1
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Lisa DD, Muzzi L, Lagazzo A, Andolfi A, Martinoia S, Pastorino L. Long-term in vitroculture of 3D brain tissue model based on chitosan thermogel. Biofabrication 2023; 16:015011. [PMID: 37922538 DOI: 10.1088/1758-5090/ad0979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Methods for studying brain function and disease heavily rely onin vivoanimal models,ex-vivotissue slices, and 2D cell culture platforms. These methods all have limitations that significantly impact the clinical translatability of results. Consequently, models able to better recapitulate some aspects ofin vivohuman brain are needed as additional preclinical tools. In this context, 3D hydrogel-basedin vitromodels of the brain are considered promising tools. To create a 3D brain-on-a-chip model, a hydrogel capable of sustaining neuronal maturation over extended culture periods is required. Among biopolymeric hydrogels, chitosan-β-glycerophosphate (CHITO-β-GP) thermogels have demonstrated their versatility and applicability in the biomedical field over the years. In this study, we investigated the ability of this thermogel to encapsulate neuronal cells and support the functional maturation of a 3D neuronal network in long-term cultures. To the best of our knowledge, we demonstrated for the first time that CHITO-β-GP thermogel possesses optimal characteristics for promoting neuronal growth and the development of an electrophysiologically functional neuronal network derived from both primary rat neurons and neurons differentiated from human induced pluripotent stem cells (h-iPSCs) co-cultured with astrocytes. Specifically, two different formulations were firstly characterized by rheological, mechanical and injectability tests. Primary nervous cells and neurons differentiated from h-iPSCs were embedded into the two thermogel formulations. The 3D cultures were then deeply characterized by immunocytochemistry, confocal microscopy, and electrophysiological recordings, employing both 2D and 3D micro-electrode arrays. The thermogels supported the long-term culture of neuronal networks for up to 100 d. In conclusion, CHITO-β-GP thermogels exhibit excellent mechanical properties, stability over time under culture conditions, and bioactivity toward nervous cells. Therefore, they are excellent candidates as artificial extracellular matrices in brain-on-a-chip models, with applications in neurodegenerative disease modeling, drug screening, and neurotoxicity evaluation.
Collapse
Affiliation(s)
- Donatella Di Lisa
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Via all 'Opera Pia 13, 16145 Genoa, Italy
| | - Lorenzo Muzzi
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Via all 'Opera Pia 13, 16145 Genoa, Italy
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Montallegro 1, Genoa, Italy
| | - Andrea Andolfi
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Via all 'Opera Pia 13, 16145 Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Via all 'Opera Pia 13, 16145 Genoa, Italy
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Via all 'Opera Pia 13, 16145 Genoa, Italy
| |
Collapse
|
3
|
Wang X, Yang F, Tian X, Huo H, Li X, Wu H, Guo J. Toxic effects of copper on duck cerebrum: a crucial role of oxidative stress and endoplasmic reticulum quality control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98127-98138. [PMID: 37606779 DOI: 10.1007/s11356-023-29397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
To study the effects of Cu overload on ER quality control in duck cerebrums, 144 ducks were treated with 8 mg/kg, 100 mg/kg, 200 mg/kg and 400 mg/kg Cu added in the feed for 45 days. From histopathological examination, we found that excessive Cu increased the amount of microglia and disintegrated neuron, decreased the number of Nissl bodies, perturbed nerve fibers in duck cerebrums. Cu poisoning also increased Cu, H2O2, T-SOD, and MDA levels, decreased Fe and CAT contents in duck cerebrums. Furthermore, Cu treatment upregulated the mRNA levels of the unfolded protein response genes (PERK, ATF6, and IRE1), ER-associated degradation genes (CNX, Derlin1, and Derlin2), autophagy genes (ATG5, ATG7, ATG10, Beclin1, LC3A, LC3B, and P62), and heat shock response genes (Hsp70 and Hsp90) in duck cerebrums; elevated the protein levels of p-PERK, CNX, SEL1L, Beclin1, P62, and LC3BII/LC3BI in duck cerebrums; increased the numbers of SEL1L and LC3B puncta in duck cerebrums. Thus, our data showed that excessive Cu could cause histopathological damage to duck cerebrums, disrupt the balance of the trace elements, induce oxidative stress and activation of ER quality control, thereby resulting in duck cerebrums damage.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Fan Yang
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Xiaomin Tian
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Haihua Huo
