1
|
Iversen KF. Mechanisms of resistance to daratumumab in patients with multiple myeloma. Basic Clin Pharmacol Toxicol 2024; 135:401-408. [PMID: 39183578 DOI: 10.1111/bcpt.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
Multiple myeloma (MM) is an incurable cancer in the bone marrow. The treatment of MM has developed significantly during the last 20 years, which has resulted in increased survival. Daratumumab is the first CD38 antibody approved for the treatment of MM. It has improved the treatment of MM even further. This is an evaluation of the modes of action of daratumumab and a description of the development of resistance with a focus on inhibitory checkpoint receptors on CD8+ T-cells, complement activation and extracellular vesicles.
Collapse
Affiliation(s)
- Katrine Fladeland Iversen
- Institute of Regional Health Science, University of Southern Denmark, and Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| |
Collapse
|
2
|
van der Horst HJ, Mutis T. Enhancing Fc-mediated effector functions of monoclonal antibodies: The example of HexaBodies. Immunol Rev 2024. [PMID: 39275983 DOI: 10.1111/imr.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Since the approval of the CD20-targeting monoclonal antibody (mAb) rituximab for the treatment of lymphoma in 1997, mAb therapy has significantly transformed cancer treatment. With over 90 FDA-approved mAbs for the treatment of various hematological and solid cancers, modern cancer treatment relies heavily on these therapies. The overwhelming success of mAbs as cancer therapeutics is attributed to their broad applicability, high safety profile, and precise targeting of cancer-associated surface antigens. Furthermore, mAbs can induce various anti-tumor cytotoxic effector mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), all of which are mediated via their fragment crystallizable (Fc) domain. Over the past decades, these effector mechanisms have been substantially improved through Fc domain engineering. In this review, we will outline the different approaches to enhance Fc effector functions via Fc engineering of mAbs, with a specific emphasis on the so-called "HexaBody" technology, which is designed to enhance the hexamerization of mAbs on the target cell surface, thereby inducing greater complement activation, CDC, and receptor clustering. The review will summarize the development, preclinical, and clinical testing of several HexaBodies designed for the treatment of B-cell malignancies, as well as the potential use of the HexaBody technology beyond Fc-mediated effector functions.
Collapse
Affiliation(s)
- Hilma J van der Horst
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Chen Y, Tong X, Lu R, Zhang Z, Ma T. All-trans retinoic acid in hematologic disorders: not just acute promyelocytic leukemia. Front Pharmacol 2024; 15:1404092. [PMID: 39027338 PMCID: PMC11254857 DOI: 10.3389/fphar.2024.1404092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
All-trans retinoic acid (ATRA) plays a role in tissue development, neural function, reproduction, vision, cell growth and differentiation, tumor immunity, and apoptosis. ATRA can act by inducing autophagic signaling, angiogenesis, cell differentiation, apoptosis, and immune function. In the blood system ATRA was first used with great success in acute promyelocytic leukemia (APL), where ATRA differentiated leukemia cells into mature granulocytes. ATRA can play a role not only in APL, but may also play a role in other hematologic diseases such as immune thrombocytopenia (ITP), myelodysplastic syndromes (MDS), non-APL acute myeloid leukemia (AML), aplastic anemia (AA), multiple myeloma (MM), etc., especially by regulating mesenchymal stem cells and regulatory T cells for the treatment of ITP. ATRA can also increase the expression of CD38 expressed by tumor cells, thus improving the efficacy of daratumumab and CD38-CART. In this review, we focus on the mechanism of action of ATRA, its role in various hematologic diseases, drug combinations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Tong
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Rongyuan Lu
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Zhengfu Zhang
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| |
Collapse
|
4
|
Lee WWL, Lim JQ, Tang TPL, Tan D, Koh SM, Puan KJ, Wang LW, Lim J, Tan KP, Chng WJ, Lim ST, Ong CK, Rotzschke O. Counterproductive effects of anti-CD38 and checkpoint inhibitor for the treatment of NK/T cell lymphoma. Front Immunol 2024; 15:1346178. [PMID: 38680487 PMCID: PMC11045949 DOI: 10.3389/fimmu.2024.1346178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Natural killer/T cell lymphoma (NKTL) is an aggressive malignancy associated with poor prognosis. This is largely due to limited treatment options, especially for relapsed patients. Immunotherapies like immune checkpoint inhibitors (ICI) and anti-CD38 therapies have shown promising but variable clinical efficacies. Combining these therapies has been suggested to enhance efficacy. Methods We conducted a case study on a relapsed NKTL patient treated sequentially with anti-CD38 followed by ICI (anti-PD1) using cytometry analyses. Results and Discussion Our analysis showed an expected depletion of peripheral CD38+ B cells following anti-CD38 treatment. Further analysis indicated that circulating anti-CD38 retained their function for up to 13 weeks post-administration. Anti-PD1 treatment triggered re-activation and upregulation of CD38 on the T cells. Consequently, these anti-PD1-activated T cells were depleted by residual circulating anti-CD38, rendering the ICI treatment ineffective. Finally, a meta-analysis confirmed this counterproductive effect, showing a reduced efficacy in patients undergoing combination therapy. In conclusion, our findings demonstrate that sequential anti-CD38 followed by anti-PD1 therapy leads to a counterproductive outcome in NKTL patients. This suggests that the treatment sequence is antithetic and warrants re-evaluation for optimizing cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Wendy W. L. Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Oncology-Academic Clinical Programme (ONCO-ACP), Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Tiffany P. L. Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Daryl Tan
- Clinic for Lymphoma, Myeloma and Blood Disorders, Mount Elizabeth Hospital Novena Specialist Centre, Singapore, Singapore
| | - Ser Mei Koh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Liang Wei Wang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jackwee Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kim Peng Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
| | - Soon Thye Lim
- Director’s Office, National Cancer Centre Singapore, Singapore, Singapore
- Office of Education, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
van de Donk NWCJ, Zweegman S. Monoclonal Antibodies in the Treatment of Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:337-360. [PMID: 38151402 DOI: 10.1016/j.hoc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The incorporation of monoclonal antibodies into backbone regimens has substantially improved the clinical outcomes of patients with newly diagnosed and relapsed/refractory multiple myeloma (MM). Although the SLAMF7-targeting antibody elotuzumab has no single- agent activity, there is clinical synergy between elotuzumab and immunomodulatory drugs in patients with relapsed/refractory disease. Daratumumab and isatuximab are CD38-targeting antibodies which have single-agent activity and a favorable safety profile, which make these agents an attractive component of combination regimens. Monoclonal antibodies may cause infusion-related reactions, but with subcutaneous administration these are less frequently observed. All therapeutic antibodies may interfere with assessment of complete response. Next-generation Fc-engineered monoclonal antibodies are in development with the potential to further improve the outcome of patients with MM.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands.
