1
|
Chang CH, See Too WC, Lim BH, Few LL. Identification and Characterization of Entamoeba histolytica Choline Kinase. Acta Parasitol 2024; 69:426-438. [PMID: 38172465 DOI: 10.1007/s11686-023-00763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Entamoeba histolytica is one of the death-causing parasites in the world. Study on its lipid composition revealed that it is predominated by phosphatidylcholine and phosphatidylethanolamine. Further study revealed that its phosphorylated metabolites might be produced by the Kennedy pathway. Here, we would like to report on the characterizations of enzymes from this pathway that would provide information for the design of novel inhibitors against these enzymes in future. METHODOLOGY E. histolytica HM-1:IMSS genomic DNA was isolated and two putative choline/ethanolamine kinase genes (EhCK1 and EhCK2) were cloned and expressed from Escherichia coli BL21 strain. Enzymatic characterizations were further carried out on the purified enzymes. RESULTS EhCK1 and EhCK2 were identified from E. histolytica genome. The deduced amino acid sequences were more identical to its homologues in human (35-48%) than other organisms. The proteins were clustered as ethanolamine kinase in the constructed phylogeny tree. Sequence analysis showed that they possessed all the conserved motifs in choline kinase family: ATP-binding loop, Brenner's phosphotransferase motif, and choline kinase motif. Here, the open reading frames were cloned, expressed, and purified to apparent homogeneity. EhCK1 showed activity with choline but not ethanolamine. The biochemical characterization showed that it had a Vmax of 1.9 ± 0.1 µmol/min/mg. Its Km for choline and ATP was 203 ± 26 µM and 3.1 ± 0.4 mM, respectively. In contrast, EhCK2 enzymatic activity was only detected when Mn2+ was used as the co-factor instead of Mg2+ like other choline/ethanolamine kinases. Highly sensitive and specific antibody against EhCK1 was developed and used to confirm the endogenous EhCK1 expression using immunoblotting. CONCLUSIONS With the understanding of EhC/EK importance in phospholipid metabolism and their unique characteristic, EhC/EK could be a potential target for future anti-amoebiasis study.
Collapse
Affiliation(s)
- Chiat Han Chang
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Boon Huat Lim
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
2
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
3
|
Gaona-López C, Vazquez-Jimenez LK, Gonzalez-Gonzalez A, Delgado-Maldonado T, Ortiz-Pérez E, Nogueda-Torres B, Moreno-Rodríguez A, Vázquez K, Saavedra E, Rivera G. Advances in Protozoan Epigenetic Targets and Their Inhibitors for the Development of New Potential Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040543. [PMID: 37111300 PMCID: PMC10143871 DOI: 10.3390/ph16040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alonzo Gonzalez-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyrá Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Francisco Villa 20, General Escobedo 66054, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
4
|
Lozano-Mendoza J, Ramírez-Montiel F, Rangel-Serrano Á, Páramo-Pérez I, Mendoza-Macías CL, Saavedra-Salazar F, Franco B, Vargas-Maya N, Jeelani G, Saito-Nakano Y, Anaya-Velázquez F, Nozaki T, Padilla-Vaca F. Attenuation of In Vitro and In Vivo Virulence Is Associated with Repression of Gene Expression of AIG1 Gene in Entamoeba histolytica. Pathogens 2023; 12:pathogens12030489. [PMID: 36986411 PMCID: PMC10051847 DOI: 10.3390/pathogens12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Entamoeba histolytica virulence results from complex host-parasite interactions implicating multiple amoebic components (e.g., Gal/GalNAc lectin, cysteine proteinases, and amoebapores) and host factors (microbiota and immune response). UG10 is a strain derived from E. histolytica virulent HM-1:IMSS strain that has lost its virulence in vitro and in vivo as determined by a decrease of hemolytic, cytopathic, and cytotoxic activities, increased susceptibility to human complement, and its inability to form liver abscesses in hamsters. We compared the transcriptome of nonvirulent UG10 and its parental HM-1:IMSS strain. No differences in gene expression of the classical virulence factors were observed. Genes downregulated in the UG10 trophozoites encode for proteins that belong to small GTPases, such as Rab and AIG1. Several protein-coding genes, including iron-sulfur flavoproteins and heat shock protein 70, were also upregulated in UG10. Overexpression of the EhAIG1 gene (EHI_180390) in nonvirulent UG10 trophozoites resulted in augmented virulence in vitro and in vivo. Cocultivation of HM-1:IMSS with E. coli O55 bacteria cells reduced virulence in vitro, and the EhAIG1 gene expression was downregulated. In contrast, virulence was increased in the monoxenic strain UG10, and the EhAIG1 gene expression was upregulated. Therefore, the EhAIG1 gene (EHI_180390) represents a novel virulence determinant in E. histolytica.
Collapse
Affiliation(s)
- Janeth Lozano-Mendoza
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Fátima Ramírez-Montiel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Itzel Páramo-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | | | - Faridi Saavedra-Salazar
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Naurú Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Ghulam Jeelani
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-0052, Japan
| | - Fernando Anaya-Velázquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-0052, Japan
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
5
|
Sarid L, Ankri S. Are Metabolites From the Gut Microbiota Capable of Regulating Epigenetic Mechanisms in the Human Parasite Entamoeba histolytica? Front Cell Dev Biol 2022; 10:841586. [PMID: 35300430 PMCID: PMC8921869 DOI: 10.3389/fcell.2022.841586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica inhabits the human gut. It has to adapt to a complex environment that consists of the host microbiota, nutritional stress, oxidative stress, and nitrosative stress. Adaptation to this complex environment is vital for the survival of this parasite. Studies have shown that the host microbiota shapes virulence and stress adaptation in E. histolytica. Increasing evidence suggests that metabolites from the microbiota mediate communication between the parasite and microbiota. In this review, we discuss the bacterial metabolites that regulate epigenetic processes in E. histolytica and the implications that this knowledge may have for the development of new anti-amebic strategies.
