1
|
Bland A, Chuah E, Meere W, Ford TJ. Targeted Therapies for Microvascular Disease. Cardiol Clin 2024; 42:137-145. [PMID: 37949535 DOI: 10.1016/j.ccl.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Coronary microvascular dysfunction (CMD) is a common cause of ischemia but no obstructive coronary artery disease that results in an inability of the coronary microvasculature to meet myocardial oxygen demand. CMD is challenging to diagnose and manage due to a lack of mechanistic research and targeted therapy. Recent evidence suggests we can improved patient outcomes by stratifying antianginal therapies according to the diagnosis revealed by invasive assessment of the coronary microcirculation. This review article appraises the evidence for management of CMD, which includes treatment of cardiovascular risk, antianginal therapy and therapy for atherosclerosis.
Collapse
Affiliation(s)
- Adam Bland
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - Eunice Chuah
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - William Meere
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - Thomas J Ford
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia; University of Glasgow, ICAMS, G12 8QQ Glasgow, UK.
| |
Collapse
|
2
|
Bland A, Chuah E, Meere W, Ford TJ. Targeted Therapies for Microvascular Disease. Heart Fail Clin 2024; 20:91-99. [PMID: 37953025 DOI: 10.1016/j.hfc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Coronary microvascular dysfunction (CMD) is a common cause of ischemia but no obstructive coronary artery disease that results in an inability of the coronary microvasculature to meet myocardial oxygen demand. CMD is challenging to diagnose and manage due to a lack of mechanistic research and targeted therapy. Recent evidence suggests we can improved patient outcomes by stratifying antianginal therapies according to the diagnosis revealed by invasive assessment of the coronary microcirculation. This review article appraises the evidence for management of CMD, which includes treatment of cardiovascular risk, antianginal therapy and therapy for atherosclerosis.
Collapse
Affiliation(s)
- Adam Bland
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - Eunice Chuah
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - William Meere
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - Thomas J Ford
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia; University of Glasgow, ICAMS, G12 8QQ Glasgow, UK.
| |
Collapse
|
3
|
Anabolic and Inflammatory Response to High- and Low-Load Resistance Training in Patients with Coronary Artery Disease: A Randomized Controlled Trial. J Cardiopulm Rehabil Prev 2023:01273116-990000000-00076. [PMID: 36867715 DOI: 10.1097/hcr.0000000000000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
4
|
Bland A, Chuah E, Meere W, Ford TJ. Targeted Therapies for Microvascular Disease. Interv Cardiol Clin 2023; 12:131-139. [PMID: 36372457 DOI: 10.1016/j.iccl.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Coronary microvascular dysfunction (CMD) is a common cause of ischemia but no obstructive coronary artery disease that results in an inability of the coronary microvasculature to meet myocardial oxygen demand. CMD is challenging to diagnose and manage due to a lack of mechanistic research and targeted therapy. Recent evidence suggests we can improved patient outcomes by stratifying antianginal therapies according to the diagnosis revealed by invasive assessment of the coronary microcirculation. This review article appraises the evidence for management of CMD, which includes treatment of cardiovascular risk, antianginal therapy and therapy for atherosclerosis.
Collapse
Affiliation(s)
- Adam Bland
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - Eunice Chuah
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - William Meere
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - Thomas J Ford
- Department of Cardiology, Gosford Hospital - Central Coast LHD, 75 Holden Street, Gosford, New South Wales 2250, Australia; The University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia; University of Glasgow, ICAMS, G12 8QQ Glasgow, UK.