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Sharma AK, Gupta K, Mishra A, Lofland G, Marsh I, Kumar D, Ghiaur G, Imus P, Rowe SP, Hobbs RF, Gocke CB, Nimmagadda S. CD38-Specific Gallium-68 Labeled Peptide Radiotracer Enables Pharmacodynamic Monitoring in Multiple Myeloma with PET. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308617. [PMID: 38421139 PMCID: PMC11040352 DOI: 10.1002/advs.202308617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Indexed: 03/02/2024]
Abstract
The limited availability of molecularly targeted low-molecular-weight imaging agents for monitoring multiple myeloma (MM)-targeted therapies has been a significant challenge in the field. In response, a first-in-class peptide-based radiotracer, [68Ga]Ga-AJ206, is developed that can be seamlessly integrated into the standard clinical workflow and is specifically designed to noninvasively quantify CD38 levels and pharmacodynamics by positron emission tomography (PET). A bicyclic peptide, AJ206, is synthesized and exhibits high affinity to CD38 (KD: 19.1 ± 0.99 × 10-9 m) by surface plasmon resonance. Further, [68Ga]Ga-AJ206-PET shows high contrast within 60 min and suitable absorbed dose estimates for clinical use. Additionally, [68Ga]Ga-AJ206 detects CD38 expression in cell line-derived xenografts, patient-derived xenografts (PDXs), and disseminated disease models in a manner consistent with flow cytometry and immunohistochemistry findings. Moreover, [68Ga]Ga-AJ206-PET successfully quantifies CD38 pharmacodynamics in PDXs, revealing increased CD38 expression in the tumor following all-trans retinoic acid (ATRA) therapy. In conclusion, [68Ga]Ga-AJ206 exhibits the salient features required for clinical translation, providing CD38-specific high-contrast images in multiple models of MM. [68Ga]Ga-AJ206-PET could be useful for quantifying total CD38 levels and pharmacodynamics during therapy to evaluate approved and new therapies in MM and other diseases with CD38 involvement.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kuldeep Gupta
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Akhilesh Mishra
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Chemical & Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Gabriela Lofland
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ian Marsh
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Dhiraj Kumar
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Gabriel Ghiaur
- The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Philip Imus
- The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Robert F Hobbs
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christian B Gocke
- The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sridhar Nimmagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
7
|
Shah P, Sperling AS. Chimeric Antigen Receptor T Cells in Multiple Myeloma. Hematol Oncol Clin North Am 2023; 37:1089-1105. [PMID: 37563077 DOI: 10.1016/j.hoc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Multiple myeloma is the second most common hematological malignancy with an approximate incidence of up to 8.5 cases per 100,000 persons per year. Over the last decade, therapy for multiple myeloma has undergone a revolutionary change. Chimeric antigen receptor (CAR) T-cell therapy has played a major role in this evolution. In this review, we discuss the existing state of CAR T-cell therapy in myeloma while evaluating several newer therapies and targets expected in the near future.
Collapse
Affiliation(s)
- Parth Shah
- Department of Hematology, Dartmouth Cancer Center, 1 Medical Center Drive, Lebanon, NH 03750, USA; Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, USA.
| | - Adam S Sperling
- Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, USA; Division of Hematology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
8
|
Sharma AK, Gupta K, Mishra A, Lofland G, Marsh I, Kumar D, Ghiaur G, Imus P, Hobbs RF, Gocke CB, Nimmagadda S. A Gallium-68-Labeled Peptide Radiotracer For CD38-Targeted Imaging In Multiple Myeloma With PET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540036. [PMID: 37214794 PMCID: PMC10197667 DOI: 10.1101/2023.05.09.540036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
PURPOSE The limited availability of molecularly targeted low-molecular-weight imaging agents for monitoring multiple myeloma (MM)-targeted therapies has been a significant challenge in the field. In response, we developed [68Ga]Ga-AJ206, a peptide-based radiotracer that can be seamlessly integrated into the standard clinical workflow and is specifically designed to non-invasively quantify CD38 levels and pharmacodynamics by positron emission tomography (PET). EXPERIMENTAL DESIGN We synthesized a high-affinity binder for quantification of CD38 levels. Affinity was tested using surface plasmon resonance, and In vitro specificity was evaluated using a gallium-68-labeled analog. Distribution, pharmacokinetics, and CD38 specificity of the radiotracer were assessed in MM cell lines and in primary patient-derived myeloma cells and xenografts (PDX) with cross-validation by flow cytometry and immunohistochemistry. Furthermore, we investigated the radiotracer's potential to quantify CD38 pharmacodynamics induced by all-trans retinoic acid therapy (ATRA). RESULTS [68Ga]Ga-AJ206 exhibited high CD38 binding specificity (KD: 19.1±0.99 nM) and CD38-dependent In vitro binding. [68Ga]Ga-AJ206-PET showed high contrast within 60 minutes and suitable absorbed dose estimates for clinical use. Additionally, [68Ga]Ga-AJ206 detected CD38 expression in xenografts, PDXs and disseminated disease models in a manner consistent with flow cytometry and immunohistochemistry findings. Moreover, [68Ga]Ga-AJ206-PET successfully quantified CD38 pharmacodynamics in PDXs, revealing increased CD38 expression in the tumor following ATRA therapy. CONCLUSIONS [68Ga]Ga-AJ206 exhibited the salient features required for clinical translation, providing CD38-specific high contrast images in multiple models of MM. [68Ga]Ga-AJ206-PET could be useful for quantifying total CD38 levels and pharmacodynamics during therapy to evaluate approved and new therapies in MM and other diseases with CD38 involvement.