Collapse
Affiliation(s)
- Lotem Sarid
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
6
|
Lozano-Amado D, Ávila-López PA, Hernández-Montes G, Briseño-Díaz P, Vargas M, Lopez-Rubio JJ, Carrero JC, Hernández-Rivas R. A class I histone deacetylase is implicated in the encystation of Entamoeba invadens. Int J Parasitol 2020; 50:1011-1022. [PMID: 32822677 DOI: 10.1016/j.ijpara.2020.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022]
Abstract
Epigenetic mechanisms such as histone acetylation and deacetylation participate in regulation of the genes involved in encystation of Entamoeba invadens. However, the histones and target residues involved, and whether the acetylation and deacetylation of the histones leads to the regulation of gene expression associated with the encystation of this parasite, remain unknown. In this study, we found that E. invadens histone H4 is acetylated in both stages of the parasite and is more highly acetylated during the trophozoite stage than in the cyst. Histone hyperacetylation induced by Trichostatin A negatively affects the encystation of E. invadens, and this inhibition is associated with the downregulation of the expression of genes implicated in the synthesis of chitin, polyamines, gamma-aminobutyric acid pathways and cyst wall proteins, all of which are important in the formation of cysts. Finally, in silico analysis and activity assays suggest that a class I histone deacetylase (EiHDAC3) could be involved in control of the expression of a subset of genes that are important in several pathways during encystation. Therefore, the identification of enzymes that acetylate and/or deacetylate histones that control encystation in E. invadens could be a promising therapeutic target for preventing transmission of other amoebic parasites such as E. histolytica, the causative agent of amoebiasis in humans.
Collapse
Affiliation(s)
- Daniela Lozano-Amado
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Pedro Antonio Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Georgina Hernández-Montes
- Coordinación de la Investigación Científica, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Paola Briseño-Díaz
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Miguel Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Jose-Juan Lopez-Rubio
- LPHI - Laboratory of Pathogen Host Interactions - UMR5235, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico.
| |
Collapse
|
7
|
Naiyer S, Bhattacharya A, Bhattacharya S. Advances in Entamoeba histolytica Biology Through Transcriptomic Analysis. Front Microbiol 2019; 10:1921. [PMID: 31481949 PMCID: PMC6710346 DOI: 10.3389/fmicb.2019.01921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
A large number of transcriptome-level studies in Entamoeba histolytica, the protozoan parasite that causes amoebiasis, have investigated gene expression patterns to help understand the pathology and biology of the organism. They have compared virulent and avirulent strains in lab culture and after tissue invasion, cells grown under different stress conditions, response to anti-amoebic drug treatments, and gene expression changes during the process of encystation. These studies have revealed interesting molecules/pathways that will help increase our mechanistic understanding of differentially expressed genes during growth perturbations and tissue invasion. Some of the important insights obtained from transcriptome studies include the observations that regulation of carbohydrate metabolism may be an important determinant for tissue invasion, while the novel up-regulated genes during encystation include phospholipase D, and meiotic genes, suggesting the possibility of meiosis during the process. Classification of genes according to expression levels showed that amongst the highly transcribed genes in cultured E. histolytica trophozoites were some virulence factors, raising the question of the role of these factors in normal parasite growth. Promoter motifs associated with differential gene expression and regulation were identified. Some of these motifs associated with high gene expression were located downstream of start codon, and were required for efficient transcription. The listing of E. histolytica genes according to transcript expression levels will help us determine the scale of post-transcriptional regulation, and the possible roles of predicted promoter motifs. The small RNA transcriptome is a valuable resource for detailed structural and functional analysis of these molecules and their regulatory roles. These studies provide new drug targets and enhance our understanding of gene regulation in E. histolytica.
Collapse
Affiliation(s)
- Sarah Naiyer
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Trichostatin A induces Trypanosoma cruzi histone and tubulin acetylation: effects on cell division and microtubule cytoskeleton remodelling. Parasitology 2018; 146:543-552. [PMID: 30421693 DOI: 10.1017/s0031182018001828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.
Collapse
|
9
|
Matthiesen J, Lender C, Haferkorn A, Fehling H, Meyer M, Matthies T, Tannich E, Roeder T, Lotter H, Bruchhaus I. Trigger-induced RNAi gene silencing to identify pathogenicity factors of Entamoeba histolytica. FASEB J 2018; 33:1658-1668. [PMID: 30169111 DOI: 10.1096/fj.201801313r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Recently, Entamoeba histolytica clones derived from isolate HM-1:IMSS that differ in their pathogenicity were identified. Whereas some clones induce amoebic liver abscesses (ALAs) in animal models of amoebiasis, others provoke only minimal liver lesions. Based on transcriptome studies of pathogenic and nonpathogenic clones, differentially expressed genes associated with reduced or increased liver pathology can be identified. Here, to analyze the influence of these genes on ALA formation in more detail, an RNA interference-trigger mediated silencing approach was used. Using newly identified trigger sequences, the expression of 15 genes was silenced. The respective transfectants were analyzed for their ability to induce liver destruction in the murine model for the disease. Silencing of EHI_180390 (encoding an AIG1 protein) increased liver pathology induced by a nonpathogenic parent clone, whereas silencing of EHI_127670 (encoding a hypothetical protein) decreased the pathogenicity of an initially pathogenic parent clone. Additional phenotypical in vitro analyses of EHI_127670 silencing as well as overexpression transfectants indicated that this molecule has an influence on size, growth, and cysteine peptidase activity of E. histolytica. This work describes an example of how the sole operational method for effective gene silencing in E. histolytica can be used for comprehensive analyses of putative pathogenicity factors.-Matthiesen, J., Lender, C., Haferkorn, A., Fehling, H., Meyer, M., Matthies, T., Tannich, E., Roeder, T., Lotter, H., Bruchhaus, I. Trigger-induced RNAi gene silencing to identify pathogenicity factors of Entamoeba histolytica.
