1
|
Atakpa EO, Yan B, Okon SU, Liu Q, Zhang D, Zhang C. Asynchronous application of modified biochar and exogenous fungus Scedosporium sp. ZYY for enhanced degradation of oil-contaminated intertidal mudflat sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20637-20650. [PMID: 38383925 DOI: 10.1007/s11356-024-32419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Intertidal mudflats are susceptible to oil pollution due to their proximity to discharges from industries, accidental spills from marine shipping activities, oil drilling, pipeline seepages, and river outflows. The experimental study was divided into two periods. In the first period, microcosm trials were carried out to examine the effect of chemically modified biochar on biological hydrocarbon removal from sediments. The modified biochar's surface area increased from 2.544 to 25.378 m2/g, followed by a corresponding increase in the hydrogen-carbon and oxygen-carbon ratio, indicating improved stability and polarity. In the second period, the effect of exogenous fungus - Scedoporium sp. ZYY on the bacterial community structure was examined in relation to total petroleum hydrocarbon (TPH) removal. The maximum TPH removal efficiency of 82.4% was achieved in treatments with the modified biochar, followed by a corresponding increase in Fluorescein diacetate hydrolysis activity. Furthermore, high-throughput 16S RNA gene sequencing employed to identify changes in the bacterial community of the original sediment and treatments before and after fungal inoculation revealed Proteobacteria as the dominant phylum. In addition, it was observed that Scedoporium sp. ZYY promoted the proliferation of specific TPH-degraders, particularly, Hyphomonas adhaerens which accounted for 77% of the total degrading populations in treatments where TPH removal was highest. Findings in this study provide valuable insights into the effect of modified biochar and the fundamental role of exogenous fungus towards the effective degradation of oil-contaminated intertidal mudflat sediments.
Collapse
Affiliation(s)
- Edidiong Okokon Atakpa
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Bozhi Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Samuel Ukpong Okon
- Institute of Port, Coastal, and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan, 316021, China
- Suzhou Industrial Technological Research Institute of Zhejiang University, Suzhou, 215163, China
| | - Qing Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
2
|
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methane oxidation is widespread in Aotearoa-New Zealand geothermal fields. Front Microbiol 2023; 14:1253773. [PMID: 37720161 PMCID: PMC10502179 DOI: 10.3389/fmicb.2023.1253773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Geothermal areas represent substantial point sources for greenhouse gas emissions such as methane. While it is known that methanotrophic microorganisms act as a biofilter, decreasing the efflux of methane in most soils to the atmosphere, the diversity and the extent to which methane is consumed by thermophilic microorganisms in geothermal ecosystems has not been widely explored. To determine the extent of biologically mediated methane oxidation at elevated temperatures, we set up 57 microcosms using soils from 14 Aotearoa-New Zealand geothermal fields and show that moderately thermophilic (>40°C) and thermophilic (>60°C) methane oxidation is common across the region. Methane oxidation was detected in 54% (n = 31) of the geothermal soil microcosms tested at temperatures up to 75°C (pH 1.5-8.1), with oxidation rates ranging from 0.5 to 17.4 μmol g-1 d-1 wet weight. The abundance of known aerobic methanotrophs (up to 60.7% Methylacidiphilum and 11.2% Methylothermus) and putative anaerobic methanotrophs (up to 76.7% Bathyarchaeota) provides some explanation for the rapid rates of methane oxidation observed in microcosms. However, not all methane oxidation was attributable to known taxa; in some methane-consuming microcosms we detected methanotroph taxa in conditions outside of their known temperature range for growth, and in other examples, we observed methane oxidation in the absence of known methanotrophs through 16S rRNA gene sequencing. Both of these observations suggest unidentified methane oxidizing microorganisms or undescribed methanotrophic syntrophic associations may also be present. Subsequent enrichment cultures from microcosms yielded communities not predicted by the original diversity studies and showed rates inconsistent with microcosms (≤24.5 μmol d-1), highlighting difficulties in culturing representative thermophilic methanotrophs. Finally, to determine the active methane oxidation processes, we attempted to elucidate metabolic pathways from two enrichment cultures actively oxidizing methane using metatranscriptomics. The most highly expressed genes in both enrichments (methane monooxygenases, methanol dehydrogenases and PqqA precursor peptides) were related to methanotrophs from Methylococcaceae, Methylocystaceae and Methylothermaceae. This is the first example of using metatranscriptomics to investigate methanotrophs from geothermal environments and gives insight into the metabolic pathways involved in thermophilic methanotrophy.
