1
|
Pereira EN, da Silva Arêas FZ, Neves Tavares SRS, Monteiro BC, Dantas ENT, Freire RC, da Luz Goulart C, de Almeida Val F, Henriques J, Arêas GPT. The acute effect of bilateral cathodic transcranial direct current stimulation on respiratory muscle strength and endurance. Respir Physiol Neurobiol 2025; 332:104382. [PMID: 39689738 DOI: 10.1016/j.resp.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is a non-invasive technique with therapeutic potential, especially in respiratory muscle training (RMT) in pathological conditions such as chronic obstructive pulmonary disease and heart failure. OBJECTIVE To evaluate the effect of bilateral cathodic tDCS on respiratory muscle strength and endurance in healthy young and elderly women. METHODS An experimental, randomized study with 80 participants divided into young and old women, subdivided into intervention and sham control groups. The participants were evaluated by spirometry and dynamic muscle strength tests before and after the one session intervention. tDCS was applied with cathode electrodes positioned bilaterally in the motor area. RESULTS The elderly women in the intervention group showed significant improvement in dynamic inspiratory muscle strength (S-Index) and dominant hand strength, with moderate to large effect sizes. The young women showed a significant increase only in the strength of the dominant hand, with no improvement in inspiratory muscle strength. There were no significant differences in ventilatory parameters, including Maximal Ventilatory Capacity, in any of the age groups. CONCLUSION Bilateral cathodic tDCS was effective in increasing dynamic inspiratory muscle strength and dominant hand strength in elderly women, with more pronounced effects compared to young women. The technique did not produce significant changes in maximal ventilatory capacity in any of the age groups, suggesting that the response to tDCS may vary with age, being more beneficial in elderly women.
Collapse
Affiliation(s)
- Elder Nascimento Pereira
- Biology Science Institute, Universidade Federal do Amazonas, Manaus, Brasil; Bioscience Department, Universidade de Coimbra, Coimbra, Portugal
| | | | | | - Beatriz Campelo Monteiro
- Physical Education and Physical Therapy Faculty, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Renato Campos Freire
- Physical Education and Physical Therapy Faculty, Universidade Federal do Amazonas, Manaus, Brasil; Human Movement Science Graduation, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Fernando de Almeida Val
- Instituto Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brasil
| | - Jorge Henriques
- Habilitation at Informatics Engineering Department, Universidade de Coimbra, Coimbra, Portugal
| | - Guilherme Peixoto Tinoco Arêas
- Human Movement Science Graduation, Universidade Federal do Amazonas, Manaus, Brasil; Physiological Science Department, Universidade Federal do Amazonas, Manaus, Brasil.
| |
Collapse
|
2
|
Greenwell D, Nishio H, Feigh J, McCallion Q, Poston B, Riley ZA. The effects of bilateral M1 anodal tDCS on corticomotor excitability and acquisition the of a bimanual videogame skill. Neuroscience 2025; 568:231-239. [PMID: 39837365 DOI: 10.1016/j.neuroscience.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/20/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Most activities of daily life involve some degree of coordinated, bimanual activity from the upper limbs. However, compared to single-handed movements, bimanual movements are processed, learned, and controlled from both hemispheres of the brain. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that enhances motor learning by modulating the activity of movement-associated brain regions. While effective in simple, single-handed tasks, tDCS has shown mixed results in complex bimanual tasks. This study investigated the effects of bilateral M1 anodal tDCS (biM1 a-tDCS) on learning and cortical excitability during a customized, bimanual racing videogame task. Thirty-six right-handed adults completed three lab visits (∼48 h apart), practicing the task while receiving either biM1 a-tDCS or SHAM tDCS. Cortical excitability was measured with transcranial magnetic stimulation (TMS) and electromyography (EMG) before and after the first visit. Though all subjects demonstrated improvements over the course of the study, our analyses revealed significantly faster rates of learning on days 1 & 2, but not day 3, of practice in subjects receiving biM1 a-tDCS. Moreover, perhaps due to differences in baseline gaming experience and aptitude, this effect appeared to be stronger in female subjects. Interestingly, no significant differences in corticomotor excitability were observed between conditions. Though biM1 a-tDCS did not appear to impact corticomotor excitability, our results contribute to the growing body of evidence which seems to suggest that multifocal tDCS protocols may be superior to traditional, single-site tDCS for the enhancement of bimanual motor learning.
Collapse
Affiliation(s)
- Davin Greenwell
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA.
| | - Hayami Nishio
- Department of Human Physiology, University of Oregon Eugene OR USA
| | - Jacob Feigh
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA
| | - Quinn McCallion
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas Las Vegas NV USA
| | - Zachary A Riley
- School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA
| |
Collapse
|
3
|
Huang X, Xu Z, Zhou L, Dong K, Liu Q, Li J, Lei D, Liu H, Chen X. The Impact of Bilateral Cerebellar Transcranial Direct Current Stimulation on Balance Control in Healthy Young Adults. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2468-2476. [PMID: 39379642 DOI: 10.1007/s12311-024-01749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Cerebellar transcranial direct current stimulation (tDCS) has been shown to influence movement functions, but little is known about the specific effects of stimulation polarity on balance control. This study investigated the impact of bilateral cerebellar tDCS on balance functions as a function of stimulation polarity. In this randomized, controlled trial, thirty-nine healthy young adults were assigned to one of three groups: right anodal/left cathodal cerebellar stimulation (AC group), right cathodal/left anodal cerebellar stimulation (CA group), and a control sham group. Each participant underwent a daily 30-minute session of tDCS at 2 mA for one week. Balance function was assessed pre- and post-intervention and the data were analyzed using generalized estimating equations. The CA group exhibited a significant reduction in sway area when standing on the left leg and on both stable and unstable surfaces with eyes open, compared to both the AC and sham groups. However, there were no significant differences among the groups in terms of sway length, anteroposterior velocity, or mediolateral velocity. Our results indicate the polarity-dependent effects of bilateral cerebellar tDCS on balance functions, with enhanced stability observed only following cathodal tDCS over the right cerebellum paired with anodal tDCS over the left cerebellum. This polarity-specific modulation may have implications for developing cerebellar neuromodulation interventions for movement disorders.