Collapse
Affiliation(s)
- Jenny Matthiesen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Corinna Lender
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Anne Haferkorn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Helena Fehling
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Martin Meyer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Thorben Matthies
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Thomas Roeder
- Molecular Physiology Department, Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Hannelore Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| |
Collapse
|
10
|
Pachano T, Nievas YR, Lizarraga A, Johnson PJ, Strobl-Mazzulla PH, de Miguel N. Epigenetics regulates transcription and pathogenesis in the parasite Trichomonas vaginalis. Cell Microbiol 2017; 19:e12716. [PMID: 28054438 DOI: 10.1111/cmi.12716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2016] [Revised: 11/14/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Different T. vaginalis strains vary greatly in their adherence and cytolytic capacities. These phenotypic differences might be attributed to differentially expressed genes as a consequence of extra-genetic variation, such as epigenetic modifications. In this study, we explored the role of histone acetylation in regulating gene transcription and pathogenesis in T. vaginalis. Here, we show that histone 3 lysine acetylation (H3KAc) is enriched in nucleosomes positioned around the transcription start site of active genes (BAP1 and BAP2) in a highly adherent parasite strain; compared with the low acetylation abundance in contrast to that observed in a less-adherent strain that expresses these genes at low levels. Additionally, exposition of less-adherent strain with a specific histone deacetylases inhibitor, trichostatin A, upregulated the transcription of BAP1 and BAP2 genes in concomitance with an increase in H3KAc abundance and chromatin accessibility around their transcription start sites. Moreover, we demonstrated that the binding of initiator binding protein, the transcription factor responsible for the initiation of transcription of ~75% of known T. vaginalis genes, depends on the histone acetylation state around the metazoan-like initiator to which initiator binding protein binds. Finally, we found that trichostatin A treatment increased parasite aggregation and adherence to host cells. Our data demonstrated for the first time that H3KAc is a permissive histone modification that functions to mediate both transcription and pathogenesis of the parasite T. vaginalis.
Collapse
Affiliation(s)
- Tomas Pachano
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Yesica R Nievas
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Ayelen Lizarraga
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Patricia J Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Pablo H Strobl-Mazzulla
- Laboratorio de Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Argentina
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Argentina
| |
Collapse
|
11
|
Song MJ, Kim M, Choi Y, Yi MH, Kim J, Park SJ, Yong TS, Kim HP. Epigenome mapping highlights chromatin-mediated gene regulation in the protozoan parasite Trichomonas vaginalis. Sci Rep 2017; 7:45365. [PMID: 28345651 PMCID: PMC5366954 DOI: 10.1038/srep45365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Trichomonas vaginalis is an extracellular flagellated protozoan parasite that causes trichomoniasis, one of the most common non-viral sexually transmitted diseases. To survive and to maintain infection, T. vaginalis adapts to a hostile host environment by regulating gene expression. However, the mechanisms of transcriptional regulation are poorly understood for this parasite. Histone modification has a marked effect on chromatin structure and directs the recruitment of transcriptional machinery, thereby regulating essential cellular processes. In this study, we aimed to outline modes of chromatin-mediated gene regulation in T. vaginalis. Inhibition of histone deacetylase (HDAC) alters global transcriptional responses and induces hyperacetylation of histones and hypermethylation of H3K4. Analysis of the genome of T. vaginalis revealed that a number of enzymes regulate histone modification, suggesting that epigenetic mechanisms are important to controlling gene expression in this organism. Additionally, we describe the genome-wide localization of two histone H3 modifications (H3K4me3 and H3K27Ac), which we found to be positively associated with active gene expression in both steady and dynamic transcriptional states. These results provide the first direct evidence that histone modifications play an essential role in transcriptional regulation of T. vaginalis, and may help guide future epigenetic research into therapeutic intervention strategies against this parasite.
Collapse
Affiliation(s)
- Min-Ji Song
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Mikyoung Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yeeun Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Juri Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul, 03722, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| |
Collapse
|
12
|
Comparative effects of histone deacetylases inhibitors and resveratrol on Trypanosoma cruzi replication, differentiation, infectivity and gene expression. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 7:23-33. [PMID: 28038431 PMCID: PMC5199159 DOI: 10.1016/j.ijpddr.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/24/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
Abstract
Histone post-translational modification, mediated by histone acetyltransferases and deacetylases, is one of the most studied factors affecting gene expression. Recent data showing differential histone acetylation states during the Trypanosoma cruzi cell cycle suggest a role for epigenetics in the control of this process. As a starting point to study the role of histone deacetylases in the control of gene expression and the consequences of their inhibition and activation in the biology of T. cruzi, two inhibitors for different histone deacetylases: trichostatin A for class I/II and sirtinol for class III and the activator resveratrol for class III, were tested on proliferative and infective forms of this parasite. The two inhibitors tested caused histone hyperacetylation whereas resveratrol showed the opposite effect on both parasite forms, indicating that a biologically active in vivo level of these compounds was achieved. Histone deacetylase inhibitors caused life stage-specific effects, increasing trypomastigotes infectivity and blocking metacyclogenesis. Moreover, these inhibitors affected specific transcript levels, with sirtinol causing the most pronounced change. On the other hand, resveratrol showed strong anti-parasitic effects. This compound diminished epimastigotes growth, promoted metacyclogenesis, reduced in vitro infection and blocked differentiation and/or replication of intracellular amastigotes. In conclusion, the data presented here supports the notion that these compounds can modulate T. cruzi gene expression, differentiation, infection and histones deacetylase activity. Furthermore, among the compounds tested in this study, the results point to Resveratrol as promising trypanocidal drug candidate. HDACis and resveratrol caused opposite changes on histones acetylation. HDACis and resveratrol affected parasites metacyclogenesis, growth and infection. Different HDACis caused opposite effects on transcript levels.
Collapse
|
13
|
Fneich S, Théron A, Cosseau C, Rognon A, Aliaga B, Buard J, Duval D, Arancibia N, Boissier J, Roquis D, Mitta G, Grunau C. Epigenetic origin of adaptive phenotypic variants in the human blood fluke Schistosoma mansoni. Epigenetics Chromatin 2016; 9:27. [PMID: 27379173 PMCID: PMC4931705 DOI: 10.1186/s13072-016-0076-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2016] [Accepted: 06/24/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Adaptive evolution is not possible without the generation of phenotypic variants. The origin of these variations has been a central topic in evolutionary biology. Up to now, it was commonly accepted that standing genetic variation is the only cause of phenotypic variants. However, epigenetic information is emerging as a complementary source of heritable phenotypic variation that contributes to evolution. The relative importance of genetics and epigenetics in generating heritable phenotypic variation is nevertheless a matter of debate. RESULTS We used a host-parasite system to address this question. The human blood fluke Schistosoma mansoni can adapt rapidly to new intermediate snail hosts. The interaction between parasite and mollusk is characterized by a compatibility polymorphism illustrating the evolutionary dynamics in this system. The principal molecular marker for compatibility (infection success) is the expression pattern of a group of polymorphic mucins (SmPoMuc) in the parasite. We show here that chromatin structure changes as the SmPoMuc promoters are the cause for SmPoMuc transcription polymorphism leading to phenotypic novelty and increase in infection success, i.e., fitness. CONCLUSION We establish that epigenetic changes can be the major if not only cause of adaptive phenotypic variants in Schistosoma mansoni, suggesting that epimutations can provide material for adaptive evolution in the absence of genetic variation in other systems. In addition, our results indicate that epidrugs can be used to control parasite development but also parasite evolution.
