1
|
Sykes JE. Cutaneous Mycobacterioses of Cats and Dogs. Vet Clin North Am Small Anim Pract 2025:S0195-5616(24)00113-X. [PMID: 39757082 DOI: 10.1016/j.cvsm.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2025]
Abstract
Worldwide, a variety of mycobacterial species have been associated with skin lesions in dogs and cats. Lesions may result from systemic dissemination or local cutaneous inoculation. Only infections with Mycobacterium tuberculosis complex organisms have the potential to be transmitted from companion animals to humans, but even then, zoonotic risk is considered low. Diagnosis of mycobacterial infections is based on identification of intralesional acid-fast bacteria using cytology or histopathology, culture at experienced facilities, and use of PCR-sequencing. Treatment typically requires prolonged combination therapy with antimycobacterial drugs, and the prognosis varies depending on the mycobacterial species involved and presence of underlying immunosuppression.
Collapse
Affiliation(s)
- Jane E Sykes
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California-Davis, 2108 Tupper Hall, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Chevillon C, de Thoisy B, Rakestraw AW, Fast KM, Pechal JL, Picq S, Epelboin L, Le Turnier P, Dogbe M, Jordan HR, Sandel MW, Benbow ME, Guégan JF. Ecological and evolutionary perspectives advance understanding of mycobacterial diseases. THE LANCET. MICROBE 2024; 5:100906. [PMID: 39116907 DOI: 10.1016/s2666-5247(24)00138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/07/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Predicting the outbreak of infectious diseases and designing appropriate preventive health actions require interdisciplinary research into the processes that drive exposure to and transmission of disease agents. In the case of mycobacterial diseases, the epidemiological understanding of the scientific community hitherto was based on the clinical studies of infections in vertebrates. To evaluate the information gained by comprehensively accounting for the ecological and evolutionary constraints, we conducted literature searches assessing the role of mycobacteria interactions with non-vertebrate species in the origin of their pathogenicity and variations in disease risk. The reviewed literature challenges the current theory of person-to-person transmission for several mycobacterial infections. Furthermore, the findings suggest that diverse non-vertebrate organisms influence virulence, mediate transmission, and contribute to pathogen abundance in relation to vertebrate exposure. We advocate that an ecological and evolutionary framework provides novel insights to support a more comprehensive understanding of the prevention and management of diseases in vertebrates.
Collapse
Affiliation(s)
- Christine Chevillon
- MIVEGEC, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut National de Recherches pour l'Agriculture, l'Alimentation et l'Environnement, Montpellier, France.
| | - Benoît de Thoisy
- Laboratoire des Interactions Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Alex W Rakestraw
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Kayla M Fast
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, MS, USA
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Sophie Picq
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Loïc Epelboin
- Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France; Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France
| | - Paul Le Turnier
- Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France; Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France
| | - Magdalene Dogbe
- Department of Biological Sciences, Mississippi State University, MS, USA
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, MS, USA
| | - Michael W Sandel
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, MS, USA; Forest and Wildlife Research Center, Mississippi State University, MS, USA
| | - Mark Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI, USA; Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA; Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA; Agbioresearch, Michigan State University, East Lansing, MI, USA
| | - Jean-François Guégan
- MIVEGEC, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut National de Recherches pour l'Agriculture, l'Alimentation et l'Environnement, Montpellier, France; Epidémiologie des maladies animales et zoonotiques, Université Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès-Champanelle, France; Epidémiologie des maladies animales et zoonotiques, Université de Lyon, INRAE, VetAgro Sup, Marcy l'Etoile, France
| |
Collapse
|
3
|
Faccin M, Wiener DJ, Rech RR, Santoro D, Rodrigues Hoffmann A. Common superficial and deep cutaneous bacterial infections in domestic animals: A review. Vet Pathol 2023; 60:796-811. [PMID: 37264789 DOI: 10.1177/03009858231176558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/03/2023]
Abstract
The skin covers the external surface of animals, and it is constantly exposed to and inhabited by different microorganisms, including bacteria. Alterations in the skin barrier allow commensal and/or pathogenic bacteria to proliferate and penetrate deep into the lower layers of the skin. Being the first barrier to the external environment, the skin is prone to injuries, allowing the penetration of microorganisms that may lead to severe deep infections. Companion animals, especially dogs, are prone to bacterial infections, often secondary to allergic dermatitis. When environmental conditions are unfavorable, horses, cattle, sheep, and goats can develop superficial infections, such as those caused by Dermatophilus congolensis. Deep inflammation is commonly caused by Mycobacterium spp., which results in granulomatous to pyogranulomatous dermatitis and panniculitis. Likewise, bacteria such as Nocardia spp. and Actinomyces spp. can cause deep pyogranulomatous inflammation. Bacteria that lead to deep necrotizing lesions (eg, necrotizing fasciitis/flesh-eating bacteria) can be severe and even result in death. This review includes an overview of the most common cutaneous bacterial infections of domestic animals, highlighting the main features and histologic morphology of the bacteria, cutaneous structures involved, and the type of inflammatory infiltrates.
