1
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Belyaeva E, Loginova N, Schroeder BA, Goldlust IS, Acharya A, Kumar S, Timashev P, Ulasov I. The spectrum of cell death in sarcoma. Biomed Pharmacother 2023; 162:114683. [PMID: 37031493 DOI: 10.1016/j.biopha.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The balance between cell death and cell survival is a highly coordinated process by which cells break down and remove unnecessary or harmful materials in a controlled, highly regulated, and compartmentalized manner. Cell exposure to various stresses, such as oxygen starvation, a lack of nutrients, or exposure to radiation, can initiate autophagy. Autophagy is a carefully orchestrated process with multiple steps, each regulated by specific genes and proteins. Autophagy proteins impact cellular maintenance and cell fate in response to stress, and targeting this process is one of the most promising methods of anti-tumor therapy. It is currently not fully understood how autophagy affects different types of tumor cells, which makes it challenging to predict outcomes when this process is manipulated. In this review, we will explore the mechanisms of autophagy and investigate it as a potential and promising therapeutic target for aggressive sarcomas.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian S Goldlust
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arbind Acharya
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sandeep Kumar
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
3
|
Alwaqfi RR, Samuelson MI, Guseva NN, Ouyang M, Bossler AD, Ma D. PTCH1-GLI1 Fusion-Positive Ovarian Tumor: Report of a Unique Case With Response to Tyrosine Kinase Inhibitor Pazopanib. J Natl Compr Canc Netw 2021; 19:998-1004. [PMID: 34551385 DOI: 10.6004/jnccn.2021.7058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Recurrent GLI1 gene fusions have been recently described in a subset of soft tissue tumors showing a distinct monotonous epithelioid morphology with a rich capillary network and frequent S100 protein expression. Three different fusion partners-ACTB, MALAT1, and PTCH1-have been reported with the PTCH1-GLI1 fusion from 2 patients only, both with head and neck tumors. Herein, we report for the first time a PTCH1-GLI1 fusion in a primary ovarian tumor from a female patient aged 54 years who presented with a 21-cm right ovarian mass and mesenteric metastasis. The tumor was diagnosed as "favor malignant melanoma" based on histologic examination and extensive immunohistochemistry studies. The patient received 4 cycles of pembrolizumab and 2 cycles of trabectedin but developed multiple metastases. A next-generation sequencing-based assay detected a PTCH1-GLI1 fusion, which led to a revised pathologic diagnosis and a change of the patient's management. The patient was switched to the tyrosine kinase inhibitor (TKI) pazopanib to target the sonic hedgehog pathway. Her disease was stable 49 months post TKI therapy. Our case report is the first to show that a tumor with GLI1 oncogenic activation was sensitive to a TKI. The morphologic and immunohistochemistry similarities of our patient's tumor to other recently described tumors harboring GLI1 fusions suggest that these tumors may all belong to the same entity of GLI1 fusion-positive neoplasms and may be treated similarly.
Collapse
Affiliation(s)
| | | | | | - Michelle Ouyang
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | | |
Collapse
|
4
|
Context-dependent modulation of aggressiveness of pediatric tumors by individual oncogenic RAS isoforms. Oncogene 2021; 40:4955-4966. [PMID: 34172934 PMCID: PMC8342309 DOI: 10.1038/s41388-021-01904-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
A prototypic pediatric cancer that frequently shows activation of RAS signaling is embryonal rhabdomyosarcoma (ERMS). ERMS also show aberrant Hedgehog (HH)/GLI signaling activity and can be driven by germline mutations in this pathway. We show, that in ERMS cell lines derived from sporadic tumors i.e. from tumors not caused by an inherited genetic variant, HH/GLI signaling plays a subordinate role, because oncogenic mutations in HRAS, KRAS, or NRAS (collectively named oncRAS) inhibit the main HH target GLI1 via the MEK/ERK-axis, but simultaneously increase proliferation and tumorigenicity. oncRAS also modulate expression of stem cell markers in an isoform- and context-dependent manner. In Hh-driven murine ERMS that are caused by a Patched mutation, oncHRAS and mainly oncKRAS accelerate tumor development, whereas oncNRAS induces a more differentiated phenotype. These features occur when the oncRAS mutations are induced at the ERMS precursor stage, but not when induced in already established tumors. Moreover, in contrast to what is seen in human cell lines, oncRAS mutations do not alter Hh signaling activity and marginally affect expression of stem cell markers. Together, all three oncRAS mutations seem to be advantageous for ERMS cell lines despite inhibition of HH signaling and isoform-specific modulation of stem cell markers. In contrast, oncRAS mutations do not inhibit Hh-signaling in Hh-driven ERMS. In this model, oncRAS mutations seem to be advantageous for specific ERMS populations that occur within a specific time window during ERMS development. In addition, this window may be different for individual oncRAS isoforms, at least in the mouse.
Collapse
|
5
|
Yoon JW, Lamm M, Chandler C, Iannaccone P, Walterhouse D. Up-regulation of GLI1 in vincristine-resistant rhabdomyosarcoma and Ewing sarcoma. BMC Cancer 2020; 20:511. [PMID: 32493277 PMCID: PMC7310145 DOI: 10.1186/s12885-020-06985-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023] Open
Abstract
Background The clinical significance of GLI1 expression either through canonical Hedgehog signal transduction or through non-canonical mechanisms in rhabdomyosarcoma (RMS) or Ewing sarcoma (EWS) is incompletely understood. We tested a role for Hedgehog (HH) signal transduction and GL11 expression in development of vincristine (VCR) resistance in RMS and EWS. Methods We characterized baseline expression and activity of HH pathway components in 5 RMS (RD, Rh18, Ruch-2, Rh30, and Rh41) and 5 EWS (CHLA9, CHLA10, TC32, CHLA258, and TC71) cell lines. We then established VCR-resistant RMS and EWS cell lines by exposing cells to serially increasing concentrations of VCR and determining the IC50. We defined resistance as a ≥ 30-fold increase in IC50 compared with parental cells. We determined changes in gene expression in the VCR-resistant cells compared with parental cells using an 86-gene cancer drug resistance array that included GLI1 and tested the effect of GLI1 inhibition with GANT61 or GLI1 siRNA on VCR resistance. Results We found evidence for HH pathway activity and GLI1 expression in RMS and EWS cell lines at baseline, and evidence that GLI1 contributes to survival and proliferation of these sarcoma cells. We were able to establish 4 VCR-resistant cell lines (Ruch-2VR, Rh30VR, Rh41VR, and TC71VR). GLI1 was significantly up-regulated in the Rh30VR, Rh41VR, and TC71VR cells. The only other gene in the drug resistance panel that was significantly up-regulated in each of these VCR-resistant cell lines compared with their corresponding parental cells was the GLI1 direct target and multidrug resistance gene, ATP-binding cassette sub-family B member 1 (MDR1). We established major vault protein (MVP), which was up-regulated in both vincristine-resistant alveolar RMS cell lines (Rh30VR and Rh41VR), as another direct target of GLI1 during development of drug resistance. Treatment of the VCR-resistant cell lines with the small molecule inhibitor GANT61 or GLI1 siRNA together with VCR significantly decreased cell viability at doses that did not reduce viability individually. Conclusions These experiments demonstrate that GLI1 up-regulation contributes to VCR resistance in RMS and EWS cell lines and suggest that targeting GLI1 may benefit patients with RMS or EWS by reducing multidrug resistance.
Collapse
Affiliation(s)
- Joon Won Yoon
- Department of Pediatrics, Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Box 30, 225 East Chicago Ave., Chicago, IL, 60611, USA
| | - Marilyn Lamm
- Department of Pediatrics, Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Box 30, 225 East Chicago Ave., Chicago, IL, 60611, USA
| | - Christopher Chandler
- Department of Pediatrics, Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Box 30, 225 East Chicago Ave., Chicago, IL, 60611, USA
| | - Philip Iannaccone
- Department of Pediatrics, Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Box 30, 225 East Chicago Ave., Chicago, IL, 60611, USA.,Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, 60611, USA
| | - David Walterhouse
- Department of Pediatrics, Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine Chicago, Box 30, 225 East Chicago Ave., Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Chen C, Dorado Garcia H, Scheer M, Henssen AG. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front Oncol 2019; 9:1458. [PMID: 31921698 PMCID: PMC6933601 DOI: 10.3389/fonc.2019.01458] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, and can be subcategorized histologically and/or based on PAX-FOXO1 fusion gene status. Over the last four decades, there have been no significant improvements in clinical outcomes for advanced and metastatic RMS patients, underscoring a need for new treatment options for these groups. Despite significant advancements in our understanding of the genomic landscape and underlying biological mechanisms governing RMS that have informed the identification of novel therapeutic targets, development of these therapies in clinical trials has lagged far behind. In this review, we summarize the current frontline multi-modality therapy for RMS according to pediatric protocols, highlight emerging targeted therapies and immunotherapies identified by preclinical studies, and discuss early clinical trial data and the implications they hold for future clinical development.
Collapse
Affiliation(s)
- Celine Chen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Monika Scheer
- Pediatrics 5, Klinikum Stuttgart, Olgahospital, Stuttgart, Germany
| | - Anton G. Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| |
Collapse
|
7
|
Bhuria V, Xing J, Scholta T, Bui KC, Nguyen MLT, Malek NP, Bozko P, Plentz RR. Hypoxia induced Sonic Hedgehog signaling regulates cancer stemness, epithelial-to-mesenchymal transition and invasion in cholangiocarcinoma. Exp Cell Res 2019; 385:111671. [PMID: 31634481 DOI: 10.1016/j.yexcr.2019.111671] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022]
Abstract
Aberrant activation of Sonic Hedgehog (SHH) pathway has been implicated in a variety of cancers including cholangiocarcinoma (CC); however, the influencing factors are still unknown. Additionally, intratumoral hypoxia is known to contribute towards therapeutic resistance through modulatory effects on various pathways. In this study, we investigated the relationship between hypoxia and SHH pathway activation and the effect of this interplay on cancer stemness and epithelial-to- mesenchymal transition (EMT) during cholangiocarcinogenesis. Hypoxia promoted SHH pathway activation, evidenced by upregulated SHH and SMO levels, and enhanced glioma-associated oncogene homolog 1 (GLI1) nuclear translocation; whereas silencing of HIF-1α impaired SHH upregulation. Hypoxia also enhanced the expression of cancer stem cell (CSC) transcription factors (NANOG, Oct4, SOX2), CD133 and EMT markers (N-cadherin, Vimentin), thereby supporting invasion. Cyclopamine treatment suppressed hypoxia induced SHH pathway activation, consequently reducing invasiveness by downregulating the expression of CSC transcription factors, CD133 and EMT. Cyclopamine induced apoptosis in CC cells under hypoxia, suggesting that hypoxia induced activation of SHH pathway has modulatory effects on CC progression. Therefore, SHH signaling is proposed as a target for CC treatment, which is refractory to standard chemotherapy.
