1
|
Defoort J, Van de Peer Y, Vermeirssen V. Function, dynamics and evolution of network motif modules in integrated gene regulatory networks of worm and plant. Nucleic Acids Res 2019; 46:6480-6503. [PMID: 29873777 PMCID: PMC6061849 DOI: 10.1093/nar/gky468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory networks (GRNs) consist of different molecular interactions that closely work together to establish proper gene expression in time and space. Especially in higher eukaryotes, many questions remain on how these interactions collectively coordinate gene regulation. We study high quality GRNs consisting of undirected protein–protein, genetic and homologous interactions, and directed protein–DNA, regulatory and miRNA–mRNA interactions in the worm Caenorhabditis elegans and the plant Arabidopsis thaliana. Our data-integration framework integrates interactions in composite network motifs, clusters these in biologically relevant, higher-order topological network motif modules, overlays these with gene expression profiles and discovers novel connections between modules and regulators. Similar modules exist in the integrated GRNs of worm and plant. We show how experimental or computational methodologies underlying a certain data type impact network topology. Through phylogenetic decomposition, we found that proteins of worm and plant tend to functionally interact with proteins of a similar age, while at the regulatory level TFs favor same age, but also older target genes. Despite some influence of the duplication mode difference, we also observe at the motif and module level for both species a preference for age homogeneity for undirected and age heterogeneity for directed interactions. This leads to a model where novel genes are added together to the GRNs in a specific biological functional context, regulated by one or more TFs that also target older genes in the GRNs. Overall, we detected topological, functional and evolutionary properties of GRNs that are potentially universal in all species.
Collapse
Affiliation(s)
- Jonas Defoort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Vanessa Vermeirssen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
2
|
Inter-organ signalling by HRG-7 promotes systemic haem homeostasis. Nat Cell Biol 2017; 19:799-807. [PMID: 28581477 PMCID: PMC5594749 DOI: 10.1038/ncb3539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/27/2017] [Indexed: 12/17/2022]
|
3
|
Sinha C, Arora K, Naren AP. Methods to Study Mrp4-containing Macromolecular Complexes in the Regulation of Fibroblast Migration. J Vis Exp 2016:53973. [PMID: 27285126 DOI: 10.3791/53973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4) is a member of the ATP-binding cassette family of membrane transporters and is an endogenous efflux transporter of cyclic nucleotides. By modulating intracellular cyclic nucleotide concentration, MRP4 can regulate multiple cyclic nucleotide-dependent cellular events including cell migration. Previously, we demonstrated that in the absence of MRP4, fibroblast cells contain higher levels of intracellular cyclic nucleotides and can migrate faster. To understand the underlying mechanisms of this finding, we adopted a direct yet multifaceted approach. First, we isolated potential interacting protein complexes of MRP4 from a MRP4 over-expression cell system using immunoprecipitation followed by mass-spectrometry. After identifying unique proteins in the MRP4 interactome, we utilized Ingenuity Pathway Analysis (IPA) to explore the role of these protein-protein interactions in the context of signal transduction. We elucidated the potential role of the MRP4 protein complex in cell migration and identified F-actin as a major mediator of the effect of MRP4 on cell migration. This study also emphasized the role of cAMP and cGMP as key players in the migratory phenomena. Using high-content microscopy, we performed cell-migration assays and observed that the effect of MRP4 on fibroblast migration is completely abolished by disruption of the actin cytoskeleton or inhibition of cAMP-dependent kinase A (PKA). To visualize signaling modulations in a migrating cell in real time, we utilized a FRET-based sensor for measuring PKA activity and found, the presence of more polarized PKA activity near the leading edge of migrating Mrp4(-/-) fibroblast, compared to Mrp4(+/+)fibroblasts. This in turn increased cortical actin formation and augmented the process of migration. Our approach enables identification of the proteins acting downstream to MRP4 and provides us with an overview of the mechanism involved in MRP4-dependent regulation of fibroblast migration.
Collapse
Affiliation(s)
- Chandrima Sinha
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center.,Department of Physiology, University of Tennessee Health Science Center
| | - Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center.,Department of Physiology, University of Tennessee Health Science Center
| |
Collapse
|
4
|
Wu JC, Espiritu EB, Rose LS. The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein. Dev Biol 2016; 412:288-297. [PMID: 26921457 DOI: 10.1016/j.ydbio.2016.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 01/03/2023]
Abstract
PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization.
Collapse
Affiliation(s)
- Jui-Ching Wu
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| | - Eugenel B Espiritu
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| |
Collapse
|
5
|
Aristizábal-Corrales D, Schwartz S, Cerón J. PAR-5 is a PARty hub in the germline: Multitask proteins in development and disease. WORM 2013; 2:e21834. [PMID: 24058859 PMCID: PMC3670460 DOI: 10.4161/worm.21834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/06/2012] [Accepted: 08/14/2012] [Indexed: 11/19/2022]
Abstract
As our understanding of how molecular machineries work expands, an increasing number of proteins that appear as regulators of different processes have been identified. These proteins are hubs within and among functional networks. The 14-3-3 protein family is involved in multiple cellular pathways and, therefore, influences signaling in several disease processes, from neurobiological disorders to cancer. As a consequence, 14-3-3 proteins are currently being investigated as therapeutic targets. Moreover, 14-3-3 protein levels have been associated with resistance to chemotherapies. There are seven 14-3-3 genes in humans, while Caenorhabditis elegans only possesses two, namely par-5 and ftt-2. Among the C. elegans scientific community, par-5 is mainly recognized as one of the par genes that is essential for the asymmetric first cell division in the embryo. However, a recent study from our laboratory describes roles of par-5 in germ cell proliferation and in the cellular response to DNA damage induced by genotoxic agents. In this review, we explore the broad functionality of 14-3-3 proteins in C. elegans and comment on the potential use of worms for launching a drugs/modifiers discovery platform for the therapeutic regulation of 14-3-3 function in cancer.
Collapse
Affiliation(s)
- David Aristizábal-Corrales
- Drug Delivery and Targeting; CIBBIM-Nanomedicine; Vall d'Hebron Research Institute; Universidad Autónoma de Barcelona; Barcelona, Spain ; Networking Research Center on Bioengineering; Biomaterials and Nanomedicine (CIBER-BBN); Barcelona, Spain ; Department of Cancer and Human Molecular Genetics; Bellvitge Biomedical Research Institute (IDIBELL); L'Hospitalet de Llobregat; Barcelona, Spain
| | | | | |
Collapse
|
6
|
Secreted cysteine-rich FGF receptor derives from posttranslational processing by furin-like prohormone convertases. Biochem Biophys Res Commun 2009; 382:359-64. [DOI: 10.1016/j.bbrc.2009.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/18/2022]
|