR data. Compounds 4, 6, 12, and 14-20 showed significant antinociceptive activities in an acetic acid-induced writhing test. In particular, 14 and 15 were found to be more potent than morphine for both acute and inflammatory pain models and 100-fold more potent than gabapentin in a diabetic neuropathic pain model.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Jian-Jun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Yang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Jing Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Hai-Ning Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| |
Collapse
|
16
|
Canpolat S, Ozcan M, Saral S, Kalkan OF, Ayar A. Effects of apelin-13 in mice model of experimental pain and peripheral nociceptive signaling in rat sensory neurons. J Recept Signal Transduct Res 2015; 36:243-7. [DOI: 10.3109/10799893.2015.1080274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Owoyele BV, Oladejo RO, Ajomale K, Ahmed RO, Mustapha A. Analgesic and anti-inflammatory effects of honey: the involvement of autonomic receptors. Metab Brain Dis 2014; 29:167-73. [PMID: 24318481 DOI: 10.1007/s11011-013-9458-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
The use of honey for therapeutic purposes is on the increase and many studies have shown that honey has the ability to influence biological systems including pain transmission. Therefore, this study was designed to investigate the analgesic and anti-inflammatory effects of honey and the effects of concurrent administration of autonomic nervous system blocking drugs. Studies on analgesic activities was carried out using hotplate and formalin-induced paw licking models while the anti-inflammatory activity was by the carrageenan paw oedema method. Animals were distributed into six groups consisting of five animals each. They were administered saline, honey (600 mg/kg), indomethacin (5 mg/kg), autonomic blockers (3 μg/kg of tamsulosin, 20 mg/kg (intraperitoneally) of propranolol, 2 ml/kg of atropine or 10 mg/kg (intra muscularly) of hexamethonium) or honey (200 and 600 mg/kg) with one of the blockers. The results showed that honey reduced pain perception especially inflammatory pain and the administration of tamsulosin and propranolol spared the effect of honey. Hexamethonium also spared the effects of honey at the early and late phases of the test while atropine only inhibited the early phase of the test. However, atropine and hexamethonium spared the anti-inflammatory effects of honey but tamsulosin abolished the effects while propranolol only abolished the anti-inflammatory effects at the peak of the inflammation. The results suggest the involvement of autonomic receptors in the anti-nociceptive and anti-inflammatory effects of honey although the level of involvement depends on the different types of the receptors.
Collapse
|