Collapse
Affiliation(s)
- Sara Fneich
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
- />UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - André Théron
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Céline Cosseau
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Anne Rognon
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Benoit Aliaga
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Jérôme Buard
- />CNRS, UPR1142, Institut de Génétique Humain (IGH), 34396 Montpellier, France
| | - David Duval
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Nathalie Arancibia
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Jérôme Boissier
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - David Roquis
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
- />Technical University of Munich (TUM), Liesel-Beckmann-Str. 2, 85354 Freising, Germany
| | - Guillaume Mitta
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Christoph Grunau
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| |
Collapse
|
14
|
Khalil MI, Foda BM, Suresh S, Singh U. Technical advances in trigger-induced RNA interference gene silencing in the parasite Entamoeba histolytica. Int J Parasitol 2016; 46:205-212. [PMID: 26747561 PMCID: PMC4767557 DOI: 10.1016/j.ijpara.2015.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023]
Abstract
Entamoeba histolytica has a robust endogenous RNA interference (RNAi) pathway. There are abundant 27 nucleotide (nt) anti-sense small RNAs (AS sRNAs) that target genes for silencing and the genome encodes many genes involved in the RNAi pathway such as Argonaute proteins. Importantly, an E. histolytica gene with numerous AS sRNAs can function as a "trigger" to induce silencing of a gene that is fused to the trigger. Thus, the amebic RNAi pathway regulates gene expression relevant to amebic biology and has additionally been harnessed as a tool for genetic manipulation. In this study we have further improved the trigger-induced gene silencing method. We demonstrate that rather than using the full-length gene, a short portion of the coding region fused to a trigger is sufficient to induce silencing; the first 537 bp of the E. histolytica rhomboid gene (EhROM1) fused in-frame to the trigger was sufficient to silence EhROM1. We also demonstrated that the trigger method could silence two amebic genes concomitantly; fusion of the coding regions of EhROM1 and transcription factor, EhMyb, in-frame to a trigger gene resulted in both genes being silenced. Alternatively, two genes can be silenced sequentially: EhROM1-silenced parasites with no drug selection plasmid were transfected with trigger-EhMyb, resulting in parasites with both EhROM1 and EhMyb silenced. With all approaches tested, the trigger-mediated silencing was substantive and silencing was maintained despite loss of the G418 selectable marker. All gene silencing was associated with generation of AS sRNAs to the silenced gene. We tested the reversibility of the trigger system using inhibitors of histone modifications but found that the silencing was highly stable. This work represents a technical advance in the trigger gene silencing method in E. histolytica. Approaches that readily silence multiple genes add significantly to the genetic toolkit available to the ameba research community.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Department of Internal Medicine, Division of Infectious Disease, Stanford University, Stanford, CA 94305, USA; Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Bardees M Foda
- Department of Internal Medicine, Division of Infectious Disease, Stanford University, Stanford, CA 94305, USA; Department of Molecular Genetics and Enzymology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Susmitha Suresh
- Department of Internal Medicine, Division of Infectious Disease, Stanford University, Stanford, CA 94305, USA
| | - Upinder Singh
- Department of Internal Medicine, Division of Infectious Disease, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Koushik AB, Welter BH, Rock ML, Temesvari LA. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica. EUKARYOTIC CELL 2014; 13:401-11. [PMID: 24442890 PMCID: PMC3957588 DOI: 10.1128/ec.00329-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 11/20/2022]
Abstract
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen.
Collapse
Affiliation(s)
- Amrita B. Koushik
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Brenda H. Welter
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Michelle L. Rock
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Lesly A. Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
16
|
Exposure to histone deacetylase inhibitors during Pavlovian conditioning enhances subsequent cue-induced reinstatement of operant behavior. Behav Pharmacol 2013; 24:164-71. [PMID: 23604166 DOI: 10.1097/fbp.0b013e32836104ea] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) strengthen memory following fear conditioning and cocaine-induced conditioned place preference. Here, we examined the effects of two nonspecific HDACIs, valproic acid (VPA) and sodium butyrate (NaB), on appetitive learning measured by conditioned stimulus (CS)-induced reinstatement of operant responding. Rats were trained to lever press for food reinforcement and then injected with VPA (50-200 mg/kg, i.p.), NaB (250-1000 mg/kg, i.p.), or saline vehicle (1.0 ml/kg), 2 h before receiving pairings of noncontingent presentation of food pellets preceded by a tone+light cue CS. Rats next underwent extinction of operant responding followed by response-contingent re-exposure to the CS. Rats receiving VPA (100 mg/kg) or NaB (1000 mg/kg) before conditioning displayed significantly higher cue-induced reinstatement than did saline controls. Rats that received either vehicle or VPA (100 mg/kg) before a conditioning session with a randomized relation between presentation of food pellets and the CS failed to show subsequent cue-induced reinstatement with no difference between the two groups. These findings indicate that, under certain contexts, HDACIs strengthen memory formation by specifically increasing the associative strength of the CS, not through an increasing motivation to seek reinforcement.