| |
Collapse
|
5
|
YANG MINGXUAN, PAN YANXIA, LI KUNHUI, CHEN XIUYUN, LI MINYAN, LIN JIANPING, LI MING, LIN CHENG. Effects of Exercise Training on PPARβ/δ Expression in Skeletal Muscle of Rats with Spontaneous Hypertension. Med Sci Sports Exerc 2022; 54:1309-1316. [PMID: 35389955 PMCID: PMC9301982 DOI: 10.1249/mss.0000000000002925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to identify the relationship and mechanism between skeletal muscle peroxisome proliferator-activated receptor β/δ (PPARβ/δ) and spontaneous hypertension. METHODS Rats were divided into four groups ( n = 10): spontaneous hypertensive rats exercise group (SHR-E), spontaneous hypertensive rats sedentary group (SHR-S), Wistar-Kyoto control rats exercise group (WKY-E), and Wistar-Kyoto control rats sedentary group (WKY-S). Although the sedentary groups were placed on the treadmill without moving during the training sessions, the exercise groups were forced to run on a treadmill for 8 wk, 1 h·d -1 , 5 d·wk -1 . After training, the density and area of gastrocnemius microvessels were observed. PPARβ/δ, vascular endothelial growth factor A (VEGFA), superoxide dismutase 2 (SOD-2), and nitric oxide synthase in gastrocnemius were measured by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. RESULTS Except the sixth week of age, the systolic blood pressure of SHR-S was significantly higher than that of WKY-S at all time periods. Exercise significantly reduced systolic blood pressure in SHR rats. Compared with the SHR-S group, the WKY-S group had significantly higher PPARβ/δ protein level and density of skeletal muscle microvessels. Eight weeks of exercise increased the PPARβ/δ, SOD-2, VEGFA, and microvessel density and area in the skeletal muscle of SHR. CONCLUSIONS Exercise training promoted PPARβ/δ mRNA and protein-level expression of PPARβ/δ, SOD-2 and VEGFA in skeletal muscle, thus increasing the density and area of skeletal muscle blood vessels. These regulations contribute to the reduction of peripheral vascular resistance. This may be a potential mechanism of exercise to reduce blood pressure.
Collapse
Affiliation(s)
- MINGXUAN YANG
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, CHINA
| | - YANXIA PAN
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - KUNHUI LI
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - XIUYUN CHEN
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - MINYAN LI
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - JIANPING LIN
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - MING LI
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| | - CHENG LIN
- Department of Rehabilitation Therapy, School of Health, Fujian Medical University, Fuzhou, CHINA
| |
Collapse
|
6
|
Wu Q, Bai B, Tian C, Li D, Yu H, Song B, Li B, Chu X. The Molecular Mechanisms of Cardiotoxicity Induced by HER2, VEGF, and Tyrosine Kinase Inhibitors: an Updated Review. Cardiovasc Drugs Ther 2021; 36:511-524. [PMID: 33847848 DOI: 10.1007/s10557-021-07181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
AIM In recent decades, there has been a revolutionary decrease in cancer-related mortality and an increase in survival due to the introduction of novel targeted drugs. Nevertheless, drugs targeting human epidermal growth factor receptor 2 (HER-2), angiogenesis, and other tyrosine kinases also come with unexpected cardiac side effects, including heart failure, hypertension, arterial thrombosis, and arrhythmias, and have mechanisms that are unlike those of classic chemotherapeutic agents. In addition, it is challenging to address some problems, as the existing guidelines need to be more specific, and further large-scale clinical trials and experimental studies are required to confirm the benefit of administering cardioprotective agents to patients treated with targeted therapies. Therefore, an improved understanding of cardiotoxicity becomes increasingly important to minimize the pernicious effects and maximize the beneficial effects of targeted agents. METHODS "Cardiotoxicity", "targeted drugs", "HER2", "trastuzumab", "angiogenesis inhibitor", "VEGF inhibitor" and "tyrosine kinase inhibitors" are used as keywords for article searches. RESULTS In this article, we report several targeted therapies that induce cardiotoxicity and update knowledge of the clinical evidence, molecular mechanisms, and management measures.
Collapse
Affiliation(s)
- Qinchao Wu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Bingxue Song
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China
| | - Bing Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong, China.