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Xinrun Li
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Haitong Wu
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Muangsanit P, Chailangkarn T, Tanwattana N, Wongwanakul R, Lekcharoensuk P, Kaewborisuth C. Hydrogel-based 3D human iPSC-derived neuronal culture for the study of rabies virus infection. Front Cell Infect Microbiol 2023; 13:1215205. [PMID: 37692167 PMCID: PMC10485840 DOI: 10.3389/fcimb.2023.1215205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Background Rabies is a highly fatal infectious disease that poses a significant threat to human health in developing countries. In vitro study-based understanding of pathogenesis and tropism of different strains of rabies virus (RABV) in the central nervous system (CNS) is limited due to the lack of suitable culture models that recapitulate the complex communication pathways among host cells, extracellular matrices, and viruses. Therefore, a three-dimensional (3D) cell culture that mimics cell-matrix interactions, resembling in vivo microenvironment, is necessary to discover relevant underlying mechanisms of RABV infection and host responses. Methods The 3D collagen-Matrigel hydrogel encapsulating hiPSC-derived neurons for RABV infection was developed and characterized based on cell viability, morphology, and gene expression analysis of neuronal markers. The replication kinetics of two different strains of RABV [wild-type Thai (TH) and Challenge Virus Standard (CVS)-11 strains] in both 2D and 3D neuronal cultures were examined. Differential gene expression analysis (DEG) of the neuropathological pathway of RABV-infected 2D and 3D models was also investigated via NanoString analysis. Results The 3D hiPSC-derived neurons revealed a more physiologically interconnected neuronal network as well as more robust and prolonged maturation and differentiation than the conventional 2D monolayer model. TH and CVS-11 exhibited distinct growth kinetics in 3D neuronal model. Additionally, gene expression analysis of the neuropathological pathway observed during RABV infection demonstrated a vast number of differentially expressed genes (DEGs) in 3D model. Unlike 2D neuronal model, 3D model displayed more pronounced cellular responses upon infection with CVS-11 when compared to the TH-infected group, highlighting the influence of the cell environment on RABV-host interactions. Gene ontology (GO) enrichment of DEGs in the infected 3D neuronal culture showed alterations of genes associated with the inflammatory response, apoptotic signaling pathway, glutamatergic synapse, and trans-synaptic signaling which did not significantly change in 2D culture. Conclusion We demonstrated the use of a hydrogel-based 3D hiPSC-derived neuronal model, a highly promising technology, to study RABV infection in a more physiological environment, which will broaden our understanding of RABV-host interactions in the CNS.
Collapse
Affiliation(s)
- Papon Muangsanit
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nathiphat Tanwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Ratjika Wongwanakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Porntippa Lekcharoensuk
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok, Thailand
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
5
|
Hall V, Bendtsen KMS. Getting closer to modeling the gut-brain axis using induced pluripotent stem cells. Front Cell Dev Biol 2023; 11:1146062. [PMID: 37065853 PMCID: PMC10102862 DOI: 10.3389/fcell.2023.1146062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
The gut microbiome (GM), the gut barrier, and the blood-brain barrier (BBB) are key elements of the gut-brain axis (GBA). The advances in organ-on-a-chip and induced pluripotent stem cell (iPSCs) technology might enable more physiological gut-brain-axis-on-a-chip models. The ability to mimic complex physiological functions of the GBA is needed in basic mechanistic research as well as disease research of psychiatric, neurodevelopmental, functional, and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These brain disorders have been associated with GM dysbiosis, which may affect the brain via the GBA. Although animal models have paved the way for the breakthroughs and progression in the understanding of the GBA, the fundamental questions of exactly when, how, and why still remain unanswered. The research of the complex GBA have relied on equally complex animal models, but today's ethical knowledge and responsibilities demand interdisciplinary development of non-animal models to study such systems. In this review we briefly describe the gut barrier and BBB, provide an overview of current cell models, and discuss the use of iPSCs in these GBA elements. We highlight the perspectives of producing GBA chips using iPSCs and the challenges that remain in the field.