Collapse
|
17
|
Morf L, Pearson RJ, Wang AS, Singh U. Robust gene silencing mediated by antisense small RNAs in the pathogenic protist Entamoeba histolytica. Nucleic Acids Res 2013; 41:9424-37. [PMID: 23935116 PMCID: PMC3814356 DOI: 10.1093/nar/gkt717] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
RNA interference uses small RNAs (sRNA), which target genes for sequence-specific silencing. The parasite Entamoeba histolytica contains an abundant repertoire of 27 nt antisense (AS) sRNA with 5′-polyphosphate termini, but their roles in regulating gene expression have not been well established. We demonstrate that a gene-coding region to which large numbers of AS sRNAs map can serve as a ‘trigger’ and silence the gene fused to it. Silencing is mediated by generation of AS sRNAs with 5′-polyphosphate termini that have sequence specificity to the fused gene. The mechanism of silencing is independent of the placement of the trigger relative to the silenced gene but is dependent on the sRNA concentration to the trigger. Silencing requires transcription of the trigger-gene fusion and is maintained despite loss of the trigger plasmid. We used this approach to silence multiple amebic genes, including an E. histolytica Myb gene, which is upregulated during oxidative stress response. Silencing of the EhMyb gene decreased parasite viability under oxidative stress conditions. Thus, we have developed a new tool for genetic manipulation in E. histolytica with many advantages over currently available technologies. Additionally, these data shed mechanistic insights into a eukaryotic RNA interference pathway with many novel aspects.
Collapse
Affiliation(s)
- Laura Morf
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305-5107, USA and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5107, USA
| | | | | | | |
Collapse
|
18
|
Mocquard-Bucher E, Galvani A, Thiriet C. Histone H4 acetylation links nucleosome turnover and nucleosome assembly: lessons from the slime moldPhysarum polycephalum. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.848241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
|
19
|
Zhang H, Ehrenkaufer GM, Hall N, Singh U. Small RNA pyrosequencing in the protozoan parasite Entamoeba histolytica reveals strain-specific small RNAs that target virulence genes. BMC Genomics 2013; 14:53. [PMID: 23347563 PMCID: PMC3610107 DOI: 10.1186/1471-2164-14-53] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2012] [Accepted: 01/02/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Small RNA mediated gene silencing is a well-conserved regulatory pathway. In the parasite Entamoeba histolytica an endogenous RNAi pathway exists, however, the depth and diversity of the small RNA population remains unknown. RESULTS To characterize the small RNA population that associates with E. histolytica Argonaute-2 (EhAGO2-2), we immunoprecipitated small RNAs that associate with it and performed one full pyrosequencing run. Data analysis revealed new features of the 27nt small RNAs including the 5'-G predominance, distinct small RNA distribution patterns on protein coding genes, small RNAs mapping to both introns and exon-exon junctions, and small RNA targeted genes that are clustered particularly in sections of genome duplication. Characterization of genomic loci to which both sense and antisense small RNAs mapped showed that both sets of small RNAs have 5'-polyphosphate termini; strand-specific RT-PCR detected transcripts in both directions at these loci suggesting that both transcripts may serve as template for small RNA generation. In order to determine whether small RNA abundance patterns account for strain-specific gene expression profiles of E. histolytica virulent and non-virulent strains, we sequenced small RNAs from a non-virulent strain and found that small RNAs mapped to genes in a manner consistent with their regulation of strain-specific virulence genes. CONCLUSIONS We provided a full spectrum analysis for E. histolytica AGO2-2 associated 27nt small RNAs. Additionally, comparative analysis of small RNA populations from virulent and non-virulent amebic strains indicates that small RNA populations may regulate virulence genes.
Collapse
Affiliation(s)
- Hanbang Zhang
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305-5107, USA
| | | | | | | |
Collapse
|
20
|
A genome-wide over-expression screen identifies genes involved in phagocytosis in the human protozoan parasite, Entamoeba histolytica. PLoS One 2012; 7:e43025. [PMID: 22905196 PMCID: PMC3419234 DOI: 10.1371/journal.pone.0043025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2012] [Accepted: 07/16/2012] [Indexed: 11/23/2022] Open
Abstract
Functional genomics and forward genetics seek to assign function to all known genes in a genome. Entamoeba histolytica is a protozoan parasite for which forward genetics approaches have not been extensively applied. It is the causative agent of amoebic dysentery and liver abscess, and infection is prevalent in developing countries that cannot prevent its fecal-oral spread. It is responsible for considerable global morbidity and mortality. Given that the E. histolytica genome has been sequenced, it should be possible to apply genomic approaches to discover gene function. We used a genome-wide over-expression screen to uncover genes regulating an important virulence function of E. histolytica, namely phagocytosis. We developed an episomal E. histolytica cDNA over-expression library, transfected the collection of plasmids into trophozoites, and applied a high-throughput screen to identify phagocytosis mutants in the population of over-expressing cells. The screen was based on the phagocytic uptake of human red blood cells loaded with the metabolic toxin, tubercidin. Expression plasmids were isolated from trophozoites that survived exposure to tubercidin-charged erythrocytes (phagocytosis mutants), and the cDNAs were sequenced. We isolated the gene encoding profilin, a well-characterized cytoskeleton-regulating protein with a known role in phagocytosis. This supports the validity of our approach. Furthermore, we assigned a phagocytic role to several genes not previously known to function in this manner. To our knowledge, this is the first genome-wide forward genetics screen to be applied to this pathogen. The study demonstrates the power of forward genetics in revealing genes regulating virulence in E. histolytica. In addition, the study validates an E. histolytica cDNA over-expression library as a valuable tool for functional genomics.
Collapse
|
21
|
A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica. EUKARYOTIC CELL 2012; 11:1112-8. [PMID: 22798391 DOI: 10.1128/ec.00149-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.
Collapse
|
22
|
Niller HH, Banati F, Ay E, Minarovits J. Microbe-Induced Epigenetic Alterations. PATHO-EPIGENETICS OF DISEASE 2012:419-455. [DOI: 10.1007/978-1-4614-3345-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|
23
|
Abstract
Amoebiasis is a serious infectious disease that is caused by the unicellular parasite, Entamoeba histolytica. This parasite is mainly found in developing countries, and are named owing to its ability to destroy tissues. The molecular mechanisms that regulate the virulence of this parasite are not well understood. In recent years, an increasing interest in the epigenetic regulation of the parasite's virulence has emerged. In this article, an overview of our current knowledge about the role of DNA methylation, histone modifications and RNA-associated silencing in the biology of E. histolytica is provided. The relevance of some features of the parasite's unique epigenetic machinery to the development of new antiamoebic therapeutic molecules is discussed.