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, Shandong, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, Shandong, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Ahmadi A, Dabidi Roshan V, Jalali A. Coronary vasomotion and exercise-induced adaptations in coronary artery disease patients: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:76. [PMID: 33088313 PMCID: PMC7554544 DOI: 10.4103/jrms.jrms_580_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
Abstract
Background: Exercise can improve coronary blood flow in a healthy heart, but the vascular response of patients with coronary artery disease (CAD) is different. The aim of this study was to systematically review the chronic effects of exercise on coronary arterial function in CAD patients. Materials and Methods: Six electronic databases (PubMed, ScienceDirect, “Scopus,” Web of Science, EMBASE, and Google Scholar) covering publications from 1986 to 2019 were systematically searched with related keywords. Studies were included if they investigated changes in blood flow and coronary artery diameter in response to chronic exercise training in patients with CAD. A total of 5421 studies were assessed for quality and outcomes, and finally five studies met criteria for inclusion. For metaanalysis, the results of the studies were pooled using the randomeffects model. The heterogeneity between the studies was checked using I2 index. Results: The total sample population consisted of 108 CAD patients. According to the findings of this study, coronary artery function in adaptation with exercise showed that a period of exercise leads to statistically significant improvement in coronary flow velocity reserve (z = 3.15, P = 0.002; standardized mean difference [SMD] =2.33, 95% confidence interval [CI]: 0.88–3.78) (containing six trials). In addition, vasodilatory response of coronary arteries in response to endothelium-independent vasodilator nitroglycerin was investigated in three studies (containing four trials). A meta-analysis showed that performing chronic aerobic exercises did not make a significant change in the endothelium-independent vasodilator (z = 0.83, P = 0.40; SMD = −0.36, 95% CI: −1.21–0.49). Conclusion: Based on the results of the present study, aerobic exercises improve the endothelial function of coronary arteries and thereby the vascular vasomotion function, while the results of this meta-analysis showed no change in arterial smooth muscle's function by chronic aerobic exercises. This study reflects the lack of high- and medium-quality reports about the chronic effects of anaerobic and resistance exercises and the various methods of aerobic exercise on cardiovascular function.
Collapse
Affiliation(s)
- Azra Ahmadi
- Department of Sport Physiology, College of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Valiollah Dabidi Roshan
- Department of Sport Physiology, College of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Arash Jalali
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Schindler MJ, Adams V, Halle M. Exercise in Heart Failure—What Is the Optimal Dose to Improve Pathophysiology and Exercise Capacity? Curr Heart Fail Rep 2019; 16:98-107. [DOI: 10.1007/s11897-019-00428-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Tsai CL, Pai MC, Ukropec J, Ukropcová B. Distinctive Effects of Aerobic and Resistance Exercise Modes on Neurocognitive and Biochemical Changes in Individuals with Mild Cognitive Impairment. Curr Alzheimer Res 2019; 16:316-332. [DOI: 10.2174/1567205016666190228125429] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/02/2018] [Accepted: 02/04/2019] [Indexed: 01/01/2023]
Abstract
Background:
Decreased levels of the neuroprotective growth factors, low-grade inflammation, and
reduced neurocognitive functions during aging are associated with neurodegenerative diseases, such as Alzheimer’s
disease. Physical exercise modifies these disadvantageous phenomena while a sedentary lifestyle
promotes them.
Purpose:
The purposes of the present study included investigating whether both aerobic and resistance exercise
produce divergent effects on the neuroprotective growth factors, inflammatory cytokines, and neurocognitive
performance, and further exploring whether changes in the levels of these molecular biomarkers are associated
with alterations in neurocognitive performance.
Methods:
Fifty-five older adults with amnestic MCI (aMCI) were recruited and randomly assigned to an aerobic
exercise (AE) group, a resistance exercise (RE) group, or a control group. The assessment included neurocognitive
measures [e.g., behavior and event-related potential (ERP)] during a task-switching paradigm, as
well as circulating neuroprotective growth factors (e.g., BDNF, IGF-1, VEGF, and FGF-2) and inflammatory
cytokine (e.g., TNF-α, IL-1β, IL-6, IL-8, and IL-15) levels at baseline and after either a 16-week aerobic or
resistance exercise intervention program or a control period.