Collapse
Affiliation(s)
| | - Katja Maria Sahlgren Bendtsen
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Sreenivasamurthy S, Laul M, Zhao N, Kim T, Zhu D. Current progress of cerebral organoids for modeling Alzheimer's disease origins and mechanisms. Bioeng Transl Med 2023; 8:e10378. [PMID: 36925717 PMCID: PMC10013781 DOI: 10.1002/btm2.10378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease that has emerged as a leading risk factor for dementia associated with increasing age. Two-dimensional (2D) cell culture and animal models, which have been used to analyze AD pathology and search for effective treatments for decades, have significantly contributed to our understanding of the mechanism of AD. Despite their successes, 2D and animal models can only capture a fraction of AD mechanisms due to their inability to recapitulate human brain-specific tissue structure, function, and cellular diversity. Recently, the emergence of three-dimensional (3D) cerebral organoids using tissue engineering and induced pluripotent stem cell technology has paved the way to develop models that resemble features of human brain tissue more accurately in comparison to prior models. In this review, we focus on summarizing key research strategies for engineering in vitro 3D human brain-specific models, major discoveries from using AD cerebral organoids, and its future perspectives.
Collapse
Affiliation(s)
- Sai Sreenivasamurthy
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew YorkUSA
| | - Mahek Laul
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew YorkUSA
| | - Nan Zhao
- Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Tiffany Kim
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew YorkUSA
| | - Donghui Zhu
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew YorkUSA
| |
Collapse
|
7
|
Hwang KS, Seo EU, Choi N, Kim J, Kim HN. 3D engineered tissue models for studying human-specific infectious viral diseases. Bioact Mater 2023; 21:576-594. [PMID: 36204281 PMCID: PMC9519398 DOI: 10.1016/j.bioactmat.2022.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Viral infections cause damage to various organ systems by inducing organ-specific symptoms or systemic multi-organ damage. Depending on the infection route and virus type, infectious diseases are classified as respiratory, nervous, immune, digestive, or skin infections. Since these infectious diseases can widely spread in the community and their catastrophic effects are severe, identification of their causative agent and mechanisms underlying their pathogenesis is an urgent necessity. Although infection-associated mechanisms have been studied in two-dimensional (2D) cell culture models and animal models, they have shown limitations in organ-specific or human-associated pathogenesis, and the development of a human-organ-mimetic system is required. Recently, three-dimensional (3D) engineered tissue models, which can present human organ-like physiology in terms of the 3D structure, utilization of human-originated cells, recapitulation of physiological stimuli, and tight cell–cell interactions, were developed. Furthermore, recent studies have shown that these models can recapitulate infection-associated pathologies. In this review, we summarized the recent advances in 3D engineered tissue models that mimic organ-specific viral infections. First, we briefly described the limitations of the current 2D and animal models in recapitulating human-specific viral infection pathology. Next, we provided an overview of recently reported viral infection models, focusing particularly on organ-specific infection pathologies. Finally, a future perspective that must be pursued to reconstitute more human-specific infectious diseases is presented. 3D in vitro models are different from the traditional model in the infection process. Human-specific infection research requires a 3D microenvironment and human cells. 3D in vitro infectious models can be useful for basic research on infectious disease. 3D in vitro infectious models recapitulate the complex cell-virus-immune interaction.
Collapse
Affiliation(s)
- Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun U Seo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Corresponding author. Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
8
|
Cuní-López C, Stewart R, White AR, Quek H. 3D in vitro modelling of human patient microglia: A focus on clinical translation and drug development in neurodegenerative diseases. J Neuroimmunol 2023; 375:578017. [PMID: 36657374 DOI: 10.1016/j.jneuroim.2023.578017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Microglia have an increasingly well-recognised role in the pathogenesis of neurodegenerative diseases, thereby becoming attractive therapeutic targets. However, the development of microglia-targeted therapeutics for neurodegeneration has had limited success. This stems partly from the lack of clinically relevant microglia model systems. To circumvent this translational gap, patient-derived microglial cell models established using conventional 2D in vitro techniques have emerged. Though promising, these models lack the microenvironment and multicellular interactions of the brain needed to maintain microglial homeostasis. In this review, we discuss the use of 3D in vitro platforms to improve microglia modelling and their potential benefits to fast-track drug development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Carla Cuní-López
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane 4006, QLD, Australia.
| | - Romal Stewart
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; UQ Centre for Clinical Research, The University of Queensland, Brisbane 4006, QLD, Australia.
| | - Anthony R White
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; School of Biomedical Science, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Hazel Quek
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; School of Biomedical Science, The University of Queensland, Brisbane 4072, QLD, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane 4059, QLD, Australia.