Collapse
|
9
|
Liu Z, Zhao X, Shen H, Liu X, Xu X, Fu R. Cellular immunity in the era of modern multiple myeloma therapy. Int J Cancer 2023; 153:1436-1447. [PMID: 37306091 DOI: 10.1002/ijc.34609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a relapsing clonal plasma cell malignancy and incurable thus far. With the increasing understanding of myeloma, highlighting the critical importance of the immune system in the pathogenesis of MM is essential. The immune changes in MM patients after treatment are associated with prognosis. In this review, we summarize currently available MM therapies and discuss how they affect cellular immunity. We find that the modern anti-MM treatments enhance antitumour immune responses. A deeper understanding of the therapeutic activity of individual drugs offers more effective treatment approaches that enhance the beneficial immunomodulatory effects. Furthermore, we show that the immune changes after treatment in MM patients can provide useful prognostic marker. Analysing cellular immune responses offers new perspectives for evaluating clinical data and making comprehensive predictions for applying novel therapies in MM patients.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Xintong Xu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
10
|
Bisht K, Fukao T, Chiron M, Richardson P, Atanackovic D, Chini E, Chng WJ, Van De Velde H, Malavasi F. Immunomodulatory properties of CD38 antibodies and their effect on anticancer efficacy in multiple myeloma. Cancer Med 2023; 12:20332-20352. [PMID: 37840445 PMCID: PMC10652336 DOI: 10.1002/cam4.6619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND CD38 has been established as an important therapeutic target for multiple myeloma (MM), for which two CD38 antibodies are currently approved-daratumumab and isatuximab. CD38 is an ectoenzyme that degrades NAD and its precursors and is involved in the production of adenosine and other metabolites. AIM Among the various mechanisms by which CD38 antibodies can induce MM cell death is immunomodulation, including multiple pathways for CD38-mediated T-cell activation. Patients who respond to anti-CD38 targeting treatment experience more marked changes in T-cell expansion, activity, and clonality than nonresponders. IMPLICATIONS Resistance mechanisms that undermine the immunomodulatory effects of CD38-targeting therapies can be tumor intrinsic, such as the downregulation of CD38 surface expression and expression of complement inhibitor proteins, and immune microenvironment-related, such as changes to the natural killer (NK) cell numbers and function in the bone marrow niche. There are numerous strategies to overcome this resistance, which include identifying and targeting other therapeutic targets involved in, for example, adenosine production, the activation of NK cells or monocytes through immunomodulatory drugs and their combination with elotuzumab, or with bispecific T-cell engagers.
Collapse
Affiliation(s)
| | - Taro Fukao
- Sanofi OncologyCambridgeMassachusettsUSA
| | | | - Paul Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma CenterDana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Djordje Atanackovic
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterBaltimoreMarylandUSA
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Wee Joo Chng
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | | | - Fabio Malavasi
- Department of Medical SciencesUniversity of TurinTorinoItaly
- Fondazione Ricerca MolinetteTorinoItaly
| |
Collapse
|
11
|
Wang Q, Zhao M, Zhang T, Zhang B, Zheng Z, Lin Z, Zhou S, Zheng D, Chen Z, Zheng S, Zhang Y, Lin X, Dong R, Chen J, Qian H, Hu X, Zhuang Y, Zhang Q, Jiang S, Ma Y. Comprehensive analysis of ferroptosis-related genes in immune infiltration and prognosis in multiple myeloma. Front Pharmacol 2023; 14:1203125. [PMID: 37608887 PMCID: PMC10440437 DOI: 10.3389/fphar.2023.1203125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Background: One particular type of cellular death that is known as ferroptosis is caused by the excessive lipid peroxidation. It is a regulated form of cell death that can affect the response of the tumor cells. Currently, it is not known if the presence of this condition can affect the prognosis of patients with multiple myeloma (MM). Methods: In this study, we studied the expression differences and prognostic value of ferroptosis-related genes (FRGs) in MM, and established a ferroptosis risk scoring model. In order to improve the prediction accuracy and clinical applicability, a nomogram was also established. Through gene enrichment analysis, pathways closely related to high-risk groups were identified. We then explored the differences in risk stratification in drug sensitivity and immune patterns, and evaluated their value in prognostic prediction and treatment response. Lastly, we gathered MM cell lines and samples from patients to confirm the expression of marker FRGs using quantitative real-time PCR (qRT-PCR). Results: The ability to predict the survival of MM patients is a challenging issue. Through the use of a risk model derived from ferroptosis, we were able to develop a more accurate prediction of the disease's prognosis. They were then validated by a statistical analysis, which showed that the model is an independent factor in the prognosis of MM. Patients of high ferroptosis risk scores had a much worse chance of survival than those in the low-risk groups. The calibration and power of the nomogram were also strong. We noted that the link between the ferroptosis risk score and the clinical treatment was suggested by the FRG's significant correlation with the immune checkpoint genes and the medication sensitivity. We validated the predictive model using qRT-PCR. Conclusion: We demonstrated the association between FRGs and MM, and developed a new risk model for prognosis in MM patients. Our study sheds light on the potential clinical relevance of ferroptosis in MM and highlights its potential as a therapeutic target for patients with this disease.