Collapse
Affiliation(s)
- Ayala Tovy
- Department of Microbiology, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology & the Rappaport Institute, Haifa, Israel
| | | |
Collapse
|
24
|
Pearson RJ, Singh U. Approaches to characterizing Entamoeba histolytica transcriptional regulation. Cell Microbiol 2010; 12:1681-90. [DOI: 10.1111/j.1462-5822.2010.01524.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
25
|
Meneses E, Cárdenas H, Zárate S, Brieba LG, Orozco E, López-Camarillo C, Azuara-Liceaga E. The R2R3 Myb protein family in Entamoeba histolytica. Gene 2010; 455:32-42. [DOI: 10.1016/j.gene.2010.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 11/16/2022]
|
26
|
Sonda S, Morf L, Bottova I, Baetschmann H, Rehrauer H, Caflisch A, Hakimi MA, Hehl AB. Epigenetic mechanisms regulate stage differentiation in the minimized protozoan Giardia lamblia. Mol Microbiol 2010; 76:48-67. [PMID: 20132448 DOI: 10.1111/j.1365-2958.2010.07062.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
Histone modification is an important mechanism regulating both gene expression and the establishment and maintenance of cellular phenotypes during development. Regulation of histone acetylation via histone acetylases and deacetylases (HDACs) appears to be particularly crucial in determining gene expression patterns. In this study we explored the effect of HDAC inhibition on the life cycle of the human pathogen Giardia lamblia, a highly reduced parasitic protozoan characterized by minimized cellular processes. We found that the HDAC inhibitor FR235222 increased the level of histone acetylation and induced transcriptional regulation of approximately 2% of genes in proliferating and encysting parasites. In addition, our analyses showed that the levels of histone acetylation decreased during differentiation into cysts, the infective stage of the parasite. Importantly, FR235222 treatment during encystation reversed this histone hypo-acetylation and potently blocked the formation of cysts. These results provide the first direct evidence for epigenetic regulation of gene expression in this simple eukaryote. This suggests that regulation of histone acetylation is involved in the control of Giardia stage differentiation, and identifies epigenetic mechanisms as a promising target to prevent Giardia transmission.
Collapse
Affiliation(s)
- Sabrina Sonda
- Institute of Parasitology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sawarkar R, Visweswariah SS, Nellen W, Nanjundiah V. Histone deacetylases regulate multicellular development in the social amoeba Dictyostelium discoideum. J Mol Biol 2009; 391:833-48. [PMID: 19576222 DOI: 10.1016/j.jmb.2009.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2009] [Revised: 06/18/2009] [Accepted: 06/25/2009] [Indexed: 11/29/2022]
Abstract
Epigenetic modifications of histones regulate gene expression and lead to the establishment and maintenance of cellular phenotypes during development. Histone acetylation depends on a balance between the activities of histone acetyltransferases and histone deacetylases (HDACs) and influences transcriptional regulation. In this study, we analyse the roles of HDACs during growth and development of one of the cellular slime moulds, the social amoeba Dictyostelium discoideum. The inhibition of HDAC activity by trichostatin A results in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations are normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes is delayed. Bioinformatic analysis indicates that there are four genes encoding putative HDACs in D. discoideum. Using biochemical, genetic and developmental approaches, we demonstrate that one of these four genes, hdaB, is dispensable for growth and development under laboratory conditions. A knockout of the hdaB gene results in a social context-dependent phenotype: hdaB(-) cells develop normally but sporulate less efficiently than the wild type in chimeras. We infer that HDAC activity is important for regulating the timing of gene expression during the development of D. discoideum and for defining aspects of the phenotype that mediate social behaviour in genetically heterogeneous groups.
Collapse
Affiliation(s)
- Ritwick Sawarkar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | | | | | | |
Collapse
|
28
|
Shao GB, Ding HM, Gao WL, Li SH, Wu CF, Xu YX, Liu HL. Effect of trychostatin A treatment on gene expression in cloned mouse embryos. Theriogenology 2009; 71:1245-52. [PMID: 19246084 DOI: 10.1016/j.theriogenology.2009.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 12/16/2022]
Abstract
Histone deacetylation occurs upon the transfer of somatic nuclei into enucleated oocytes, but its role in reprogramming somatic chromatin to the totipotent state is unknown. To investigate the importance of histone deacetylation in reprogramming, we constructed embryos by electrofusing breast cancer cells with enucleated mouse oocytes. The reconstructed embryos were then cultured before and/or after activation for 6h in the presence of trychostatin A (TSA), a potent inhibitor of histone deacetylase. Total RNA was isolated from these TSA-treated and untreated embryos and real-time reverse transcription PCR was conducted to monitor transcription of ErbB2, Muc1, eIF-4C, MuERV-L, and c-mos genes. The nuclear-cytoplasmic interaction inhibited typical expression of ErbB2 and Muc1 in the somatic cells. Moreover, the inhibition of histone deacetylation prior to activation did not increase the levels of eIF-4C, MuERV-L, and c-mos expression in the nuclear transfer (NT) embryos (P>0.05), whereas additional treatment with 100nM TSA beyond the activation point improved expression of these genes (P<0.05). Trychostatin A treatment also improved the development rates of NT embryos at the 2-cell, 4-cell, and blastocyst stages (78.6% vs. 90.2%, 45.2% vs. 68.9%, and 16.7% vs. 30.3%, respectively, P<0.05). We hypothesized that the reprogramming of gene expression in NT embryos is independent of somatic histone deacetylation, and that hyperacetylation may have a positive effect on NT embryo development.
Collapse
Affiliation(s)
- G-B Shao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Ehrenkaufer GM, Hackney JA, Singh U. A developmentally regulated Myb domain protein regulates expression of a subset of stage-specific genes in Entamoeba histolytica. Cell Microbiol 2009; 11:898-910. [PMID: 19239479 DOI: 10.1111/j.1462-5822.2009.01300.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
Conversion between a cyst and trophozoite stage is essential to disease transmission and pathogenesis in the parasitic protist Entamoeba histolytica. A transcriptomic analysis of E. histolytica cysts and trophozoites has recently been accomplished, but the molecular basis of the regulation of encystation is not known. We have now identified a developmentally regulated Myb protein (belonging to the SHAQKY family of Myb proteins), which controls expression of a subset of amoebic stage-specific genes. Overexpression of the nuclear localized Myb protein resulted in a transcriptome that overlapped significantly with the expression profile of amoebic cysts. Analysis of promoters from genes regulated by the Myb protein identified a CCCCCC promoter motif to which amoebic nuclear protein(s) bind in a sequence-specific manner. Chromatin immunoprecipitation demonstrated that the E. histolytica Myb protein binds to promoters of genes which contain the CCCCCC motif and which are regulated by the Myb protein. This work is the first identification of a transcription factor, which regulates expression of a subset of stage-specific genes in E. histolytica. Identification of transcriptional regulatory networks that control developmental pathways will provide novel insights into the biology of this important human pathogen.