Collapse
Affiliation(s)
- Karen M. Houghton
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - Carlo R. Carere
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
| | - Matthew B. Stott
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| |
Collapse
|
3
|
Qian L, Yu X, Gu H, Liu F, Fan Y, Wang C, He Q, Tian Y, Peng Y, Shu L, Wang S, Huang Z, Yan Q, He J, Liu G, Tu Q, He Z. Vertically stratified methane, nitrogen and sulphur cycling and coupling mechanisms in mangrove sediment microbiomes. MICROBIOME 2023; 11:71. [PMID: 37020239 PMCID: PMC10074775 DOI: 10.1186/s40168-023-01501-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Mangrove ecosystems are considered as hot spots of biogeochemical cycling, yet the diversity, function and coupling mechanism of microbially driven biogeochemical cycling along the sediment depth of mangrove wetlands remain elusive. Here we investigated the vertical profile of methane (CH4), nitrogen (N) and sulphur (S) cycling genes/pathways and their potential coupling mechanisms using metagenome sequencing approaches. RESULTS Our results showed that the metabolic pathways involved in CH4, N and S cycling were mainly shaped by pH and acid volatile sulphide (AVS) along a sediment depth, and AVS was a critical electron donor impacting mangrove sediment S oxidation and denitrification. Gene families involved in S oxidation and denitrification significantly (P < 0.05) decreased along the sediment depth and could be coupled by S-driven denitrifiers, such as Burkholderiaceae and Sulfurifustis in the surface sediment (0-15 cm). Interestingly, all S-driven denitrifier metagenome-assembled genomes (MAGs) appeared to be incomplete denitrifiers with nitrate/nitrite/nitric oxide reductases (Nar/Nir/Nor) but without nitrous oxide reductase (Nos), suggesting such sulphide-utilizing groups might be an important contributor to N2O production in the surface mangrove sediment. Gene families involved in methanogenesis and S reduction significantly (P < 0.05) increased along the sediment depth. Based on both network and MAG analyses, sulphate-reducing bacteria (SRB) might develop syntrophic relationships with anaerobic CH4 oxidizers (ANMEs) by direct electron transfer or zero-valent sulphur, which would pull forward the co-existence of methanogens and SRB in the middle and deep layer sediments. CONCLUSIONS In addition to offering a perspective on the vertical distribution of microbially driven CH4, N and S cycling genes/pathways, this study emphasizes the important role of S-driven denitrifiers on N2O emissions and various possible coupling mechanisms of ANMEs and SRB along the mangrove sediment depth. The exploration of potential coupling mechanisms provides novel insights into future synthetic microbial community construction and analysis. This study also has important implications for predicting ecosystem functions within the context of environmental and global change. Video Abstract.
Collapse
Affiliation(s)
- Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Hang Gu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yijun Fan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qiang He
- Department of Civil and Environmental Engineering, the University of Tennessee, Knoxville, TN 37996 USA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yisheng Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhijian Huang
- School of Marine Science, Sun Yat-Sen University, Zhuhai, 519080 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jianguo He
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Guangli Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
4
|
Singh AK, Nakhate SP, Gupta RK, Chavan AR, Poddar BJ, Prakash O, Shouche YS, Purohit HJ, Khardenavis AA. Mining the landfill soil metagenome for denitrifying methanotrophic taxa and validation of methane oxidation in microcosm. ENVIRONMENTAL RESEARCH 2022; 215:114199. [PMID: 36058281 DOI: 10.1016/j.envres.2022.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/21/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the microbial community residing at different depths of the landfill was characterized to assess their roles in serving as a methane sink. Physico-chemical characterization revealed the characteristic signatures of anaerobic degradation of organic matter in the bottom soil (50-60 cm) and, active process of aerobic denitrification in the top soil (0-10 cm). This was also reflected from the higher abundance of bacterial domain in the top soil metagenome represented by dominant phyla Proteobacteria and Actinobacteria which are prime decomposers of organic matter in landfill soils. The multiple fold higher relative abundances of the two most abundant genera; Streptomyces and Intrasporangium in the top soil depicted greater denitrifying taxa in top soil than the bottom soil. Amongst the aerobic methanotrophs, the genera Methylomonas, Methylococcus, Methylocella, and Methylacidiphilum were abundantly found in the top soil metagenome that were essential for oxidizing methane generated in the landfill. On the other hand, the dominance of archaeal domain represented by Methanosarcina and Methanoculleus in the bottom soil highlighted the complete anaerobic digestion of organic components via acetoclasty, carboxydotrophy, hydrogenotrophy, methylotrophy. Functional characterization revealed a higher abundance of methane monooxygenase gene in the top soil and methyl coenzyme M reductase gene in the bottom soil that correlated with the higher relative abundance of aerobic methanotrophs in the top soil while methane generation being the active process in the highly anaerobic bottom soil in the landfill. The activity dependent abundance of endogenous microbial communities in the different zones of the landfill was further validated by microcosm studies in serum bottles which established the ability of the methanotrophic community for methane metabolism in the top soil and their potential to serve as sink for methane. The study provides a better understanding about the methanotrophs in correlation with their endogenous environment, so that these bacteria can be used in resolving the environmental issues related to methane and nitrogen management at landfill site.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Om Prakash
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Laczi K, Erdeiné Kis Á, Szilágyi Á, Bounedjoum N, Bodor A, Vincze GE, Kovács T, Rákhely G, Perei K. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era. Front Microbiol 2020; 11:590049. [PMID: 33304336 PMCID: PMC7701123 DOI: 10.3389/fmicb.2020.590049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