Collapse
Affiliation(s)
- Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Misheng Zhao
- Department of Clinical Laboratory, Wenzhou People’s Hospital, Wenzhou, China
| | - Tianyu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rujiao Dong
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianying Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Hiemstra IH, Santegoets KCM, Janmaat ML, De Goeij BECG, Ten Hagen W, van Dooremalen S, Boross P, van den Brakel J, Bosgra S, Andringa G, van Kessel-Welmers B, Verzijl D, Hibbert RG, Frerichs KA, Mutis T, van de Donk NWCJ, Ahmadi T, Satijn D, Sasser AK, Breij ECW. Preclinical anti-tumour activity of HexaBody-CD38, a next-generation CD38 antibody with superior complement-dependent cytotoxic activity. EBioMedicine 2023; 93:104663. [PMID: 37379657 DOI: 10.1016/j.ebiom.2023.104663] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND HexaBody®-CD38 (GEN3014) is a hexamerization-enhanced human IgG1 that binds CD38 with high affinity. The E430G mutation in its Fc domain facilitates the natural process of antibody hexamer formation upon binding to the cell surface, resulting in increased binding of C1q and potentiated complement-dependent cytotoxicity (CDC). METHODS Co-crystallization studies were performed to identify the binding interface of HexaBody-CD38 and CD38. HexaBody-CD38-induced CDC, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), trogocytosis, and apoptosis were assessed using flow cytometry assays using tumour cell lines, and MM patient samples (CDC). CD38 enzymatic activity was measured using fluorescence spectroscopy. Anti-tumour activity of HexaBody-CD38 was assessed in patient-derived xenograft mouse models in vivo. FINDINGS HexaBody-CD38 binds a unique epitope on CD38 and induced potent CDC in multiple myeloma (MM), acute myeloid leukaemia (AML), and B-cell non-Hodgkin lymphoma (B-NHL) cells. Anti-tumour activity was confirmed in patient-derived xenograft models in vivo. Sensitivity to HexaBody-CD38 correlated with CD38 expression level and was inversely correlated with expression of complement regulatory proteins. Compared to daratumumab, HexaBody-CD38 showed enhanced CDC in cell lines with lower levels of CD38 expression, without increasing lysis of healthy leukocytes. More effective CDC was also confirmed in primary MM cells. Furthermore, HexaBody-CD38 efficiently induced ADCC, ADCP, trogocytosis, and apoptosis after Fc-crosslinking. Moreover, HexaBody-CD38 strongly inhibited CD38 cyclase activity, which is hypothesized to relieve immune suppression in the tumour microenvironment. INTERPRETATION Based on these preclinical studies, a clinical trial was initiated to assess the clinical safety of HexaBody-CD38 in patients with MM. FUNDING Genmab.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Kristine A Frerichs
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tuna Mutis
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Niels W C J van de Donk
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
13
|
Verkleij CPM, Frerichs KA, Broekmans MEC, Duetz C, O'Neill CA, Bruins WSC, Homan-Weert PM, Minnema MC, Levin MD, Broijl A, Bos GMJ, Kersten MJ, Klein SK, Shikhagaie MM, Casneuf T, Abraham Y, Smets T, Vanhoof G, Cortes-Selva D, van Steenbergen L, Ramos E, Verona RI, Krevvata M, Sonneveld P, Zweegman S, Mutis T, van de Donk NWCJ. NK Cell Phenotype Is Associated With Response and Resistance to Daratumumab in Relapsed/Refractory Multiple Myeloma. Hemasphere 2023; 7:e881. [PMID: 37153876 PMCID: PMC10155898 DOI: 10.1097/hs9.0000000000000881] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
The CD38-targeting antibody daratumumab has marked activity in multiple myeloma (MM). Natural killer (NK) cells play an important role during daratumumab therapy by mediating antibody-dependent cellular cytotoxicity via their FcγRIII receptor (CD16), but they are also rapidly decreased following initiation of daratumumab treatment. We characterized the NK cell phenotype at baseline and during daratumumab monotherapy by flow cytometry and cytometry by time of flight to assess its impact on response and development of resistance (DARA-ATRA study; NCT02751255). At baseline, nonresponding patients had a significantly lower proportion of CD16+ and granzyme B+ NK cells, and higher frequency of TIM-3+ and HLA-DR+ NK cells, consistent with a more activated/exhausted phenotype. These NK cell characteristics were also predictive of inferior progression-free survival and overall survival. Upon initiation of daratumumab treatment, NK cells were rapidly depleted. Persisting NK cells exhibited an activated and exhausted phenotype with reduced expression of CD16 and granzyme B, and increased expression of TIM-3 and HLA-DR. We observed that addition of healthy donor-derived purified NK cells to BM samples from patients with either primary or acquired daratumumab-resistance improved daratumumab-mediated MM cell killing. In conclusion, NK cell dysfunction plays a role in primary and acquired daratumumab resistance. This study supports the clinical evaluation of daratumumab combined with adoptive transfer of NK cells.