| |
Collapse
|
9
|
Chari D, Basit R, Wiseman J, Chowdhury F. Simulating traumatic brain injury in vitro: developing high throughput models to test biomaterial based therapies. Neural Regen Res 2023; 18:289-292. [PMID: 35900405 PMCID: PMC9396524 DOI: 10.4103/1673-5374.346465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Traumatic brain injuries are serious clinical incidents associated with some of the poorest outcomes in neurological practice. Coupled with the limited regenerative capacity of the brain, this has significant implications for patients, carers, and healthcare systems, and the requirement for life-long care in some cases. Clinical treatment currently focuses on limiting the initial neural damage with long-term care/support from multidisciplinary teams. Therapies targeting neuroprotection and neural regeneration are not currently available but are the focus of intensive research. Biomaterial-based interventions are gaining popularity for a range of applications including biomolecule and drug delivery, and to function as cellular scaffolds. Experimental investigations into the development of such novel therapeutics for traumatic brain injury will be critically underpinned by the availability of appropriate high throughput, facile, ethically viable, and pathomimetic biological model systems. This represents a significant challenge for researchers given the pathological complexity of traumatic brain injury. Specifically, there is a concerted post-injury response mounted by multiple neural cell types which includes microglial activation and astroglial scarring with the expression of a range of growth inhibitory molecules and cytokines in the lesion environment. Here, we review common models used for the study of traumatic brain injury (ranging from live animal models to in vitro systems), focusing on penetrating traumatic brain injury models. We discuss their relative advantages and drawbacks for the developmental testing of biomaterial-based therapies.
Collapse
|
10
|
Tarricone G, Carmagnola I, Chiono V. Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges. J Funct Biomater 2022; 13:146. [PMID: 36135581 PMCID: PMC9501967 DOI: 10.3390/jfb13030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Neurological disorders affect billions of people across the world, making the discovery of effective treatments an important challenge. The evaluation of drug efficacy is further complicated because of the lack of in vitro models able to reproduce the complexity of the human brain structure and functions. Some limitations of 2D preclinical models of the human brain have been overcome by the use of 3D cultures such as cell spheroids, organoids and organs-on-chip. However, one of the most promising approaches for mimicking not only cell structure, but also brain architecture, is currently represented by tissue-engineered brain models. Both conventional (particularly electrospinning and salt leaching) and unconventional (particularly bioprinting) techniques have been exploited, making use of natural polymers or combinations between natural and synthetic polymers. Moreover, the use of induced pluripotent stem cells (iPSCs) has allowed the co-culture of different human brain cells (neurons, astrocytes, oligodendrocytes, microglia), helping towards approaching the central nervous system complexity. In this review article, we explain the importance of in vitro brain modeling, and present the main in vitro brain models developed to date, with a special focus on the most recent advancements in tissue-engineered brain models making use of iPSCs. Finally, we critically discuss achievements, main challenges and future perspectives.
Collapse
Affiliation(s)
- Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| |
Collapse
|
11
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
12
|
Pun S, Haney LC, Barrile R. Modelling Human Physiology on-Chip: Historical Perspectives and Future Directions. MICROMACHINES 2021; 12:1250. [PMID: 34683301 PMCID: PMC8540847 DOI: 10.3390/mi12101250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023]
Abstract
For centuries, animal experiments have contributed much to our understanding of mechanisms of human disease, but their value in predicting the effectiveness of drug treatments in the clinic has remained controversial. Animal models, including genetically modified ones and experimentally induced pathologies, often do not accurately reflect disease in humans, and therefore do not predict with sufficient certainty what will happen in humans. Organ-on-chip (OOC) technology and bioengineered tissues have emerged as promising alternatives to traditional animal testing for a wide range of applications in biological defence, drug discovery and development, and precision medicine, offering a potential alternative. Recent technological breakthroughs in stem cell and organoid biology, OOC technology, and 3D bioprinting have all contributed to a tremendous progress in our ability to design, assemble and manufacture living organ biomimetic systems that more accurately reflect the structural and functional characteristics of human tissue in vitro, and enable improved predictions of human responses to drugs and environmental stimuli. Here, we provide a historical perspective on the evolution of the field of bioengineering, focusing on the most salient milestones that enabled control of internal and external cell microenvironment. We introduce the concepts of OOCs and Microphysiological systems (MPSs), review various chip designs and microfabrication methods used to construct OOCs, focusing on blood-brain barrier as an example, and discuss existing challenges and limitations. Finally, we provide an overview on emerging strategies for 3D bioprinting of MPSs and comment on the potential role of these devices in precision medicine.