Collapse
Affiliation(s)
- Xin Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lingxiang Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ke Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingqing Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiating Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Huang J, Bao C, Yang C, Qu Y. Dual-tDCS Ameliorates Cerebral Injury and Promotes Motor Function Recovery via cGAS-STING Signaling Pathway in a Rat Model of Ischemic Stroke. Mol Neurobiol 2024:10.1007/s12035-024-04574-x. [PMID: 39455539 DOI: 10.1007/s12035-024-04574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Dual transcranial direct current stimulation (dual-tDCS) is a promising intervention to treat ischemic stroke, but its efficacy and underlying mechanism remain to be verified. Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has recently emerged as a key mediator in cerebral injury. However, little is known about the effect of cGAS-STING on neuronal damage in ischemic stroke, and it remains to be studied whether the cGAS-STING pathway is involved in tDCS intervention for ischemic stroke. Therefore, we aimed to investigate whether dual-tDCS can alleviate ischemic brain injury in a rat model of ischemic stroke and if so, whether via cGAS-STING pathway. Middle cerebral artery occlusion (MCAO) was employed to induce a rat model of ischemic stroke. Male SD rats weighing 250-280 g were randomly assigned to the Sham, MCAO, Dual-tDCS, Dual-tDCS + RU.521, and Dual-tDCS + 2'3'-cGAMP groups, with 10 rats in each group completing the experiment. Behavioral, morphological, MRI, and molecular biological methods were performed. We found that the cGAS-STING pathway was activated and expressed in neurons after MCAO. Dual-tDCS improved motor function and infarct volume, inhibited neuronal apoptosis, promoted the expression of neurotrophins (BDNF and NGF), CD31, and VEGF, and suppressed inflammation reaction after MCAO via the cGAS-STING pathway. Taken together, dual-tDCS may improve MCAO-induced brain injury and promote the recovery of motor function, resulting from the inhibition of neuronal apoptosis and inflammation reaction, as well as promotion of the expression of nerve plasticity- and angiogenesis-related proteins, via cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunlan Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Hanson NJ, Maceri RM, Koutakis P. Transcranial direct current stimulation (tDCS) and cycling performance on the 3-minute aerobic test (3mAT): placebo and nocebo effects. Sci Rep 2024; 14:24659. [PMID: 39428389 PMCID: PMC11491469 DOI: 10.1038/s41598-024-74941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been used extensively but research on its efficacy within the sport and exercise science realm has been inconsistent. There may be placebo and nocebo effects present with its use. Our objective was to determine if subjects can be influenced to believe that tDCS will improve cycling performance. Subjects were separated into a belief group (B; 5 women, 6 men) and a disbelief group (DB; 9 women, 3 men). The B group was told that the stimulation would improve performance on a subsequent cycling test. In the DB group, subjects were told that it was not effective and would hinder performance. The cycling test was a 3-minute aerobic test (3mAT) where subjects maintained the highest power output possible for three minutes, after completing a full 20 min warmup. During the warmup, they were given either no stimulation (control) or 2 mA bilateral stimulation over the M1 region. There was a very slight increase in maximal minute power for the B group (0.22%) and a small decrease for the DB group (-1.00%); however, these differences were not significant. No significant differences were found for any of the cycling variables. In conclustion, tDCS was unable to improve performance on the 3mAT. These findings, in conjunction with others, suggest that the acute effect of tDCS is still questionable when aiming to enhance endurance performance.
Collapse
|
6
|
Ho KY, Wallace C, Aquino J, Broadwell B, Whimple M, Liang JN. Exploring the use of bimodal transcranial direct current stimulation to enhance movement in individuals with patellofemoral pain-A sham-controlled double blinded pilot study. Front Hum Neurosci 2024; 18:1427091. [PMID: 39310792 PMCID: PMC11412892 DOI: 10.3389/fnhum.2024.1427091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction In individuals with patellofemoral pain (PFP), addressing increased knee valgus during weight-bearing activities typically involves strengthening weak hip muscles. However, recent literature highlights the role of altered descending central control in abnormal movements associated with PFP. While transcranial direct current stimulation (tDCS) has demonstrated the capacity to enhance neuroplasticity, its application targeting the corticomotor function of gluteal muscles in PFP remains unexplored. This study aimed to investigate the effects of combining bimodal tDCS with exercise on frontal plane kinematics in individuals with PFP. The hypothesis was that bimodal tDCS, specifically targeting the corticomotor function of the gluteal muscles, would augment the effectiveness of exercise interventions in improving frontal plane kinematics compared to sham stimulation. Methods Ten participants with PFP participated in two sessions involving either bimodal tDCS or sham stimulation, concurrently with hip strengthening exercises. Weight-bearing tasks, including single leg squat, single leg landing, single leg hopping, forward step-down, and lateral step-down, were performed and recorded before and after each session. Pain visual analog scale (VAS) scores were also documented. A one-way ANOVA with repeated measures was employed to compare kinematics, while a Friedman test was used to compare VAS across the three conditions (pre-test, post-tDCS, and post-Sham). Results We observed no significant differences in trunk lean angle, hip and knee frontal plane projection angles, or dynamic valgus index among the three conditions during the five weight-bearing tasks. VAS scores did not differ across the three conditions. Discussion and conclusion A single session of tDCS did not demonstrate immediate efficacy in enhancing frontal plane kinematics or relieving pain in individuals with PFP. Considering observed positive outcomes in other neurological and orthopedic populations with multi-session tDCS applications, suggesting potential cumulative effects, further research is essential to explore the effects of multi-session tDCS on weight-bearing movement and underlying neurophysiology in individuals with PFP.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
7
|
Santander T, Leslie S, Li LJ, Skinner HE, Simonson JM, Sweeney P, Deen KP, Miller MB, Brunye TT. Towards optimized methodological parameters for maximizing the behavioral effects of transcranial direct current stimulation. Front Hum Neurosci 2024; 18:1305446. [PMID: 39015825 PMCID: PMC11250584 DOI: 10.3389/fnhum.2024.1305446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.
Collapse
Affiliation(s)
- Tyler Santander
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sara Leslie
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Luna J. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Henri E. Skinner
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jessica M. Simonson
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick Sweeney
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kaitlyn P. Deen
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael B. Miller
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tad T. Brunye
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| |
Collapse
|
8
|
Meek AW, Greenwell DR, Nishio H, Poston B, Riley ZA. Anodal M1 tDCS enhances online learning of rhythmic timing videogame skill. PLoS One 2024; 19:e0295373. [PMID: 38870202 PMCID: PMC11175489 DOI: 10.1371/journal.pone.0295373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to modify excitability of the primary motor cortex (M1) and influence online motor learning. However, research on the effects of tDCS on motor learning has focused predominantly on simplified motor tasks. The purpose of the present study was to investigate whether anodal stimulation of M1 over a single session of practice influences online learning of a relatively complex rhythmic timing video game. Fifty-eight healthy young adults were randomized to either a-tDCS or SHAM conditions and performed 2 familiarization blocks, a 20-minute 5 block practice period while receiving their assigned stimulation, and a post-test block with their non-dominant hand. To assess performance, a performance index was calculated that incorporated timing accuracy elements and incorrect key inputs. The results showed that M1 a-tDCS enhanced the learning of the video game based skill more than SHAM stimulation during practice, as well as overall learning at the post-test. These results provide evidence that M1 a-tDCS can enhance acquisition of skills where quality or success of performance depends on optimized timing between component motions of the skill, which could have implications for the application of tDCS in many real-world contexts.
Collapse
Affiliation(s)
- Anthony W. Meek
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Davin R. Greenwell
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Hayami Nishio
- Department of Human Physiology, University of Oregon, Eugene, WA, United States of America
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Zachary A. Riley
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| |
Collapse
|
9
|
Lowenthal-Raz J, Liebermann DG, Friedman J, Soroker N. Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke. Sci Rep 2024; 14:11971. [PMID: 38796610 PMCID: PMC11127956 DOI: 10.1038/s41598-024-62889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.