Collapse
Affiliation(s)
- Vikas Bhuria
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Jun Xing
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Tim Scholta
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Khac Cuong Bui
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Mai Ly Thi Nguyen
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany.
| | - Ruben R Plentz
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany; Department of Internal Medicine II, Bremen-Nord Hospital, Bremen, Germany.
| |
Collapse
|
8
|
Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. Chemoresistance in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20184504. [PMID: 31514451 PMCID: PMC6770382 DOI: 10.3390/ijms20184504] [Citation(s) in RCA: 375] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), generally known as pancreatic cancer (PC), ranks the fourth leading cause of cancer-related deaths in the western world. While the incidence of pancreatic cancer is displaying a rising tendency every year, the mortality rate has not decreased significantly because of late diagnosis, early metastasis, and limited reaction to chemotherapy or radiotherapy. Adjuvant chemotherapy after surgical resection is typically the preferred option to treat early pancreatic cancer. Although 5-fluorouracil/leucovorin with irinotecan and oxaliplatin (FOLFIRINOX) and gemcitabine/nab-paclitaxel can profoundly improve the prognosis of advanced pancreatic cancer, the development of chemoresistance still leads to poor clinical outcomes. Chemoresistance is multifactorial as a result of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment. Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. Therefore, we outline new perspectives for enhancing the efficacy of gemcitabine after reviewing the related factors of gemcitabine metabolism, mechanism of action, and chemoresistance.
Collapse
Affiliation(s)
- Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Marina Pöttler
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany.
| | - Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
9
|
Pal A, Chiu HY, Taneja R. Genetics, epigenetics and redox homeostasis in rhabdomyosarcoma: Emerging targets and therapeutics. Redox Biol 2019; 25:101124. [PMID: 30709791 PMCID: PMC6859585 DOI: 10.1016/j.redox.2019.101124] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma accounting for 5-8% of malignant tumours in children and adolescents. Children with high risk disease have poor prognosis. Anti-RMS therapies include surgery, radiation and combination chemotherapy. While these strategies improved survival rates, they have plateaued since 1990s as drugs that target differentiation and self-renewal of tumours cells have not been identified. Moreover, prevailing treatments are aggressive with drug resistance and metastasis causing failure of several treatment regimes. Significant advances have been made recently in understanding the genetic and epigenetic landscape in RMS. These studies have identified novel diagnostic and prognostic markers and opened new avenues for treatment. An important target identified in high throughput drug screening studies is reactive oxygen species (ROS). Indeed, many drugs in clinical trials for RMS impact tumour progression through ROS. In light of such emerging evidence, we discuss recent findings highlighting key pathways, epigenetic alterations and their impacts on ROS that form the basis of developing novel molecularly targeted therapies in RMS. Such targeted therapies in combination with conventional therapy could reduce adverse side effects in young survivors and lead to a decline in long-term morbidity.
Collapse
Affiliation(s)
- Ananya Pal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Hsin Yao Chiu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
10
|
Curran T. Reproducibility of academic preclinical translational research: lessons from the development of Hedgehog pathway inhibitors to treat cancer. Open Biol 2019; 8:rsob.180098. [PMID: 30068568 PMCID: PMC6119869 DOI: 10.1098/rsob.180098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023] Open
Abstract
Academic translational research is growing at a great pace at a time in which questions have been raised about the reproducibility of preclinical findings. The development of Hedgehog (HH) pathway inhibitors for the treatment of cancer over the past two decades offers a case study for understanding the root causes of failure to predict clinical outcomes arising from academic preclinical translational research. Although such inhibitors were once hoped to be efficacious in up to 25% of human cancer, clinical studies showed responses only in basal cell carcinoma and the HH subtype of medulloblastoma. Close examination of the published studies reveals limitations in the models used, lack of quantitative standards, utilization of high drug concentrations associated with non-specific toxicities and improper use of cell line and mouse models. In part, these issues arise from scientific complexity, for example, the failure of tumour cell lines to maintain HH pathway activity in vitro, but a greater contributing factor appears to be the influence of unconscious bias. There was a strong expectation that HH pathway inhibitors would make a profound impact on human cancer and experiments were designed with this assumption in mind.
Collapse
Affiliation(s)
- Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MI 64108, USA
| |
Collapse
|
11
|
RITA downregulates Hedgehog-GLI in medulloblastoma and rhabdomyosarcoma via JNK-dependent but p53-independent mechanism. Cancer Lett 2018; 442:341-350. [PMID: 30447254 DOI: 10.1016/j.canlet.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Overactivation of the Hedgehog (HH) signaling pathway is implicated in many cancers. In this study, we demonstrate that the small molecule RITA, a p53 activator, effectively downregulates HH signaling in human medulloblastoma and rhabdomyosarcoma cells irrespective of p53. This is mediated by a ROS-independent activation of the MAP kinase JNK. We also show that in vitro RITA sensitized cells to the GLI antagonist GANT61, as co-administration of the two drugs had more pronounced effects on cell proliferation and apoptosis. In vivo administration of RITA or GANT61 suppressed rhabdomyosarcoma xenograft growth in nude mice; however, co-administration did not further enhance tumor suppression, even though cell proliferation was decreased. RITA was more potent than GANT61 in downregulating HH target gene expression; surprisingly, this suppressive effect was almost completely eliminated when the two drugs were administered together. Notably, RNA-seq demonstrated a broader response of pathways involved in cancer cell growth in the combination treatment, providing a plausible interpretation for tumor reduction in the absence of HH signaling downregulation.
Collapse
|
12
|
Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells 2018; 7:cells7110208. [PMID: 30423843 PMCID: PMC6262325 DOI: 10.3390/cells7110208] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The Hedgehog (Hh) pathway is a signaling cascade that plays a crucial role in many fundamental processes, including embryonic development and tissue homeostasis. Moreover, emerging evidence has suggested that aberrant activation of Hh is associated with neoplastic transformations, malignant tumors, and drug resistance of a multitude of cancers. At the molecular level, it has been shown that Hh signaling drives the progression of cancers by regulating cancer cell proliferation, malignancy, metastasis, and the expansion of cancer stem cells (CSCs). Thus, a comprehensive understanding of Hh signaling during tumorigenesis and development of chemoresistance is necessary in order to identify potential therapeutic strategies to target various human cancers and their relapse. In this review, we discuss the molecular basis of the Hh signaling pathway and its abnormal activation in several types of human cancers. We also highlight the clinical development of Hh signaling inhibitors for cancer therapy as well as CSC-targeted therapy.
Collapse
|
13
|
Geyer N, Ridzewski R, Bauer J, Kuzyakova M, Dittmann K, Dullin C, Rosenberger A, Schildhaus HU, Uhmann A, Fulda S, Hahn H. Different Response of Ptch Mutant and Ptch Wildtype Rhabdomyosarcoma Toward SMO and PI3K Inhibitors. Front Oncol 2018; 8:396. [PMID: 30319965 PMCID: PMC6168716 DOI: 10.3389/fonc.2018.00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. RMS frequently show Hedgehog (HH) pathway activity, which is predominantly seen in the embryonal subtype (ERMS). They also show activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling. Here we compared the therapeutic effectiveness and the impact on HH target gene expression of Smoothened (SMO) antagonists with those of the PI3K inhibitor pictilisib in ERMS with and without mutations in the HH receptor Patched1 (PTCH). Our data demonstrate that growth of ERMS showing canonical Hh signaling activity due to Ptch germline mutations is efficiently reduced by SMO antagonists. This goes along with strong downregulation of the Hh target Gli1. Likewise Ptch mutant tumors are highly responsive toward the PI3K inhibitor pictilisib, which involves modulation of AKT and caspase activity. Pictilisib also modulates Hh target gene expression, which, however, is rather not correlated with its antitumoral effects. In contrast, sporadic ERMS, which usually express HH target genes without having PTCH mutation, apparently lack canonical HH signaling activity. Thus, stimulation by Sonic HE (SHH) or SAG (Smoothened agonist) or inhibition by SMO antagonists do not modulate HH target gene expression. In addition, SMO antagonists do not provoke efficient anticancer effects and rather exert off-target effects. In contrast, pictilisib and other PI3K/AKT/mTOR inhibitors potently inhibit cellular growth. They also efficiently inhibit HH target gene expression. However, of whether this is correlated with their antitumoral effects it is not clear. Together, these data suggest that PI3K inhibitors are a good and reliable therapeutic option for all ERMS, whereas SMO inhibitors might only be beneficial for ERMS driven by PTCH mutations.
Collapse
Affiliation(s)
- Natalie Geyer
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Rosalie Ridzewski
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Julia Bauer
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Kuzyakova
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Kai Dittmann
- Institute for Celluar and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Anja Uhmann
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Heidi Hahn
- Institute for Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
14
|
Diao Y, Rahman MFU, Vyatkin Y, Azatyan A, St Laurent G, Kapranov P, Zaphiropoulos PG. Identification of novel GLI1 target genes and regulatory circuits in human cancer cells. Mol Oncol 2018; 12:1718-1734. [PMID: 30098229 PMCID: PMC6166001 DOI: 10.1002/1878-0261.12366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/03/2018] [Accepted: 07/26/2018] [Indexed: 01/12/2023] Open
Abstract
Hedgehog (HH) signaling is involved in many physiological processes, and pathway deregulation can result in a wide range of malignancies. Glioma‐associated oncogene 1 (GLI1) is a transcription factor and a terminal effector of the HH cascade. Despite its crucial role in tumorigenesis, our understanding of the GLI1 cellular targets is quite limited. In this study, we identified multiple new GLI1 target genes using a combination of different genomic surveys and then subjected them to in‐depth validation in human cancer cell lines. We were able to validate >90% of the new targets, which were enriched in functions involved in neurogenesis and regulation of transcription, in at least one type of follow‐up experiment. Strikingly, we found that RNA editing of GLI1 can modulate effects on the targets. Furthermore, one of the top targets, FOXS1, a gene encoding a transcription factor previously implicated in nervous system development, was shown to act in a negative feedback loop limiting the cellular effects of GLI1 in medulloblastoma and rhabdomyosarcoma cells. Moreover, FOXS1 is both highly expressed and positively correlated with GLI1 in medulloblastoma samples of the Sonic HH subgroup, further arguing for the existence of FOXS1/GLI1 interplay in human tumors. Consistently, high FOXS1 expression predicts longer relapse‐free survival in breast cancer. Overall, our findings open multiple new avenues in HH signaling pathway research and have potential for translational implications.