Collapse
Affiliation(s)
- Sirjana Pun
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
| | - Li Cai Haney
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
| | - Riccardo Barrile
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45221, USA
| |
Collapse
|
13
|
Gu Y, Li G, Huang C, Liu P, Hu G, Wu C, Xu Z, Guo X, Liu P. Dichlorvos poisoning caused chicken cerebrum tissue damage and related apoptosis-related gene changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147051. [PMID: 34088127 DOI: 10.1016/j.scitotenv.2021.147051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Dichlorvos (DDVP) is an organophosphorus compound with insecticidal effects. Organophosphorus pesticides can easily enter humans or animals through various channels, causing cerebrum nerve cell damage. The purpose of this research was to investigate whether acute dichlorvos poisoning can cause cerebrum neurotoxic injury and change the expression of apoptosis-related genes in broilers, further clarify the neurotoxic mechanism after acute dichlorvos exposure, and provide a research basis for prevention, treatment and gene drug screening in the later stage. In this experiment, healthy yellow-feathered broilers were randomly assigned to the control group, the low-dose group (1.13 mg/kg) and the high-dose group (10.2 mg/kg) for modelling observation, and detection was conducted based on H&E (haematoxylin and eosin) staining, transmission electron microscopy analysis of tissue sections, immunofluorescence techniques and real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that organophosphorus poisoning was accompanied by obvious neurological symptoms such as limb twitching and massive salivation. In addition, we observed that compared with the control group, the number of lysed nuclear neurons, deformed vascular sheaths, and glial cells and the expression of glial fibrillary acidic protein (GFAP) in the poisoned group of broilers increased significantly, and the increase was more obvious in the low-dose group. However, cell apoptosis and mitochondrial structure dissolution were most pronounced in the high-dose group. Moreover, the qRT-PCR results also revealed significant changes in the expression of apoptosis-related genes. The expression levels of ACC, LKB1 and GPAT increased significantly, while the expression of HMGR, PPARα, CPT1 and AMPKα1 decreased significantly. In summary, these results indicated that dichlorvos may cause the lysis of cerebrum nerve cell nuclei, completely destroy the structure of mitochondria, change the expression of related apoptotic genes, enhance cell apoptosis, and cause neurogenic damage to the cerebrum. These research results offer a theoretical foundation for the prevention and treatment of acute organophosphate toxicosis.
Collapse
Affiliation(s)
- Yueming Gu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States of America
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
14
|
Antonova OY, Kochetkova OY, Kanev IL, Shlyapnikova EA, Shlyapnikov YM. Rapid Generation of Neurospheres from Hippocampal Neurons Using Extracellular-Matrix-Mimetic Scaffolds. ACS Chem Neurosci 2021; 12:2838-2850. [PMID: 34256565 DOI: 10.1021/acschemneuro.1c00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
3D models of brain organoids represent an innovative and promising tool in neuroscience studies. However, the process of neurosphere formation in vitro remains complicated and is not always very effective. This is largely due to the lack of growth factors, guidance cues, and scaffold structures commonly found in tissues. Here we present a new, simple, and efficient method for generating neurospheres using scaffolds composed of electrospun nylon fibers with a diameter of 40-180 nm, which makes them similar to the brain extracellular matrix (ECM) components. Several main advantages of the proposed method should be highlighted. The method is fast, and the biomaterial consumption is low. Also, the resulting neurospheres are attached to the scaffold nanofibers. This not only provides the experimental convenience but also suggests that the resulting organoid models can potentially demonstrate fundamentally new properties, being closer to the nervous tissue in vivo. We demonstrate the influence of the fibrous scaffold structure on the formation, morphology, and composition of neurospheres and confirm adequate functional activity of the cellular components of these spheroids. The proposed approach can be further used for drug screening, modeling of neurodevelopmental, neurodegenerative disorders, and, potentially, therapeutic tissue engineering.
Collapse
Affiliation(s)
- Olga Y. Antonova
- Institute of Theoretical and Experimental Biophysics of RAS, Pushchino, Moscow Region 142290, Russia
| | - Olga Y. Kochetkova
- Institute of Theoretical and Experimental Biophysics of RAS, Pushchino, Moscow Region 142290, Russia
| | - Igor L. Kanev
- Institute of Theoretical and Experimental Biophysics of RAS, Pushchino, Moscow Region 142290, Russia
| | - Elena A. Shlyapnikova
- Institute of Theoretical and Experimental Biophysics of RAS, Pushchino, Moscow Region 142290, Russia
| | - Yuri M. Shlyapnikov
- Institute of Theoretical and Experimental Biophysics of RAS, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|