1
|
Mukherjee R, Rana R, Mehan S, Khan Z, Das Gupta G, Narula AS, Samant R. Investigating the Interplay Between the Nrf2/Keap1/HO-1/SIRT-1 Pathway and the p75NTR/PI3K/Akt/MAPK Cascade in Neurological Disorders: Mechanistic Insights and Therapeutic Innovations. Mol Neurobiol 2025:10.1007/s12035-025-04725-8. [PMID: 39920438 DOI: 10.1007/s12035-025-04725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Neurological illnesses are debilitating diseases that affect brain function and balance. Due to their complicated aetiologies and progressive nature, neurodegenerative and neuropsychiatric illnesses are difficult to treat. These incurable conditions damage brain functions like mobility, cognition, and emotional regulation, but medication, gene therapy, and physical therapy can manage symptoms. Disruptions in cellular signalling pathways, especially those involving oxidative stress response, memory processing, and neurotransmitter modulation, contribute to these illnesses. This review stresses the interplay between key signalling pathways involved in neurological diseases, such as the Nrf2/Keap1/HO-1/SIRT-1 axis and the p75NTR/PI3K/Akt/MAPK cascade. To protect neurons from oxidative damage and death, the Nrf2 transcription factor promotes antioxidant enzyme production. The Keap1 protein releases Nrf2 during oxidative stress for nuclear translocation and gene activation. The review also discusses how neurotrophin signalling through the p75 neurotrophin receptor (p75NTR) determines cell destiny, whether pro-survival or apoptotic. The article highlights emerging treatment approaches targeting these signalling pathways by mapping these connections. Continued research into these molecular pathways may lead to new neurological disease treatments that restore cellular function and neuronal survival. In addition to enhanced delivery technologies, specific modulators and combination therapies should be developed to fine-tune signalling responses. Understanding these crosstalk dynamics is crucial to strengthening neurological illness treatment options and quality of life.
Collapse
Affiliation(s)
- Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ravi Rana
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Rajaram Samant
- Chief Scientific Officer, Celagenex Research, Mumbai, India
| |
Collapse
|
2
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
3
|
Xu J, Harris-Kawano A, Enriquez JR, Mirmira RG, Sims EK. Proinflammatory stress activates neutral sphingomyelinase 2 based generation of a ceramide-enriched β cell EV subpopulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589943. [PMID: 38659945 PMCID: PMC11042299 DOI: 10.1101/2024.04.17.589943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
β cell extracellular vesicles (EVs) play a role as paracrine effectors in islet health, yet mechanisms connecting β cell stress to changes in EV cargo and potential impacts on diabetes remain poorly defined. We hypothesized that β cell inflammatory stress engages neutral sphingomyelinase 2 (nSMase2)-dependent EV formation pathways, generating ceramide-enriched EVs that could impact surrounding β cells. Consistent with this, proinflammatory cytokine treatment of INS-1 β cells and human islets concurrently increased β cell nSMase2 and ceramide expression, as well as EV ceramide staining. Direct chemical activation or genetic knockdown of nSMase2, or treatment with a GLP-1 receptor agonist also modulated cellular and EV ceramide. Small RNA sequencing of ceramide-enriched EVs identified a distinct set of miRNAs linked to β cell function and identity. Coculture experiments using CD9-GFP tagged INS-1 cell EVs demonstrated that either cytokine treatment or chemical nSMase2 activation increased EV transfer to recipient cells. Children with recent-onset T1D showed no abnormalities in circulating ceramide-enriched EVs, suggesting a localized, rather than systemic phenomenon. These findings highlight nSMase2 as a regulator of β cell EV cargo and identify ceramide-enriched EV populations as a contributor to EV-related paracrine signaling under conditions of β cell inflammatory stress. Article Highlights a. Why did we undertake this study?: Mechanisms connecting β cell stress to changes in extracellular vesicle (EV) cargo and potential impacts on diabetes are poorly defined.b. What is the specific question we wanted to answer?: Does β cell inflammatory stress engage neutral sphingomyelinase 2 (nSMase2)-dependent EV formation pathways to generate ceramide-enriched EVs.c. What did we find?: Proinflammatory cytokine treatment of β cells increased β cell ceramide expression, along with EV ceramide in part via increases in nSMase2. Ceramide-enriched EVs housed a distinct set of miRNAs linked to insulin signaling. Both cytokine treatment and nSMase2 activation increase EV transfer to other β cells.d. What are the implications of our findings?: Our findings highlight nSMase2 as a regulator of β cell EV cargo and identify ceramide-enriched EV populations as a contributor to EV-related paracrine signaling under conditions of β cell inflammatory stress.
Collapse
|
4
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
5
|
Apoptosis Induction Associated with Enhanced ER Stress Response and Up-Regulation of c-Jun/p38 MAPK Proteins in Human Cervical Cancer Cells by Colocasia esculenta var. aquatilis Hassk Extract. Sci Pharm 2022. [DOI: 10.3390/scipharm90030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colocasia esculenta var. Aquatilis Hassk, elephant ear (CF-EE) has been widely used as traditional food and medicine. It also shows other therapeutic properties, such as antimicrobial and anti-cancer activity. In this study, we aim to investigate the effect of CF-EE extract on apoptosis induction associated with ER stress in cervical cancer HeLa cells. Cell viability was determined by MTT assay. Assessments of nuclear morphological changes, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) production were conducted by hoeshst33342, JC-1, and DCFH-DA fluorescence staining, respectively. Sub-G1 DNA content was analyzed by flow cytometry, and protein expression was determined by Western blotting. The results demonstrate that CF-EE extract suppressed HeLa cell growth and induced nuclear condensation and apoptotic bodies. There was also a loss of mitochondrial membrane potential and increased apoptosis marker protein expression, including Bax, cleaved-caspase-7, and cleaved-PARP. In addition, the results show that CF-EE extract induced ROS, increased ER stress proteins (GRP78 and CHOP), enhanced p38 and c-Jun phosphorylation, and inhibited Akt expression in HeLa cells. In summary, CF-EE extract induced apoptotic cell death-associated ROS-induced ER stress and the MAPK/AKT signaling pathway. Therefore, CF-EE extract has anticancer therapeutic potential for cervical cancer treatment in the future.