Collapse
Affiliation(s)
- Justine Lowenthal-Raz
- Physical Therapy Department, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel
- Neurological Rehabilitation Department, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel
| | - Dario G Liebermann
- Physical Therapy Department, Stanley Steyer School of Health Professions, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Jason Friedman
- Physical Therapy Department, Stanley Steyer School of Health Professions, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nachum Soroker
- Neurological Rehabilitation Department, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Leow LA, Jiang J, Bowers S, Zhang Y, Dux PE, Filmer HL. Intensity-dependent effects of tDCS on motor learning are related to dopamine. Brain Stimul 2024; 17:553-560. [PMID: 38604563 DOI: 10.1016/j.brs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Non-invasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), are popular methods for inducing neuroplastic changes to alter cognition and behaviour. One challenge for the field is to optimise stimulation protocols to maximise benefits. For this to happen, we need a better understanding of how stimulation modulates cortical functioning/behaviour. To date, there is increasing evidence for a dose-response relationship between tDCS and brain excitability, however how this relates to behaviour is not well understood. Even less is known about the neurochemical mechanisms which may drive the dose-response relationship between stimulation intensities and behaviour. Here, we examine the effect of three different tDCS stimulation intensities (1 mA, 2 mA, 4 mA anodal motor cortex tDCS) administered during the explicit learning of motor sequences. Further, to assess the role of dopamine in the dose-response relationship between tDCS intensities and behaviour, we examined how pharmacologically increasing dopamine availability, via 100 mg of levodopa, modulated the effect of stimulation on learning. In the absence of levodopa, we found that 4 mA tDCS improved and 1 mA tDCS impaired acquisition of motor sequences relative to sham stimulation. Conversely, levodopa reversed the beneficial effect of 4 mA tDCS. This effect of levodopa was no longer evident at the 48-h follow-up, consistent with previous work characterising the persistence of neuroplastic changes in the motor cortex resulting from combining levodopa with tDCS. These results provide the first direct evidence for a role of dopamine in the intensity-dependent effects of tDCS on behaviour.
Collapse
Affiliation(s)
- Li-Ann Leow
- School of Psychology, The University of Queensland, St Lucia, Australia; Edith Cowan University, St Lucia, Australia.
| | - Jiaqin Jiang
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - Samantha Bowers
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - Yuhan Zhang
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Australia
| |
Collapse
|
11
|
Willmot N, Leow LA, Filmer HL, Dux PE. Exploring the intra-individual reliability of tDCS: A registered report. Cortex 2024; 173:61-79. [PMID: 38382128 DOI: 10.1016/j.cortex.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
Transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, has become an important tool for the study of in-vivo brain function due to its modulatory effects. Over the past two decades, interest in the influence of tDCS on behaviour has increased markedly, resulting in a large body of literature spanning multiple domains. However, the effect of tDCS on human performance often varies, bringing into question the reliability of this approach. While reviews and meta-analyses highlight the contributions of methodological inconsistencies and individual differences, no published studies have directly tested the intra-individual reliability of tDCS effects on behaviour. Here, we conducted a large scale, double-blinded, sham-controlled registered report to assess the reliability of two single-session low-dose tDCS montages, previously found to impact response selection and motor learning operations, across two separate time periods. Our planned analysis found no evidence for either protocol being effective nor reliable. Post-hoc explorative analyses found evidence that tDCS influenced motor learning, but not response selection learning. In addition, the reliability of motor learning performance across trials was shown to be disrupted by tDCS. These findings are amongst the first to shed light specifically on the intra-individual reliability of tDCS effects on behaviour and provide valuable information to the field.
Collapse
Affiliation(s)
- Nicholas Willmot
- Department of Defence, Edinburgh, SA, Australia; School of Psychology, The University of Queensland, St Lucia, QLD, Australia.
| | - Li-Ann Leow
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
12
|
Kim H, King BR, Verwey WB, Buchanan JJ, Wright DL. Timing of transcranial direct current stimulation at M1 does not affect motor sequence learning. Heliyon 2024; 10:e25905. [PMID: 38370203 PMCID: PMC10869848 DOI: 10.1016/j.heliyon.2024.e25905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/04/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Administering anodal transcranial direct current stimulation (tDCS) at the primary motor cortex (M1) at various temporal loci relative to motor training is reported to affect subsequent performance gains. Stimulation administered in conjunction with motor training appears to offer the most robust benefit that emerges during offline epochs. This conclusion is made, however, based on between-experiment comparisons that involved varied methodologies. The present experiment addressed this shortcoming by administering the same 15-minute dose of anodal tDCS at M1 before, during, or after practice of a serial reaction time task (SRTT). It was anticipated that exogenous stimulation during practice with a novel SRTT would facilitate offline gains. Ninety participants were randomly assigned to one of four groups: tDCS before practice, tDCS during practice, tDCS after practice, or no tDCS. Each participant was exposed to 15 min of 2 mA of tDCS and motor training of an eight-element SRTT. The anode was placed at the right M1 with the cathode at the left M1, and the left hand was used to execute the SRTT. Test blocks were administered 1 and 24 h after practice concluded. The results revealed significant offline gain for all conditions at the 1-hour and 24-hour test blocks. Importantly, exposure to anodal tDCS at M1 at any point before, during, or after motor training failed to change the trajectory of skill development as compared to the no-stimulation control condition. These data add to the growing body of evidence questioning the efficacy of a single bout of exogenous stimulation as an adjunct to motor training for fostering skill learning.
Collapse
Affiliation(s)
- Hakjoo Kim
- Motor Neuroscience Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Bradley R. King
- Lifespan Motor Neuroscience Lab, Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, United States
| | - Willem B. Verwey
- Section Cognition, Data & Education, Department of Learning, Data-Analytics and Technology, University of Twente, Enschede, Netherlands
| | - John J. Buchanan
- Motor Neuroscience Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - David L. Wright
- Motor Neuroscience Lab, Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Hervik JA, Vika KS, Stub T. Transcranial direct current stimulation for chronic headaches, a randomized, controlled trial. FRONTIERS IN PAIN RESEARCH 2024; 5:1353987. [PMID: 38476353 PMCID: PMC10927820 DOI: 10.3389/fpain.2024.1353987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Background and objectives Chronic headaches are a frequent cause of pain and disability. The purpose of this randomized trial was to examine whether transcranial direct current stimulation (tDCS) applied to the primary motor cortex, reduces pain and increases daily function in individuals suffering from primary chronic headache. Materials and methods A prospective, randomized, controlled trial, where participants and assessors were blinded, investigated the effect of active tDCS vs. sham tDCS in chronic headache sufferers. Forty subjects between 18 and 70 years of age, with a diagnosis of primary chronic headache were randomized to either active tDCS or sham tDCS treatment groups. All patients received eight treatments over four consecutive weeks. Anodal stimulation (2 mA) directed at the primary motor cortex (M1), was applied for 30 min in the active tDCS group. Participants in the sham tDCS group received 30 s of M1 stimulation at the start and end of the 30-minute procedure; for the remaining 29 min, they did not receive any stimulation. Outcome measures based on data collected at baseline, after eight treatments and three months later included changes in daily function, pain levels, and medication. Results Significant improvements in both daily function and pain levels were observed in participants treated with active tDCS, compared to sham tDCS. Effects lasted up to 12 weeks post-treatment. Medication use remained unchanged in both groups throughout the trial with no serious adverse effects reported. Conclusion These results suggest that tDCS has the potential to improve daily function and reduce pain in patients suffering from chronic headaches. Larger randomized, controlled trials are needed to confirm these findings. Trial registration The study was approved by the local ethics committee (2018/2514) and by the Norwegian Centre for Research Data (54483).