Collapse
Affiliation(s)
- Yumei Diao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Yuri Vyatkin
- St. Laurent Institute, Cambridge, MA, USA.,AcademGene LLC, Novosibirsk, Russia
| | - Ani Azatyan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | | | | |
Collapse
|
15
|
Sabol M, Trnski D, Musani V, Ozretić P, Levanat S. Role of GLI Transcription Factors in Pathogenesis and Their Potential as New Therapeutic Targets. Int J Mol Sci 2018; 19:E2562. [PMID: 30158435 PMCID: PMC6163343 DOI: 10.3390/ijms19092562] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023] Open
Abstract
GLI transcription factors have important roles in intracellular signaling cascade, acting as the main mediators of the HH-GLI signaling pathway. This is one of the major developmental pathways, regulated both canonically and non-canonically. Deregulation of the pathway during development leads to a number of developmental malformations, depending on the deregulated pathway component. The HH-GLI pathway is mostly inactive in the adult organism but retains its function in stem cells. Aberrant activation in adult cells leads to carcinogenesis through overactivation of several tightly regulated cellular processes such as proliferation, angiogenesis, EMT. Targeting GLI transcription factors has recently become a major focus of potential therapeutic protocols.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
16
|
Ozretić P, Trnski D, Musani V, Maurac I, Kalafatić D, Orešković S, Levanat S, Sabol M. Non-canonical Hedgehog signaling activation in ovarian borderline tumors and ovarian carcinomas. Int J Oncol 2017; 51:1869-1877. [PMID: 29039491 DOI: 10.3892/ijo.2017.4156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Hedgehog signaling pathway has been implicated in the pathology of ovarian cancer, and Survivin (BIRC5) has been suggested as a novel target of this pathway. Herein we investigated the role of Hedgehog signaling pathway and Survivin in ovarian carcinoma and borderline tumor samples. We aimed to determine possible ways of pathway modulation on primary ovarian cancer cells and an established cell line. RNA was extracted from fresh tumors and control tissues and gene expression was examined using qRT-PCR. Pathway activity in cell lines was examined after treatment with cyclopamine, SHH protein, GANT-61 or lithium chloride using qRT-PCR, western blot and confocal microscopy. The difference between control tissue, borderline tumors and carcinomas can be seen in GLI1 and SUFU gene expression, which is significantly higher in borderline tumors compared to carcinomas. SUFU also shows lower expression levels in higher FIGO stages relative to lower stages. BIRC5 is expressed in all tumors and in healthy ovarian tissues compared to our control tissue, healthy fallopian tube samples. Primary cells developed from ovarian carcinoma tissue respond to cyclopamine treatment with a short-term decrease in cell proliferation, downregulation of Hedgehog pathway genes, including BIRC5, and changes in protein dynamics. Stimulation with SHH protein results in increased cell migration, while GLI1 transfection or PTCH1 silencing demonstrate pathway upregulation. The pathway activity can be modulated by LiCl at the GSK3β-SUFU-GLI level, suggesting at least partial non-canonical activation. Downregulation of the pathway with GANT-61 has proved to be more effective than cyclopamine. GLI inhibitors may be a superior treatment option in ovarian cancer compared to SMO inhibitors.
Collapse
Affiliation(s)
- Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivana Maurac
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Držislav Kalafatić
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slavko Orešković
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Slemmons KK, Crose LES, Riedel S, Sushnitha M, Belyea B, Linardic CM. A Novel Notch-YAP Circuit Drives Stemness and Tumorigenesis in Embryonal Rhabdomyosarcoma. Mol Cancer Res 2017; 15:1777-1791. [PMID: 28923841 DOI: 10.1158/1541-7786.mcr-17-0004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS), a cancer characterized by skeletal muscle features, is the most common soft-tissue sarcoma of childhood. While low- and intermediate-risk groups have seen improved outcomes, high-risk patients still face a 5-year survival rate of <30%, a statistic that has not changed in over 40 years. Understanding the biologic underpinnings of RMS is critical. The developmental pathways of Notch and YAP have been identified as potent but independent oncogenic signals that support the embryonal variant of RMS (eRMS). Here, the cross-talk between these pathways and the impact on eRMS tumorigenesis is reported. Using human eRMS cells grown as three-dimensional (3D) rhabdospheres, which enriches in stem cells, it was found that Notch signaling transcriptionally upregulates YAP1 gene expression and YAP activity. Reciprocally, YAP transcriptionally upregulates the Notch ligand genes JAG1 and DLL1 and the core Notch transcription factor RBPJ This bidirectional circuit boosts expression of key stem cell genes, including SOX2, which is functionally required for eRMS spheres. Silencing this circuit for therapeutic purposes may be challenging, because the inhibition of one node (e.g., pharmacologic Notch blockade) can be rescued by upregulation of another (constitutive YAP expression). Instead, dual inhibition of Notch and YAP is necessary. Finally, supporting the existence of this circuit beyond a model system, nuclear Notch and YAP protein expression are correlated in human eRMS tumors, and YAP suppression in vivo decreases Notch signaling and SOX2 expression.Implications: This study identifies a novel oncogenic signaling circuit driving eRMS stemness and tumorigenesis, and provides evidence and rationale for combination therapies co-targeting Notch and YAP. Mol Cancer Res; 15(12); 1777-91. ©2017 AACR.
Collapse
Affiliation(s)
- Katherine K Slemmons
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Lisa E S Crose
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Stefan Riedel
- Duke Summer Research Opportunity Program, Duke University Graduate School, Durham, North Carolina
| | - Manuela Sushnitha
- Summer Undergraduate Research in Pharmacology, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Brian Belyea
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Corinne M Linardic
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
18
|
Ligand-dependent Hedgehog pathway activation in Rhabdomyosarcoma: the oncogenic role of the ligands. Br J Cancer 2017; 117:1314-1325. [PMID: 28881358 PMCID: PMC5672936 DOI: 10.1038/bjc.2017.305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children. The Hedgehog (HH) pathway is known to develop an oncogenic role in RMS. However, the molecular mechanism that drives activation of the pathway in RMS is not well understood. METHODS The expression of HH ligands was studied by qPCR, western blot and immunohistochemistry. Functional and animal model studies were carried out with cells transduced with shRNAs against HH ligands or treated with HH-specific inhibitors (Vismodegib and MEDI-5304). Finally, the molecular characterisation of an off-target effect of Vismodegib was also made. RESULTS The results showed a prominent expression of HH ligands supporting an autocrine ligand-dependent activation of the pathway. A comparison of pharmacologic Smoothened inhibition (Vismodegib) and HH ligand blocking (MEDI-5304) is also provided. Interestingly, a first description of pernicious off-target effect of Vismodegib is also reported. CONCLUSIONS The clarification of the HH pathway activation mechanism in RMS opens a door for targeted therapies against HH ligands as a possible alternative in the future development of better treatment protocols. Moreover, the description of a pernicious off-target effect of Vismodegib, via unfolded protein response activation, may mechanistically explain its previously reported inefficiency in several ligand-dependent cancers.
Collapse
|
19
|
Hedgehog Pathway Inhibition Hampers Sphere and Holoclone Formation in Rhabdomyosarcoma. Stem Cells Int 2017; 2017:7507380. [PMID: 28243259 PMCID: PMC5294584 DOI: 10.1155/2017/7507380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 01/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and can be divided into two main subtypes: embryonal (eRMS) and alveolar (aRMS). Among the cellular heterogeneity of tumors, the existence of a small fraction of cells called cancer stem cells (CSC), thought to be responsible for the onset and propagation of cancer, has been demonstrated in some neoplasia. Although the existence of CSC has been reported for eRMS, their existence in aRMS, the most malignant subtype, has not been demonstrated to date. Given the lack of suitable markers to identify this subpopulation in aRMS, we used cancer stem cell-enriched supracellular structures (spheres and holoclones) to study this subpopulation. This strategy allowed us to demonstrate the capacity of both aRMS and eRMS cells to form these structures and retain self-renewal capacity. Furthermore, cells contained in spheres and holoclones showed significant Hedgehog pathway induction, the inhibition of which (pharmacologic or genetic) impairs the formation of both holoclones and spheres. Our findings point to a crucial role of this pathway in the maintenance of these structures and suggest that Hedgehog pathway targeting in CSC may have great potential in preventing local relapses and metastases.
Collapse
|
20
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
21
|
Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 2016; 6:13899-913. [PMID: 26053182 PMCID: PMC4546439 DOI: 10.18632/oncotarget.4224] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer.
Collapse
Affiliation(s)
- Annelies Gonnissen
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Sofie Isebaert
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Karin Haustermans
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
22
|
Casini N, Forte IM, Mastrogiovanni G, Pentimalli F, Angelucci A, Festuccia C, Tomei V, Ceccherini E, Di Marzo D, Schenone S, Botta M, Giordano A, Indovina P. SRC family kinase (SFK) inhibition reduces rhabdomyosarcoma cell growth in vitro and in vivo and triggers p38 MAP kinase-mediated differentiation. Oncotarget 2016; 6:12421-35. [PMID: 25762618 PMCID: PMC4494948 DOI: 10.18632/oncotarget.3043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/07/2015] [Indexed: 01/08/2023] Open
Abstract
Recent data suggest that SRC family kinases (SFKs) could represent potential therapeutic targets for rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. Here, we assessed the effect of a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221) on RMS cell lines. SI221, which showed to be mainly effective against the SFK member YES, significantly reduced cell viability and induced apoptosis, without affecting non-tumor cells, such as primary human skin fibroblasts and differentiated C2C12 cells. Moreover, SI221 decreased in vitro cell migration and invasion and reduced tumor growth in a RMS xenograft model. SFK inhibition also induced muscle differentiation in RMS cells by affecting the NOTCH3 receptor-p38 mitogen-activated protein kinase (MAPK) axis, which regulates the balance between proliferation and differentiation. Overall, our findings suggest that SFK inhibition, besides reducing RMS cell growth and invasive potential, could also represent a differentiation therapeutic strategy for RMS.
Collapse
Affiliation(s)
- Nadia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Iris Maria Forte
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gianmarco Mastrogiovanni
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Tomei
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Elisa Ceccherini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Domenico Di Marzo
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | | | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy.,Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, USA
| | - Paola Indovina
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, USA
| |
Collapse
|
23
|
Graab U, Hahn H, Fulda S. Identification of a novel synthetic lethality of combined inhibition of hedgehog and PI3K signaling in rhabdomyosarcoma. Oncotarget 2016; 6:8722-35. [PMID: 25749378 PMCID: PMC4496179 DOI: 10.18632/oncotarget.2726] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022] Open
Abstract
We previously reported that aberrant HH pathway activation confers a poor prognosis in rhabdomyosarcoma (RMS). Searching for new treatment strategies we therefore targeted HH signaling. Here, we identify a novel synthetic lethality of concomitant inhibition of HH and PI3K/AKT/mTOR pathways in RMS by GLI1/2 inhibitor GANT61 and PI3K/mTOR inhibitor PI103. Synergistic drug interaction is confirmed by calculation of combination index (CI < 0.2). Similarly, genetic silencing of GLI1/2 significantly increases PI103-induced apoptosis. GANT61 and PI103 also synergize to induce apoptosis in cultured primary RMS cells emphasizing the clinical relevance of this combination. Importantly, GANT61/PI103 cotreatment suppresses clonogenic survival, three-dimensional sphere formation and tumor growth in an in vivo model of RMS. Mechanistic studies reveal that GANT61 and PI103 cooperate to trigger caspase-dependent apoptosis via the mitochondrial pathway, as demonstrated by several lines of evidence. First, GANT61/PI103 cotreatment increases mRNA and protein expression of NOXA and BMF, which is required for apoptosis, since knockdown of NOXA or BMF significantly reduces GANT61/PI103-induced apoptosis. Second, GANT61/PI103 cotreatment triggers BAK/BAX activation, which contributes to GANT61/PI103-mediated apoptosis, since knockdown of BAK provides protection. Third, ectopic expression of BCL-2 or non-degradable phospho-mutant MCL-1 significantly rescue GANT61/PI103-triggered apoptosis. Fourth, GANT61/PI103 cotreatment initiate activation of the caspase cascade via apoptosome-mediated cleavage of the initiator caspase-9, as indicated by changes in the cleavage pattern of caspases (e.g. accumulation of the caspase-9 p35 cleavage fragment) upon addition of the caspase inhibitor zVAD.fmk. Thus, combined GLI1/2 and PI3K/mTOR inhibition represents a promising novel approach for synergistic apoptosis induction and tumor growth reduction with implications for new treatment strategies in RMS.