Collapse
Affiliation(s)
- Christie P M Verkleij
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Kristine A Frerichs
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Marloes E C Broekmans
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Carolien Duetz
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Chloe A O'Neill
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Wassilis S C Bruins
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Paola M Homan-Weert
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Monique C Minnema
- University Medical Center Utrecht, Department of Hematology, Utrecht University, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Annemiek Broijl
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerard M J Bos
- Department of Hematology, Maastricht University Medical Center, The Netherlands
| | - Marie José Kersten
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Hematology, Amsterdam, The Netherlands
| | - Saskia K Klein
- Department of Internal Medicine, Meander Medical Center, Amersfoort, The Netherlands
- Department of Hematology, University Medical Center Groningen, The Netherlands
| | - Medya M Shikhagaie
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Yann Abraham
- Janssen Research and Development, Beerse, Belgium
| | - Tina Smets
- Janssen Research and Development, Beerse, Belgium
| | | | | | | | | | | | | | - Pieter Sonneveld
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sonja Zweegman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Tuna Mutis
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Niels W C J van de Donk
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Peng Z, Wang J, Guo J, Li X, Wang S, Xie Y, Jiang H, Wang Y, Wang M, Hu M, Li Q, Wang Y, Mi JQ, Liu Z. All-trans retinoic acid improves NSD2-mediated RARα phase separation and efficacy of anti-CD38 CAR T-cell therapy in multiple myeloma. J Immunother Cancer 2023; 11:jitc-2022-006325. [PMID: 36918219 PMCID: PMC10016253 DOI: 10.1136/jitc-2022-006325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Immunotherapies targeting CD38 have demonstrated salient efficacy in relapsed/refractory multiple myeloma (MM). However, loss of CD38 antigen and outgrowth of CD38 negative plasma cells have emerged as a major obstacle in clinics. All-trans retinoic acid (ATRA) has been reported to upregulate CD38 expression, but the mechanism and adaptive genetic background remain unexplored. METHODS The efficacy of ATRA in upregulating CD38 expression in MM cells is evaluated by flow cytometry. The interaction between NSD2 and the RARα is analyzed by immunoprecipitation, and the nuclear condensation of RARα is evaluated under laser confocal microscope. A graft model of MM is established in NOD.Cg-PrkdcscidIl2rgtm1Wjl /SzJ mice, and the tumor burden is assessed by in vivo fluorescence imaging. RESULTS We report that ATRA upregulates MM cells CD38 in a non-linear manner, which is t(4;14) translocation dependent, and t(4;14) translocation-induced NSD2 shows positive correlation with ATRA-induced level of, but not with basal level of CD38 expression. Mechanistically, NSD2 interacts with the ATRA receptor, RARα, and protects it from degradation. Meanwhile, NSD2 enhances the nuclear condensation of RARα and modifies the histone H3 dimethylation at lysine 36 on CD38 promoter. Knockdown of NSD2 attenuates the sensitization of MM against ATRA induced CD38 upregulation. Translationally, ATRA is prone to augment the efficacy of anti-CD38 CAR T cells in NSD2high MM cells in vitro and in vivo. CONCLUSION This study elucidates a mechanism of ATRA in regulating CD38 expression and expands the clinical potential of ATRA in improving immunotherapies against CD38 in patients with MM.Cite Now.
Collapse
Affiliation(s)
- Ziyi Peng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jingya Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jing Guo
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Sheng Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ying Xie
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Jiang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yixuan Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Mengqi Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Meilin Hu
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Qian Li
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yafei Wang
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jian-Qing Mi
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China .,Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Lim SL, Spencer A. Putting the best foot forward when treating newly diagnosed multiple myeloma. Intern Med J 2023; 53:318-322. [PMID: 36972989 DOI: 10.1111/imj.16034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/01/2023] [Indexed: 03/29/2023]
Abstract
Multiple myeloma (MM) remains an incurable disease. In Australia, patients receive sequential lines of novel agent (NA)-based lines of therapy (LOTs), including proteasome inhibitors, immunomodulatory drugs and CD38-targeting monoclonal antibodies within the constraints of the pharmaceutical benefits scheme. We propose that induction with a quadruplet incorporating all three drug classes and dexamethasone at diagnosis is the best approach to gain disease control.
Collapse
Affiliation(s)
- Sueh-Li Lim
- Alfred Health, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Andrew Spencer
- Alfred Health, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Caracciolo D, Mancuso A, Polerà N, Froio C, D'Aquino G, Riillo C, Tagliaferri P, Tassone P. The emerging scenario of immunotherapy for T-cell Acute Lymphoblastic Leukemia: advances, challenges and future perspectives. Exp Hematol Oncol 2023; 12:5. [PMID: 36624522 PMCID: PMC9828428 DOI: 10.1186/s40164-022-00368-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a challenging pediatric and adult haematologic disease still associated with an unsatisfactory cure rate. Unlike B-ALL, the availability of novel therapeutic options to definitively improve the life expectancy for relapsed/resistant patients is poor. Indeed, the shared expression of surface targets among normal and neoplastic T-cells still limits the efficacy and may induce fratricide effects, hampering the use of innovative immunotherapeutic strategies. However, novel monoclonal antibodies, bispecific T-cell engagers (BTCEs), and chimeric antigen receptors (CAR) T-cells recently showed encouraging results and some of them are in an advanced stage of pre-clinical development or are currently under investigation in clinical trials. Here, we review this exciting scenario focusing on most relevant advances, challenges, and perspectives of the emerging landscape of immunotherapy of T-cell malignancies.