Collapse
Affiliation(s)
- Jill Angela Hervik
- Department of Anaesthesiology, Vestfold Hospital Trust, Tonsberg, Norway
| | - Karl Solbue Vika
- Department of School and Nursery, NIFU Nordic Institute for Studies in Innovation, Research and Education, Oslo, Norway
| | - Trine Stub
- Department of Community Medicine, National Research Center in Complementary and Alternative Medicine, NAFKAM, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Firouzi M, Baetens K, Swinnen E, Baeken C, Van Overwalle F, Deroost N. Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease? J Neurosci Res 2024; 102:e25311. [PMID: 38400585 DOI: 10.1002/jnr.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Implicit motor sequence learning (IMSL) is a cognitive function that is known to be associated with impaired motor function in Parkinson's disease (PD). We previously reported positive effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on IMSL in 11 individuals with PD with mild cognitive impairments (MCI), with the largest effects occurring during reacquisition. In the present study, we included 35 individuals with PD, with (n = 15) and without MCI (n = 20), and 35 age- and sex-matched controls without PD, with (n = 13) and without MCI (n = 22). We used mixed-effects models to analyze anodal M1 tDCS effects on acquisition (during tDCS), short-term (five minutes post-tDCS) and long-term reacquisition (one-week post-tDCS) of general and sequence-specific learning skills, as measured by the serial reaction time task. At long-term reacquisition, anodal tDCS resulted in smaller general learning effects compared to sham, only in the PD group, p = .018, possibly due to floor effects. Anodal tDCS facilitated the acquisition of sequence-specific learning (M = 54.26 ms) compared to sham (M = 38.98 ms), p = .003, regardless of group (PD/controls). Further analyses revealed that this positive effect was the largest in the PD-MCI group (anodal: M = 69.07 ms; sham: M = 24.33 ms), p < .001. Although the observed effect did not exceed the stimulation period, this single-session tDCS study confirms the potential of tDCS to enhance IMSL, with the largest effects observed in patients with lower cognitive status. These findings add to the body of evidence that anodal tDCS can beneficially modulate the abnormal basal ganglia network activity that occurs in PD.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel (VUB), Faculty of Medicine and Pharmacy, University Hospital Brussel (UZ Brussel), Brussels, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
15
|
Firouzi M, Baetens K, Saeys M, Duta C, Baeken C, Van Overwalle F, Swinnen E, Deroost N. Differential effects of conventional and high-definition transcranial direct-current stimulation of the motor cortex on implicit motor sequence learning. Eur J Neurosci 2023; 58:4181-4194. [PMID: 37864365 DOI: 10.1111/ejn.16173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Conventional transcranial direct-current stimulation (tDCS) delivered to the primary motor cortex (M1) has been shown to enhance implicit motor sequence learning (IMSL). Conventional tDCS targets M1 but also the motor association cortices (MAC), making the precise contribution of these areas to IMSL presently unclear. We aimed to address this issue by comparing conventional tDCS of M1 and MAC to 4 * 1 high-definition (HD) tDCS, which more focally targets M1. In this mixed-factorial, sham-controlled, crossover study in 89 healthy young adults, we used mixed-effects models to analyse sequence-specific and general learning effects in the acquisition and short- and long-term consolidation phases of IMSL, as measured by the serial reaction time task. Conventional tDCS did not influence general learning, improved sequence-specific learning during acquisition (anodal: M = 42.64 ms, sham: M = 32.87 ms, p = .041), and seemingly deteriorated it at long-term consolidation (anodal: M = 75.37 ms, sham: M = 86.63 ms, p = .019). HD tDCS did not influence general learning, slowed performance specifically in sequential blocks across all learning phases (all p's < .050), and consequently deteriorated sequence-specific learning during acquisition (anodal: M = 24.13 ms, sham: M = 35.67 ms, p = .014) and long-term consolidation (anodal: M = 60.03 ms, sham: M = 75.01 ms, p = .002). Our findings indicate that the observed superior conventional tDCS effects on IMSL are possibly attributable to a generalized stimulation of M1 and/or adjacent MAC, rather than M1 alone. Alternatively, the differential effects can be attributed to cathodal inhibition of other cortical areas involved in IMSL by the 4 * 1 HD tDCS return electrodes, and/or more variable electric field strengths induced by HD tDCS, compared with conventional tDCS.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Manon Saeys
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Catalina Duta
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel (VUB), Jette, Belgium
- Faculty of Medicine and Pharmacy, University Hospital Brussel (UZ Brussel), Jette, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
16
|
Lee H, Lee JH, Lee TL, Ko DK, Kang N. Dual-hemisphere anodal transcranial direct current stimulation improves bilateral motor synergies. Front Psychol 2023; 14:1211034. [PMID: 37546450 PMCID: PMC10400310 DOI: 10.3389/fpsyg.2023.1211034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is one of the non-invasive brain stimulation techniques that can improve motor functions. As bimanual motor actions require high motor cortical activations between hemispheres, applying bilateral anodal stimulation on left and right sides of primary motor cortex (M1) can improve for improvements in bimanual motor tasks. This study investigated which bilateral tDCS protocol effectively improves bimanual hand-grip force control capabilities in healthy young adults. We used three different bilateral tDCS protocols: (a) dual-anodal stimulation on the M1 of bilateral hemispheres (Bi-AA), (b) anodal-cathodal stimulation on the M1 of dominant and nondominant hemispheres (Bi-AC), and (c) sham stimulation (Sham). The results indicated that applying the Bi-AA significantly improved bilateral motor synergies estimated by uncontrolled manifold analysis relative to Sham. However, these differences were not observed in the comparison between Bi-AA and Bi-AC as well as between Bi-AC and Sham. These findings suggest that facilitating motor cortical activations between both hemispheres may be an additional option for advancing interlimb motor coordination patterns.