The accumulation of petroleum hydrocarbons in the environment substantially endangers terrestrial and aquatic ecosystems. Many microbial strains have been recognized to utilize aliphatic and aromatic hydrocarbons under aerobic conditions. Nevertheless, most of these pollutants are transferred by natural processes, including rain, into the underground anaerobic zones where their degradation is much more problematic. In oxic zones, anaerobic microenvironments can be formed as a consequence of the intensive respiratory activities of (facultative) aerobic microbes. Even though aerobic bioremediation has been well-characterized over the past few decades, ample research is yet to be done in the field of anaerobic hydrocarbon biodegradation. With the emergence of high-throughput techniques, known as omics (e.g., genomics and metagenomics), the individual biodegraders, hydrocarbon-degrading microbial communities and metabolic pathways, interactions can be described at a contaminated site. Omics approaches provide the opportunity to examine single microorganisms or microbial communities at the system level and elucidate the metabolic networks, interspecies interactions during hydrocarbon mineralization. Metatranscriptomics and metaproteomics, for example, can shed light on the active genes and proteins and functional importance of the less abundant species. Moreover, novel unculturable hydrocarbon-degrading strains and enzymes can be discovered and fit into the metabolic networks of the community. Our objective is to review the anaerobic hydrocarbon biodegradation processes, the most important hydrocarbon degraders and their diverse metabolic pathways, including the use of various terminal electron acceptors and various electron transfer processes. The review primarily focuses on the achievements obtained by the current high-throughput (multi-omics) techniques which opened new perspectives in understanding the processes at the system level including the metabolic routes of individual strains, metabolic/electric interaction of the members of microbial communities. Based on the multi-omics techniques, novel metabolic blocks can be designed and used for the construction of microbial strains/consortia for efficient removal of hydrocarbons in anaerobic zones.
Collapse
Affiliation(s)
- Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ágnes Erdeiné Kis
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | | | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Broman E, Sjöstedt J, Pinhassi J, Dopson M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. MICROBIOME 2017; 5:96. [PMID: 28793929 PMCID: PMC5549381 DOI: 10.1186/s40168-017-0311-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/18/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND A key characteristic of eutrophication in coastal seas is the expansion of hypoxic bottom waters, often referred to as 'dead zones'. One proposed remediation strategy for coastal dead zones in the Baltic Sea is to mix the water column using pump stations, circulating oxygenated water to the sea bottom. Although microbial metabolism in the sediment surface is recognized as key in regulating bulk chemical fluxes, it remains unknown how the microbial community and its metabolic processes are influenced by shifts in oxygen availability. Here, coastal Baltic Sea sediments sampled from oxic and anoxic sites, plus an intermediate area subjected to episodic oxygenation, were experimentally exposed to oxygen shifts. Chemical, 16S rRNA gene, metagenomic, and metatranscriptomic analyses were conducted to investigate changes in chemistry fluxes, microbial community structure, and metabolic functions in the sediment surface. RESULTS Compared to anoxic controls, oxygenation of anoxic sediment resulted in a proliferation of bacterial populations in the facultative anaerobic genus Sulfurovum that are capable of oxidizing toxic sulfide. Furthermore, the oxygenated sediment had higher amounts of RNA transcripts annotated as sqr, fccB, and dsrA involved in sulfide oxidation. In addition, the importance of cryptic sulfur cycling was highlighted by the oxidative genes listed above as well as dsvA, ttrB, dmsA, and ddhAB that encode reductive processes being identified in anoxic and intermediate sediments turned oxic. In particular, the intermediate site sediments responded differently upon oxygenation compared to the anoxic and oxic site sediments. This included a microbial community composition with more habitat generalists, lower amounts of RNA transcripts attributed to methane oxidation, and a reduced rate of organic matter degradation. CONCLUSIONS These novel data emphasize that genetic expression analyses has the power to identify key molecular mechanisms that regulate microbial community responses upon oxygenation of dead zones. Moreover, these results highlight that microbial responses, and therefore ultimately remediation efforts, depend largely on the oxygenation history of sites. Furthermore, it was shown that re-oxygenation efforts to remediate dead zones could ultimately be facilitated by in situ microbial molecular mechanisms involved in removal of toxic H2S and the potent greenhouse gas methane.
Collapse
Affiliation(s)
- Elias Broman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Johanna Sjöstedt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Present address: Department of Biology/Aquatic ecology, Lund University, Sölvesgatan 37, 223 62 Lund, Sweden
- Present address: Centre for Ocean Life, Institute for Aquatic Resources, Technical University of Denmark, 2900 Charlottenlund, Denmark
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
7
|
Vekeman B, Speth D, Wille J, Cremers G, De Vos P, Op den Camp HJM, Heylen K. Genome Characteristics of Two Novel Type I Methanotrophs Enriched from North Sea Sediments Containing Exclusively a Lanthanide-Dependent XoxF5-Type Methanol Dehydrogenase. MICROBIAL ECOLOGY 2016; 72:503-509. [PMID: 27457652 DOI: 10.1007/s00248-016-0808-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Microbial methane oxidizers play a crucial role in the oxidation of methane in marine ecosystems, as such preventing the escape of excessive methane to the atmosphere. Despite the important role of methanotrophs in marine ecosystems, only a limited number of isolates are described, with only four genomes available. Here, we report on two genomes of gammaproteobacterial methanotroph cultures, affiliated with the deep-sea cluster 2, obtained from North Sea sediment. Initial enrichments using methane as sole source of carbon and energy and mimicking the in situ conditions followed by serial subcultivations and multiple extinction culturing events over a period of 3 years resulted in a highly enriched culture. The draft genomes of the methane oxidizer in both cultures showed the presence of genes typically found in type I methanotrophs, including genes encoding particulate methane monooxygenase (pmoCAB), genes for tetrahydromethanopterin (H4MPT)- and tetrahydrofolate (H4F)-dependent C1-transfer pathways, and genes of the ribulose monophosphate (RuMP) pathway. The most distinctive feature, when compared to other available gammaproteobacterial genomes, is the absence of a calcium-dependent methanol dehydrogenase. Both genomes reported here only have a xoxF gene encoding a lanthanide-dependent XoxF5-type methanol dehydrogenase. Thus, these genomes offer novel insight in the genomic landscape of uncultured diversity of marine methanotrophs.