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Froio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Mejia Saldarriaga M, Darwiche W, Jayabalan D, Monge J, Rosenbaum C, Pearse RN, Niesvizky R, Bustoros M. Advances in the molecular characterization of multiple myeloma and mechanism of therapeutic resistance. Front Oncol 2022; 12:1020011. [PMID: 36387095 PMCID: PMC9646612 DOI: 10.3389/fonc.2022.1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Recent insight in the genomic landscape of newly diagnosed multiple myeloma (NDMM) and its precursor conditions, monoclonal gammopathy of uncertain significance (MGUS), and smoldering myeloma have allowed the identification of patients with precursor conditions with a high risk of progression. These cases with "progressor" MGUS/SMM have a higher average mutation burden, have higher rates of mutations in specific genes such as MAPK, DNA repair, MYC, DIS3, and are enriched for specific mutational signatures when compared to non-progressors and are comparable to those found in NDMM. The highly preserved clonal heterogeneity seen upon progression of SMM, combined with the importance of these early variables, suggests that the identification of progressors based on these findings could complement and enhance the currently available clinical models based on tumor burden. Mechanisms leading to relapse/refractory multiple myeloma (RRMM) are of clinical interest given worse overall survival in this population. An Increased mutational burden is seen in patients with RRMM when compared to NDMM, however, there is evidence of branching evolution with many of these mutations being present at the subclonal level. Likewise, alterations in proteins associated with proteosome inhibitor and immunomodulatory drugs activity could partially explain clinical resistance to these agents. Evidence of chromosomal events leading to copy number changes is seen, with the presence of TP53 deletion, mutation, or a combination of both being present in many cases. Additional chromosomal events such as 1q gain and amplification may also interact and lead to resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark Bustoros
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
18
|
Brennan K, Iversen KF, Blanco-Fernández A, Lund T, Plesner T, Mc Gee MM. Extracellular Vesicles Isolated from Plasma of Multiple Myeloma Patients Treated with Daratumumab Express CD38, PD-L1, and the Complement Inhibitory Proteins CD55 and CD59. Cells 2022; 11:3365. [PMID: 36359760 PMCID: PMC9658084 DOI: 10.3390/cells11213365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
Daratumumab (DARA) has improved the outcome of treatment of multiple myeloma (MM). DARA acts via complement-dependent and -independent mechanisms. Resistance to DARA may result from upregulation of the complement inhibitory proteins CD55 and CD59, downregulation of the DARA target CD38 on myeloma cells or altered expression of the checkpoint inhibitor ligand programmed death ligand-1 (PD-L1) or other mechanisms. In this study, EVs were isolated from peripheral blood (PB) and bone marrow (BM) from multiple myeloma (MM) patients treated with DARA and PB of healthy controls. EV size and number and the expression of CD38, CD55, CD59 and PD-L1 as well as the EV markers CD9, CD63, CD81, CD147 were determined by flow cytometry. Results reveal that all patient EV samples express CD38, PD-L1, CD55 and CD59. The level of CD55 and CD59 are elevated on MM PB EVs compared with healthy controls, and the level of PD-L1 on MM PB EVs is higher in patients responding to treatment with DARA. CD147, a marker of various aspects of malignant behaviour of cancer cells and a potential target for therapy, was significantly elevated on MM EVs compared with healthy controls. Furthermore, mass spectrometry data suggests that MM PB EVs bind DARA. This study reveals a MM PB and BM EV protein signature that may have diagnostic and prognostic value.
Collapse
Affiliation(s)
- Kieran Brennan
- School of Biomolecular & Biomedical Science, University College Dublin (UCD), Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| | - Katrine F. Iversen
- Institute of Regional Health Science, University of Southern Denmark, 7100 Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Alfonso Blanco-Fernández
- Flow Cytometry Core Technology, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Thomas Lund
- Department of Hematology, Odense University Hospital, 5000 Odense, Denmark
| | - Torben Plesner
- Institute of Regional Health Science, University of Southern Denmark, 7100 Vejle, Denmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Margaret M. Mc Gee
- School of Biomolecular & Biomedical Science, University College Dublin (UCD), Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin 4, Ireland
| |
Collapse
|
19
|
Molecular Determinants Underlying the Anti-Cancer Efficacy of CD38 Monoclonal Antibodies in Hematological Malignancies. Biomolecules 2022; 12:biom12091261. [PMID: 36139103 PMCID: PMC9496523 DOI: 10.3390/biom12091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
CD38 was first discovered as a T-cell antigen and has since been found ubiquitously expressed in various hematopoietic cells, including plasma cells, NK cells, B cells, and granulocytes. More importantly, CD38 expression levels on malignant hematopoietic cells are significantly higher than counterpart healthy cells, thus presenting itself as a promising therapeutic target. In fact, for many aggressive hematological cancers, including CLL, DLBCL, T-ALL, and NKTL, CD38 expression is significantly associated with poorer prognosis and a hyperproliferative or metastatic phenotype. Studies have shown that, beyond being a biomarker, CD38 functionally mediates dysregulated survival, adhesion, and migration signaling pathways, as well as promotes an immunosuppressive microenvironment conducive for tumors to thrive. Thus, targeting CD38 is a rational approach to overcoming these malignancies. However, clinical trials have surprisingly shown that daratumumab monotherapy has not been very effective in these other blood malignancies. Furthermore, extensive use of daratumumab in MM is giving rise to a subset of patients now refractory to daratumumab treatment. Thus, it is important to consider factors modulating the determinants of response to CD38 targeting across different blood malignancies, encompassing both the transcriptional and post-transcriptional levels so that we can diversify the strategy to enhance daratumumab therapeutic efficacy, which can ultimately improve patient outcomes.
Collapse
|
20
|
Helmstädter M, Schierle S, Isigkeit L, Proschak E, Marschner JA, Merk D. Activity Screening of Fatty Acid Mimetic Drugs Identified Nuclear Receptor Agonists. Int J Mol Sci 2022; 23:ijms231710070. [PMID: 36077469 PMCID: PMC9456086 DOI: 10.3390/ijms231710070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid mimetics (FAM) are bioactive molecules acting through the binding sites of endogenous fatty acid metabolites on enzymes, transporters, and receptors. Due to the special characteristics of these binding sites, FAMs share common chemical features. Pharmacological modulation of fatty acid signaling has therapeutic potential in multiple pathologies, and several FAMs have been developed as drugs. We aimed to elucidate the promiscuity of FAM drugs on lipid-activated transcription factors and tested 64 approved compounds for activation of RAR, PPARs, VDR, LXR, FXR, and RXR. The activity screening revealed nuclear receptor agonism of several FAM drugs and considerable promiscuity of NSAIDs, while other compound classes evolved as selective. These screening results were not anticipated by three well-established target prediction tools, suggesting that FAMs are underrepresented in bioactivity data for model development. The screening dataset may therefore valuably contribute to such tools. Oxaprozin (RXR), tianeptine (PPARδ), mycophenolic acid (RAR), and bortezomib (RAR) exhibited selective agonism on one nuclear receptor and emerged as attractive leads for the selective optimization of side activities. Additionally, their nuclear receptor agonism may contribute relevant and valuable polypharmacology.