Collapse
Affiliation(s)
- Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Republic of Korea
| | - Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Republic of Korea
| | - Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Republic of Korea
| | - Do-Kyung Ko
- Department of Human Movement Science, Incheon National University, Incheon, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Republic of Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Republic of Korea
- Division of Sport Science, Health Promotion Center, Sport Science Institute, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
17
|
Youssef H, Mohamed NAEH, Hamdy M. Comparison of bihemispheric and unihemispheric M1 transcranial direct current stimulations during physical therapy in subacute stroke patients: A randomized controlled trial. Neurophysiol Clin 2023; 53:102895. [PMID: 37517104 DOI: 10.1016/j.neucli.2023.102895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Despite the central origin of stroke affecting the primary motor cortex M1, most physical and occupational rehabilitation programs focus on peripheral treatments rather than addressing the central origin of the problem. This highlights the urgent need for effective protocols to improve neurological rehabilitation and achieve better long-term functional outcomes. OBJECTIVES Our hypothesis was that the bihemispheric delivery of transcranial direct current stimulation (tDCS) is superior to unihemispheric in enhancing motor function after stroke, in both the upper and lower extremities. METHODS 35 sub-acute ischemic stroke survivors were randomly divided into three groups: bihemispheric and unihemispheric treatment groups, or sham groups. Each participant received a 20-minute session of tDCS with an intensity of 2 mA during physical therapy sessions, three days a week, for four weeks. The outcomes were measured using Fugl-Meyer assessment scale, modified Ashworth scale, Berg balance scale, and serum brain-derived neurotrophic factor (BDNF) levels. RESULTS One-way ANOVA test indicated a significant effect of both treatment protocols on the upper extremity (p = < 0.001) and lower extremity (p = .034) for motor measures, but there was no difference between the two (p = .939). Kruskal Wallis test for spasticity showed a significant improvement in both treatment groups for elbow (p = .036) and wrist flexors (p = .025), compared to the sham group. However, there was no statistically significant difference in spasticity between uni- and bihemispheric stimulation for elbow (p = .731) or wrist flexors (p = .910). CONCLUSION There is no statistically significant difference in efficacy between bihemispheric and unihemispheric tDCS in patients presenting with acute ischemic stroke. .
Collapse
Affiliation(s)
- Hussein Youssef
- Koç University Research Center for Translational Medicine (KUTTAM), Graduate School of Health Sciences, Koç University, İstanbul, Türkiye; Department of Neuroscience and Biotechnology, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Physical Therapy & Rehabilitation, Faculty of Health Sciences, Marmara University, İstanbul, Türkiye; Street Doctor, Alexandria, Egypt.
| | | | - Mohamed Hamdy
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Hamajima H, Gomez-Tames J, Uehara S, Otaka Y, Tanaka S, Hirata A. Computation of group-level electric field in lower limb motor area for different tDCS montages. Clin Neurophysiol 2023; 150:69-78. [PMID: 37023635 DOI: 10.1016/j.clinph.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) injects a weak electric current into the brain via electrodes attached to the scalp to modulate cortical excitability. tDCS is used to rebalance brain activity between affected and unaffected hemispheres in rehabilitation. However, a systematic quantitative evaluation of tDCS montage is not reported for the lower limbs. In this study, we computationally investigated the generated electric field intensity, polarity, and co-stimulation of cortical areas for lower limb targeting using high-resolution head models. METHODS Volume conductor models have thus been employed to estimate the electric field in the brain. A total of 18 head models of healthy subjects were used to calculate the group-level electric fields generated from four montages of tDCS for modulation of lower limbs. RESULTS C1-C2 montage delivered higher electric field intensities while reaching deeper regions of the lower-limb motor area. It produced a uniform polarization on the same hemisphere target with comparable intensities between hemispheres but with higher variability. CONCLUSIONS Proper montage selection allows reaching deeper regions of the lower-limb motor area with uniform polarization. SIGNIFICANCE First systematic computational study providing support to tDCS experimental studies using montages for the lower limb while considering polarity factor for balancing brain activity.
Collapse
|
19
|
Abul Hasan M, Shahid H, Ahmed Qazi S, Ejaz O, Danish Mujib M, Vuckovic A. Underpinning the neurological source of executive function following cross hemispheric tDCS stimulation. Int J Psychophysiol 2023; 185:1-10. [PMID: 36634750 DOI: 10.1016/j.ijpsycho.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a promising technique for enhancement of executive functions in healthy as well as neurologically disturbed patients. However, the evidence regarding the neuropsychological and behavioral change with neurophysiological shifts as well as the mechanism of tDCS action as evidenced by activation of neuronal sources important for executive functions have remained unaddressed. The study thereby endeavors to (1) determine the neuropsychological, behavioral, and neurophysiological change induced with five sessions of bilateral tDCS stimulation and (2) identify putative neuronal sources related to the executive functions responsible for neuropsychological and behavioral change. For this single blinded study, a total of 40 healthy participants, randomly allocated to active (n = 19) or sham (n = 21) groups completed five sessions of 2 mA tDCS stimulation administered over Dorso-Lateral Prefrontal Cortex (DLPFC) (F3 as anode, F4 as cathode). Repeated measure analysis was performed on neuropsychological (Everyday Memory Questionnaire and Mindful Attention Awareness Scale), and behavioral assessment (n-Back and Stroop tests) to investigate within and between group differences. Pre and post neurophysiological (Electroencephalogram) results showed that bilateral tDCS stimulation activates cortical regions responsible for executive functions including updation (working memory) and inhibition (interference control or attention). Multiple sessions of bilateral tDCS stimulation results in a significant increase in theta, alpha, and beta-band activity in the DLPFC, cingulate and parietal cortex. This study provides evidence that tDCS can be used for performance enhancement of executive functions in able-bodied people.
Collapse
Affiliation(s)
- Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan; Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Hira Shahid
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom.
| | - Saad Ahmed Qazi
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Department of Electrical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Osama Ejaz
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Muhammad Danish Mujib
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Aleksandra Vuckovic
- Biomedical Engineering Division, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
20
|
Aksu S, Hasırcı Bayır BR, Sayman C, Soyata AZ, Boz G, Karamürsel S. Working memory ımprovement after transcranial direct current stimulation paired with working memory training ın diabetic peripheral neuropathy. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-14. [PMID: 36630270 DOI: 10.1080/23279095.2022.2164717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Association of cognitive deficits and diabetic peripheral neuropathy (DPN) is frequent. Working memory (WM) deficits result in impairment of daily activities, diminished functionality, and treatment compliance. Mounting evidence suggests that transcranial Direct Current Stimulation (tDCS) with concurrent working memory training (WMT) ameliorates cognitive deficits. Emboldening results of tDCS were shown in DPN. The study aimed to evaluate the efficacy of anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC) coupled with cathodal right DLPFC with concurrent WMT in DPN for the first time. The present randomized triple-blind parallel-group sham-controlled study evaluated the efficacy of 5 sessions of tDCS over the DLPFC concurrent with WMT in 28 individuals with painful DPN on cognitive (primary) and pain-related, psychiatric outcome measures before, immediately after, and 1-month after treatment protocol. tDCS enhanced the efficacy of WMT on working memory and yielded lower anxiety levels than sham tDCS but efficacy was not superior to sham on other cognitive domains, pain severity, quality of life, and depression. tDCS with concurrent WMT enhanced WM and ameliorated anxiety in DPN without affecting other cognitive and pain-related outcomes. Further research scrutinizing the short/long-term efficacy with larger samples is accredited.