Collapse
Affiliation(s)
- Bram Vekeman
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Ghent, Belgium.
| | - Daan Speth
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jasper Wille
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Geert Cremers
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Paul De Vos
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kim Heylen
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
8
|
Vekeman B, Kerckhof FM, Cremers G, de Vos P, Vandamme P, Boon N, Op den Camp HJM, Heylen K. New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase. Environ Microbiol 2016; 18:4523-4536. [PMID: 27501305 DOI: 10.1111/1462-2920.13485] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
Abstract
Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one-carbon compounds that are found in high concentrations in marine environments. Genome, physiology and diversity studies have been greatly facilitated by the numerous model organisms brought into culture. However, the availability of marine representatives remains poor. Here, we report the isolation of four novel species from North Sea sediment enrichments closely related to the Alphaproteobacterium Methyloceanibacter caenitepidi. Each of the newly isolated Methyloceanibacter species exhibited a clear genome sequence divergence which was reflected in physiological differences. Notably one strain R-67174 was capable of oxidizing methane as sole source of carbon and energy using solely a soluble methane monooxygenase and represents the first marine Alphaproteobacterial methanotroph brought into culture. Differences in maximum cell density of >1.5 orders of magnitude were observed. Furthermore, three strains were capable of producing nitrous oxide from nitrate. Together, these findings highlight the metabolic and physiologic variability within closely related Methyloceanibacter species and provide a new understanding of the physiological basis of marine methylotrophy.
Collapse
Affiliation(s)
- Bram Vekeman
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, Gent, 9000, Belgium
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Geert Cremers
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, AJ Nijmegen, 6525, The Netherlands
| | - Paul de Vos
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, Gent, 9000, Belgium
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, Gent, 9000, Belgium.,BCCM/LMG Bacteria Collection, Ghent University, Karel Lodewijck Ledeganckstraat 35, Gent, 9000, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, AJ Nijmegen, 6525, The Netherlands
| | - Kim Heylen
- Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, Gent, 9000, Belgium
| |
Collapse
|
9
|
Marziah Z, Mahdzir A, Musa MN, Jaafar AB, Azhim A, Hara H. Abundance of sulfur-degrading bacteria in a benthic bacterial community of shallow sea sediment in the off-Terengganu coast of the South China Sea. Microbiologyopen 2016; 5:967-978. [PMID: 27256005 PMCID: PMC5221450 DOI: 10.1002/mbo3.380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/05/2022] Open
Abstract
This study for the first time provides insight into the bacterial community in the benthic region of the Off‐Terengganu Coastline, which is considered to be anthropogenically polluted due to heavy fishing vessel commotion. Subsurface bacteria were randomly collected from two locations at different depths and were examined using the 16S rDNA V3‐V4 marker gene on the Illumina™ Miseq platform. In addition, the physiochemical parameters of the sediment were also measured. Surprisingly, the results show a high diversity of sulfur‐oxidizing bacteria in the surveyed area, where Sulfurovum sp. was identified to predominate the overall bacterial community. The physiochemical parameters reveal insufficient evidence of hydrothermal vents in the surveyed area. However, there are traces of hydrocarbon pollutants such as gasoline, diesel, and mineral oil in this area. It is assumed that sediment accumulation in the lee of breakwater plays an important role in trapping the runoff from the nearby harbor, which includes oil spills. Based on the common knowledge, Sulvurofum sp. is a native bacterium that exists in deep hydrothermal vents and volcanic territories. Although the reason for the abundance of Sulfurovum sp. in the surveyed area is still unclear, there is a possibility that metabolic adaptation plays an important role in regulating hydrocarbon pollutants for survival. The work presented in this paper therefore has profound implications for future studies on Sulfurovum sp. versatility. However, future research is needed to strengthen the findings of this study and to provide a better evidence regarding the metabolic response of this bacterium toward hydrocarbon pollutants.
Collapse
Affiliation(s)
- Zahar Marziah
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Akbariah Mahdzir
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia.,Ocean Thermal Energy Centre (OTEC-KL), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Md Nor Musa
- Ocean Thermal Energy Centre (OTEC-KL), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Abu Bakar Jaafar
- Perdana School of Science, Technology and Innovation Policy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Azran Azhim
- Kuliyyah of Science, International Islamic University Malaysia, Kuantan, 25200, Malaysia
| | - Hirofumi Hara
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| |
Collapse
|
10
|
Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 2016; 350:434-8. [PMID: 26494757 DOI: 10.1126/science.aac7745] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl-coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota.