Collapse
Affiliation(s)
- Ulrike Graab
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center, Goettingen, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Zenitani M, Nojiri T, Uehara S, Miura K, Hosoda H, Kimura T, Nakahata K, Miyazato M, Okuyama H, Kangawa K. C-type natriuretic peptide in combination with sildenafil attenuates proliferation of rhabdomyosarcoma cells. Cancer Med 2016; 5:795-805. [PMID: 26816265 PMCID: PMC4864809 DOI: 10.1002/cam4.642] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a malignant mesenchymal tumor and the most common soft tissue sarcoma in children. Because of several complications associated with intensive multimodal therapies, including growth disturbance and secondary cancer, novel therapies with less toxicity are urgently needed. C‐type natriuretic peptide (CNP), an endogenous peptide secreted by endothelial cells, exerts antiproliferative effects in multiple types of mesenchymal cells. Therefore, we investigated whether CNP attenuates proliferation of RMS cells. We examined RMS patient samples and RMS cell lines. All RMS clinical samples expressed higher levels of guanylyl cyclase B (GC‐B), the specific receptor for CNP, than RMS cell lines. GC‐B expression in RMS cells decreased with the number of passages in vitro. Therefore, GC‐B stable expression lines were established to mimic clinical samples. CNP increased cyclic guanosine monophosphate (cGMP) levels in RMS cells in a dose‐dependent manner, demonstrating the biological activity of CNP. However, because cGMP is quickly degraded by phosphodiesterases (PDEs), the selective PDE5 inhibitor sildenafil was added to inhibit its degradation. In vitro, CNP, and sildenafil synergistically inhibited proliferation of RMS cells stably expressing GC‐B and decreased Raf‐1, Mitogen‐activated protein kinase kinase (MEK), and extracellular signal‐regulated kinase (ERK) phosphorylation. These results suggested that CNP in combination with sildenafil exerts antiproliferative effects on RMS cells by inhibiting the Raf/MEK/ERK pathway. This regimen exerted synergistic effects on tumor growth inhibition without severe adverse effects in vivo such as body weight loss. Thus, CNP in combination with sildenafil represents a promising new therapeutic approach against RMS.
Collapse
Affiliation(s)
- Masahiro Zenitani
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita-City, Osaka, Japan.,Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita-City, Osaka, Japan
| | - Shuichiro Uehara
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Koichi Miura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita-City, Osaka, Japan
| | - Hiroshi Hosoda
- Departments of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita-City, Osaka, Japan
| | - Toru Kimura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita-City, Osaka, Japan
| | - Kengo Nakahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita-City, Osaka, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita-City, Osaka, Japan
| |
Collapse
|
25
|
Boehme KA, Zaborski JJ, Riester R, Schweiss SK, Hopp U, Traub F, Kluba T, Handgretinger R, Schleicher SB. Targeting hedgehog signalling by arsenic trioxide reduces cell growth and induces apoptosis in rhabdomyosarcoma. Int J Oncol 2015; 48:801-12. [PMID: 26676886 DOI: 10.3892/ijo.2015.3293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/12/2015] [Indexed: 11/06/2022] Open
Abstract
Rhabdomyosarcomas (RMS) are soft tissue tumours treated with a combination of surgery and chemotherapy. However, mortality rates remain high in case of recurrences and metastatic disease due to drug resistance and failure to undergo apoptosis. Therefore, innovative approaches targeting specific signalling pathways are urgently needed. We analysed the impact of different hedgehog (Hh) pathway inhibitors on growth and survival of six RMS cell lines using MTS assay, colony formation assay, 3D spheroid cultures, flow cytometry and western blotting. Especially the glioma-associated oncogene family (GLI) inhibitor arsenic trioxide (ATO) effectively reduced viability as well as clonal growth and induced cell death in RMS cell lines of embryonal, alveolar and sclerosing, spindle cell subtype, whereas normal skeletal muscle cells were hardly compromised by ATO. Combination of ATO with itraconazole potentiated the reduction of colony formation and spheroid size. These results show that ATO is a promising substance for treatment of relapsed and refractory RMS by directly targeting GLI transcription factors. The combination with itraconazole or other chemotherapeutic drugs has the opportunity to enforce the treatment efficiency of resistant and recurrent RMS.
Collapse
Affiliation(s)
- Karen A Boehme
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Julian J Zaborski
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rosa Riester
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Sabrina K Schweiss
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrike Hopp
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Frank Traub
- Department of Orthopaedic Surgery, Eberhard Karls University, Tuebingen, Germany
| | - Torsten Kluba
- Department of Orthopaedic Surgery, Eberhard Karls University, Tuebingen, Germany
| | - Rupert Handgretinger
- Department of Haematology and Oncology, Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Sabine B Schleicher
- Department of Haematology and Oncology, Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
26
|
Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis. Oncotarget 2015; 6:1519-30. [PMID: 25544756 PMCID: PMC4359311 DOI: 10.18632/oncotarget.2729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/08/2014] [Indexed: 11/25/2022] Open
Abstract
Gli transcription factors of the Hedgehog (Hh) pathway have been reported to be drivers of malignant mesothelioma (MMe) cell survival. The Gli inhibitor GANT61 induces apoptosis in various cancer cell models, and has been associated directly with Gli inhibition. However various chemotherapeutics can induce cell death through generation of reactive oxygen species (ROS) but whether ROS mediates GANT61-induced apoptosis is unknown. In this study human MMe cells were treated with GANT61 and the mechanisms regulating cell death investigated. Exposure of MMe cells to GANT61 led to G1 phase arrest and apoptosis, which involved ROS but not its purported targets, GLI1 or GLI2. GANT61 triggered ROS generation and quenching of ROS protected MMe cells from GANT61-induced apoptosis. Furthermore, we demonstrated that mitochondria are important in mediating GANT61 effects: (1) ROS production and apoptosis were blocked by mitochondrial inhibitor rotenone; (2) GANT61 promoted superoxide formation in mitochondria; and (3) mitochondrial DNA-deficient LO68 cells failed to induce superoxide, and were more resistant to apoptosis induced by GANT61 than wild-type cells. Our data demonstrate for the first time that GANT61 induces apoptosis by promoting mitochondrial superoxide generation independent of Gli inhibition, and highlights the therapeutic potential of mitochondrial ROS-mediated anticancer drugs in MMe.
Collapse
|
27
|
Srivastava RK, Kaylani SZ, Edrees N, Li C, Talwelkar SS, Xu J, Palle K, Pressey JG, Athar M. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget 2015; 5:12151-65. [PMID: 25432075 PMCID: PMC4322980 DOI: 10.18632/oncotarget.2569] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/02/2014] [Indexed: 12/04/2022] Open
Abstract
Rhabdomyosarcoma (RMS) typically arises from skeletal muscle. Currently, RMS in patients with recurrent and metastatic disease have no successful treatment. The molecular pathogenesis of RMS varies based on cancer sub-types. Some embryonal RMS but not other sub-types are driven by sonic hedgehog (Shh) signaling pathway. However, Shh pathway inhibitors particularly smoothened inhibitors are not highly effective in animals. Here, we show that Shh pathway effectors GLI1 and/or GLI2 are over-expressed in the majority of RMS cells and that GANT-61, a specific GLI1/2 inhibitor dampens the proliferation of both embryonal and alveolar RMS cells-derived xenograft tumors thereby blocking their growth. As compared to vehicle-treated control, about 50% tumor growth inhibition occurs in mice receiving GANT-61 treatment. The proliferation inhibition was associated with slowing of cell cycle progression which was mediated by the reduced expression of cyclins D1/2/3 & E and the concomitant induction of p21. GANT-61 not only reduced expression of GLI1/2 in these RMS but also significantly diminished AKT/mTOR signaling. The therapeutic action of GANT-61 was significantly augmented when combined with chemotherapeutic agents employed for RMS therapy such as temsirolimus or vincristine. Finally, reduced expression of proteins driving epithelial mesenchymal transition (EMT) characterized the residual tumors.
Collapse
Affiliation(s)
- Ritesh K Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Samer Zaid Kaylani
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Nayf Edrees
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Sarang S Talwelkar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604
| | - Joseph G Pressey
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019, USA
| |
Collapse
|
28
|
Justilien V, Fields AP. Molecular pathways: novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells. Clin Cancer Res 2015; 21:505-13. [PMID: 25646180 DOI: 10.1158/1078-0432.ccr-14-0507] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) signaling pathway is critical for embryonic development. In adult tissues, Hh signaling is relatively quiescent with the exception of roles in tissue maintenance and repair. Aberrant activation of Hh signaling is implicated in multiple aspects of transformation, including the maintenance of the cancer stem cell (CSC) phenotype. Preclinical studies indicate that CSCs from many tumor types are sensitive to Hh pathway inhibition and that Hh-targeted therapeutics block many aspects of transformation attributed to CSCs, including drug resistance, relapse, and metastasis. However, to date, Hh inhibitors, specifically those targeting Smoothened [such as vismodegib, BMS-833923, saridegib (IPI-926), sonidegib/erismodegib (LDE225), PF-04449913, LY2940680, LEQ 506, and TAK-441], have demonstrated good efficacy as monotherapy in patients with basal cell carcinoma and medulloblastoma, but have shown limited activity in other tumor types. This lack of success is likely due to many factors, including a lack of patient stratification in early trials, cross-talk between Hh and other oncogenic signaling pathways that can modulate therapeutic response, and a limited knowledge of Hh pathway activation mechanisms in CSCs from most tumor types. Here, we discuss Hh signaling mechanisms in the context of human cancer, particularly in the maintenance of the CSC phenotype, and consider new therapeutic strategies that hold the potential to expand considerably the scope and therapeutic efficacy of Hh-directed anticancer therapy.