Collapse
Affiliation(s)
- Serkan Aksu
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Türkiye
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Buse Rahime Hasırcı Bayır
- Department of Neurology, Health Sciences University, Haydarpaşa Numune Education and Research Hospital, Istanbul, Türkiye
| | - Ceyhun Sayman
- Translational Neurodevelopmental Neuroscience Phd Programme, Institute of Health Science, Istanbul University, Istanbul, Türkiye
| | - Ahmet Zihni Soyata
- Psychiatry Outpatient Clinic, Başakşehir State Hospital, İstanbul, Turkey
| | - Gökalp Boz
- Department of Psychology, Istanbul University, Istanbul, Türkiye
| | - Sacit Karamürsel
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| |
Collapse
|
21
|
You Y, Li Y, Zhang Y, Fan H, Gao Q, Wang L. Long-term effects of transcranial direct current stimulation (tDCS) combined with speech language therapy (SLT) on post-stroke aphasia patients: A systematic review and network meta-analysis of randomized controlled trials. NeuroRehabilitation 2023; 53:285-296. [PMID: 37781820 DOI: 10.3233/nre-230099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation tool for improving language performance in patients with aphasia after stroke. However, it remains unclear whether it has long-term effects. After consulting a large number of relevant studies, it was found that there are no definitive conclusions about the long-term effects of tDCS on post-stroke aphasia patients. OBJECTIVE To determine whether tDCS has long-term effects on post-stroke aphasia patients (PAPs) and which type of tDCS has the most beneficial treatment effects on language performance (especially naming ability). METHODS A network meta-analysis was conducted by searching for randomized controlled trials (RCTs) published until April 2023 in the following databases: Web of Science, Embase, Medline (from OVID and PubMed), PsycInfo and PsycARTICLES (from OVID). We only included RCTs published in English. PAPs treated by tDCS combined with speech-language therapy were selected. Sham tDCS was the control group. Naming ability or other language performance must be assessed at follow-up states. Two reviewers independently used checklists to assess the primary outcome (the long-term effects on naming ability) and the secondary outcome (other language performance, such as communication). Cochrane Collaboration guidelines were used to assess the risk of bias. RESULTS Seven studies with 249 patients were included for data synthesis. For primary outcomes (naming nous), there was no obvious evidence to show a difference between interventions (C-tDCS vs. S-tDCS SMD = 0.06, 95% CI = -1.01, 1.12; A-tDCS vs. S-tDCS SMD = 0.00, 95% CI = -0.66, 0.65; D-tDCS vs. S-tDCS SMD = 0.77, 95% CI = -0.71, 2.24; A-tDCS vs. C-tDCS SMD = -0.06, 95% CI = -1.31,1.19; D-tDCS vs. C-tDCS SMD = 0.71, 95% CI = -1.11,2.53; D-tDCS vs. A-tDCS SMD = 0.77, 95% CI = -0.84, 2.39). In addition, no evidence showed differences in communication ability (C-tDCS vs. S-tDCS SMD = 0.08 95% CI = -1.77, 1.92; A-tDCS vs. S-tDCS SMD = 1.23 95% CI = -1.89, 4.34; D-tDCS vs. S-tDCS SMD = 0.70; 95% CI = -1.93, 3.34; A-tDCS vs. C-tDCS SMD = 1.15 95% CI = -2.48, 4.77; D-tDCS vs. C-tDCS SMD = 0.62 95% CI = -2.59, 3.84; D-tDCS vs. A-tDCS SMD = -0.52 95% CI = -4.60, 3.56). CONCLUSION It seems that tDCS has no long-term effects on post-stroke aphasia patients in naming nouns and communication in terms of the results of our network meta-analysis. However, the results should be interpreted with caution. In the future, more RCTs with long follow-up times should be included in the research to conduct subgroup or meta-regression analyses to obtain a sufficient effect size.
Collapse
Affiliation(s)
- Yue You
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Li
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| | - Yin Zhang
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| | - Huimin Fan
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Gao
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| | - Ling Wang
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Hsu G, Shereen AD, Cohen LG, Parra LC. Robust enhancement of motor sequence learning with 4 mA transcranial electric stimulation. Brain Stimul 2023; 16:56-67. [PMID: 36574814 PMCID: PMC10171179 DOI: 10.1016/j.brs.2022.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Motor learning experiments with transcranial direct current stimulation (tDCS) at 2 mA have produced mixed results. We hypothesize that tDCS boosts motor learning provided sufficiently high field intensity on the motor cortex. METHODS In a single-blinded design, 108 healthy participants received either anodal (N = 36) or cathodal (N = 36) tDCS at 4 mA total, or no stimulation (N = 36) while they practiced a 12-min sequence learning task. Anodal stimulation was delivered across four electrode pairs (1 mA each), with anodes above the right parietal lobe and cathodes above the right frontal lobe. Cathodal stimulation, with reversed polarities, served as an active control for sensation, while the no-stimulation condition established baseline performance. fMRI-localized targets on the primary motor cortex in 10 subjects were used in current flow models to optimize electrode placement for maximal field intensity. A single electrode montage was then selected for all participants. RESULTS We found a significant difference in performance with anodal vs. cathodal stimulation (Cohen's d = 0.71) and vs. no stimulation (d = 0.56). This effect persisted for at least 1 h, and subsequent learning for a new sequence and the opposite hand also improved. Sensation ratings were comparable in the active groups and did not exceed moderate levels. Current flow models suggest the new electrode montage can achieve stronger motor cortex polarization than alternative montages. CONCLUSION The present paradigm shows a medium to large effect size and is well-tolerated. It may serve as a go-to experiment for future studies on motor learning and tDCS.
Collapse
Affiliation(s)
- Gavin Hsu
- Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, NY, USA.
| | - A Duke Shereen
- Advanced Science Research Center at the Graduate Center of the City University of New York, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, NY, USA
| |
Collapse
|
23
|
Schmitter CV, Straube B. The impact of cerebellar transcranial direct current stimulation (tDCS) on sensorimotor and inter-sensory temporal recalibration. Front Hum Neurosci 2022; 16:998843. [PMID: 36111210 PMCID: PMC9468227 DOI: 10.3389/fnhum.2022.998843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The characteristic temporal relationship between actions and their sensory outcomes allows us to distinguish self- from externally generated sensory events. However, the complex sensory environment can cause transient delays between action and outcome calling for flexible recalibration of predicted sensorimotor timing. Since the neural underpinnings of this process are largely unknown this study investigated the involvement of the cerebellum by means of cerebellar transcranial direct current stimulation (ctDCS). While receiving anodal, cathodal, dual-hemisphere or sham ctDCS, in an adaptation phase, participants were exposed to constant delays of 150 ms between actively or passively generated button presses and visual sensory outcomes. Recalibration in the same (visual outcome) and in another sensory modality (auditory outcome) was assessed in a subsequent test phase during which variable delays between button press and visual or auditory outcome had to be detected. Results indicated that temporal recalibration occurred in audition after anodal ctDCS while it was absent in vision. As the adaptation modality was visual, effects in audition suggest that recalibration occurred on a supra-modal level. In active conditions, anodal ctDCS improved sensorimotor recalibration at the delay level closest to the adaptation delay, suggesting a precise cerebellar-dependent temporal recalibration mechanism. In passive conditions, the facilitation of inter-sensory recalibration by anodal ctDCS was overall stronger and tuned to larger delays. These findings point to a role of the cerebellum in supra-modal temporal recalibration across sensorimotor and perceptual domains, but the differential manifestation of the effect across delay levels in active and passive conditions points to differences in the underlying mechanisms depending on the availability of action-based predictions. Furthermore, these results suggest that anodal ctDCS can be a promising tool for facilitating effects of temporal recalibration in sensorimotor and inter-sensory contexts.