Collapse
Affiliation(s)
- Paul N Evans
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steven J Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Suzanne D Golding
- School of Earth Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia. Advanced Water Management Centre, University of Queensland, St Lucia 4072, Queensland, Australia.
| |
Collapse
|
11
|
Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S, Lee PKH, Heimann K. Effect of CH4/O2 ratio on fatty acid profile and polyhydroxybutyrate content in a heterotrophic-methanotrophic consortium. CHEMOSPHERE 2015; 141:235-42. [PMID: 26247542 DOI: 10.1016/j.chemosphere.2015.07.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/14/2015] [Accepted: 07/19/2015] [Indexed: 05/22/2023]
Abstract
Understanding the role of heterotrophic-methanotrophic (H-Meth) communities is important for improvement of methane (CH4) oxidation capacities (MOC) particularly in conjunction with bio-product development in industrial bio-filters. Initially, a H-Meth consortium was established and enriched from marine sediments and characterized by next generation sequencing of the 16s rDNA gene. The enriched consortium was subjected to 10-50% CH4 (i.e., 0.20-1.6 CH4/O2 ratios) to study the effects on MOCs, biomass growth, fatty acid profiles and biopolymer (e.g. polyhydroxybutyrate; PHB) content. Methylocystis, Methylophaga and Pseudoxanthomonas dominated the H-Meth consortium. Culture enrichment of the H-Meth consortium resulted in 15-20-folds higher MOC compared to seed sediments. Increasing CH4 concentration (and decreased O2 levels) yielded higher MOCs, but did not improve total fatty acid contents. PHB contents varied between 2.5% and 8.5% independently of CH4/O2 ratios. The results suggest that H-Meth consortia could potentially be used in industrial bio-filters for production of biopolymer/biofuel precursors from CH4.
Collapse
Affiliation(s)
- Obulisamy P Karthikeyan
- College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Queensland, Australia; Centre for Sustainable Fisheries and Aquaculture, James Cook University, Townsville 4811, Queensland, Australia; Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Karthigeyan Chidambarampadmavathy
- College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Queensland, Australia; Centre for Sustainable Fisheries and Aquaculture, James Cook University, Townsville 4811, Queensland, Australia
| | - Saravanan Nadarajan
- College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Queensland, Australia; Centre for Sustainable Fisheries and Aquaculture, James Cook University, Townsville 4811, Queensland, Australia
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Kirsten Heimann
- College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Queensland, Australia; Centre for Sustainable Fisheries and Aquaculture, James Cook University, Townsville 4811, Queensland, Australia; Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia; Centre for Bio-discovery and Molecular Development of Therapeutics, James Cook University, Townsville 4811, Queensland, Australia.
| |
Collapse
|
12
|
Louvado A, Gomes NCM, Simões MMQ, Almeida A, Cleary DFR, Cunha A. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:312-328. [PMID: 25965373 DOI: 10.1016/j.scitotenv.2015.04.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation. Bacteria residing in the DSSs (related mainly to α- and γ-Proteobacteria) have been shown to or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of these bacterial communities to the psychro-peizophilic conditions of the DSSs. This work summarizes some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAH degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on biodegradation of PAHs in DSSs.
Collapse
Affiliation(s)
- A Louvado
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - N C M Gomes
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - M M Q Simões
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Almeida
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Cunha
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Abstract
Traditionally, microbial genome sequencing has been restricted to the small number of species that can be grown in pure culture. The progressive development of culture-independent methods over the last 15 years now allows researchers to sequence microbial communities directly from environmental samples. This approach is commonly referred to as "metagenomics" or "community genomics". However, the term metagenomics is applied liberally in the literature to describe any culture-independent analysis of microbial communities. Here, we define metagenomics as shotgun ("random") sequencing of the genomic DNA of a sample taken directly from the environment. The metagenome can be thought of as a sampling of the collective genome of the microbial community. We outline the considerations and analyses that should be undertaken to ensure the success of a metagenomic sequencing project, including the choice of sequencing platform and methods for assembly, binning, annotation, and comparative analysis.
Collapse
Affiliation(s)
- Lauren Bragg
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, Australia
| | | |
Collapse
|
14
|
Hawley ER, Piao H, Scott NM, Malfatti S, Pagani I, Huntemann M, Chen A, Glavina Del Rio T, Foster B, Copeland A, Jansson J, Pati A, Tringe S, Gilbert JA, Lorenson TD, Hess M. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California. Stand Genomic Sci 2014; 9:1259-74. [PMID: 25197496 PMCID: PMC4149020 DOI: 10.4056/sigs.5029016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of its main constituents. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders – and their metabolic capabilities – may be fundamental to the ecology of the SBC oil seep.