Collapse
Affiliation(s)
- Verline Justilien
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida.
| |
Collapse
|
29
|
Gu D, Xie J. Non-Canonical Hh Signaling in Cancer-Current Understanding and Future Directions. Cancers (Basel) 2015; 7:1684-98. [PMID: 26343727 PMCID: PMC4586790 DOI: 10.3390/cancers7030857] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/17/2015] [Accepted: 08/24/2015] [Indexed: 01/07/2023] Open
Abstract
As a major regulatory pathway for embryonic development and tissue patterning, hedgehog signaling is not active in most adult tissues, but is reactivated in a number of human cancer types. A major milestone in hedgehog signaling in cancer is the Food and Drug Administration (FDA) approval of a smoothened inhibitor Vismodegib for treatment of basal cell carcinomas. Vismodegib can block ligand-mediated hedgehog signaling, but numerous additional clinical trials have failed to show significant improvements in cancer patients. Amounting evidence indicate that ligand-independent hedgehog signaling plays an essential role in cancer. Ligand-independent hedgehog signaling, also named non-canonical hedgehog signaling, generally is not sensitive to smoothened inhibitors. What we know about non-canonical hedgehog signaling in cancer, and how should we prevent its activation? In this review, we will summarize recent development of non-canonical hedgehog signaling in cancer, and will discuss potential ways to prevent this type of hedgehog signaling.
Collapse
Affiliation(s)
- Dongsheng Gu
- Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Wells Center for Pediatrics Research, 1044 W, Walnut Street, Indianapolis, IN 46202, USA.
| | - Jingwu Xie
- Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Wells Center for Pediatrics Research, 1044 W, Walnut Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
30
|
Kephart JJG, Tiller RGJ, Crose LES, Slemmons KK, Chen PH, Hinson AR, Bentley RC, Chi JTA, Linardic CM. Secreted Frizzled-Related Protein 3 (SFRP3) Is Required for Tumorigenesis of PAX3-FOXO1-Positive Alveolar Rhabdomyosarcoma. Clin Cancer Res 2015; 21:4868-80. [PMID: 26071485 DOI: 10.1158/1078-0432.ccr-14-1797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 05/25/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a five-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3-FOXO1. As PAX3-FOXO1 has proven chemically intractable, this study aims to identify targetable proteins that are downstream from or cooperate with PAX3-FOXO1 to support tumorigenesis. EXPERIMENTAL DESIGN Microarray analysis of the transcriptomes of human skeletal muscle myoblasts expressing PAX3-FOXO1 revealed alteration of several Wnt pathway gene members, including secreted frizzled related protein 3 (SFRP3), a secreted Wnt pathway inhibitor. Loss-of-function using shRNAs against SFRP3 was used to interrogate the role of SFRP3 in human aRMS cell lines in vitro and conditional murine xenograft systems in vivo. The combination of SFRP3 genetic suppression and the chemotherapeutic agent vincristine was also examined. RESULTS In vitro, suppression of SFRP3 inhibited aRMS cell growth, reduced proliferation accompanied by a G1 arrest and induction of p21, and induced apoptosis. In vivo, doxycycline-inducible suppression of SFRP3 reduced aRMS tumor growth and weight by more than three-fold, in addition to increasing myogenic differentiation and β-catenin signaling. The combination of SFRP3 suppression and vincristine was more effective at reducing aRMS cell growth in vitro than either treatment alone, and ablated tumorigenesis in vivo. CONCLUSIONS SFRP3 is necessary for the growth of human aRMS cells both in vitro and in vivo and is a promising new target for investigation in aRMS.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cluster Analysis
- Disease Models, Animal
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- G1 Phase Cell Cycle Checkpoints/drug effects
- G1 Phase Cell Cycle Checkpoints/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Glycoproteins/genetics
- Humans
- Intracellular Signaling Peptides and Proteins
- Mice
- Myoblasts/drug effects
- Myoblasts/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors/genetics
- RNA Interference
- RNA, Small Interfering/genetics
- Rhabdomyosarcoma, Alveolar/drug therapy
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/mortality
- Rhabdomyosarcoma, Alveolar/pathology
- Tumor Burden/drug effects
- Vincristine/pharmacology
- Wnt Proteins/antagonists & inhibitors
- Wnt Signaling Pathway/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Julie J G Kephart
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Rosanne G J Tiller
- School of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Lisa E S Crose
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Katherine K Slemmons
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Ashley R Hinson
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Rex C Bentley
- School of Medicine, Duke University Medical Center, Durham, North Carolina. Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Jen-Tsan Ashley Chi
- School of Medicine, Duke University Medical Center, Durham, North Carolina. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Corinne M Linardic
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina. School of Medicine, Duke University Medical Center, Durham, North Carolina. Department of Pediatrics, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
31
|
Wellbrock J, Latuske E, Köhler J, Wagner K, Stamm H, Vettorazzi E, Vohwinkel G, Klokow M, Uibeleisen R, Ehm P, Riecken K, Loges S, Thol F, Schubert C, Amling M, Jücker M, Bokemeyer C, Heuser M, Krauter J, Fiedler W. Expression of Hedgehog Pathway Mediator GLI Represents a Negative Prognostic Marker in Human Acute Myeloid Leukemia and Its Inhibition Exerts Antileukemic Effects. Clin Cancer Res 2015; 21:2388-98. [PMID: 25745035 DOI: 10.1158/1078-0432.ccr-14-1059] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 02/13/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The Hedgehog pathway plays an important role in stem-cell biology and malignant transformation. Therefore, we investigated the expression and prognostic impact of Hedgehog pathway members in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN Pretreatment samples from 104 newly diagnosed AML patients (AMLSG 07-04 trial) were analyzed by qPCR, and expression of Hedgehog family members was correlated with clinical outcome. Inhibition of GLI by GANT61 or shRNA was investigated in AML cells in vitro and in vivo. RESULTS Expression of receptors Smoothened and Patched-1 and their downstream mediators, GLI1, GLI2, and GLI3, was found in AML patients in contrast to Hedgehog ligands. GLI2 expression had a significant negative influence on event-free survival (EFS), relapse-free survival (RFS), and overall survival (OS; P = 0.037, 0.026, and 0.013, respectively) and was correlated with FLT3 mutational status (P < 0.001). Analysis of a second, independent patient cohort confirmed the negative impact of GLI2 on EFS and OS (P = 0.007 and 0.003, respectively; n = 290). Within this cohort, GLI1 had a negative prognostic impact (P < 0.001 for both EFS and OS). Although AML cells did not express Hedgehog ligands by qPCR, AML patients had significantly increased Desert Hedgehog (DHH) plasma levels compared with healthy subjects (P = 0.002), in whom DHH was presumably provided by bone marrow niche cells. Moreover, the GLI inhibitor GANT61 or knockdown of GLI1/2 by shRNA caused antileukemic effects, including induction of apoptosis, reduced proliferation, and colony formation in AML cells, and a survival benefit in mice. CONCLUSIONS GLI expression is a negative prognostic factor and might represent a novel druggable target in AML.
Collapse
Affiliation(s)
- Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Emily Latuske
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Köhler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Wagner
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Hauke Stamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabi Vohwinkel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Klokow
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roswitha Uibeleisen
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Patrick Ehm
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Loges
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Claudia Schubert
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Jürgen Krauter
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
32
|
Rajurkar M, Huang H, Cotton JL, Brooks JK, Sicklick J, McMahon AP, Mao J. Distinct cellular origin and genetic requirement of Hedgehog-Gli in postnatal rhabdomyosarcoma genesis. Oncogene 2014; 33:5370-8. [PMID: 24276242 PMCID: PMC4309268 DOI: 10.1038/onc.2013.480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/09/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022]
Abstract
Dysregulation of the Hedgehog (Hh)-Gli signaling pathway is implicated in a variety of human cancers, including basal cell carcinoma (BCC), medulloblastoma (MB) and embryonal rhabdhomyosarcoma (eRMS), three principle tumors associated with human Gorlin syndrome. However, the cells of origin of these tumors, including eRMS, remain poorly understood. In this study, we explore the cell populations that give rise to Hh-related tumors by specifically activating Smoothened (Smo) in both Hh-producing and -responsive cell lineages in postnatal mice. Interestingly, we find that unlike BCC and MB, eRMS originates from the stem/progenitor populations that do not normally receive active Hh signaling. Furthermore, we find that the myogenic lineage in postnatal mice is largely Hh quiescent and that Pax7-expressing muscle satellite cells are not able to give rise to eRMS upon Smo or Gli1/2 overactivation in vivo, suggesting that Hh-induced skeletal muscle eRMS arises from Hh/Gli quiescent non-myogenic cells. In addition, using the Gli1 null allele and a Gli3 repressor allele, we reveal a specific genetic requirement for Gli proteins in Hh-induced eRMS formation and provide molecular evidence for the involvement of Sox4/11 in eRMS cell survival and differentiation.
Collapse
Affiliation(s)
- Mihir Rajurkar
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - He Huang
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Jennifer L. Cotton
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Julie K. Brooks
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jason Sicklick
- Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, WM Keck School of Medicine of the University of Southern California, Los Angeles, CA 90015
| | - Junhao Mao
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
33
|
Diao Y, Rahman MFU, Villegas VE, Wickström M, Johnsen JI, Zaphiropoulos PG. The impact of S6K1 kinase on neuroblastoma cell proliferation is independent of GLI1 signaling. BMC Cancer 2014; 14:600. [PMID: 25134527 PMCID: PMC4152578 DOI: 10.1186/1471-2407-14-600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023] Open
Abstract
Background The crosstalk between Hedgehog (HH) signaling and other signal transduction cascades has been extensively studied in different cancers. In neuroblastoma, mTOR/S6K1 signaling is known to have a role in the development of this disease and recent evidence also implicates the HH pathway. Moreover, S6K1 kinase has been shown to phosphorylate GLI1, the effector of HH signaling, promoting GLI1 transcriptional activity and oncogenic function in esophageal adenocarcinoma. In this study, we examined the possible interplay of S6K1 and GLI1 signaling in neuroblastoma. Methods siRNA knockdowns were used to suppress S6K1 and GLI1 expression, and the siRNA effects were validated by real-time PCR and Western blotting. Cell proliferation analysis was performed with the EdU incorporation assay. Cytotoxic analysis with increasing concentrations of PI3K/mTOR and GLI inhibitors, individually and in combination, was used to determine drug response. Results Although knockdown of either S6K1 or GLI1 reduces the cellular proliferation of neuroblastoma cells, there is little effect of S6K1 on the expression of GLI1 mRNA and protein and on the capacity of GLI1 to activate target genes. No detectable phosphorylation of GLI1 is observed prior or following S6K1 knockdown. GLI1 overexpression can not rescue the reduced proliferation elicited by S6K1 knockdown. Moreover, inhibitors of PI3K/mTOR and GLI signaling reduced neuroblastoma cell growth, but no additional growth inhibitory effects were detected when the two classes of drugs were combined. Conclusion Our results demonstrate that the impact of S6K1 kinase on neuroblastoma cells is not mediated through modulation of GLI1 expression/activity. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-600) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
de Souza RR, Oliveira ID, del Giúdice Paniago M, Yaoita FHK, Caran EMM, Macedo CRPD, Petrilli AS, Abib SDCV, de Seixas Alves MT, de Toledo SRC. Investigation of IGF2, Hedgehog and fusion gene expression profiles in pediatric sarcomas. Growth Horm IGF Res 2014; 24:130-136. [PMID: 24846856 DOI: 10.1016/j.ghir.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED The childhood sarcomas are malignant tumors with high mortality rates. They are divided into two genetic categories: a category without distinct pattern karyotypic changes and the other category showing unique translocations that originate gene rearrangements. This category includes rhabdomyosarcoma (RMS), Ewing's sarcoma (ES) and synovial sarcoma (SS). Diverse studies have related development genes, such as; IGF2, IHH, PTCH1 and GLI1 and sarcomatogenesis. OBJECTIVE To characterize the RMS, ES and SS rearrangements, we quantify the expression of IGF2 IHH, PTCH1 and GLI1 genes and correlate molecular data with clinical parameters of patients. DESIGN We analyzed 29 RMS, 10 SS and 60 ES tumor samples by RT-PCR (polymerase chain reaction-reverse transcription) and qPCR (quantitative PCR). RESULTS Among the samples of ARMS, 50% had rearrangements of PAX3/7-FOXO1, 60% of ES samples were EWS-FLI1 positive and 90% of SS samples were positive for SS18-SSX1/2. In relation to the control reference samples (QPCR Human Reference Total RNA-Stratagene, Human Skeletal Muscle Total RNA-Ambion, Universal RNA Human Normal Tissues-Ambion), RMS samples showed a high IGF2 gene expression (p<0.0001). Moreover, ES samples showed a low IGF2 gene expression (p<0.0001) and high IHH (p<0.0001), PTCH1 (p=0.0173) and GLI1 (p=0.0113) gene expressions. CONCLUSIONS The molecular characterization of IGF and Hedgehog pathway in these pediatric sarcomas may collaborate to enable a better understanding of the biological behavior of these neoplasms.