Collapse
Affiliation(s)
- Christina V. Schmitter
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University Giessen, Marburg, Germany
- *Correspondence: Christina V. Schmitter,
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
24
|
Park SB, Han DH, Hong J, Lee JW. Transcranial Direct Current Stimulation of Motor Cortex Enhances Spike Performances of Professional Female Volleyball Players. J Mot Behav 2022; 55:18-30. [PMID: 35726151 DOI: 10.1080/00222895.2022.2090489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to investigate effects of brain excitability by transcranial direct current stimulation (tDCS) on spike performances of professional female volleyball players. Thirteen professional female volleyball players were recruited for participation. We performed a randomized single-blind, SHAM-stimulus controlled, and counter-balanced crossover design with two interventions in this study. An anodal tDCS current was applied over the primary motor cortex (M1) for 20 min at 2 mA. In the SHAM intervention, the current was first applied for 30 s, after which it was terminated. Exercise performance assessment which comprised spike performance (spike ball speed, spiking consistency), two vertical jumps (jump and reach: JaR, countermovement jump: CMJ), bench-press and back-squat one-repetition maximum (1RM) were tested pre- and post-intervention. Results indicated that spike ball speed and spiking consistency following tDCS were significantly higher than those after SHAM intervention (both p < 0.05). However, JaR and CMJ did not show any significant differences between tDCS and SHAM intervention groups (both p > 0.05). There was no significant difference in bench-press and back-squat 1RM between two groups either (both p > 0.05). These findings suggest that tDCS could be effective in enhancing motor coordination performances of professional female volleyball athletes.
Collapse
Affiliation(s)
- Seung-Bo Park
- Department of Sports Culture, Dongguk University, Seoul, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Junggi Hong
- Graduate School of Sports Medicine, CHA University, Gyeonggi, Republic of Korea
| | - Jea-Woog Lee
- Department of Information & Technology in Sport, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
25
|
Liang J, Feng J, He J, Jiang Y, Zhang H, Chen H. Effects of Noninvasive Brain Stimulation Combined With Antidepressants in Patients With Poststroke Depression: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:887115. [PMID: 35662704 PMCID: PMC9160966 DOI: 10.3389/fphar.2022.887115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
Objective: To evaluated the efficacy and safety of noninvasive brain stimulation (NIBS) combined with antidepressants in patients with poststroke depression (PSD). Methods: Seven databases were searched to identify randomized controlled trials of NIBS combined with antidepressants in the treatment of PSD based on the international classification of diseases (ICD-10) criteria and exclusion criteria. The retrieval time was from the database establishment to 31 October 2021. Two researchers independently screened the identified studies through the search strategy, extracted their characteristics, and evaluated the quality of the included literature. Cochrane Collaboration’s tool was used to assess risk of bias. RevMan 5.3 software was applied for meta-analysis. Results: A total of 34 randomized controlled trials were included, involving 2,711 patients with PSD. Meta-analysis showed that the total effective rate was higher in the combined therapy than the antidepressant alone [odds ratio (OR): 4.33; 95% confidence interval (CI): 3.07 to 6.11; p < 0.00001]. The Hamilton depressive scale (HAMD) score was significantly lower in repeated transcranial magnetic stimulation (rTMS) (≤10 Hz) combined with antidepressant than in antidepressant alone [standard mean difference (SMD): −1.44; 95% CI: −1.86 to −1.03; p < 0.00001]. No significant difference was seen in rTMS (>10 Hz) combined with antidepressant versus antidepressant alone (SMD: −4.02; 95% CI: −10.43 to 2.39; p = 0.22). In addition, combination therapy more strongly improved the modified Barthel index (MBI) scale than antidepressants [mean difference (MD): 8.29; 95% CI: 5.23–11.35; p < 0.00001]. Adverse effects were not significantly different between two therapies (OR: 1.33; 95% CI: 0.87 to 2.04; p = 0.18). Conclusion: Low-frequency rTMS (≤10 Hz) combined with antidepressants tends to be more effective than antidepressants alone in patients with PSD, and there are no significant adverse effects. In addition, combined therapy may enhance quality of life after stroke. Combination therapy with high-frequency rTMS (>10 Hz) showed no advantage in treating PSD. The transcranial electrical stimulation (TES) combined with antidepressants might be more effective than antidepressants alone, which are needed to confirm by more clinical trials since the.
Collapse
Affiliation(s)
- Jiabin Liang
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Feng
- Radiology Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua He
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yong Jiang
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoyu Zhang
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanwei Chen
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
26
|
Aneksan B, Sawatdipan M, Bovonsunthonchai S, Tretriluxana J, Vachalathiti R, Auvichayapat P, Pheungphrarattanatrai A, Piriyaprasarth P, Klomjai W. Five-Session Dual-Transcranial Direct Current Stimulation With Task-Specific Training Does Not Improve Gait and Lower Limb Performance Over Training Alone in Subacute Stroke: A Pilot Randomized Controlled Trial. Neuromodulation 2022; 25:558-568. [PMID: 35667771 DOI: 10.1111/ner.13526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the effect of five-session dual-transcranial direct current stimulation (dual-tDCS) combined with task-specific training on gait and lower limb motor performance in individuals with subacute stroke. MATERIALS AND METHODS Twenty-five participants who had a stroke in the subacute phase with mild motor impairment were recruited, randomized, and allocated into two groups. The active group (n = 13) received dual-tDCS with anodal over the lesioned hemisphere M1 and cathodal over the nonlesioned hemisphere, at 2 mA for 20 min before training for five consecutive days, while the sham group (n = 12) received sham mode before training. Gait speed as a primary outcome, temporospatial gait variables, lower-limb functional tasks (sit-to-stand and walking mobility), and muscle strength as secondary outcomes were collected at preintervention and postintervention (day 5), one-week follow-up, and one-month follow-up. RESULTS The primary outcome and most of the secondary outcomes were improved in both groups, with no significant difference between the two groups, and most of the results indicated small to moderate effect sizes of active tDCS compared to sham tDCS. CONCLUSION The combined intervention showed no benefit over training alone in improving gait variables and lower-limb performance. However, some performances were saturated at some point, as moderate to high function participants were recruited in the present study. Future studies should consider recruiting participants with more varied motor impairment levels and may need to determine the optimal stimulation protocols and parameters to improve gait and lower-limb performance.
Collapse
Affiliation(s)
- Benchaporn Aneksan
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Montawan Sawatdipan
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Sunee Bovonsunthonchai
- Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Jarugool Tretriluxana
- Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Roongtiwa Vachalathiti
- Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Paradee Auvichayapat
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Pagamas Piriyaprasarth
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Wanalee Klomjai
- Neuro Electrical Stimulation laboratory (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand; Faculty of Physical Therapy Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand.
| |
Collapse
|
27
|
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique to treat brain disorders by using a constant, low current to stimulate targeted cortex regions. Compared to the conventional tDCS that uses two large pad electrodes, multiple electrode tDCS has recently received more attention. It is able to achieve better stimulation performance in terms of stimulation intensity and focality. In this paper, we first establish a computational model of tDCS, and then propose a novel optimization algorithm using a regularization matrix λ to explore the balance between stimulation intensity and focality. The simulation study is designed such that the performance of state-of-the-art algorithms and the proposed algorithm can be compared via quantitative evaluation. The results show that the proposed algorithm not only achieves desired intensity, but also smaller target error and better focality. Robustness analysis indicates that the results are stable within the ranges of scalp and cerebrospinal fluid (CSF) conductivities, while the skull conductivity is most sensitive and should be carefully considered in real clinical applications.