Results:
Aerobic and resistance exercise could effectively partially facilitate neurocognitive performance [e.g.,
accuracy rates (ARs), reaction times during the heterogeneous condition, global switching cost, and ERP P3
amplitude] when the participants performed the task switching paradigm although the ERP P2 components and
P3 latency could not be changed. In terms of the circulating molecular biomarkers, the 16-week exercise interventions
did not change some parameters (e.g., leptin, VEGF, FGF-2, IL-1β, IL-6, and IL-8). However, the
peripheral serum BDNF level was significantly increased, and the levels of insulin, TNF-α, and IL-15 levels
were significantly decreased in the AE group, whereas the RE group showed significantly increased IGF-1
levels and decreased IL-15 levels. The relationships between the changes in neurocognitive performance (AR
and P3 amplitudes) and the changes in the levels of neurotrophins (BDNF and IGF-1)/inflammatory cytokines
(TNF-α) only approached significance.
Conclusion:
These findings suggested that in older adults with aMCI, not only aerobic but also resistance exercise
is effective with regard to increasing neurotrophins, reducing some inflammatory cytokines, and facilitating
neurocognitive performance. However, the aerobic and resistance exercise modes likely employed divergent
molecular mechanisms on neurocognitive facilitation.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Sheng Li Road, Tainan, 704, Taiwan
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Slovakia, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Barbara Ukropcová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Slovakia, Dubravska cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
10
|
Touyz RM, Herrmann SMS, Herrmann J. Vascular toxicities with VEGF inhibitor therapies-focus on hypertension and arterial thrombotic events. ACTA ACUST UNITED AC 2018; 12:409-425. [PMID: 29703600 PMCID: PMC6168784 DOI: 10.1016/j.jash.2018.03.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
The vascular endothelial growth factor (VEGF) signaling pathway (VSP) fulfills a cardinal role in endothelial cells and its inhibition has profound cardiovascular impact. This is true not only for the normal vasculature but also for the tumor vasculature when VSP inhibitors are used as anti-angiogenic therapies. Generalized endothelial dysfunction predisposes to vasoconstriction, atherosclerosis, platelet activation, and thrombosis (arterial more than venous). All of these have been reported with VSP inhibitors and collectively give rise to vascular toxicities, the most concerning of which are arterial thromboembolic events (ATE). VSP inhibitors include antibodies, acting extracelluarly on VEGF, such as bevacizumab and tyrosine kinases inhibitors, acting intracellularly on the kinase domain of VEGF receptors, such as sunintib and sorafenib. The addition of bevacizumab and VSP tyrosine kinase inhibitor therapy to the cancer treatment regimen is associated with a 1.5-2.5-fold and 2.3-4.6-fold increase risk of ATEs, respectively. Risk factors for ATEs while on VSP inhibitor therapy include age older than 65 years, previous thromboembolic events, history of atherosclerotic disease, and duration of VSP inhibitor therapy. In clinical practice, hypertension remains the most commonly noted vascular manifestation of VSP inhibition. Optimal blood pressure goals and preferred therapeutic strategies toward reaching these goals are not defined at present. This review summarizes current data on this topic and proposes a more intensive management approach to patients undergoing VSP inhibitor therapy including Systolic Blood PRessure Intervention Trial (SPRINT) blood pressure goals, pleiotropic vasoprotective agents such as angiotensin converting enzyme inhibitors, amlodipine, and carvedilol, high-dose statin therapy, and aspirin.