Collapse
|
6
|
Tallima H, Azzazy HME, El Ridi R. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion. Lipids Health Dis 2021; 20:150. [PMID: 34717628 PMCID: PMC8557557 DOI: 10.1186/s12944-021-01581-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface biochemical changes, notably excessive increase in outer leaflet sphingomyelin (SM) content, are important in cancer initiation, growth, and immune evasion. Innumerable reports describe methods to initiate, promote, or enhance immunotherapy of clinically detected cancer, notwithstanding the challenges, if not impossibility, of identification of tumor-specific, or associated antigens, the lack of tumor cell surface membrane expression of major histocompatibility complex (MHC) class I alpha and β2 microglobulin chains, and lack of expression or accessibility of Fas and other natural killer cell immune checkpoint molecules. Conversely, SM synthesis and hydrolysis are increasingly implicated in initiation of carcinogenesis and promotion of metastasis. Surface membrane SM readily forms inter- and intra- molecular hydrogen bond network, which excessive tightness would impair cell-cell contact inhibition, inter- and intra-cellular signals, metabolic pathways, and susceptibility to host immune cells and mediators. The present review aims at clarifying the tumor immune escape mechanisms, which face common immunotherapeutic approaches, and attracting attention to an entirely different, neglected, key aspect of tumorigenesis associated with biochemical changes in the cell surface that lead to failure of contact inhibition, an instrumental tumorigenesis mechanism. Additionally, the review aims to provide evidence for surface membrane SM levels and roles in cells resistance to death, failure to respond to growth suppressor signals, and immune escape, and to suggest possible novel approaches to cancer control and cure.
Collapse
Affiliation(s)
- Hatem Tallima
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt. .,Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Hassan M E Azzazy
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
7
|
Tung SY, Lee KC, Lee KF, Yang YL, Huang WS, Lee LY, Chen WP, Chen CC, Teng CC, Shen CH, Hsieh MC, Huang CY, Sheen JM, Kuo HC. Apoptotic mechanisms of gastric cancer cells induced by isolated erinacine S through epigenetic histone H3 methylation of FasL and TRAIL. Food Funct 2021; 12:3455-3468. [PMID: 33900313 DOI: 10.1039/d0fo03089a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Erinacine S, the new bioactive diterpenoid compound isolated from the ethanol extract of the mycelia of Hericium erinaceus, displays great health-promoting properties. However, the effects of erinacine S on inductive apoptosis in cancer cells such as gastric cancer and its molecular mechanisms remain unclear. Our results demonstrated that erinacine S treatment significantly induces cell apoptosis with increased ROS production in gastric cancer cells, but not in normal cells. Significantly, erinacine S also showed its inhibitory effects on tumor growth in an in vivo xenograft mouse model. Furthermore, immunohistochemical analyses revealed that erinacine S treatment significantly increases the FasL and TRAIL protein, whereas it decreases the levels of PCNA and cyclin D1 in the gastric cancer xenograft mice. Consistently, in AGS cells, erinacine S treatment not only triggers the activation of extrinsic apoptosis pathways (TRAIL, Fas-L and caspase-8, -9, -3), but it also suppresses the expression of the anti-apoptotic molecules Bcl-2 and Bcl-XL in a time-dependent manner. In addition, erinacine S also causes cell cycle G1 arrest by the inactivation of CDKs/cyclins. Moreover, our data revealed that activation of the ROS-derived and AKT/FAK/PAK1 pathways is involved in the erinacine S-mediated transcriptional activation of Fas-L and TRAIL through H3K4 trimethylation on their promoters. Together, this study sheds light on the anticancer effects of erinacine S on gastric cancer and its molecular mechanism in vitro and in vivo.
Collapse
Affiliation(s)
- Shui-Yi Tung
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hawkins CC, Ali T, Ramanadham S, Hjelmeland AB. Sphingolipid Metabolism in Glioblastoma and Metastatic Brain Tumors: A Review of Sphingomyelinases and Sphingosine-1-Phosphate. Biomolecules 2020; 10:E1357. [PMID: 32977496 PMCID: PMC7598277 DOI: 10.3390/biom10101357] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is a primary malignant brain tumor with a dismal prognosis, partially due to our inability to completely remove and kill all GBM cells. Rapid tumor recurrence contributes to a median survival of only 15 months with the current standard of care which includes maximal surgical resection, radiation, and temozolomide (TMZ), a blood-brain barrier (BBB) penetrant chemotherapy. Radiation and TMZ cause sphingomyelinases (SMase) to hydrolyze sphingomyelins to generate ceramides, which induce apoptosis. However, cells can evade apoptosis by converting ceramides to sphingosine-1-phosphate (S1P). S1P has been implicated in a wide range of cancers including GBM. Upregulation of S1P has been linked to the proliferation and invasion of GBM and other cancers that display a propensity for brain metastasis. To mediate their biological effects, SMases and S1P modulate signaling via phospholipase C (PLC) and phospholipase D (PLD). In addition, both SMase and S1P may alter the integrity of the BBB leading to infiltration of tumor-promoting immune populations. SMase activity has been associated with tumor evasion of the immune system, while S1P creates a gradient for trafficking of innate and adaptive immune cells. This review will explore the role of sphingolipid metabolism and pharmacological interventions in GBM and metastatic brain tumors with a focus on SMase and S1P.