Collapse
|
4
|
Faber WR, Menke H, Rutten V, Pieters T. Lepra Bubalorum, a Potential Reservoir of Mycobacterium leprae. Front Microbiol 2021; 12:786921. [PMID: 34925294 PMCID: PMC8674755 DOI: 10.3389/fmicb.2021.786921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
In 1926, a mycobacterial skin disease was observed in water buffaloes by researchers in Indonesia. The disease was designated as skin tuberculosis, though it was hypothesized that it might be a form of leprosy or a leprosy-like disease. In a follow-up study (Ph.D. thesis Lobel, 1934, Utrecht University, Netherlands) a similar nodular skin disease was described in Indonesian water buffaloes and named "lepra bubalorum" or "nodular leprosy." Two decades later Kraneveld and Roza (1954) reported that, so far, the diagnosis lepra bubalorum had been made in 146 cases in Indonesia. After a final series of research reports by Indonesian veterinarians in 1961, no subsequent cases were published. Based on information from these reports, it can be concluded that, even though evidence of nerve involvement in buffaloes was not reported, similarities exist between lepra bubalorum and Hansen's disease (leprosy), i.e., nodular skin lesions with a chronic course and microscopically granulomatous reactions with AFB in globi in vacuoles. This raises the question as to whether these historical cases might indeed have been caused by Mycobacterium leprae, Mycobacterium lepromatosis or another representative of the M. leprae complex. The future use of state-of-the-art molecular techniques may answer this question and may also help to answer the question whether water buffaloes should be considered as a potential natural reservoir of the causative pathogen of Hansen's disease.
Collapse
Affiliation(s)
- William R Faber
- Department of Dermatology, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Henk Menke
- Faculty of Science, Freudenthal Institute, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Victor Rutten
- Division of Infectious Disease and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Toine Pieters
- Faculty of Science, Freudenthal Institute, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
Unusual Presentation of Feline Leprosy Caused by Mycobacterium lepraemurium in the Alpine Region. Pathogens 2021; 10:pathogens10060687. [PMID: 34206105 PMCID: PMC8226594 DOI: 10.3390/pathogens10060687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022] Open
Abstract
A 9-year-old cat was referred with multiple, raised, ulcerative and non-ulcerative nodules in the periocular area, sclera and ear-base region, and on the ventral aspect of the tongue. In addition, a progressive ulcerative skin nodule on the tail was observed. Fine-needle aspirations of multiple nodules from the eyelid and sclera revealed the presence of histiocytes with numerous acid-fast intracellular bacilli. The replication of slowly growing mycobacteria in liquid media was detected from biopsied nodules after three months of incubation. The molecular characterization of the isolate identified Mycobacterium (M.) lepraemurium as the cause of the infection. The cat was treated with a combination of surgical excision and a four-week course of antimicrobial therapy including rifampicin combined with clarithromycin. This is an unusual manifestation of feline leprosy and the first molecularly confirmed M. lepraemurium infection in a cat with ocular involvement in Europe. The successful combination of a surgical and antimycobacterial treatment regimen is reported.