Collapse
Affiliation(s)
- Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Sandra M S Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Adams V, Reich B, Uhlemann M, Niebauer J. Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol 2017; 313:H72-H88. [PMID: 28476924 DOI: 10.1152/ajpheart.00470.2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
For decades, we have known that exercise training exerts beneficial effects on the human body, and clear evidence is available that a higher fitness level is associated with a lower incidence of suffering premature cardiovascular death. Despite this knowledge, it took some time to also incorporate physical exercise training into the treatment plan for patients with cardiovascular disease (CVD). In recent years, in addition to continuous exercise training, further training modalities such as high-intensity interval training and pyramid training have been introduced for coronary artery disease patients. The beneficial effect for patients with CVD is clearly documented, and during the last years, we have also started to understand the molecular mechanisms occurring in the skeletal muscle (limb muscle and diaphragm) and endothelium, two systems contributing to exercise intolerance in these patients. In the present review, we describe the effects of the different training modalities in CVD and summarize the molecular effects mainly in the skeletal muscle and cardiovascular system.
Collapse
Affiliation(s)
- Volker Adams
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Bernhard Reich
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Madlen Uhlemann
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
12
|
Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, Emanuele E, Joyner MJ, Lucia A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res 2016; 18:57-89. [PMID: 25431878 DOI: 10.1089/rej.2014.1623] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regular exercise has multi-system anti-aging effects. Here we summarize how exercise impacts the major hallmarks of aging. We propose that, besides searching for novel pharmaceutical targets of the aging process, more research efforts should be devoted to gaining insights into the molecular mediators of the benefits of exercise and to implement effective exercise interventions for elderly people.
Collapse
Affiliation(s)
- Nuria Garatachea
- 1 Faculty of Health and Sport Science, University of Zaragoza , Huesca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rudwill F, Bergouignan A, Gastebois C, Gauquelin-Koch G, Lefai E, Blanc S, Simon C. Effect of enforced physical inactivity induced by 60-day of bed rest on hepatic markers of NAFLD in healthy normal-weight women. Liver Int 2015; 35:1700-6. [PMID: 25413107 DOI: 10.1111/liv.12743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/17/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Physical inactivity leads to a cluster of metabolic disorders that have been associated with non-alcoholic fatty liver diseases. We tested whether physical inactivity increases hepatic biomarkers of NAFLDs. METHODS Sixteen normal-weight healthy women (body mass index = 21.2 ± 0.5 kg/m(2) ) were studied under controlled energy balance conditions during a previous 60-day bed rest with (n = 8) or without (n = 8) a combined aerobic/resistive exercise protocol. Stored samples were retrospectively used to measure plasma hepatic markers, i.e. steatosis-related alanine and aspartate transaminases, cytokeratin 18 and angiopoietin-like 3, at baseline, after 30 and 60 days of bed rest. Fasting insulin and triglycerides were measured at baseline and after 30 days of bed rest. Two indexes were calculated, one combining alanine and aspartate transaminase and cytokeratin 18 and another cytokeratin 18, homeostasis model assessment of insulin resistance and aspartate aminotransferase. RESULTS Sixty days of bed rest increased all hepatic markers (P < 0.05 for all) and the two indexes (P < 0.01 for both). Exercise significantly reduced the elevation in aspartate