Collapse
Affiliation(s)
- Cyntanna C. Hawkins
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| | - Tomader Ali
- Research Department, Imperial College London Diabetes Centre, Abu Dhabi P.O. Box 48338, UAE;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
- Comprehensive Diabetes Center, University of Birmingham at Alabama, Birmingham, AL 35294, USA
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| |
Collapse
|
9
|
Post-Treatment with Erinacine A, a Derived Diterpenoid of H. erinaceus, Attenuates Neurotoxicity in MPTP Model of Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9020137. [PMID: 32033220 PMCID: PMC7070543 DOI: 10.3390/antiox9020137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022] Open
Abstract
Hericium erinaceus, a valuable pharmaceutical and edible mushroom, contains potent bioactive compounds such as H. erinaceus mycelium (HEM) and its derived ethanol extraction of erinacine A, which have been found to regulate physiological functions in our previous study. However, HEM or erinacine A with post-treatment regimens also shows effects on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, but its mechanisms remain unknown. By using annexin-V–fluorescein-isothiocyanate (FITC)/propidium iodide staining and a 2’,7’ –dichlorofluorescin diacetate (DCFDA) staining assay, the cell death, cell viability, and reactive oxygen species (ROS) of 1-methyl-4-phenylpyridinium (MMP+)-treated Neuro-2a (N2a) cells with or without erinacine A addition were measured, respectively. Furthermore, signaling molecules for regulating the p21/GADD45 cell death pathways and PAKalpha, p21 (RAC1) activated kinase 1 (PAK1) survival pathways were also detected in the cells treated with MPP+ and erinacine A by Western blots. In neurotoxic animal models of MPTP induction, the effects of HEM or erinacine A and its mechanism in vivo were determined by measuring the TH-positive cell numbers and the protein level of the substantia nigra through a brain histological examination. Our results demonstrated that post-treatment with erinacine A was capable of preventing the cytotoxicity of neuronal cells and the production of ROS in vitro and in vivo through the neuroprotective mechanism for erinacine A to rescue the neurotoxicity through the disruption of the IRE1α/TRAF2 interaction and the reduction of p21 and GADD45 expression. In addition, erinacine A treatment activated the conserved signaling pathways for neuronal survival via the phosphorylation of PAK1, AKT, LIM domain kinase 2 (LIMK2), extracellular signal-regulated kinases (ERK), and Cofilin. Similar changes in the signal molecules also were found in the substantia nigra of the MPTP, which caused TH+ neuron damage after being treated with erinacine A in the post-treatment regimens in a dose-dependent manner. Taken together, our data indicated a novel mechanism for post-treatment with erinacine A to protect from neurotoxicity through regulating neuronal survival and cell death pathways.
Collapse
|
10
|
Abstract
Sphingosine, ceramide, sphingosine-1-phosphate, and other related sphingolipids have emerged as important bioactive molecules involved in a variety of key cellular processes such as cell growth, differentiation, apoptosis, exosome release, and inter- and intracellular cell communication, making the pathways of sphingolipid metabolism a key domain in maintaining cell homeostasis (Hannun and Obeid, Trends Biochem Sci 20:73-77, 1995; Hannun and Obeid, Nat Rev Mol Cell Biol 9:139-150, 2008; Kosaka et al., J Biol Chem 288:10849-10859, 2013). Various studies have determined that these pathways play a central role in regulating intracellular production of ceramide and the other bioactive sphingolipids and hence are an important component of signaling in various diseases such as cancer, diabetes, and neurodegenerative and cardiovascular diseases (Chaube et al., Biochim Biophys Acta 1821:313-323, 2012; Clarke et al., Adv Enzyme Regul 51:51-58, 2011b; Horres and Hannun, Neurochem Res 37:1137-1149, 2012). In this chapter, we discuss one of the major enzyme classes in producing ceramide, sphingomyelinases (SMases), from a biochemical and structural perspective with an emphasis on their applicability as therapeutic targets.
Collapse
Affiliation(s)
- Prajna Shanbhogue
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook University Cancer Center, Stony Brook, NY, USA.
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
11
|
Cheng CC, Chi PL, Shen MC, Shu CW, Wann SR, Liu CP, Tseng CJ, Huang WC. Caffeic Acid Phenethyl Ester Rescues Pulmonary Arterial Hypertension through the Inhibition of AKT/ERK-Dependent PDGF/HIF-1α In Vitro and In Vivo. Int J Mol Sci 2019; 20:ijms20061468. [PMID: 30909527 PMCID: PMC6470604 DOI: 10.3390/ijms20061468] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/23/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial proliferation and remodeling, resulting in a specific increase in right ventricle systolic pressure (RVSP) and, ultimately right ventricular failure. Recent studies have demonstrated that caffeic acid phenethyl ester (CAPE) exerts a protective role in NF-κB-mediated inflammatory diseases. However, the effect of CAPE on PAH remains to be elucidated. In this study, monocrotaline (MCT) was used to establish PAH in rats. Two weeks after the induction of PAH by MCT, CAPE was administrated by intraperitoneal injection once a day for two weeks. Pulmonary hemodynamic measurements and pulmonary artery morphological assessments were examined. Our results showed that administration of CAPE significantly suppressed MCT-induced vascular remodeling by decreasing the HIF-1α expression and PDGF-BB production, and improved in vivo RV systolic performance in rats. Furthermore, CAPE inhibits hypoxia- and PDGF-BB-induced HIF-1α expression by decreasing the activation of the AKT/ERK pathway, which results in the inhibition of human pulmonary artery smooth muscle cells (hPASMCs) proliferation and prevention of cells resistant to apoptosis. Overall, our data suggest that HIF-1α is regarded as an alternative target for CAPE in addition to NF-κB, and may represent a promising therapeutic agent for the treatment of PAH diseases.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Caffeic Acids/pharmacology
- Cell Line
- Cell Proliferation/drug effects
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression
- Hemodynamics/drug effects
- Humans
- Hypertension, Pulmonary/diagnosis
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunohistochemistry
- Phenylethyl Alcohol/analogs & derivatives
- Phenylethyl Alcohol/pharmacology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Chin-Chang Cheng
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Physical Therapy, Fooyin University, Kaohsiung 83102, Taiwan.