Collapse
|
6
|
Černá P, L. Mitchell J, Lodzinska J, Cazzini P, Varjonen K, Gunn-Moore DA. Systemic Mycobacterium kansasii Infection in Two Related Cats. Pathogens 2020; 9:E959. [PMID: 33218094 PMCID: PMC7698836 DOI: 10.3390/pathogens9110959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Mycobacterial infections are a major concern in veterinary medicine because of the difficulty achieving an etiological diagnosis, the challenges and concerns of treatment, and the potential zoonotic risk. Mycobacterium kansasii, a slow-growing non-tuberculous mycobacteria, causes disease in both humans and animals. While infections have been well described in humans, where it may be misdiagnosed as tuberculosis, there are fewer reports in animals. Only four cases have been reported in the domestic cat. This case report describes systemic M. kansasii infection in two sibling indoor-only cats that presented two and half years apart with cutaneous disease that was found to be associated with osteolytic and pulmonary pathology. Infection with M. kansasii was confirmed in both cats by polymerase chain reaction on fine-needle aspirate of a lumbosacral soft tissue mass in one cat and on a tissue punch biopsy of a skin lesion in the other; interferon-gamma release assay inferred M. avium-complex and M. tuberculosis-complex infection in the two cats, respectively. Both patients made a full recovery following antimicrobial therapy with rifampicin, azithromycin, and pradofloxacin (plus N-acetyl cysteine in cat 2). This report highlights successful treatment of systemic M. kansasii mycobacteriosis in the cat and the challenge of accurately diagnosing this infection.
Collapse
Affiliation(s)
- Petra Černá
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, CO 80528, USA;
- The University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Jordan L. Mitchell
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian EH25 9RG, UK; (J.L.); (P.C.); (D.A.G.-M.)
| | - Joanna Lodzinska
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian EH25 9RG, UK; (J.L.); (P.C.); (D.A.G.-M.)
| | - Paola Cazzini
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian EH25 9RG, UK; (J.L.); (P.C.); (D.A.G.-M.)
| | - Katarina Varjonen
- AniCura Djursjukhuset Albano, Rinkebyvägen 21A, 182 36 Danderyd, Sweden;
| | - Danièlle A. Gunn-Moore
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian EH25 9RG, UK; (J.L.); (P.C.); (D.A.G.-M.)
| |
Collapse
|
7
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
8
|
Ploemacher T, Faber WR, Menke H, Rutten V, Pieters T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl Trop Dis 2020; 14:e0008276. [PMID: 32339201 PMCID: PMC7205316 DOI: 10.1371/journal.pntd.0008276] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2019] [Revised: 05/07/2020] [Accepted: 04/07/2020] [Indexed: 01/08/2023] Open
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae) and the more recently discovered Mycobacterium lepromatosis (M. lepromatosis). The two leprosy bacilli cause similar pathologic conditions. They primarily target the skin and the peripheral nervous system. Currently it is considered a Neglected Tropical Disease, being endemic in specific locations within countries of the Americas, Asia, and Africa, while in Europe it is only rarely reported. The reason for a spatial inequality in the prevalence of leprosy in so-called endemic pockets within a country is still largely unexplained. A systematic review was conducted targeting leprosy transmission research data, using PubMed and Scopus as sources. Publications between January 1, 1945 and July 1, 2019 were included. The transmission pathways of M. leprae are not fully understood. Solid evidence exists of an increased risk for individuals living in close contact with leprosy patients, most likely through infectious aerosols, created by coughing and sneezing, but possibly also through direct contact. However, this systematic review underscores that human-to-human transmission is not the only way leprosy can be acquired. The transmission of this disease is probably much more complicated than was thought before. In the Americas, the nine-banded armadillo (Dasypus novemcinctus) has been established as another natural host and reservoir of M. leprae. Anthroponotic and zoonotic transmission have both been proposed as modes of contracting the disease, based on data showing identical M. leprae strains shared between humans and armadillos. More recently, in red squirrels (Sciurus vulgaris) with leprosy-like lesions in the British Isles M. leprae and M. lepromatosis DNA was detected. This finding was unexpected, because leprosy is considered a disease of humans (with the exception of the armadillo), and because it was thought that leprosy (and M. leprae) had disappeared from the United Kingdom. Furthermore, animals can be affected by other leprosy-like diseases, caused by pathogens phylogenetically closely related to M. leprae. These mycobacteria have been proposed to be grouped as a M. leprae-complex. We argue that insights from the transmission and reservoirs of members of the M. leprae-complex might be relevant for leprosy research. A better understanding of possible animal or environmental reservoirs is needed, because transmission from such reservoirs may partly explain the steady global incidence of leprosy despite effective and widespread multidrug therapy. A reduction in transmission cannot be expected to be accomplished by actions or interventions from the human healthcare domain alone, as the mechanisms involved are complex. Therefore, to increase our understanding of the intricate picture of leprosy transmission, we propose a One Health transdisciplinary research approach. Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae) and the more recently discovered Mycobacterium lepromatosis (M. lepromatosis). The two leprosy bacilli cause similar stigmatizing pathologic conditions. M. leprae primarily targets the skin and the peripheral nervous system. Currently it is considered a Neglected Tropical Disease. The transmission pathways of M. leprae are not fully understood. Solid evidence exists of an increased risk for individuals living in close contact with leprosy patients, most likely through infectious aerosols, created by coughing and sneezing, but possibly also through direct contact. However, this systematic review underscores that human-to-human transmission is not the only way leprosy can be acquired. Anthroponotic and zoonotic transmission have both been proposed as modes of contracting the disease, based on data showing identical M. leprae strains shared between humans and armadillos. A better understanding of possible animal or environmental reservoirs is needed, because transmission from such reservoirs may partly explain the steady global incidence of leprosy despite effective and widespread multidrug therapy. Reducing transmission cannot be expected from the human healthcare domain alone, as the mechanisms involved are complex. Therefore, we propose a One Health transdisciplinary research approach.