Collapse
Affiliation(s)
- Moritz Helmstädter
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | | | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
- Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
21
|
García-Guerrero E, Rodríguez-Lobato LG, Sierro-Martínez B, Danhof S, Bates S, Frenz S, Haertle L, Götz R, Sauer M, Rasche L, Kortüm KM, Pérez-Simón JA, Einsele H, Hudecek M, Prommersberger SR. All-trans retinoic acid works synergistically with the γ-secretase inhibitor crenigacestat to augment BCMA on multiple myeloma and the efficacy of BCMA-CAR T cells. Haematologica 2022; 108:568-580. [PMID: 36722406 PMCID: PMC9890012 DOI: 10.3324/haematol.2022.281339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
B-cell maturation antigen (BCMA) is the lead antigen for chimeric antigen receptor (CAR) T-cell therapy in multiple myeloma (MM). A challenge is inter- and intra-patient heterogeneity in BCMA expression on MM cells and BCMA downmodulation under therapeutic pressure. Accordingly, there is a desire to augment and sustain BCMA expression on MM cells in patients that receive BCMA-CAR T-cell therapy. We used all-trans retinoic acid (ATRA) to augment BCMA expression on MM cells and to increase the efficacy of BCMA-CAR T cells in pre-clinical models. We show that ATRA treatment leads to an increase in BCMA transcripts by quantitative reverse transcription polymerase chain reaction and an increase in BCMA protein expression by flow cytometry in MM cell lines and primary MM cells. Analyses with super-resolution microscopy confirmed increased BCMA protein expression and revealed an even distribution of non-clustered BCMA molecules on the MM cell membrane after ATRA treatment. The enhanced BCMA expression on MM cells after ATRA treatment led to enhanced cytolysis, cytokine secretion and proliferation of BCMA-CAR T cells in vitro, and increased efficacy of BCMA-CAR T-cell therapy in a murine xenograft model of MM in vivo (NSG/MM.1S). Combination treatment of MM cells with ATRA and the γ- secretase inhibitor crenigacestat further enhanced BCMA expression and the efficacy of BCMA-CAR T-cell therapy in vitro and in vivo. Taken together, the data show that ATRA treatment leads to enhanced BCMA expression on MM cells and consecutively, enhanced reactivity of BCMA-CAR T cells. The data support the clinical evaluation of ATRA in combination with BCMA-CAR T-cell therapy and potentially, other BCMA-directed immunotherapies.
Collapse
Affiliation(s)
- Estefanía García-Guerrero
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany,Instituto de Biomedicina de Sevilla (IBIS/CSIC), Department of Hematology, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Luis G. Rodríguez-Lobato
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany,Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Department of Hematology, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Sophia Danhof
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Stephan Bates
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Silke Frenz
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Larissa Haertle
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ralph Götz
- Lehrstuhl für Biotechnologie und Biophysik, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus Sauer
- Lehrstuhl für Biotechnologie und Biophysik, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Leo Rasche
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - K. Martin Kortüm
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jose A. Pérez-Simón
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Department of Hematology, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Hermann Einsele
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Sabrina R. Prommersberger
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany,S. Prommersberger
| |
Collapse
|
22
|
Baumann N, Arndt C, Petersen J, Lustig M, Rösner T, Klausz K, Kellner C, Bultmann M, Bastian L, Vogiatzi F, Leusen JHW, Burger R, Schewe DM, Peipp M, Valerius T. Myeloid checkpoint blockade improves killing of T-acute lymphoblastic leukemia cells by an IgA2 variant of daratumumab. Front Immunol 2022; 13:949140. [PMID: 36052078 PMCID: PMC9427194 DOI: 10.3389/fimmu.2022.949140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Antibody-based immunotherapy is increasingly employed to treat acute lymphoblastic leukemia (ALL) patients. Many T-ALL cells express CD38 on their surface, which can be targeted by the CD38 antibody daratumumab (DARA), approved for the treatment of multiple myeloma. Tumor cell killing by myeloid cells is relevant for the efficacy of many therapeutic antibodies and can be more efficacious with human IgA than with IgG antibodies. This is demonstrated here by investigating antibody-dependent cellular phagocytosis (ADCP) by macrophages and antibody-dependent cell-mediated cytotoxicity (ADCC) by polymorphonuclear (PMN) cells using DARA (human IgG1) and an IgA2 isotype switch variant (DARA-IgA2) against T-ALL cell lines and primary patient-derived tumor cells. ADCP and ADCC are negatively regulated by interactions between CD47 on tumor cells and signal regulatory protein alpha (SIRPα) on effector cells. In order to investigate the impact of this myeloid checkpoint on T-ALL cell killing, CD47 and glutaminyl-peptide cyclotransferase like (QPCTL) knock-out T-ALL cells were employed. QPTCL is an enzymatic posttranslational modifier of CD47 activity, which can be targeted by small molecule inhibitors. Additionally, we used an IgG2σ variant of the CD47 blocking antibody magrolimab, which is in advanced clinical development. Moreover, treatment of T-ALL cells with all-trans retinoic acid (ATRA) increased CD38 expression leading to further enhanced ADCP and ADCC, particularly when DARA-IgA2 was applied. These studies demonstrate that myeloid checkpoint blockade in combination with IgA2 variants of CD38 antibodies deserves further evaluation for T-ALL immunotherapy.