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Pathology and Laboratory, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Min-Ci Shen
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Graduate Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Shue-Ren Wann
- Graduate Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Kaohsiung Veterans General Hospital, Pingtung Branch, Pintung 91245, Taiwan.
| | - Chun-Peng Liu
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Physical Therapy, Fooyin University, Kaohsiung 83102, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
12
|
Zhang Y, Wang H, Li F, Xu X, Chen B, Zhang T. Inhibitory effects of Dulcitol on rat C6 glioma by regulating autophagy pathway. Nat Prod Res 2018; 34:1437-1441. [PMID: 30445865 DOI: 10.1080/14786419.2018.1512994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the study, we treated C6 rat glioma cells with 25 mg/ml Dulcitol for 24 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to detect cellular growth. The measurements of the superoxide dismutase (SOD), malondialdehyde (MDA) and catalase (CAT) were used to assess oxidative stress level. Western was performed to detect the autophagy and apoptosis expression. The data showed that Dulcitol significantly decreased the cell viability, upregulated the Bax level in mitochondria and the Cytochrome C level in cytoplasm, and downregulated anti-apoptotic protein Bcl-xl. Moreover, it enhanced MDA level, reduced CAT and SOD activities, decreased LC3-II/LC3-I ratio, and increased P62 expression. However, rapamycin increased autophagy level and cell viability, and decreased ROS in Dulcitol treated C6 cells. Moreover, Dulcitol inhibited the glioma growth and enhanced survival in vivo. These results suggest that Dulcitol evidently increase cellular ROS levels and apoptosis in glioma cells, which can be significantly regulated by autophagy.
Collapse
Affiliation(s)
- Yuling Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China.,WuQing TCM Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China.,School of Mathematical Sciences, Nankai University, Tianjin, P. R. China
| | - Fangjuan Li
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| | - Xinxin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| | - Baogui Chen
- WuQing TCM Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, P. R. China
| |
Collapse
|
13
|
Jabir NR, Islam MT, Tabrez S, Shakil S, Zaidi SK, Khan FR, Araújo LDS, de Meneses AAPM, Santos JVDO, Melo-Cavalcante AADC. An insight towards anticancer potential of major coffee constituents. Biofactors 2018. [DOI: 10.1002/biof.1437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nasimudeen R. Jabir
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah Saudi Arabia
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City Vietnam
| | - Shams Tabrez
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah Saudi Arabia
| | - Shazi Shakil
- Center of Innovation in Personalized Medicine; King Abdulaziz University; Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences; King Abdulaziz University; Jeddah Saudi Arabia
- Center of Excellence in Genomic Medicine Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - Fayaz Rahman Khan
- Department of Physical Therapy, Faculty of Applied Medical Sciences; King Abdulaziz University; Jeddah Saudi Arabia
| | - Lidiane da Silva Araújo
- Post-Graduate Program in Pharmaceutical Science; Federal University of Piauí; Teresina Brazil
| | | | | | | |
Collapse
|
14
|
Dei Cas M, Ghidoni R. Cancer Prevention and Therapy with Polyphenols: Sphingolipid-Mediated Mechanisms. Nutrients 2018; 10:nu10070940. [PMID: 30037082 PMCID: PMC6073226 DOI: 10.3390/nu10070940] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polyphenols, chemically characterized by a polyhydroxylated phenolic structure, are well known for their widespread pharmacological properties: anti-inflammatory, antibiotic, antiseptic, antitumor, antiallergic, cardioprotective and others. Their distribution in food products is also extensive especially in plant foods such as vegetables, cereals, legumes, fruits, nuts and certain beverages. The latest scientific literature outlines a resilient interconnection between cancer modulation and dietary polyphenols by sphingolipid-mediated mechanisms, usually correlated with a modification of their metabolism. We aim to extensively survey this relationship to show how it could be advantageous in cancer treatment or prevention by nutrients. From this analysis it emerges that a combination of classical chemotherapy with nutrients and especially with polyphenols dietary sources may improve efficacy and decreases negative side effects of the antineoplastic drug. In this multifaceted scenario, sphingolipids play a pivotal role as bioactive molecules, emerging as the mediators of cell proliferation in cancer and modulator of chemotherapeutics.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, University of Milan, 20142 Milan, Italy.