Collapse
Affiliation(s)
- Thomas Ploemacher
- Faculty of Science, Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - William R. Faber
- Faculty of Medicine, Department of Dermatology, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk Menke
- Faculty of Science, Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Victor Rutten
- Faculty of Veterinary Medicine, Utrecht University, the Netherlands
- Dept of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Republic of South Africa
| | - Toine Pieters
- Faculty of Science, Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
9
|
Stavinohova R, O'Halloran C, Newton JR, Oliver JAC, Scurrell E, Gunn-Moore DA. Feline Ocular Mycobacteriosis: Clinical Presentation, Histopathological Features, and Outcome. Vet Pathol 2019; 56:749-760. [PMID: 31132943 DOI: 10.1177/0300985819844819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
This study describes clinical and histopathological features, treatment, and outcome of cats diagnosed with ocular mycobacteriosis. Cases diagnosed from 2012 to 2017 were reviewed for (a) histopathological evidence of ocular (pyo)granulomatous inflammation containing acid-fast bacilli with mycobacterial morphology, (b) positive mycobacterial culture and/or mycobacterial DNA identified by polymerase chain reaction of ocular tissue, or (c) presumed mycobacteriosis based on ophthalmic examination and positive interferon-gamma release assay. Twenty-five cats (31 eyes) were included; 14 cats (17/31 eyes, 55%) were blind at presentation (unilateral: n = 12 cats; bilateral: n = 2 cats); one unilaterally affected cat later became bilaterally blind. Another 5 cats (7/31 eyes, 23%) became blind after initially being bilaterally visual (unilateral: n = 3 cats; bilateral: n = 2 cats). The commonest ocular finding was uveitis (87%). The main histopathological features were granulomatous to pyogranulomatous chorioretinitis with retinal detachment, anterior uveitis, optic neuritis, episcleritis, scleritis, and/or retrobulbar cellulitis. Nineteen cats (76%) had systemic signs, with disseminated disease being diagnosed in 9, defined by interstitial pulmonary disease, generalized lymphadenopathy, and/or nonocular infection. Nine cats were diagnosed with Mycobacterium bovis, 2 with Mycobacterium microti, 1 with Mycobacterium tuberculosis complex, and 1 with Mycobacterium avium-intracellulare complex. The infecting species was unknown in the remaining cats. Combined surgery (enucleation: n = 5 cats; biopsy: n = 3 cats) and systemic treatment with 2 or 3 appropriate antibiotics for 2 to 7 months resulted in remission in 8 of the 10 cats treated; however, the cat treated with dual therapy relapsed after 8 months. A total of 16 cats (64%) were euthanized; 2 were lost to follow-up.