Collapse
Affiliation(s)
- Erik R Hawley
- Washington State University Tri-Cities, Richland, WA, USA
| | - Hailan Piao
- Washington State University Tri-Cities, Richland, WA, USA
| | | | - Stephanie Malfatti
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, CA, USA
| | | | | | - Amy Chen
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Brian Foster
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Janet Jansson
- DOE Joint Genome Institute, Walnut Creek, CA, USA ; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Susannah Tringe
- DOE Joint Genome Institute, Walnut Creek, CA, USA ; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jack A Gilbert
- Argonne National Laboratory, Lemont, IL, USA ; University of Chicago, Chicago, IL, USA
| | | | - Matthias Hess
- Washington State University Tri-Cities, Richland, WA, USA ; DOE Joint Genome Institute, Walnut Creek, CA, USA ; Washington State University, Pullman, WA, USA ; Pacific Northwest National Laboratory, Chemical & Biological Process Development Group, Richland, WA, USA ; Environmental Molecular Sciences Laboratory, Richland, WA, USA
| |
Collapse
|
15
|
Martínez A, Ventouras LA, Wilson ST, Karl DM, Delong EF. Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria. Front Microbiol 2013; 4:340. [PMID: 24324460 PMCID: PMC3840354 DOI: 10.3389/fmicb.2013.00340] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/29/2013] [Indexed: 11/16/2022] Open
Abstract
Aerobic degradation of methylphosphonate (MPn) by marine bacterioplankton has been hypothesized to contribute significantly to the ocean's methane supersaturation, yet little is known about MPn utilization by marine microbes. To identify the microbial taxa and metabolic functions associated with MPn-driven methane production we performed parallel metagenomic, metatranscriptomic, and functional screening of microcosm perturbation experiments using surface water collected in the North Pacific Subtropical Gyre. In nutrient amended microcosms containing MPn, a substrate-driven microbial succession occurred. Initially, the addition of glucose and nitrate resulted in a bloom of Vibrionales and a transcriptional profile dominated by glucose-specific PTS transport and polyhydroxyalkanoate biosynthesis. Transcripts associated with phosphorus (P) acquisition were also overrepresented and suggested that the addition of glucose and nitrate had driven the community to P depletion. At this point, a second community shift occurred characterized by the increase in C-P lyase containing microbes of the Vibrionales and Rhodobacterales orders. Transcripts associated with C-P lyase components were among the most highly expressed at the community level, and only C-P lyase clusters were recovered in a functional screen for MPn utilization, consistent with this pathway being responsible for the majority, if not all, of the methane accumulation we observed. Our results identify specific bacterioplankton taxa that can utilize MPn aerobically under conditions of P limitation using the C-P lyase pathway, and thereby elicit a significant increase in the dissolved methane concentration.
Collapse
Affiliation(s)
- Asunción Martínez
- Division of Biological Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA ; Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii Honolulu, HI, USA
| | | | | | | | | |
Collapse
|
16
|
Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, Pan C, Hettich RL, Orphan VJ. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments. Environ Microbiol 2013; 16:1592-611. [DOI: 10.1111/1462-2920.12314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/13/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Jennifer B. Glass
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena CA 91125 USA
| | - Hang Yu
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena CA 91125 USA
| | - Joshua A. Steele
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena CA 91125 USA
| | - Katherine S. Dawson
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena CA 91125 USA
| | - Shulei Sun
- The CAMERA Project; University of California San Diego; San Diego CA 92093 USA
| | - Karuna Chourey
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Chongle Pan
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Robert L. Hettich
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena CA 91125 USA
| |
Collapse
|
17
|
Thureborn P, Lundin D, Plathan J, Poole AM, Sjöberg BM, Sjöling S. A metagenomics transect into the deepest point of the Baltic Sea reveals clear stratification of microbial functional capacities. PLoS One 2013; 8:e74983. [PMID: 24086414 PMCID: PMC3781128 DOI: 10.1371/journal.pone.0074983] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 11/27/2022] Open
Abstract
The Baltic Sea is characterized by hyposaline surface waters, hypoxic and anoxic deep waters and sediments. These conditions, which in turn lead to a steep oxygen gradient, are particularly evident at Landsort Deep in the Baltic Proper. Given these substantial differences in environmental parameters at Landsort Deep, we performed a metagenomic census spanning surface to sediment to establish whether the microbial communities at this site are as stratified as the physical environment. We report strong stratification across a depth transect for both functional capacity and taxonomic affiliation, with functional capacity corresponding most closely to key environmental parameters of oxygen, salinity and temperature. We report similarities in functional capacity between the hypoxic community and hadal zone communities, underscoring the substantial degree of eutrophication in the Baltic Proper. Reconstruction of the nitrogen cycle at Landsort deep shows potential for syntrophy between archaeal ammonium oxidizers and bacterial denitrification at anoxic depths, while anaerobic ammonium oxidation genes are absent, despite substantial ammonium levels below the chemocline. Our census also reveals enrichment in genetic prerequisites for a copiotrophic lifestyle and resistance mechanisms reflecting adaptation to prevalent eutrophic conditions and the accumulation of environmental pollutants resulting from ongoing anthropogenic pressures in the Baltic Sea.