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy.
| |
Collapse
|
15
|
Chiang KC, Yang SW, Chang KP, Feng TH, Chang KS, Tsui KH, Shin YS, Chen CC, Chao M, Juang HH. Caffeic Acid Phenethyl Ester Induces N-myc Downstream Regulated Gene 1 to Inhibit Cell Proliferation and Invasion of Human Nasopharyngeal Cancer Cells. Int J Mol Sci 2018; 19:ijms19051397. [PMID: 29738439 PMCID: PMC5983775 DOI: 10.3390/ijms19051397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE), a bioactive component extracted from propolis, is widely studied due to its anti-cancer effect. Nasopharyngeal carcinoma (NPC) is distinct from other head and neck carcinomas and has a high risk of distant metastases. N-myc downstream regulated gene 1 (NDRG1) is demonstrated as a tumor suppressor gene in several cancers. Our result showed that CAPE treatment could repress NPC cell growth, through induction of S phase cell cycle arrest, and invasion. CAPE treatment stimulated NDRG1 expression in NPC cells. NDRG1 knockdown increased NPC cell proliferation and invasion and rendered NPC cells less responsive to CAPE growth-inhibiting effect, indicating CAPE repressed NPC cell growth partly through NDRG1indcution. CAPE treatment increased phosphorylation of ERK, JNK, and p38 in a dose- and time-dependent manner. Pre-treatments by inhibitors of ERK (PD0325901), JNK (SP600125), or p38 (SB201290), respectively, all could partly inhibit the CAPE effect on NDRG1 induction in NPC cells. Further, STAT3 activity was also repressed by CAPE in NPC cells. In summary, CAPE attenuates NPC cell proliferation and invasion by upregulating NDRG1 expression via MAPK pathway and by inhibiting phosphorylation of STAT3. Considering the poor prognosis of NPC patients with metastasis, CAPE could be a promising agent against NPC.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- Zebrafish Center, Department of General Surgery, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Shih-Wei Yang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Kai-Ping Chang
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital Lin-Kou, Kwei-Shan, Tao-Yuan 204, Taiwan;
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 244, Taiwan;
| | - Yi-Syuan Shin
- Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan; (Y.-S.S.); (C.-C.C.)
| | - Chiu-Chun Chen
- Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan; (Y.-S.S.); (C.-C.C.)
| | - Mei Chao
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital Lin-Kou, Kwei-Shan, Tao-Yuan 244, Taiwan
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 244, Taiwan;
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 244, Taiwan;
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
16
|
Liu GL, Han NZ, Liu SS. Caffeic acid phenethyl ester inhibits the progression of ovarian cancer by regulating NF-κB signaling. Biomed Pharmacother 2018; 99:825-831. [DOI: 10.1016/j.biopha.2018.01.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 11/24/2022] Open
|
17
|
Wan L, Zhang D, Zhang J, Ren L. TT-1, an analog of melittin, triggers apoptosis in human thyroid cancer TT cells via regulating caspase, Bcl-2 and Bax. Oncol Lett 2018; 15:1271-1278. [PMID: 29387245 DOI: 10.3892/ol.2017.7366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/22/2017] [Indexed: 01/25/2023] Open
Abstract
Melittin is a 26 amino acid residue antimicrobial peptide with known antitumor activity. In the present study, a novel peptide TT-1, derived from melittin and contained only 11 amino acids, was designed, and its antitumor effect was investigated. The present study is aimed to elucidate the effects and relative mechanisms of TT-1 on a human thyroid cancer cell line (TT) in vitro and in vivo. Cell viability assays, Annexin V/propidium iodide assays, western blotting and quantitative reverse transcription polymerase chain reaction were performed. Furthermore, a tumor-xenograft model was established to investigate the apoptotic mechanisms of TT-1 on TT cells. The results obtained indicated that TT-1 was able to suppress the proliferation of TT cells and exhibited low cytotoxicity to normal thyroid cells in vitro. The apoptotic rates of TT cells were also increased following TT-1 treatment. Additionally, TT-1 stimulated caspase-3, caspase-9 and Bax, and inhibited B-cell lymphoma 2 mRNA and protein expression. Finally, it was also demonstrated that TT-1 is able to markedly suppress tumor growth in a TT-bearing nude mouse model. In summary, TT-1 may inhibit the proliferation of TT cells by inducing apoptosis in vitro and in vivo, indicating that TT-1 may be a potential candidate for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Lanlan Wan
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin 130033, P.R. China.,Department of Pharmacology and Toxicology, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130021, P.R. China
| | - Daqi Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin 130033, P.R. China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liqun Ren
- Department of Pharmacology and Toxicology, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
18
|
Ang JE, Pal A, Asad YJ, Henley AT, Valenti M, Box G, de Haven Brandon A, Revell VL, Skene DJ, Venturi M, Rueger R, Meresse V, Eccles SA, de Bono JS, Kaye SB, Workman P, Banerji U, Raynaud FI. Modulation of Plasma Metabolite Biomarkers of the MAPK Pathway with MEK Inhibitor RO4987655: Pharmacodynamic and Predictive Potential in Metastatic Melanoma. Mol Cancer Ther 2017; 16:2315-2323. [PMID: 28637716 PMCID: PMC6112418 DOI: 10.1158/1535-7163.mct-16-0881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 01/08/2023]
Abstract
MAPK pathway activation is frequently observed in human malignancies, including melanoma, and is associated with sensitivity to MEK inhibition and changes in cellular metabolism. Using quantitative mass spectrometry-based metabolomics, we identified in preclinical models 21 plasma metabolites including amino acids, propionylcarnitine, phosphatidylcholines, and sphingomyelins that were significantly altered in two B-RAF-mutant melanoma xenografts and that were reversed following a single dose of the potent and selective MEK inhibitor RO4987655. Treatment of non-tumor-bearing animals and mice bearing the PTEN-null U87MG human glioblastoma xenograft elicited plasma changes only in amino acids and propionylcarnitine. In patients with advanced melanoma treated with RO4987655, on-treatment changes of amino acids were observed in patients with disease progression and not in responders. In contrast, changes in phosphatidylcholines and sphingomyelins were observed in responders. Furthermore, pretreatment levels of seven lipids identified in the preclinical screen were statistically significantly able to predict objective responses to RO4987655. The RO4987655 treatment-related changes were greater than baseline physiological variability in nontreated individuals. This study provides evidence of a translational exo-metabolomic plasma readout predictive of clinical efficacy together with pharmacodynamic utility following treatment with a signal transduction inhibitor. Mol Cancer Ther; 16(10); 2315-23. ©2017 AACR.