Collapse
Affiliation(s)
- Renata Stavinohova
- 1 Unit of Comparative Ophthalmology, Centre for Small Animal Studies, Animal Health Trust, Kentford, Newmarket, UK
| | - Conor O'Halloran
- 2 The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Jonathan Richard Newton
- 3 Epidemiology and Disease Surveillance Department, Centre for Preventive Medicine, Animal Health Trust, Kentford, Newmarket, UK
| | - James Andrew Clive Oliver
- 1 Unit of Comparative Ophthalmology, Centre for Small Animal Studies, Animal Health Trust, Kentford, Newmarket, UK
| | | | - Danièlle Audry Gunn-Moore
- 2 The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| |
Collapse
|
10
|
Turenne CY. Nontuberculous mycobacteria: Insights on taxonomy and evolution. INFECTION GENETICS AND EVOLUTION 2019; 72:159-168. [PMID: 30654178 DOI: 10.1016/j.meegid.2019.01.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/14/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022]
Abstract
Seventy years have passed since Ernest H. Runyon presented a phenotypic classification approach for nontuberculous mycobacteria (NTM), primarily as a starting point in trying to understand their clinical relevance. From numerical taxonomy (biochemical testing) to 16S rRNA gene sequencing to whole genome sequencing (WGS), our understanding of NTM has also evolved. Novel species are described at a rapid pace, while taxonomical relationships are re-defined in large part due to the accessibility of WGS. The evolutionary course of clonal complexes within species is better known for some NTM and less for others. In contrast with M. tuberculosis, much is left to learn about NTM as a whole.
Collapse
Affiliation(s)
- Christine Y Turenne
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Shared Health - Diagnostic Services, Winnipeg, MB, Canada.
| |
Collapse
|
11
|
O'Halloran C, McCulloch L, Rentoul L, Alexander J, Hope JC, Gunn-Moore DA. Cytokine and Chemokine Concentrations as Biomarkers of Feline Mycobacteriosis. Sci Rep 2018; 8:17314. [PMID: 30470763 PMCID: PMC6251861 DOI: 10.1038/s41598-018-35571-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
Mycobacteriosis is an emerging zoonotic disease of domestic cats and timely, accurate diagnosis is currently challenging. To identify differential cytokine/chemokine concentrations in serum/plasma of cats, which could be diagnostic biomarkers of infection we analysed plasma/serum from 116 mycobacteria-infected cats, 16 healthy controls and six cats hospitalised for unrelated reasons was analysed using the Milliplex MAP Feline Cytokine Magnetic Bead multiplex assay. Three cytokines; sFAS, IL-13 and IL-4 were reduced while seven; GM-CSF, IL-2, PDGF-BB, IL-8, KC, RANTES and TNF-α were elevated in mycobacteria-infected cats compared to healthy controls. However, IL-8 and KC concentrations were not significantly different from cats hospitalised for other reasons. Elevations in TNF-α and PDGF-BB may have potential to identify M. bovis and M. microti infected cats specifically while GM-CSF, IL-2 and FLT3L were increased in MTBC infected cats. This study demonstrates potential use of feline tuberculosis as a spontaneously occurring model of this significant human disease. Cytokine profiling has clear diagnostic potential for mycobacteriosis of cats and could be used discriminate tuberculous from non-tuberculous disease to rapidly inform on zoonotic risk. Future work should focus on the in-field utility of these findings to establish diagnostic sensitivity and specificity of these markers.
Collapse
Affiliation(s)
- C O'Halloran
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, EH25 9RG, UK. conor.o'
| | - L McCulloch
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, EH16 4SB, UK
| | - L Rentoul
- MilliporeSigma (a Division of Merck KGaA, Darmstadt, Germany), 3050, Spruce Street, St. Louis, MO, USA
| | - J Alexander
- Waltham Centre for Pet Nutrition, Leicestershire, UK
| | - J C Hope
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, EH25 9RG, UK
| | - D A Gunn-Moore
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, EH25 9RG, UK
| |
Collapse
|
12
|
Highly Reduced Genome of the New Species Mycobacterium uberis, the Causative Agent of Nodular Thelitis and Tuberculoid Scrotitis in Livestock and a Close Relative of the Leprosy Bacilli. mSphere 2018; 3:3/5/e00405-18. [PMID: 30282756 PMCID: PMC6170788 DOI: 10.1128/msphere.00405-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Nodular thelitis is a chronic enzootic infection affecting dairy cows and goats. The causative agent was recently shown to be related to the leprosy-causing bacilli Mycobacterium leprae and Mycobacterium lepromatosis In this study, the genome of this pathogen was sequenced and analyzed. Phylogenomic analyses confirmed that the pathogen present in nodular thelitis and tuberculoid scrotitis is a distinct species related to the leprosy bacilli and Mycobacterium haemophilum Because the pathogen was originally isolated from a bovine udder, it was named "Mycobacterium uberis" The genome of "M. uberis" is only 3.12 Mb in length, which represents the smallest mycobacterial genome identified so far but which is close to that of leprosy bacilli in size. The genome contains 1,759 protein-coding genes and 1,081 pseudogenes, indicative of extensive reductive evolution and likely the reason that M. uberis cannot be grown axenically. The pseudogenization and genome reduction in M. uberis seem to have been to some extent independent from the results determined for the genomes of the leprosy bacilli.IMPORTANCE M. uberis is an emerging skin pathogen in dairy animals. Its genome underwent massive reduction and gene decay, leading to a minimal set of genes required for an obligatory intracellular lifestyle, which highly resembles the evolution of the leprosy agents M. leprae and M. lepromatosis The genomic similarity between M. uberis and the leprosy bacilli can help in identifying key virulence factors of these closely related species or in identifying genes responsible for the distinct differences between thelitis or scrotitis and leprosy with respect to clinical manifestations. Specific DNA markers can now be developed for quick detection of this pathogen.