Collapse
Affiliation(s)
- Robson Ramos de Souza
- Pediatric Oncology Institute (GRAACC), Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil; Department of Structural and Functional Biology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Indhira Dias Oliveira
- Pediatric Oncology Institute (GRAACC), Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil; Department of Structural and Functional Biology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Mario del Giúdice Paniago
- Pediatric Oncology Institute (GRAACC), Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Fernando Hideki Kato Yaoita
- Pediatric Oncology Institute (GRAACC), Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil; Department of Structural and Functional Biology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Eliana Maria Monteiro Caran
- Pediatric Oncology Institute (GRAACC), Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil.
| | | | - Antonio Sergio Petrilli
- Pediatric Oncology Institute (GRAACC), Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Simone de Campos Vieira Abib
- Pediatric Oncology Institute (GRAACC), Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil; Division of Pediatric Surgery, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Maria Teresa de Seixas Alves
- Pediatric Oncology Institute (GRAACC), Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil; Department of Pathology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Silvia Regina Caminada de Toledo
- Pediatric Oncology Institute (GRAACC), Department of Pediatrics, Federal University of São Paulo, São Paulo, SP, Brazil; Department of Structural and Functional Biology, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
35
|
Liu C, Li D, Jiang J, Hu J, Zhang W, Chen Y, Cui X, Qi Y, Zou H, Zhang W, Li F. Analysis of molecular cytogenetic alteration in rhabdomyosarcoma by array comparative genomic hybridization. PLoS One 2014; 9:e94924. [PMID: 24743780 PMCID: PMC3990535 DOI: 10.1371/journal.pone.0094924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/21/2014] [Indexed: 12/02/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. The genetic etiology of RMS remains largely unclear underlying its development and progression. To reveal novel genes more precisely and new therapeutic targets associated with RMS, we used high-resolution array comparative genomic hybridization (aCGH) to explore tumor-associated copy number variations (CNVs) and genes in RMS. We confirmed several important genes by quantitative real-time polymerase chain reaction (QRT-PCR). We then performed bioinformatics-based functional enrichment analysis for genes located in the genomic regions with CNVs. In addition, we identified miRNAs located in the corresponding amplification and deletion regions and performed miRNA functional enrichment analysis. aCGH analyses revealed that all RMS showed specific gains and losses. The amplification regions were 12q13.12, 12q13.3, and 12q13.3–q14.1. The deletion regions were 1p21.1, 2q14.1, 5q13.2, 9p12, and 9q12. The recurrent regions with gains were 12q13.3, 12q13.3–q14.1, 12q14.1, and 17q25.1. The recurrent regions with losses were 9p12–p11.2, 10q11.21–q11.22, 14q32.33, 16p11.2, and 22q11.1. The mean mRNA level of GLI1 in RMS was 6.61-fold higher than that in controls (p = 0.0477) by QRT-PCR. Meanwhile, the mean mRNA level of GEFT in RMS samples was 3.92-fold higher than that in controls (p = 0.0354). Bioinformatic analysis showed that genes were enriched in functions such as immunoglobulin domain, induction of apoptosis, and defensin. Proto-oncogene functions were involved in alveolar RMS. miRNAs that located in the amplified regions in RMS tend to be enriched in oncogenic activity (miR-24 and miR-27a). In conclusion, this study identified a number of CNVs in RMS and functional analyses showed enrichment for genes and miRNAs located in these CNVs regions. These findings may potentially help the identification of novel biomarkers and/or drug targets implicated in diagnosis of and targeted therapy for RMS.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Dongliang Li
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
- LU'AN People's Hospital. LU'AN Affiliated Hospital of ANHUI Medical University, LU'AN, Anhui, P. R. China
| | - Jinfang Jiang
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
| | - Jianming Hu
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
| | - Wei Zhang
- Department of Pathology, the First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Yunzhao Chen
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
| | - Xiaobin Cui
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
| | - Hong Zou
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
| | - WenJie Zhang
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, P. R. China
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- * E-mail:
| |
Collapse
|
36
|
Villegas VE, Rahman MFU, Fernandez-Barrena MG, Diao Y, Liapi E, Sonkoly E, Ståhle M, Pivarcsi A, Annaratone L, Sapino A, Ramírez Clavijo S, Bürglin TR, Shimokawa T, Ramachandran S, Kapranov P, Fernandez-Zapico ME, Zaphiropoulos PG. Identification of novel non-coding RNA-based negative feedback regulating the expression of the oncogenic transcription factor GLI1. Mol Oncol 2014; 8:912-26. [PMID: 24726458 PMCID: PMC4082767 DOI: 10.1016/j.molonc.2014.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/18/2014] [Accepted: 03/11/2014] [Indexed: 12/01/2022] Open
Abstract
Non‐coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non‐coding RNA located head‐to‐head with the gene encoding the Glioma‐associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer‐associated signaling pathways. The expression of this three‐exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up‐regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up‐regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non‐coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non‐coding RNA‐based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor. A novel negative feedback loop on Hedgehog signaling is demonstrated. The mechanism involves a non‐coding RNA antisense to the GLI1 gene, GLI1AS. GLI1AS is shown to be a target gene of the GLI1 transcription factor. GLI1AS represses gene expression at the GLI1/GLI1AS locus. GLI1AS acts as an epigenetic modifier eliciting repressive chromatin marks.
Collapse
Affiliation(s)
- Victoria E Villegas
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; Faculty of Natural Sciences and Mathematics & Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | | | - Yumei Diao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Eleni Liapi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Enikö Sonkoly
- Unit of Dermatology and Venereology, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Mona Ståhle
- Unit of Dermatology and Venereology, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Andor Pivarcsi
- Unit of Dermatology and Venereology, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sandra Ramírez Clavijo
- Faculty of Natural Sciences and Mathematics & Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Thomas R Bürglin
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Takashi Shimokawa
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
37
|
Liu C, Li D, Hu J, Jiang J, Zhang W, Chen Y, Cui X, Qi Y, Zou H, Zhang W, Li F. Chromosomal and genetic imbalances in Chinese patients with rhabdomyosarcoma detected by high-resolution array comparative genomic hybridization. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:690-698. [PMID: 24551291 PMCID: PMC3925915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children. Although associations between ARMS tumorigenesis and PAX3, PAX7, and FKHR are well recognized, the complete genetic etiology underlying RMS pathogenesis and progression remains unclear. Chromosomal copy number variations (CNVs) and the involved genes may play important roles in the pathogenesis and progression of human malignancies. Using high-resolution array comparative genomic hybridization (aCGH), we examined 20 formalin-fixed, paraffin-embedded (FFPE) RMS tumors to explore the involvement of the relevant chromosomal regions with resident genes in RMS tumorigenesis. In RMS, frequent gains were identified on chromosome regions 12q13.3-q14.1, 12q24.31, 17q25.1, 1q21.1, and 7q11.23, whereas frequent losses were observed on chromosome regions 5q13.2, 14q32.33, and 15q11.2. Amplifications were observed on chromosome regions 9p13.3, 12q13.3-q14.1, 12q15, and 16p13.11, whereas deletions were detected on chromosome regions 1p36.33, 1p13.1, 2q11.1, 5q13.2, 8p23.1, 9p24.3, and 16p11.2. Frequent gains were detected in GLI1, GEFT, OS9, and CDK4 (12q13.3-q14.1), being 60% in embryonal rhabdomyosarcoma (ERMS) and 66.67% in alveolar rhabdomyosarcoma (ARMS), respectively. However, frequent losses were detected in IGHG1, IGHM, IGHG3, and IGHG4 (14q32.33), being 70% in ERMS and 55.56% in and ARMS, respectively. Frequent gains were detected in TYROBP, HCST, LRFN3, and ALKBH6 (19q13.12) in ERMS but not in ARMS. The frequency of TYROBP, HCST, LRFN3, and ALKBH6 gains is significantly different in ERMS versus ARMS (P=0.011). The results suggest that novel TYROBP, HCST, LRFN3, and ALKBH6 genes may play important roles in ERMS. The technique used is a feasible approach for array comparative genomic hybridization analysis in archival tumor samples.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Oncology, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan, Hubei 430071, China
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi, Xinjiang 832002, China
| | - Dongliang Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi, Xinjiang 832002, China
- Lu’An People’s Hospital and Lu’An Affiliated Hospital of Anhui Medical UniversityLu’An, Anhui 237000, China
| | - Jianming Hu
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi, Xinjiang 832002, China
| | - jinfang Jiang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi, Xinjiang 832002, China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital, Xinjiang Medical UniversityUrumqi, Xinjiang 830054, China
| | - Yunzhao Chen
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi, Xinjiang 832002, China
| | - Xiaobin Cui
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi, Xinjiang 832002, China
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi, Xinjiang 832002, China
| | - Hong Zou
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi, Xinjiang 832002, China
| | - Wenjie Zhang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi, Xinjiang 832002, China
| | - Feng Li
- Department of Oncology, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan, Hubei 430071, China
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of EducationShihezi, Xinjiang 832002, China
| |
Collapse
|
38
|
Tang WQ, Hei Y, Kang L, Xiao LH. Heparanase-1 and components of the hedgehog signalling pathway are increased in untreated alveolar orbital rhabdomyosarcoma. Clin Exp Ophthalmol 2013; 42:182-9. [PMID: 23777428 DOI: 10.1111/ceo.12139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/14/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND To assess the activities of heparanase-1 and elements of the hedgehog signalling pathway in alveolar orbital rhabdomyosarcoma. METHODS Specimens (n = 23) were divided into two groups, those from patients with preoperative chemoradiotherapy or untreated patients; six samples of normal extraocular muscle were used as a normal muscle group. The presence of heparanase-1, patched, smoothened and glioma-associated oncogene homologue-1 protein expression was determined in 23 cases of archival paraffin-embedded alveolar orbital rhabdomyosarcoma after immunohistochemistry. RNA was extracted from three groups of paraffin-embedded specimens and messenger RNA expressions of heparanase-1, smoothened and glioma-associated oncogene homologue-1 compared using nested reverse transcriptase polymerase chain reaction and a limiting dilution analysis. RESULTS The heparanase-1, patched, smoothened and glioma-associated oncogene homologue-1 protein was expressed in 91.3%, 87.0%, 91.3% and 78.3%, respectively, of the alveolar orbital rhabdomyosarcoma specimens. Untreated rhabdomyosarcoma samples tended to stain intensely, but staining was relatively weak in tissue obtained from the chemoradiotherapy group. The expression levels of heparanase-1, smoothened and glioma-associated oncogene homologue-1 messenger RNA in untreated and chemoradiotherapy groups paralleled that seen with immunology, and there were no significant differences in heparanase-1, smoothened and glioma-associated oncogene homologue-1 messenger RNA levels between the chemoradiotherapy group and the normal muscle group (P > 0.05). However, the messenger RNA in the untreated group were all significantly higher than those in the chemoradiotherapy and normal muscle groups (P < 0.01). CONCLUSIONS Both heparanase-1 and hedgehog signalling pathway are involved in the pathogenesis of alveolar orbital rhabdomyosarcoma; however, chemotherapy and/or radiotherapy appears to significantly inhibit their upregulation.