Collapse
Affiliation(s)
- Joo Ern Ang
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Akos Pal
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Yasmin J Asad
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Alan T Henley
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Melanie Valenti
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Gary Box
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Alexis de Haven Brandon
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Victoria L Revell
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Debra J Skene
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Miro Venturi
- F. Hoffmann-LaRoche Ltd., Diagnostics Division, DIA Biomarker Group, Basel, Switzerland
| | - Ruediger Rueger
- Roche Pharmaceutical Research and Early Development, Translational Medicine Oncology, Roche Innovation Center Penzberg, Penzberg, Germany
| | - Valerie Meresse
- Roche Pharmaceutical Research and Early Development, Translational Medicine Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Johann S de Bono
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Stanley B Kaye
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Udai Banerji
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Florence I Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom.
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| |
Collapse
|
19
|
Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, Jastrzębska-Stojko Ż, Stojko R, Wojtyczka RD, Stojko J. Comparison of Two Components of Propolis: Caffeic Acid (CA) and Caffeic Acid Phenethyl Ester (CAPE) Induce Apoptosis and Cell Cycle Arrest of Breast Cancer Cells MDA-MB-231. Molecules 2017; 22:molecules22091554. [PMID: 28926932 PMCID: PMC6151426 DOI: 10.3390/molecules22091554] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022] Open
Abstract
Studies show that caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) are compounds with potent chemopreventive effects. Breast cancer is a common form of aggressive cancer among women worldwide. This study shows a comparison of CA and CAPE activity on triple-negative human caucasian breast adenocarcinoma line cells (MDA-MB-231). MDA-MB-231 cells were treated by CA and CAPE with doses of from 10 to 100 µM, for periods of 24 h and 48 h. Cytotoxicity MTT tests, apoptosis by Annexin V, and cell cycle with Dead Cell Assays were performed. Cytotoxic activity was greater for CAPE compared to CA (both incubation times, same dosage). IC50 values for CAPE were 27.84 µM (24 h) and 15.83 µM (48 h) and for CA > 10,000 µM (24 h) and > 1000 µM (48 h). Polyphenols induced apoptosis, while CAPE (dose dependently), induced a higher apoptotic effect. CAPE also induced cell cycle arrest in S phase (time and dose dependently), CA did it only for 50 and 100 µM. A dose dependent decline was seen for the G0/G1 phase (CAPE, 48 h), as well as elimination of phase G2/M by 100 µM of CAPE (only mild effect for CA). Comparing CA and CAPE activity on MDA-MB-231, CAPE clearly showed better activity for the same dosages and experiment times.
Collapse
Affiliation(s)
- Agata Kabała-Dzik
- Department of Pathology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, Sosnowiec 41-200, Poland.
| | - Anna Rzepecka-Stojko
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland.
| | - Robert Kubina
- Department of Pathology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, Sosnowiec 41-200, Poland.
| | - Żaneta Jastrzębska-Stojko
- Department of Anesthesiology and Intensive Care, Prof. K. Gibiński University Clinical Center, Medical University of Silesia in Katowice, Ceglana 35, Katowice 40-514, Poland.
| | - Rafał Stojko
- Department of Women Health, School of Health Sciences, Medical University of Silesia in Katowice, Medyków 12, Katowice 40-752, Poland.
| | - Robert Dariusz Wojtyczka
- Department and Institute of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland.
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland.
| |
Collapse
|
20
|
Substituted Caffeic and Ferulic Acid Phenethyl Esters: Synthesis, Leukotrienes Biosynthesis Inhibition, and Cytotoxic Activity. Molecules 2017; 22:molecules22071124. [PMID: 28684707 PMCID: PMC6152019 DOI: 10.3390/molecules22071124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor that correlates with short patient survival and for which therapeutic options are limited. Polyphenolic compounds, including caffeic acid phenethyl ester (CAPE, 1a), have been investigated for their anticancer properties in several types of cancer. To further explore these properties in brain cancer cells, a series of caffeic and ferulic acid esters bearing additional oxygens moieties (OH or OCH3) were designed and synthesized. (CAPE, 1a), but not ferulic acid phenethyl ester (FAPE, 1b), displayed substantial cytotoxicity against two glioma cell lines. Some but not all selected compounds derived from both (CAPE, 1a) and (FAPE, 1b) also displayed cytotoxicity. All CAPE-derived compounds were able to significantly inhibit 5-lipoxygenase (5-LO), however FAPE-derived compounds were largely ineffective 5-LO inhibitors. Molecular docking revealed new hydrogen bonds and π-π interactions between the enzyme and some of the investigated compounds. Overall, this work highlights the relevance of exploring polyphenolic compounds in cancer models and provides additional leads in the development of novel therapeutic strategies in gliomas.