Collapse
Affiliation(s)
- Gretchen M Ehrenkaufer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5107, USA
| | | | | |
Collapse
|
30
|
Gilchrist CA, Petri WA. Using differential gene expression to study Entamoeba histolytica pathogenesis. Trends Parasitol 2009; 25:124-31. [PMID: 19217826 DOI: 10.1016/j.pt.2008.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2008] [Revised: 11/26/2008] [Accepted: 12/04/2008] [Indexed: 12/18/2022]
Abstract
The release of the Entamoeba histolytica genome has facilitated the development of techniques to survey rapidly and to relate gene expression with biology. The association and potential contribution of differential gene expression to the life cycle and the virulence of this protozoan parasite of humans are reviewed here.
Collapse
Affiliation(s)
- Carol A Gilchrist
- Division of Infectious Diseases and International Health, Departments of Medicine, Microbiology and Pathology, University of Virginia, PO Box 801340, Charlottesville, VA 22908-1340, USA
| | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Entamoeba histolytica is an important global pathogen and a leading cause of parasitic death worldwide. This article summarizes significant research findings over the last year. RECENT FINDINGS Efforts have focused primarily on identification of novel virulence determinants in E. histolytica, transcriptional profiling during tissue invasion and stage conversion, and characterization of basic cell biological processes. Additionally, new techniques for gene silencing have been identified. SUMMARY A comprehensive examination of the parasite lifestyle on a whole genome level has been undertaken, allowing identification of new virulence genes and signaling pathways and processes relevant to amebic biology.
Collapse
|
32
|
Recent insights into Entamoeba development: identification of transcriptional networks associated with stage conversion. Int J Parasitol 2008; 39:41-7. [PMID: 18938171 DOI: 10.1016/j.ijpara.2008.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2008] [Accepted: 09/04/2008] [Indexed: 12/11/2022]
Abstract
Entamoeba histolytica is an important human pathogen and a leading parasitic cause of death globally. The parasite life cycle alternates between the trophozoite form, which is motile and causes invasive disease and the cyst stage, which is environmentally resistant and transmits infection. Understanding the triggers that initiate stage conversion is an important yet understudied area of investigation. Recent progress in dissecting the transcriptional networks that regulate E. histolytica development is outlined in this paper.
Collapse
|
33
|
Development of the Gateway system for cloning and expressing genes in Entamoeba histolytica. Parasitol Int 2008; 58:95-7. [PMID: 18822389 DOI: 10.1016/j.parint.2008.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 11/22/2022]
Abstract
The early branching eukaryote Entamoeba histolytica is a human parasite that is the etiologic agent of amebic dysentery and liver abscess. The sequencing of the E. histolytica genome combined with the development of an E. histolytica microarray has resulted in the identification of several distinct gene expression profiles associated with virulence. The function of many modulated transcripts is unknown and their role in pathogenicity is unclear. They however represent a pool of potential virulence factors that could be targets for the development of novel therapeutics. Efficient tools and methods to characterize these novel virulence-associated genes and proteins would be beneficial. Here we report the use of the Gateway((R)) cloning system to generate the E. histolytica expression vector pAH-DEST. To test the usefulness of this system, the vector was used to construct a plasmid containing a recombinant version of the locus EHI_144490, which encoded a protein of unknown function. The recombinant gene was expressed and the recombinant protein, which was strep-myc-tagged, showed a cytoplasmic localization in transfected trophozoites. This expression vector with the Gateway((R)) system should facilitate investigation into the functions of novel proteins in E. histolytica.
Collapse
|
34
|
Targets of the Entamoeba histolytica transcription factor URE3-BP. PLoS Negl Trop Dis 2008; 2:e282. [PMID: 18846235 PMCID: PMC2565699 DOI: 10.1371/journal.pntd.0000282] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2008] [Accepted: 07/30/2008] [Indexed: 11/19/2022] Open
Abstract
The Entamoeba histolytica transcription factor Upstream Regulatory Element 3-Binding Protein (URE3-BP) is a calcium-responsive regulator of two E. histolytica virulence genes, hgl5 and fdx1. URE3-BP was previously identified by a yeast one-hybrid screen of E. histolytica proteins capable of binding to the sequence TATTCTATT (Upstream Regulatory Element 3 (URE3)) in the promoter regions of hgl5 and fdx1. In this work, precise definition of the consensus URE3 element was performed by electrophoretic mobility shift assays (EMSA) using base-substituted oligonucleotides, and the consensus motif validated using episomal reporter constructs. Transcriptome profiling of a strain induced to produce a dominant-positive URE3-BP was then used to identify additional genes regulated by URE3-BP. Fifty modulated transcripts were identified, and of these the EMSA defined motif T[atg]T[tc][cg]T[at][tgc][tg] was found in over half of the promoters (54% p<0.0001). Fifteen of the URE3-BP regulated genes were potential membrane proteins, suggesting that one function of URE3-BP is to remodel the surface of E. histolytica in response to a calcium signal. Induction of URE3-BP leads to an increase in tranwell migration, suggesting a possible role in the regulation of cellular motility.
Collapse
|
35
|
Characterization of an Entamoeba histolytica high-mobility-group box protein induced during intestinal infection. EUKARYOTIC CELL 2008; 7:1565-72. [PMID: 18658254 DOI: 10.1128/ec.00123-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Abstract
The unicellular eukaryote Entamoeba histolytica is a human parasite that causes amebic dysentery and liver abscess. A genome-wide analysis of gene expression modulated by intestinal colonization and invasion identified an upregulated transcript that encoded a putative high-mobility-group box (HMGB) protein, EhHMGB1. We tested if EhHMGB1 encoded a functional HMGB protein and determined its role in control of parasite gene expression. Recombinant EhHMGB1 was able to bend DNA in vitro, a characteristic of HMGB proteins. Core conserved residues required for DNA bending activity in other HMGB proteins were demonstrated by mutational analysis to be essential for EhHMGB1 activity. EhHMGB1 was also able to enhance the binding of human p53 to its cognate DNA sequence in vitro, which is expected for an HMGB1 protein. Confocal microscopy, using antibodies against the recombinant protein, confirmed its nuclear localization. Overexpression of EhHMGB1 in HM1:IMSS trophozoites led to modulation of 33 transcripts involved in a variety of cellular functions. Of these, 20 were also modulated at either day 1 or day 29 in the mouse model of intestinal amebiasis. Notably, four transcripts with known roles in virulence, including two encoding Gal/GalNAc lectin light chains, were modulated in response to EhHMGB1 overexpression. We concluded that EhHMGB1 was a bona fide HMGB protein with the capacity to recapitulate part of the modulation of parasite gene expression seen during adaptation to the host intestine.