Collapse
Affiliation(s)
- Wei-Qiang Tang
- Department of Ophthalmology, the First Affiliated Hospital of General Hospital of People's Liberation Army, Beijing, China
| | | | | | | |
Collapse
|
39
|
Hwang S, Thangapandian S, Lee KW. Molecular dynamics simulations of sonic hedgehog-receptor and inhibitor complexes and their applications for potential anticancer agent discovery. PLoS One 2013; 8:e68271. [PMID: 23935859 PMCID: PMC3729836 DOI: 10.1371/journal.pone.0068271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/24/2013] [Indexed: 11/29/2022] Open
Abstract
The sonic hedgehog (Shh) signaling pathway is necessary for a variety of development and differentiation during embryogenesis as well as maintenance and renascence of diverse adult tissues. However, an abnormal activation of the signaling pathway is related to various cancers. In this pathway, the Shh signaling transduction is facilitated by binding of Shh to its receptor protein, Ptch. In this study, we modeled the 3D structure of functionally important key loop peptides of Ptch based on homologous proteins. Using this loop model, the molecular interactions between the structural components present in the pseudo-active site of Shh and key residues of Ptch was investigated in atomic level through molecular dynamics (MD) simulations. For the purpose of developing inhibitor candidates of the Shh signaling pathway, the Shh pseudo-active site of this interface region was selected as a target to block the direct binding between Shh and Ptch. Two different structure-based pharmacophore models were generated considering the key loop of Ptch and known inhibitor-induced conformational changes of the Shh through MD simulations. Finally two hit compounds were retrieved through a series of virtual screening combined with molecular docking simulations and we propose two hit compounds as potential inhibitory lead candidates to block the Shh signaling pathway based on their strong interactions to receptor or inhibitor induced conformations of the Shh.
Collapse
Affiliation(s)
- Swan Hwang
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Sundarapandian Thangapandian
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Sokolowski E, Turina CB, Kikuchi K, Langenau DM, Keller C. Proof-of-concept rare cancers in drug development: the case for rhabdomyosarcoma. Oncogene 2013; 33:1877-89. [PMID: 23665679 DOI: 10.1038/onc.2013.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Abstract
Rare diseases typically affect fewer than 200,000 patients annually, yet because thousands of rare diseases exist, the cumulative impact is millions of patients worldwide. Every form of childhood cancer qualifies as a rare disease-including the childhood muscle cancer, rhabdomyosarcoma (RMS). The next few years promise to be an exceptionally good era of opportunity for public-private collaboration for rare and childhood cancers. Not only do certain governmental regulation advantages exist, but these advantages are being made permanent with special incentives for pediatric orphan drug-product development. Coupled with a growing understanding of sarcoma tumor biology, synergy with pharmaceutical muscle disease drug-development programs, and emerging publically available preclinical and clinical tools, the outlook for academic-community-industry partnerships in RMS drug development looks promising.
Collapse
Affiliation(s)
- E Sokolowski
- Department of Student Affairs, Oregon State University, Corvallis, OR, USA
| | - C B Turina
- 1] Department of Student Affairs, Oregon State University, Corvallis, OR, USA [2] Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - K Kikuchi
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - D M Langenau
- 1] Division of Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA [2] Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | - C Keller
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
41
|
Dimitrova K, Stoehr M, Dehghani F, Dietz A, Wichmann G, Bertolini J, Mozet C. Overexpression of the Hedgehog signalling pathway in head and neck squamous cell carcinoma. ACTA ACUST UNITED AC 2013; 36:279-86. [PMID: 23689223 DOI: 10.1159/000350322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Overexpression of the Hedgehog (HH) signalling pathway has been described in several malignancies and is associated with a poor prognosis. HH signalling blockade reduces tumour growth in vitro and in vivo. We aimed to determine whether head and neck squamous cell carcinomas (HNSCCs) express HH proteins in comparison to healthy mucosa. PATIENTS AND METHODS Formalin-fixed and paraffin-embedded tissue sections of 10 patients with HNSCC were stained with fluorescence-labelled antibodies for cytokeratin and HH proteins (SHH, PTCH1/2, SMO, Gli1-3) and photographs were taken with a laser scanning microscope. The pixel count and colour intensity were analysed in RGB (red/green/blue) colour mode, and expression levels were compared to healthy mucosa. RESULTS Image analysis in RGB mode provided objective evidence for the over-expression of HH signalling components in HNSCC, particularly with regard to the transcription factors Gli1 (10-fold) and SHH (5-fold) in comparison with healthy mucosa. The lowest levels were found for Gli3 in HNSCC. CONCLUSIONS We postulate pivotal roles of Gli1 and SHH expression in the carcinogenesis of HNSCC. HH pathway overexpression appears to be involved in the initiation of tumour growth and spread due to its stem cell-modulating properties. Detection of HH pathway components, and especially Gli1 and SHH, in HNSCC might offer a promising target for further anticancer research in HNSCC.
Collapse
Affiliation(s)
- Kamelia Dimitrova
- Department of Otolaryngology, Head and Neck Surgery, University of Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Caserto BG. A Comparative Review of Canine and Human Rhabdomyosarcoma With Emphasis on Classification and Pathogenesis. Vet Pathol 2013; 50:806-26. [DOI: 10.1177/0300985813476069] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rhabdomyosarcomas are a diverse group of malignant mesenchymal neoplasms exhibiting variable levels of differentiation toward skeletal myocytes. Neoplastic cells may resemble relatively undifferentiated myoblasts, satellite cells, or more differentiated elongated spindle cells and multicellular myotubes. In veterinary medicine, classification into subtypes and variants is based on an outdated system derived from human pathology and is solely based on histologic characteristics. In contrast, classification of human rhabdomyosarcoma is based on histologic, immunohistochemical, and molecular diagnostic techniques, and subclassification has clinical and prognostic relevance. Relevance of tumor subtyping has not been established in veterinary medicine. Recent discoveries of components of the molecular pathogenesis and genomes of human rhabdomyosarcomas have led to new diagnostic techniques and revisions of the human classification system. The current classification system in veterinary medicine is reviewed in light of these changes. Diagnosis of rhabdomyosarcoma using histopathology, electron microscopy, and the clinical aspects of human and canine rhabdomyosarcomas is compared. The clinical features and biologic behavior of canine rhabdomyosarcomas are compared with canine soft tissue sarcomas.
Collapse
Affiliation(s)
- B. G. Caserto
- Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY, USA
| |
Collapse
|
43
|
Shimokawa T, Rahman MFU, Tostar U, Sonkoly E, Ståhle M, Pivarcsi A, Palaniswamy R, Zaphiropoulos PG. RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling. RNA Biol 2013; 10:321-33. [PMID: 23324600 PMCID: PMC3594290 DOI: 10.4161/rna.23343] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Hedgehog (HH) signaling pathway has important roles in tumorigenesis and in embryonal patterning. The Glioma-associated oncogene 1 (GLI1) is a key molecule in HH signaling, acting as a transcriptional effector and, moreover, is considered to be a potential therapeutic target for several types of cancer. To extend our previous focus on the implications of alternative splicing for HH signal transduction, we now report on an additional post-transcriptional mechanism with an impact on GLI1 activity, namely RNA editing. The GLI1 mRNA is highly edited at nucleotide 2179 by adenosine deamination in normal cerebellum, but the extent of this modification is reduced in cell lines from the cerebellar tumor medulloblastoma. Additionally, basal cell carcinoma tumor samples exhibit decreased GLI1 editing compared with normal skin. Interestingly, knocking down of either ADAR1 or ADAR2 reduces RNA editing of GLI1. This adenosine to inosine substitution leads to a change from Arginine to Glycine at position 701 that influences not only GLI1 transcriptional activity, but also GLI1-dependent cellular proliferation. Specifically, the edited GLI1, GLI1-701G, has a higher capacity to activate most of the transcriptional targets tested and is less susceptible to inhibition by the negative regulator of HH signaling suppressor of fused. However, the Dyrk1a kinase, implicated in cellular proliferation, is more effective in increasing the transcriptional activity of the non-edited GLI1. Finally, introduction of GLI1-701G into medulloblastoma cells confers a smaller increase in cellular growth relative to GLI1. In conclusion, our findings indicate that RNA editing of GLI1 is a regulatory mechanism that modulates the output of the HH signaling pathway.