Collapse
|
21
|
Caffeic acid phenethyl ester enhances TRAIL-mediated apoptosis via CHOP-induced death receptor 5 upregulation in hepatocarcinoma Hep3B cells. Mol Cell Biochem 2016; 418:13-20. [DOI: 10.1007/s11010-016-2726-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
|
22
|
El Ridi R, Tallima H, Migliardo F. Biochemical and biophysical methodologies open the road for effective schistosomiasis therapy and vaccination. Biochim Biophys Acta Gen Subj 2016; 1861:3613-3620. [PMID: 27062905 DOI: 10.1016/j.bbagen.2016.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Schistosomiasis caused by blood-dwelling flukes, namely Schistosoma mansoni and Schistosoma haematobium is a severe debilitating disease, widespread in sub-Saharan Africa, the Middle East, and South America. Developing and adult worms are unscathed by the surrounding immune effectors and antibodies because the parasite is protected by a double lipid bilayer armor which allows access of nutrients, while binding of specific antibodies is denied. SCOPE OF REVIEW Fluorescence recovery after bleaching, extraction of surface membrane cholesterol by methyl-β-cyclodextrin, inhibition and activation of sphingomyelin biosynthesis and hydrolysis, and elastic incoherent and quasi-elastic neutron scattering approaches have helped to clarify the basic mechanism of this immune evasion, and showed that sphingomyelin (SM) molecules in the worm apical lipid bilayer form with surrounding water molecules a tight hydrogen bond barrier. Viability of the parasite and permeability of the outer shield are controlled by equilibrium between SM biosynthesis and activity of a tegument-associated neutral sphingomyelinase (nSMase). MAJOR CONCLUSIONS Excessive nSMase activation by polyunsaturated fatty acids (PUFA), such as arachidonic acid (ARA) leads to disruption of the SM molecules and associated hydrogen bond network, with subsequent access of host antibodies and immune effectors to the outer membrane and eventual parasite death. GENERAL SIGNIFICANCE ARA was predicted and shown to be a potent schistosomicide in vitro and in vivo in experimental animals and in children. Additionally, it was advocated that schistosomiasis vaccine candidates should be selected uniquely among excretory-secretory products of developing worms, as contrary to cytosolic and surface membrane antigens, they are able to activate the effector functions of the host antibodies and toxic molecules. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo".
Collapse
Affiliation(s)
- Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt; Department of Chemistry, School of Science and Engineering, American University in Cairo, New Cairo, 11835 Cairo, Egypt
| | - Federica Migliardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
23
|
An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis. Rev Argent Microbiol 2016; 48:21-6. [PMID: 26948102 DOI: 10.1016/j.ram.2016.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/16/2015] [Accepted: 01/15/2016] [Indexed: 11/21/2022] Open
Abstract
Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease.
Collapse
|
24
|
Zhang D, Wan L, Zhang J, Liu C, Sun H. Effect of BMAP-28 on human thyroid cancer TT cells is mediated by inducing apoptosis. Oncol Lett 2015; 10:2620-2626. [PMID: 26622900 DOI: 10.3892/ol.2015.3612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 06/25/2015] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is the most common malignant endocrine tumor, with significant morbidity and mortality. Bovine myeloid antimicrobial peptide 28 (BMAP-28) is a cathelicidin that is found in bovine neutrophils. In the present study, the effect and relative mechanism of BMAP-28 on the human thyroid cancer TT cell line in vitro and in vivo were investigated. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and a TT-xenograft mouse model were used in this study. The data obtained indicated that BMAP-28 significantly inhibited the proliferation of the TT cells in vitro. In addition, the Annexin V-fluorescein isothiocyanate/propidium iodide assay detected that BMAP-28 induced apoptotic effects in the TT cells. Moreover, the expression of activated caspase-3 and -9 was upregulated at the transcriptional and translational levels. Simultaneously, the expression of matrix metalloproteinase (MMP)3 and MMP9 was downregulated following BMAP-28 treatment. Finally, BMAP-28 significantly prevented the tumor growth in the TT-xenograft mouse model. These results indicated that BMAP-28 could be a potential agent for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Daqi Zhang
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin Univeristy, Changchun, Jilin 130033, P.R. China
| | - Lanlan Wan
- Department of Anesthesiology, The Second Hospital of Jilin University, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130033, P.R. China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chang Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Hui Sun
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin Univeristy, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
25
|
He W, Li Y, Tian J, Jiang N, Du B, Peng Y. Optimized mixture of As, Cd and Pb induce mitochondria-mediated apoptosis in C6-glioma via astroglial activation, inflammation and P38-MAPK. Am J Cancer Res 2015; 5:2396-2408. [PMID: 26396915 PMCID: PMC4568775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/19/2015] [Indexed: 06/05/2023] Open
Abstract
Arsenic (As), cadmium (Cd), and lead (Pb) in select combinations are proved to affect the viability of astrocyte. However, their role in glioma, an aggressive astroglial tumor, is unexplored. We analyzed the effect of As+Cd+Pb on C6-glioma cells derived from rat glioma. We determined the lethal concentration (LC) of individual metal, and then treated C6-glioma cells with As+Cd+Pb at LC-5 (As: 5 mM, Cd: 2.5 mM and Pb: 15 mM), and concentrations that were double or triple of LC5. As+Cd+Pb induced dose-dependent reduction in C6-glioma viability. Cell death was due to apoptotic DNA fragmentation, detected through terminal deoxynucleotidyl transferase-mediated dUTP-nick-end labeling. An enhanced cleavage of caspase-9 indicated the apoptosis to be mitochondria-mediated. An increase in pro-apoptotic Bcl-2-associated-X protein (Bax) and decrease in anti-apoptotic Bcl2 resulting in a Bax/Bcl2 ratio > 1.0 validated mitochondrial apoptosis. Exploring apoptotic regulatory mechanism revealed an alteration in glial cell morphology and augmentation of astroglial marker, glial fibrillary acidic protein (GFAP), that demonstrated co-localization with cleaved caspase-9. The glial activation was accompanied by inflammation, involving the up-regulation of interleukin-1 (IL-1) and IL-1-receptor. IL-1 also contributed to apoptosis, as evident from the attenuation of cleaved caspase-9 upon treatment with IL-1receptor antagonist. Investigating the involvement of Mitogen-activated protein kinases (MAPKs) revealed the activation of P38 as indicated by an increased phospho-p38 expression. p38-MAPK inhibitor, SB203580, prevented caspase-9 activation, which further suppoted the involvement of p38-MAPK in C6-glioma apoptosis. Overall our data demonstrate the toxic effect of As+Cd+Pb on C6-glioma, which is mediated by mitochondria-dependent apoptosis that requires astroglial activation, inflammation and p38-MAPK signaling. As+Cd+Pb combination treatment may have a potential therapeutic usage against glial tumors.