Collapse
Affiliation(s)
- Petter Thureborn
- School of Natural Sciences and Environmental Studies, Södertörn University, Huddinge, Sweden
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Daniel Lundin
- School of Natural Sciences and Environmental Studies, Södertörn University, Huddinge, Sweden
- Science for Life Laboratories, Royal Institute of Technology, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Josefin Plathan
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Anthony M. Poole
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Britt-Marie Sjöberg
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sara Sjöling
- School of Natural Sciences and Environmental Studies, Södertörn University, Huddinge, Sweden
| |
Collapse
|
18
|
Li M, Jain S, Baker BJ, Taylor C, Dick GJ. Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume. Environ Microbiol 2013; 16:60-71. [PMID: 23826624 DOI: 10.1111/1462-2920.12182] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/30/2022]
Abstract
Particulate membrane-associated hydrocarbon monooxygenases (pHMOs) are critical components of the aerobic degradation pathway for low molecular weight hydrocarbons, including the potent greenhouse gas methane. Here, we analysed pHMO gene diversity in metagenomes and metatranscriptomes of hydrocarbon-rich hydrothermal plumes in the Guaymas Basin (GB) and nearby background waters in the deep Gulf of California. Seven distinct phylogenetic groups of pHMO were present and transcriptionally active in both plume and background waters, including several that are undetectable with currently available polymerase chain reaction (PCR) primers. The seven groups of pHMOs included those related to a putative ethane oxidizing Methylococcaceae-like group, a group of the SAR324 Deltaproteobacteria, three deep-sea clades (Deep sea-1/symbiont-like, Deep sea-2/PS-80 and Deep sea-3/OPU3) within gammaproteobacterial methanotrophs, one clade related to Group Z and one unknown group. Differential abundance of pHMO gene transcripts in plume and background suggests niche differentiation between groups. Corresponding 16S rRNA genes reflected similar phylogenetic and transcriptomic abundance trends. The novelty of transcriptionally active pHMOs we recovered from a hydrocarbon-rich hydrothermal plume suggests there are significant gaps in our knowledge of the diversity and function of these enzymes in the environment.
Collapse
Affiliation(s)
- Meng Li
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
19
|
Klingenberg H, Aßhauer KP, Lingner T, Meinicke P. Protein signature-based estimation of metagenomic abundances including all domains of life and viruses. ACTA ACUST UNITED AC 2013; 29:973-80. [PMID: 23418187 PMCID: PMC3624802 DOI: 10.1093/bioinformatics/btt077] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Motivation: Metagenome analysis requires tools that can estimate the taxonomic abundances in anonymous sequence data over the whole range of biological entities. Because there is usually no prior knowledge about the data composition, not only all domains of life but also viruses have to be included in taxonomic profiling. Such a full-range approach, however, is difficult to realize owing to the limited coverage of available reference data. In particular, archaea and viruses are generally not well represented by current genome databases. Results: We introduce a novel approach to taxonomic profiling of metagenomes that is based on mixture model analysis of protein signatures. Our results on simulated and real data reveal the difficulties of the existing methods when measuring achaeal or viral abundances and show the overall good profiling performance of the protein-based mixture model. As an application example, we provide a large-scale analysis of data from the Human Microbiome Project. This demonstrates the utility of our method as a first instance profiling tool for a fast estimate of the community structure. Availability:http://gobics.de/TaxyPro. Contact:pmeinic@gwdg.de Supplementary information:Supplementary Material is available at Bioinformatics online.
Collapse
Affiliation(s)
- Heiner Klingenberg
- Department of Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
20
|
Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Appl Microbiol Biotechnol 2013; 97:2277-303. [DOI: 10.1007/s00253-013-4734-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/20/2013] [Accepted: 01/21/2013] [Indexed: 12/17/2022]
|
21
|
Håvelsrud OE, Haverkamp TH, Kristensen T, Jakobsen KS, Rike AG. Metagenomics in CO2 Monitoring. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.egypro.2013.06.324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Xu K, Tang Y, Ren C, Zhao K, Wang W, Sun Y. Activity, distribution, and abundance of methane-oxidizing bacteria in the near surface soils of onshore oil and gas fields. Appl Microbiol Biotechnol 2012; 97:7909-18. [DOI: 10.1007/s00253-012-4500-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/03/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022]
|
23
|
Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer "Candidatus Methylomirabilis oxyfera". Appl Environ Microbiol 2012; 78:8650-6. [PMID: 23042164 DOI: 10.1128/aem.02099-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recently described bacterium "Candidatus Methylomirabilis oxyfera" couples the oxidation of the important greenhouse gas methane to the reduction of nitrite. The ecological significance of "Ca. Methylomirabilis oxyfera" is still underexplored, as our ability to identify the presence of this bacterium is thus far limited to DNA-based techniques. Here, we investigated the lipid composition of "Ca. Methylomirabilis oxyfera" to identify new, gene-independent biomarkers for the environmental detection of this bacterium. Multiple "Ca. Methylomirabilis oxyfera" enrichment cultures were investigated. In all cultures, the lipid profile was dominated up to 46% by the fatty acid (FA) 10-methylhexadecanoic acid (10MeC(16:0)). Furthermore, a unique FA was identified that has not been reported elsewhere: the monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position (10MeC(16:1Δ7)), which comprised up to 10% of the total FA profile. We propose that the typical branched fatty acids 10MeC(16:0) and 10MeC(16:1Δ7) are key and characteristic components of the lipid profile of "Ca. Methylomirabilis oxyfera." The successful detection of these fatty acids in a peatland from which one of the enrichment cultures originated supports the potential of these unique lipids as biomarkers for the process of nitrite-dependent methane oxidation in the environment.