Collapse
Affiliation(s)
- Takashi Shimokawa
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge, Sweden
- Advanced Radiation Biology Research Program; Research Center for Charged Particle Therapy; National Institute of Radiological Sciences; Chiba-shi, Chiba, Japan
| | | | - Ulrica Tostar
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge, Sweden
| | - Enikö Sonkoly
- Unit of Dermatology; Department of Medicine; Karolinska Institutet; Solna, Sweden
| | - Mona Ståhle
- Unit of Dermatology; Department of Medicine; Karolinska Institutet; Solna, Sweden
| | - Andor Pivarcsi
- Unit of Dermatology; Department of Medicine; Karolinska Institutet; Solna, Sweden
| | - Ramesh Palaniswamy
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge, Sweden
| | | |
Collapse
|
44
|
Wickström M, Dyberg C, Shimokawa T, Milosevic J, Baryawno N, Fuskevåg OM, Larsson R, Kogner P, Zaphiropoulos PG, Johnsen JI. Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. Int J Cancer 2012; 132:1516-24. [PMID: 22949014 DOI: 10.1002/ijc.27820] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/17/2012] [Indexed: 12/15/2022]
Abstract
Hedgehog (HH) signaling is an important regulator of embryogenesis that has been associated with the development of several types of cancer. HH signaling is characterized by Smoothened (SMO)-dependent activation of the GLI transcription factors, which regulate the expression of critical developmental genes. Neuroblastoma, an embryonal tumor of the sympathetic nervous system, was recently shown to express high levels of key molecules in this signaling cascade. Using compounds blocking SMO (cyclopamine and SANT1) or GLI1/GLI2 (GANT61) activity revealed that inhibition of HH signaling at the level of GLI was most effective in reducing neuroblastoma growth. GANT61 sensitivity positively correlated to GLI1 and negatively to MYCN expression in the neuroblastoma cell lines tested. GANT61 downregulated GLI1, c-MYC, MYCN and Cyclin D1 expression and induced apoptosis of neuroblastoma cells. The effects produced by GANT61 were mimicked by GLI knockdown but not by SMO knockdown. Furthermore, GANT61 enhanced the effects of chemotherapeutic drugs used in the treatment of neuroblastoma in an additive or synergistic manner and reduced the growth of established neuroblastoma xenografts in nude mice. Taken together this study suggests that inhibition of HH signaling is a highly relevant therapeutic target for high-risk neuroblastoma lacking MYCN amplification and should be considered for clinical testing.
Collapse
Affiliation(s)
- Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The Hedgehog (Hh) signaling pathway has been implicated in tumor initiation and metastasis across different malignancies. Major mechanisms by which the Hh pathway is aberrantly activated can be attributed to mutations of members of Hh pathway or excessive/inappropriate expression of Hh pathway ligands. The Hh signaling pathway also affects the regulation of cancer stem cells, leading to their capabilities in tumor formation, disease progression, and metastasis. Preliminary results of early phase clinical trials of Hh inhibitors administered as monotherapy demonstrated promising results in patients with basal cell carcinoma and medulloblastoma, but clinically meaningful anticancer efficacy across other tumor types seems to be lacking. Additionally, cases of resistance have been already observed. Mutations of SMO, activation of Hh pathway components downstream to SMO, and upregulation of alternative signaling pathways are possible mechanisms of resistance development. Determination of effective Hh inhibitor-based combination regimens and development of correlative biomarkers relevant to this pathway should remain as clear priorities for future research.
Collapse
Affiliation(s)
- Solmaz Sahebjam
- Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
46
|
Xu S, De Becker A, De Raeve H, Van Camp B, Vanderkerken K, Van Riet I. In vitro expanded bone marrow-derived murine (C57Bl/KaLwRij) mesenchymal stem cells can acquire CD34 expression and induce sarcoma formation in vivo. Biochem Biophys Res Commun 2012; 424:391-7. [PMID: 22771324 DOI: 10.1016/j.bbrc.2012.06.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have currently generated numerous interests in pre-clinical and clinical applications due to their multiple lineages differentiation potential and immunomodulary effects. However, accumulating evidence indicates that MSCs, especially murine MSCs (mMSCs), can undergo spontaneous transformation after long-term in vitro culturing, which might reduce the therapeutic application possibilities of these stem cells. In the present study, we observed that in vitro expanded bone marrow (BM) derived mMSCs from the C57Bl/KaLwRij mouse strain can lose their specific stem cells markers (CD90 and CD105) and acquire CD34 expression, accompanied with an altered morphology and an impaired tri-lineages differentiation capacity. Compared to normal mMSCs, these transformed mMSCs exhibited an increased proliferation rate, an enhanced colony formation and migration ability as well as a higher sensitivity to anti-tumor drugs. Transformed mMSCs were highly tumorigenic in vivo, resulting in aggressive sarcoma formation when transplanted in non-immunocompromised mice. Furthermore, we found that Notch signaling downstream genes (hey1, hey2 and heyL) were significantly upregulated in transformed mMSCs, while Hedgehog signaling downstream genes Gli1 and Ptch1 and the Wnt signaling downstream gene beta-catenin were all decreased. Taken together, we observed that murine in vitro expanded BM-MSCs can transform into CD34 expressing cells that induce sarcoma formation in vivo. We assume that dysregulation of the Notch(+)/Hh(-)/Wnt(-) signaling pathway is associated with the malignant phenotype of the transformed mMSCs.
Collapse
Affiliation(s)
- Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | | | | | | | | | | |
Collapse
|
47
|
Tostar U, Finta C, Rahman MFU, Shimokawa T, Zaphiropoulos PG. Novel mechanism of action on Hedgehog signaling by a suppressor of fused carboxy terminal variant. PLoS One 2012; 7:e37761. [PMID: 22666390 PMCID: PMC3362617 DOI: 10.1371/journal.pone.0037761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 04/24/2012] [Indexed: 11/18/2022] Open
Abstract
The Suppressor of Fused (SUFU) protein plays an essential role in the Hedgehog (HH) signaling pathway, by regulation of the GLI transcription factors. Two major isoforms of human SUFU are known, a full-length (SUFU-FL) and a carboxy-terminal truncated (SUFU- ΔC) variant. Even though SUFU- ΔC is expressed at an equivalent level as SUFU-FL in certain tissues, the function of SUFU-ΔC and its impact on HH signal transduction is still unclear. In two cell lines from rhabdomyosarcoma, a tumor type associated with deregulated HH signaling, SUFU-ΔC mRNA was expressed at comparable levels as SUFU-FL mRNA, but at the protein level only low amounts of SUFU-ΔC were detectable. Heterologous expression provided support to the notion that the SUFU-ΔC protein is less stable compared to SUFU-FL. Despite this, biochemical analysis revealed that SUFU-ΔC could repress GLI2 and GLI1ΔN, but not GLI1FL, transcriptional activity to the same extent as SUFU-FL. Moreover, under conditions of activated HH signaling SUFU-ΔC was more effective than SUFU-FL in inhibiting GLI1ΔN. Importantly, co-expression with GLI1FL indicated that SUFU-ΔC but not SUFU-FL reduced the protein levels of GLI1FL. Additionally, confocal microscopy revealed a co-localization of GLI1FL with SUFU-ΔC but not SUFU-FL in aggregate structures. Moreover, specific siRNA mediated knock-down of SUFU-ΔC resulted in up-regulation of the protein levels of GLI1FL and the HH signaling target genes PTCH1 and HHIP. Our results are therefore suggesting the presence of novel regulatory controls in the HH signaling pathway, which are elicited by the distinct mechanism of action of the two alternative spliced SUFU proteins.
Collapse
Affiliation(s)
- Ulrica Tostar
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Csaba Finta
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Takashi Shimokawa
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Peter G. Zaphiropoulos
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
48
|
Li Y, Maitah MY, Ahmad A, Kong D, Bao B, Sarkar FH. Targeting the Hedgehog signaling pathway for cancer therapy. Expert Opin Ther Targets 2012; 16:49-66. [PMID: 22243133 DOI: 10.1517/14728222.2011.617367] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Hedgehog (Hh) signaling pathway plays key roles in embryonic development, formation and maintenance of cancer stem cells (CSCs) and acquisition of epithelial-to-mesenchymal transition (EMT). Since CSCs and EMT are important biological factors responsible for cancer cell invasion, metastasis, drug resistance and tumor recurrence, the Hh signaling pathway is believed to be an important target for cancer therapy. AREAS COVERED In recent years, small-molecule inhibitors of Hh signaling have been synthesized for cancer treatment. Clinical trials using these inhibitors are being conducted to determine their toxicity profiles and efficacies. In addition, nutraceuticals (such as isoflavones, curcumin, vitamin D, etc) have been shown to inhibit cancer growth through downregulation of Hh signaling. EXPERT OPINION Inhibition of Hh signaling is important for suppression of cancer growth, invasion, metastasis and recurrence in cancer therapy. However, targeting only one molecule in Hh signaling may not be sufficient to kill cancer cells because cancers show deregulation of multiple signals. Therefore, utilizing new technologies to determine alterations in Hh and other signals for individuals and designing combination strategies with small-molecule Hh inhibitors, nutraceuticals and other chemotherapeutics in targeted personalized therapy could have a significant effect on improving the overall survival of patients with cancers.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Soft tissue sarcomas are an uncommon and diverse group of more than 50 mesenchymal malignancies. The pathogenesis of many of these is poorly understood, but others have begun to reveal the secrets of their underlying mechanisms. With considerable effort over recent years, soft tissue sarcomas have increasingly been classified on the basis of underlying molecular alterations. In turn, this has allowed the development and application of targeted agents in several specific, molecularly defined, sarcoma subtypes. This review will focus on the rationale for targeted therapy in sarcoma, with emphasis on the relevance of specific molecular factors and pathways in both translocation-associated sarcomas and in genetically complex tumors. In addition, we will address some of the early successes in sarcoma-targeted therapy as well as a few challenges and disappointments in this field. Finally, we will discuss several possible opportunities represented by poorly understood, but potentially promising new therapeutic targets, as well as several novel biological agents currently in preclinical and early phase I/II trials. This will provide the reader with the context for understanding the current state of this field and a sense of where it may be headed in the coming years.
Collapse
Affiliation(s)
- Elizabeth G Demicco
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, 77030-4009, USA
| | | | | | | |
Collapse
|
50
|
Belyea B, Kephart JG, Blum J, Kirsch DG, Linardic CM. Embryonic signaling pathways and rhabdomyosarcoma: contributions to cancer development and opportunities for therapeutic targeting. Sarcoma 2012; 2012:406239. [PMID: 22619564 PMCID: PMC3350847 DOI: 10.1155/2012/406239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence, accounting for approximately 7% of childhood cancers. Current therapies include nonspecific cytotoxic chemotherapy regimens, radiation therapy, and surgery; however, these multimodality strategies are unsuccessful in the majority of patients with high-risk disease. It is generally believed that these tumors represent arrested or aberrant skeletal muscle development, and, accordingly, developmental signaling pathways critical to myogenesis such as Notch, WNT, and Hedgehog may represent new therapeutic targets. In this paper, we summarize the current preclinical studies linking these embryonic pathways to rhabdomyosarcoma tumorigenesis and provide support for the investigation of targeted therapies in this embryonic cancer.
Collapse
Affiliation(s)
- Brian Belyea
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA
| | - Julie Grondin Kephart
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jordan Blum
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G. Kirsch
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Corinne M. Linardic
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|