Collapse
Affiliation(s)
- Weiming He
- Department of Neurosurgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
- Department of Neurosurgery, Keerqin District First People’s HospitalTongliao 028000, Inner Mongolia, P. R. China
| | - Yingfu Li
- Department of Neurosurgery, First Hospital of Jiamusi UniversityJiamusi 154007, Heilongjiang, P. R. China
| | - Jingyan Tian
- Department of Urology, Second Division of The First Hospital of Jilin UniversityChangchun 130021, Jilin, P. R. China
| | - Ning Jiang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Bo Du
- Department of Neurosurgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Yuping Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
26
|
Global proteomic analysis of brain tissues in transient ischemia brain damage in rats. Int J Mol Sci 2015; 16:11873-91. [PMID: 26016499 PMCID: PMC4490420 DOI: 10.3390/ijms160611873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 01/22/2023] Open
Abstract
Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER) stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM) and the control rats were separated using two-dimensional gel electrophoresis (2-DE) to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT) and cathepsin D (CATD), which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2) protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia-reperfusion-related neuronal injury.
Collapse
|
27
|
Kudo D, Inden M, Sekine SI, Tamaoki N, Iida K, Naito E, Watanabe K, Kamishina H, Shibata T, Hozumi I. Conditioned medium of dental pulp cells stimulated by Chinese propolis show neuroprotection and neurite extension in vitro. Neurosci Lett 2015; 589:92-7. [PMID: 25597290 DOI: 10.1016/j.neulet.2015.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to clarify the effect of Chinese propolis on the expression level of neurotrophic factors in dental pulp cells (DPCs). We also investigated that the effects of the conditioned medium (CM) of DPCs stimulated by the propolis against oxidative and endoplasmic reticulum (ER) stresses in human neuroblastoma SH-SY5Y cells, and on neurite extensions in rat adrenal pheochromocytoma PC12 cells. To investigate the effect of the propolis on the levels of neurotrophic factors in DPCs, we performed a qRT-PCR experiment. As results, NGF, but not BDNF and NT-3, in DPCs was significantly elevated by the propolis in a concentration-dependent manner. H2O2-induced cell death was significantly inhibited by the treatment with the CM of DPCs. In addition, the treatment with the propolis-stimulated CM of DPCs had a more protective effect than that with the CM of DPCs. We also examine the effect of the propolis-stimulated CM of DPCs against a tunicamycin-induced ER stress. The treatment with the propolis-stimulated CM as well as the CM of DPCs significantly inhibited tunicamycin-induced cell death. Moreover, the treatment with the propolis-stimulated CM of DPCs significantly induced neurite outgrowth from PC12 cells than that with the CM of DPCs. These results suggest that the CM of DPCs as well as DPCs will be an efficient source of new treatments for neurodegenerative diseases and that the propolis promote the advantage of the CM of DPCs via producing neurotrophic factors.
Collapse
Affiliation(s)
- Daichi Kudo
- Lab Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical Univ.,1-25-4 Daigaku-nishi, 1-1-1, Gifu 501-1196, Japan
| | - Masatoshi Inden
- Lab Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical Univ.,1-25-4 Daigaku-nishi, 1-1-1, Gifu 501-1196, Japan
| | - Shin-Ichiro Sekine
- Lab Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical Univ.,1-25-4 Daigaku-nishi, 1-1-1, Gifu 501-1196, Japan
| | - Naritaka Tamaoki
- Department of Oral and Maxillofacial Sciences, Gifu Univ. School of Medicine, Gifu, Japan
| | - Kazuki Iida
- Department of Oral and Maxillofacial Sciences, Gifu Univ. School of Medicine, Gifu, Japan
| | - Eiji Naito
- Department of Veterinary Medicine, Faculty Applied Biological Sciences, Gifu Univ., Gifu, Japan
| | - Kazuhiro Watanabe
- Department of Veterinary Medicine, Faculty Applied Biological Sciences, Gifu Univ., Gifu, Japan
| | - Hiroaki Kamishina
- Department of Veterinary Medicine, Faculty Applied Biological Sciences, Gifu Univ., Gifu, Japan
| | - Toshiyuki Shibata
- Department of Oral and Maxillofacial Sciences, Gifu Univ. School of Medicine, Gifu, Japan
| | - Isao Hozumi
- Lab Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical Univ.,1-25-4 Daigaku-nishi, 1-1-1, Gifu 501-1196, Japan.
| |
Collapse
|