transaminase, cytokeratin 18 and both indexes (P < 0.02 for all) but not the increase in alanine transaminase and angiopoietin-like 3. Changes between baseline and 30 days of bed rest in triglycerides were positively associated with changes in aspartate transaminase (R(2) = 0.28, P = 0.04) suggesting a role of hypertriglyceridaemia in the alteration of liver metabolism under inactive conditions. CONCLUSION Physical inactivity increases, independent of fat mass, hepatic markers of steatosis and steatohepatitis. Regular exercise can limit these physical inactivity-induced metabolic alterations. Future studies need to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Floriane Rudwill
- University of Strasbourg, IPHC, Strasbourg, France.,CNRS, UMR 7178, Strasbourg, France
| | - Audrey Bergouignan
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Box C263, Aurora, CO, USA
| | - Caroline Gastebois
- CARMEN, INSERM U1060, University of Lyon 1, INRA1397, CRNH-RA, Oullins, France
| | | | - Etienne Lefai
- CARMEN, INSERM U1060, University of Lyon 1, INRA1397, CRNH-RA, Oullins, France
| | - Stéphane Blanc
- University of Strasbourg, IPHC, Strasbourg, France.,CNRS, UMR 7178, Strasbourg, France
| | - Chantal Simon
- CARMEN, INSERM U1060, University of Lyon 1, INRA1397, CRNH-RA, Oullins, France
| |
Collapse
|
14
|
Grace FM, Herbert P, Ratcliffe JW, New KJ, Baker JS, Sculthorpe NF. Age related vascular endothelial function following lifelong sedentariness: positive impact of cardiovascular conditioning without further improvement following low frequency high intensity interval training. Physiol Rep 2015; 3:3/1/e12234. [PMID: 25626864 PMCID: PMC4387763 DOI: 10.14814/phy2.12234] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aging is associated with diffuse impairments in vascular endothelial function and traditional
aerobic exercise is known to ameliorate these changes. High intensity interval training (HIIT) is
effective at improving vascular function in aging men with existing disease, but its effectiveness
remains to be demonstrated in otherwise healthy sedentary aging. However, the frequency of commonly
used HIIT protocols may be poorly tolerated in older cohorts. Therefore, the present study
investigated the effectiveness of lower frequency HIIT (LfHIIT) on
vascular function in a cohort of lifelong sedentary (SED; n
=22, age 62.7 ± 5.2 years) men compared with a positive
control group of lifelong exercisers (LEX; n = 17, age 61.1 ± 5.4
years). The study consisted of three assessment phases; enrolment to the study (Phase A), following
6 weeks of conditioning exercise in SED (Phase B) and following 6 weeks of low frequency HIIT in
both SED and LEX (LfHIIT; Phase C). Conditioning exercise improved FMD
in SED (3.4 ± 1.5% to 4.9 ± 1.1%; P
<0.01) such that the difference between groups on enrolment (3.4
± 1.5% vs. 5.3 ± 1.4%; P <0.01) was abrogated. This was maintained but not further improved following
LfHIIT in SED whilst FMD remained unaffected by
LfHIIT in LEX. In conclusion, LfHIIT is
effective at maintaining improvements in vascular function achieved during conditioning exercise in
SED. LfHIIT is a well‐tolerated and effective exercise mode for
reducing cardiovascular risk and maintaining but does not improve vascular function beyond that
achieved by conditioning exercise in aging men, irrespective of fitness level. The effects of low frequency high intensity interval training (HIIT) on vascular endothelial
function in lifelong sedentary men remains currently unknown. The present study examined the impact
of low frequency HIIT following conditioning exercise on low determinants of vascular endothelial
function and angiogenic biomarkers in aging men compared with a positive control group of similarly
aged. The major findings of this study indicate that low frequency HIIT is a well‐tolerated
and effective exercise mode for reducing cardiovascular risk and maintaining but not improving
endothelial function beyond that achieved by conditioning exercise in aging men, irrespective of
fitness level.