Collapse
|
24
|
Håvelsrud OE, Haverkamp THA, Kristensen T, Jakobsen KS, Rike AG. Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea. BMC Microbiol 2012; 12:203. [PMID: 22966776 PMCID: PMC3478177 DOI: 10.1186/1471-2180-12-203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/28/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pockmarks (depressions in the seabed) have been discovered throughout the world's oceans and are often related to hydrocarbon seepage. Although high concentrations of pockmarks are present in the seabed overlaying the Troll oil and gas reservoir in the northern North Sea, geological surveys have not detected hydrocarbon seepage in this area at the present time. In this study we have used metagenomics to characterize the prokaryotic communities inhabiting the surface sediments in the Troll area in relation to geochemical parameters, particularly related to hydrocarbon presence. We also investigated the possibility of increased potential for methane oxidation related to the pockmarks. Five metagenomes from pockmarks and plain seabed sediments were sequenced by pyrosequencing (Roche/454) technology. In addition, two metagenomes from seabed sediments geologically unlikely to be influenced by hydrocarbon seepage (the Oslofjord) were included. The taxonomic distribution and metabolic potential of the metagenomes were analyzed by multivariate analysis and statistical comparisons to reveal variation within and between the two sampling areas. RESULTS The main difference identified between the two sampling areas was an overabundance of predominantly autotrophic nitrifiers, especially Nitrosopumilus, and oligotrophic marine Gammaproteobacteria in the Troll metagenomes compared to the Oslofjord. Increased potential for degradation of hydrocarbons, especially aromatic hydrocarbons, was detected in two of the Troll samples: one pockmark sample and one from the plain seabed. Although presence of methanotrophic organisms was indicated in all samples, no overabundance in pockmark samples compared to the Oslofjord samples supports no, or only low level, methane seepage in the Troll pockmarks at the present time. CONCLUSIONS Given the relatively low content of total organic carbon and great depths of hydrocarbon containing sediments in the Troll area, it is possible that at least part of the carbon source available for the predominantly autotrophic nitrifiers thriving in this area originates from sequential prokaryotic degradation and oxidation of hydrocarbons to CO2. By turning CO2 back into organic carbon this subcommunity could play an important environmental role in these dark oligotrophic sediments. The oxidation of ammonia to nitrite and nitrate in this process could further increase the supply of terminal electron acceptors for hydrocarbon degradation.
Collapse
Affiliation(s)
- Othilde Elise Håvelsrud
- Norwegian Geotechnical Institute, Sognsveien 72, P.O. Box 3930, Ullevål Stadion N-0806, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Blindernveien 31, P.O. Box 1041, Blindern N-0316, Oslo, Norway
- Microbial Evolution Research Group, MERG, Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Thomas HA Haverkamp
- Microbial Evolution Research Group, MERG, Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
- Centre for Evolutionary and Ecological Synthesis (CEES), Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Tom Kristensen
- Department of Molecular Biosciences, University of Oslo, Blindernveien 31, P.O. Box 1041, Blindern N-0316, Oslo, Norway
- Microbial Evolution Research Group, MERG, Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Kjetill S Jakobsen
- Microbial Evolution Research Group, MERG, Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
- Centre for Evolutionary and Ecological Synthesis (CEES), Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Anne Gunn Rike
- Norwegian Geotechnical Institute, Sognsveien 72, P.O. Box 3930, Ullevål Stadion N-0806, Oslo, Norway
| |
Collapse
|
25
|
Beasley KK, Nanny MA. Potential energy surface for anaerobic oxidation of methane via fumarate addition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8244-8252. [PMID: 22703611 DOI: 10.1021/es3009503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microbially mediated anaerobic oxidation of methane (AOM) is an important sink in the global methane cycle, but the mechanism and microorganisms responsible for this oxidation are not fully known. Using quantum chemical calculations, fumarate addition to methane was examined to determine if it could be an energetically feasible mechanism for AOM. A potential energy surface (PES) for the initial reaction was created and the results suggest the reaction is exothermic, with a calculated overall energy change between -9.8 and -11.2 kcal/mol. The addition of methane to fumarate is calculated to be the highest point on the surface, 25.0-25.3 kcal/mol above the reactants. Of the three possible molecular configurations of fumarate considered, the one that presents the least steric obstacles to the addition reaction with methane yields the greatest energy gain. While 11.2 kcal/mol may support growth under energy limited conditions it is unknown if enzymes can mediate an energetic barrier of 25 kcal/mol. These calculated energies provide values for what could be one of the least reactive substrates to undergo fumarate addition, making methane a model substrate in defining the limits of energy barriers and minimal energy requirements for growth in reactions activated by glycyl radical-containing enzymes.
Collapse
Affiliation(s)
- Keisha K Beasley
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | |
Collapse
|