Collapse
|
13
|
O'Halloran C, Dobromylskyj M. Clinical mycobacterial diseases of companion animals: part 2. Management of companion animal mycobacteriosis. ACTA ACUST UNITED AC 2017. [DOI: 10.12968/coan.2017.22.11.652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Affiliation(s)
- Conor O'Halloran
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, Easter Bush Campus, The University of Edinburgh, EH25 9RG
| | - Melanie Dobromylskyj
- Finn Pathologists, Histopathology Department, One Eyed Lane, Weybread, Diss, Norfolk IP21 5TT
| |
Collapse
|
14
|
Backel K, Cain C. Skin as a marker of general feline health: Cutaneous manifestations of infectious disease. J Feline Med Surg 2017; 19:1149-1165. [PMID: 29068251 PMCID: PMC10816623 DOI: 10.1177/1098612x17735764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
Practical relevance: Infectious disease in feline patients often presents a diagnostic challenge. This article reviews the most relevant viral, bacterial and protozoal diseases and their cutaneous manifestations. Many of the diseases discussed have overlapping presentations or may mimic more common noninfectious disease processes. The purpose of the article is to reinforce knowledge of common and uncommon infectious diseases, help practitioners identify possible infectious dermatoses, create a comprehensive and prioritized differential list, and provide guidance for the diagnosis of these diseases. A working knowledge of these clinical syndromes is important if what is thought to be a case of a common disease does not respond to conventional management. AUDIENCE This review is aimed at veterinarians who treat cats and especially those with an interest in feline dermatology. Tables are included to allow the reader to formulate a concise list of differential diagnoses for clinically similar presentations. The diagnostic approach to a case of ulcerative facial dermatitis is reviewed in a Case Notes quiz. Evidence base: This article includes up-to-date information regarding dermatologic manifestations of less commonly encountered feline cutaneous infectious diseases. Information has been drawn from the published, peer-reviewed literature and the most recent textbook chapters with a particular aim of describing and differentiating clinical lesions and the diagnostic approach to cutaneous disease, especially in unusual cases.
Collapse
Affiliation(s)
- Katherine Backel
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Christine Cain
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
|
16
|
Abstract
Practical relevance: Although most skin lesions occur due to diseases primarily affecting the skin, some reflect important systemic diseases. Such lesions may relate directly to the systemic disease, or may occur due to secondary skin diseases that develop because of immunosuppression. Early recognition of skin changes as a marker of systemic disease will maximise patient outcomes. Clinical challenges: In older or clearly debilitated cats presenting with skin disease, the potential for underlying systemic disease is often readily apparent. Similarly, cats presenting with severe ulcerative or multifocal nodular skin lesions, or with concurrent signs of systemic illness, will more instinctively prompt systemic evaluation. More challenging is the cat presenting with alopecic, scaling, erythemic and/or mildly crusted skin disease, with or without pruritus; hypersensitivities and infectious dermatoses are the most common considerations, but occasionally systemic disease underlies the skin changes. Knowing when screening laboratory testing, body imaging or other systemic diagnostics are indicated is not always straightforward. Evidence base: This article reviews cutaneous presentations of systemic diseases reported in the veterinary literature, and discusses important differential diagnoses. The author draws on clinical experience, published data on disease prevalence and case evaluations, and expert opinions on approach to common systemic problems to provide guidance on when investigation for underlying systemic disease is most appropriate.
Collapse
Affiliation(s)
- Linda J Vogelnest
- Small Animal Specialist Hospital, Sydney, NSW, Australia, and Associate Lecturer, University of Sydney, NSW, Australia
| |
Collapse
|