Collapse
Affiliation(s)
- Fergal M Grace
- Institute of Clinical Exercise & Health Sciences, School of Science and Sport, University of the West of Scotland, Hamilton, UK
| | - Peter Herbert
- Institute of Clinical Exercise & Health Sciences, School of Science and Sport, University of the West of Scotland, Hamilton, UK University of Wales Trinity Saint David, CamarthenWales, UK
| | - John W Ratcliffe
- Institute of Clinical Exercise & Health Sciences, School of Science and Sport, University of the West of Scotland, Hamilton, UK
| | - Karl J New
- School of Health Sport and Professional Practice, University of South Wales, Wales, UK
| | - Julien S Baker
- Institute of Clinical Exercise & Health Sciences, School of Science and Sport, University of the West of Scotland, Hamilton, UK
| | - Nicholas F Sculthorpe
- Institute of Clinical Exercise & Health Sciences, School of Science and Sport, University of the West of Scotland, Hamilton, UK
| |
Collapse
|
15
|
Inverse correlation between coronary and retinal blood flows in patients with normal coronary arteries and slow coronary blood flow. Atherosclerosis 2014; 232:149-54. [DOI: 10.1016/j.atherosclerosis.2013.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/13/2013] [Accepted: 10/28/2013] [Indexed: 01/20/2023]
|
16
|
Wienbergen H, Hambrecht R. Physical exercise and its effects on coronary artery disease. Curr Opin Pharmacol 2013; 13:218-25. [PMID: 23333176 DOI: 10.1016/j.coph.2012.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/03/2012] [Accepted: 12/08/2012] [Indexed: 01/13/2023]
Abstract
The beneficial effects of physical exercise on stable coronary artery disease (CAD) have been shown by an increasing number of studies. Exercise training leads to an improved bioavailability of the endothelial nitric oxide and partially attenuates endothelial dysfunction. Further effects are an economization of ventricular function and a reduction of cardiovascular risk factors. In clinical studies exercise training was associated with a decreased total and cardiovascular mortality and a reduced angina pectoris threshold. Thus exercise training has developed to an evidence-based therapeutic option of stable CAD with a Class Ia recommendation in the guidelines.
Collapse
Affiliation(s)
- Harm Wienbergen
- Bremer Institut für Herz- und Kreislaufforschung am Klinikum Links der Weser, Germany
| | | |
Collapse
|
17
|
Knebel F, Spethmann S, Schattke S, Dreger H, Schroeckh S, Schimke I, Hättasch R, Makauskiene R, Kleczka J, Sanad W, Lock J, Brechtel L, Baumann G, Borges AC. Exercise-induced changes of left ventricular diastolic function in postmenopausal amateur marathon runners: assessment by echocardiography and cardiac biomarkers. Eur J Prev Cardiol 2012; 21:782-90. [DOI: 10.1177/2047487312462799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Sebastian Spethmann
- Universitätsmedizin Berlin, Berlin, Germany
- Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Padilla J, Simmons GH, Davis JW, Whyte JJ, Zderic TW, Hamilton MT, Bowles DK, Laughlin MH. Impact of exercise training on endothelial transcriptional profiles in healthy swine: a genome-wide microarray analysis. Am J Physiol Heart Circ Physiol 2011; 301:H555-64. [PMID: 21622830 DOI: 10.1152/ajpheart.00065.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While the salutary effects of exercise training on conduit artery endothelial cells have been reported in animals and humans with cardiovascular risk factors or disease, whether a healthy endothelium is alterable with exercise training is less certain. The purpose of this study was to evaluate the impact of exercise training on transcriptional profiles in normal endothelial cells using a genome-wide microarray analysis. Brachial and internal mammary endothelial gene expression was compared between a group of healthy pigs that exercise trained for 16-20 wk (n = 8) and a group that remained sedentary (n = 8). We found that a total of 130 genes were upregulated and 84 genes downregulated in brachial artery endothelial cells with exercise training (>1.5-fold and false discovery rate <15%). In contrast, a total of 113 genes were upregulated and 31 genes downregulated in internal mammary artery endothelial cells using the same criteria. Although there was an overlap of 66 genes (59 upregulated and 7 downregulated with exercise training) between the brachial and internal mammary arteries, the identified endothelial gene networks and biological processes influenced by exercise training were distinctly different between the brachial and internal mammary arteries. These data indicate that a healthy endothelium is indeed responsive to exercise training and support the concept that the influence of physical activity on endothelial gene expression is not homogenously distributed throughout the vasculature.
Collapse
Affiliation(s)
- Jaume Padilla
- Dept. of Biomedical Sciences, E102 Veterinary Medicine, 1600 E. Rollins Rd., Univ. of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|