Collapse
|
36
|
MacFarlane RC, Singh U. Loss of dsRNA-based gene silencing in Entamoeba histolytica: implications for approaches to genetic analysis. Exp Parasitol 2008; 119:296-300. [PMID: 18346737 DOI: 10.1016/j.exppara.2008.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2007] [Revised: 01/29/2008] [Accepted: 02/01/2008] [Indexed: 11/29/2022]
Abstract
The ability to regulate gene expression in the protozoan parasite Entamoeba histolytica is critical in determining gene function. We previously published that expression of dsRNA specific to E. histolytica serine threonine isoleucine rich protein (EhSTIRP) resulted in reduction of gene expression [MacFarlane, R.C., Singh, U., 2007. Identification of an Entamoeba histolytica serine, threonine, isoleucine, rich protein with roles in adhesion and cytotoxicity. Eukaryotic Cell 6, 2139-2146]. However, after approximately one year of continuous drug selection, the expression of EhSTIRP reverted to wild-type levels. We confirmed that the parasites (i) contained the appropriate dsRNA plasmid, (ii) were not contaminated with other plasmids, (iii) the drug selectable marker was functional, and (iv) sequenced the dsRNA portion of the construct. This work suggests that in E. histolytica long term cultivation of parasites expressing dsRNA can lead to the loss of dsRNA based silencing through the selection of "RNAi" negative parasites. Thus, users of the dsRNA silencing approach should proceed with caution and regularly confirm gene down regulation. The development and use of constructs for inducible expression of dsRNA may help alleviate this potential problem.
Collapse
Affiliation(s)
- Ryan C MacFarlane
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | | |
Collapse
|
37
|
MacFarlane RC, Singh U. Identification of an Entamoeba histolytica serine-, threonine-, and isoleucine-rich protein with roles in adhesion and cytotoxicity. EUKARYOTIC CELL 2007; 6:2139-46. [PMID: 17827347 PMCID: PMC2168410 DOI: 10.1128/ec.00174-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Entamoeba histolytica is a leading cause of parasitic death globally. However, the molecular framework regulating pathogenesis is poorly understood. We have previously used expression profiling to identify Entamoeba genes whose expressions were strictly associated with virulent strains (R. C. MacFarlane and U. Singh, Infect. Immun. 74:340-351, 2006). One gene, which we have named EhSTIRP (Entamoeba histolytica serine-, threonine-, and isoleucine-rich protein), was exclusively expressed in virulent but not in nonvirulent Entamoeba strains. EhSTIRP is predicted to be a transmembrane protein and is encoded by a multigene family. In order to characterize its function in amebic biology, we used a double-stranded RNA-based approach and were able to selectively down-regulate expression of this gene family. Upon EhSTIRP down-regulation, we were able to ascribe cytotoxic and adhesive properties to the protein family using lactate dehydrogenase release and Chinese hamster ovary cell adhesion assays. EhSTIRP thus likely represents a novel determinant of virulence in Entamoeba histolytica. This work validates the fact that genes expressed exclusively in virulent strains may represent virulence determinants and highlights the need for further functional analyses of other genes with similar expression profiles.
Collapse
Affiliation(s)
- Ryan C MacFarlane
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5124, USA
| | | |
Collapse
|
38
|
Byers J, Eichinger D. Acetylation of the Entamoeba histone H4 N-terminal domain is influenced by short-chain fatty acids that enter trophozoites in a pH-dependent manner. Int J Parasitol 2007; 38:57-64. [PMID: 17706222 PMCID: PMC2763443 DOI: 10.1016/j.ijpara.2007.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2007] [Revised: 06/14/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Treatment of higher eukaryotic cells with short-chain fatty acids (SCFA) such as butyrate causes decreased levels of histone deacetylase (HDAC) activity and hyperacetylation of histones, and thereby affects gene expression, cell growth and differentiation. Entamoeba parasites encounter high levels of SCFA in the host colon, and in vitro these compounds allow trophozoite stage parasites to multiply but prevent their differentiation into infectious cysts. The Entamoeba invadens IP-1 histone H4 protein has an unusual number of lysines in its N-terminus, and these become hyperacetylated in trophozoites exposed to the HDAC inhibitors trichostatin A (TSA) or HC-toxin, but not in trophozoites exposed to butyrate. We have now found that several other commonly studied isolates of Entamoeba parasites also have an extended set of histone H4 acetylation sites that become hyperacetylated in response to TSA, but hypoacetylated in response to butyrate, suggesting an unusual sensitivity of this parasite's histone modifying enzymes to SCFA. Butyrate was found to enter trophozoites in a pH-dependent manner consistent with diffusive entry of the un-ionised form of the fatty acid into the amoebae. Transit of the Entamoeba organism through areas of the host intestine with distinct pH and SCFA concentrations would therefore result in very different levels of SCFA within the parasite. Entamoeba appears to have acquired unique alterations of its histone acetylation mechanism that may allow for its growth in the presence of varying amounts of the bacterial fermentation products.
Collapse
Affiliation(s)
- Jennifer Byers
- Department of Medical Parasitology, New York University School of Medicine, New York, NY USA
| | - Daniel Eichinger
- Department of Medical Parasitology, New York University School of Medicine, New York, NY USA
- Corresponding author. Department of Medical Parasitology, New York University School of Medicine, 341 East, 25 Street, New York, NY 10010 USA, Tel.: +1-212-263-8171; fax: +1-212-263-8116. E-mail address:
| |
Collapse
|