Collapse
Affiliation(s)
- Niklas Baumann
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Christian Arndt
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Judith Petersen
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Marta Lustig
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian- Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Miriam Bultmann
- Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lorenz Bastian
- Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Fotini Vogiatzi
- Pediatric Hematology/Oncology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Denis M. Schewe
- Children’s Hospital, University Medical Center Magdeburg, Magdeburg, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian- Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- *Correspondence: Thomas Valerius,
| |
Collapse
|
23
|
Wang X, Yu X, Li W, Neeli P, Liu M, Li L, Zhang M, Fang X, Young KH, Li Y. Expanding anti-CD38 immunotherapy for lymphoid malignancies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:210. [PMID: 35765110 PMCID: PMC9237984 DOI: 10.1186/s13046-022-02421-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Lymphoid neoplasms, including multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and NK/T cell neoplasms, are a major cause of blood cancer morbidity and mortality. CD38 (cyclic ADP ribose hydrolase) is a transmembrane glycoprotein expressed on the surface of plasma cells and MM cells. The high expression of CD38 across MM and other lymphoid malignancies and its restricted expression in normal tissues make CD38 an attractive target for immunotherapy. CD38-targeting antibodies, like daratumumab, have been approved for the treatment of MM and tested against lymphoma and leukemia in multiple clinical trials. METHODS We generated chimeric antigen receptor (CAR) T cells targeting CD38 and tested its cytotoxicity against multiple CD38high and CD38low lymphoid cancer cells. We evaluated the synergistic effects of all-trans retinoic acid (ATRA) and CAR T cells or daratumumab against cancer cells and xenograft tumors. RESULTS CD38-CAR T cells dramatically inhibited the growth of CD38high MM, mantle cell lymphoma (MCL), Waldenstrom's macroglobulinemia (WM), T-cell acute lymphoblastic leukemia (T-ALL), and NK/T-cell lymphoma (NKTCL) in vitro and in mouse xenografts. ATRA elevated CD38 expression in multiple CD38low cancer cells and enhanced the anti-tumor activity of daratumumab and CD38-CAR T cells in xenograft tumors. CONCLUSIONS These findings may expand anti-CD38 immunotherapy to a broad spectrum of lymphoid malignancies and call for the incorporation of ATRA into daratumumab or other anti-CD38 immunological agents for cancer therapy.
Collapse
Affiliation(s)
- Xu Wang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Wei Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ming Liu
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ling Li
- Department of Oncology, Lymphoma Diagnosis and Treatment Center of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, Lymphoma Diagnosis and Treatment Center of Henan Province, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaosheng Fang
- Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, NC, USA.,Department of Hematology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Ken H Young
- Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, NC, USA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Swamydas M, Murphy EV, Ignatz-Hoover JJ, Malek E, Driscoll JJ. Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. J Hematol Oncol 2022; 15:17. [PMID: 35172851 PMCID: PMC8848665 DOI: 10.1186/s13045-022-01234-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma is an incurable cancer characterized by the uncontrolled growth of malignant plasma cells nurtured within a permissive bone marrow microenvironment. While patients mount numerous adaptive immune responses directed against their disease, emerging data demonstrate that tumor intrinsic and extrinsic mechanisms allow myeloma cells to subvert host immunosurveillance and resist current therapeutic strategies. Myeloma downregulates antigens recognized by cellular immunity and modulates the bone marrow microenvironment to promote uncontrolled tumor proliferation, apoptotic resistance, and further hamper anti-tumor immunity. Additional resistance often develops after an initial clinical response to small molecules, immune-targeting antibodies, immune checkpoint blockade or cellular immunotherapy. Profound quantitative and qualitative dysfunction of numerous immune effector cell types that confer anti-myeloma immunity further supports myelomagenesis, disease progression and the emergence of drug resistance. Identification of tumor intrinsic and extrinsic resistance mechanisms may direct the design of rationally-designed drug combinations that prevent or overcome drug resistance to improve patient survival. Here, we summarize various mechanisms of immune escape as a means to inform novel strategies that may restore and improve host anti-myeloma immunity.
Collapse
Affiliation(s)
| | - Elena V Murphy
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA
| | - Ehsan Malek
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA
| | - James J Driscoll
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA.
| |
Collapse
|
25
|
Shen F, Shen W. Isatuximab in the Treatment of Multiple Myeloma: A Review and Comparison With Daratumumab. Technol Cancer Res Treat 2022; 21:15330338221106563. [PMID: 35903924 PMCID: PMC9340383 DOI: 10.1177/15330338221106563] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the
proliferation of clonal plasma cells. Although advances in treatment have
markedly improved survival outcomes for patients with MM, this disease is still
considered incurable owing to its high incidence of relapse and refractoriness.
Isatuximab is an anti-CD38 monoclonal antibody that can induce apoptosis in
myeloma cells through a variety of mechanisms. Many clinical studies have
demonstrated the efficacy and efficiency of isatuximab in both
relapsed/refractory multiple myeloma (RRMM) and newly diagnosed multiple
myeloma, leading to its approval for the treatment of adults with RRMM in
combination therapies. In this review, the structure, mechanisms of action,
pharmacokinetics, pharmacogenetics, and safety profile of isatuximab in MM are
summarized. Additionally, isatuximab is compared with daratumumab in terms of
mechanism and efficacy.
Collapse
Affiliation(s)
- Fei Shen
- Department of Intenal Medicine, Jiangyin People's Hospital Affiliated to Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Weidong Shen
- Department of Intenal Medicine, Jiangyin People's Hospital Affiliated to Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| |
Collapse
|