Collapse
|
28
|
Perri RL, Perrotta D, Rossani F, Pekala RJ. Boosting the hypnotic experience. Inhibition of the dorsolateral prefrontal cortex alters hypnotizability and sense of agency. A randomized, double-blind and sham-controlled tDCS study. Behav Brain Res 2022; 425:113833. [PMID: 35276309 DOI: 10.1016/j.bbr.2022.113833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/02/2022]
Abstract
Hypnotizability refers to the individual responsiveness to hypnosis, and literature shows that the greater the hypnotizability, the more effective the hypnotic suggestions. So far, few studies attempted to enhance hypnotizability, and only two adopted brain stimulation with magnetic pulses. In the present study, we aimed to boost hypnotizability through transcranial direct current stimulation (tDCS). To this aim, bilateral tDCS was applied over the dorsolateral prefrontal cortex (DLPFC) with the target electrode providing negative current (cathodal stimulation) over the left hemisphere. Twenty-nine subjects participated in the study and they were randomly assigned to the sham or the active group in a double-blind design. The hypnotic experience was assessed before and after the stimulation through a phenomenological measure of consciousness (the PCI-HAP). The main findings revealed that a single tDCS session enhanced the hypnotic depth by 11% and reduced the volitional control by 30%, while no differences emerged in the sham group. This is the first study adopting the electrical neurostimulation to produce an alteration of hypnotizability and sense of agency, and confirmed the key-role of the DLPFC and executive control in the hypnotic phenomena. If confirmed, these findings could have relevant implications as enhanced hypnotizability could be translated into better outcomes for many hypnotic interventions.
Collapse
Affiliation(s)
- Rinaldo L Perri
- University Niccolò Cusano, Rome, Italy; De Sanctis Clinical Center (CCDS), Rome, Italy.
| | | | | | - Ronald J Pekala
- Private Practice, West Chester, PA, USA & Coatesville Veterans Administration Medical Center, Coatesville, PA, USA
| |
Collapse
|
29
|
Sun C, Zhao Z, Cheng L, Tian R, Zhao W, Du J, Zhang Y, Wang C. Effect of Transcranial Direct Current Stimulation on the Mismatch Negativity Features of Deviated Stimuli in Children With Autism Spectrum Disorder. Front Neurosci 2022; 16:721987. [PMID: 35221894 PMCID: PMC8863939 DOI: 10.3389/fnins.2022.721987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a devastating mental disorder in children. Currently, there is no effective treatment for ASD. Transcranial direct current stimulation (tDCS), which is a non-invasive brain stimulation neuromodulation technology, is a promising method for the treatment of ASD. However, the manner in which tDCS changes the electrophysiological process in the brain is still unclear. In this study, we used tDCS to stimulate the dorsolateral prefrontal cortex area of children with ASD (one group received anode tDCS, and the other received sham tDCS) and investigated the changes in evoked EEG signals and behavioral abilities before and after anode and sham stimulations. In addition to tDCS, all patients received conventional rehabilitation treatment. Results show that although conventional treatment can effectively improve the behavioral ability of children with ASD, the use of anode tDCS with conventional rehabilitation can boost this improvement, thus leading to increased treatment efficacy. By analyzing the electroencephalography pre- and post-treatment, we noticed a decrease in the mismatch negativity (MMN) latency and an increase in the MMN amplitude in both groups, these features are considered similar to MMN features from healthy children. However, no statistical difference between the two groups was observed after 4 weeks of treatment. In addition, the MMN features correlate well with the aberrant behavior checklist (ABC) scale, particularly the amplitude of MMN, thus suggesting the feasibility of using MMN features to assess the behavioral ability of children with ASD.
Collapse
Affiliation(s)
- Changcheng Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Rehabilitation Medical, Tianjin Union Medical Centre, Tianjin, China
| | - Zhuoyue Zhao
- Department of Rehabilitation Medical, Tianjin Union Medical Centre, Tianjin, China
| | - Longlong Cheng
- China Electronics Cloud Brain (Tianjin) Technology Co., Ltd., Tianjin, China
| | - Rong Tian
- Department of Rehabilitation Medical, Tianjin Union Medical Centre, Tianjin, China
| | - Wenchang Zhao
- Department of Rehabilitation Medical, Tianjin Union Medical Centre, Tianjin, China
| | - Jingang Du
- Department of Rehabilitation Medical, Tianjin Union Medical Centre, Tianjin, China
| | - Ying Zhang
- Department of Rehabilitation Medical, Tianjin Union Medical Centre, Tianjin, China
| | - Chunfang Wang
- Department of Rehabilitation Medical, Tianjin Union Medical Centre, Tianjin, China
| |
Collapse
|
30
|
Lu P, Hanson NJ, Wen L, Guo F, Tian X. Transcranial Direct Current Stimulation Enhances Muscle Strength of Non-dominant Knee in Healthy Young Males. Front Physiol 2022; 12:788719. [PMID: 34987418 PMCID: PMC8721010 DOI: 10.3389/fphys.2021.788719] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been applied in training and competition, but its effects on physical performance remain largely unknown. This study aimed to observe the effect of tDCS on muscular strength and knee activation. Nineteen healthy young men were subjected to 20 min of real stimulation (2 mA) and sham stimulation (0 mA) over the primary motor cortex (M1) bilaterally on different days. The maximal voluntary contraction (MVC) of the knee extensors and flexors, and surface electromyography (sEMG) of the rectus femoris (RF) and biceps femoris (BF) were recorded before, immediately after, and 30 min after stimulation. MVC, rate of force development (RFD), and sEMG activity were analyzed before and after each condition. MVC of the non-dominant leg extensor and flexor was significantly higher immediately after real stimulation and 30 min after stimulation than before, and MVC of the non-dominant leg flexor was significantly higher 30 min after real stimulation than that after sham stimulation (P < 0.05). The RFD of the non-dominant leg extensor and flexor immediately after real stimulation was significantly higher than before stimulation, and the RFD of the non-dominant leg extensor immediately after real stimulation and 30 min after stimulation was significantly higher than that of sham stimulation (P < 0.05). EMG analysis showed the root mean square amplitude and mean power frequency (MPF) of the non-dominant BF and RF were significantly higher immediately after real stimulation and 30 min after stimulation than before stimulation, and the MPF of the non-dominant BF EMG was significantly higher 30 min after real stimulation than that after sham stimulation (P < 0.05). Bilateral tDCS of the M1 can significantly improve the muscle strength and explosive force of the non-dominant knee extensor and flexor, which might result from increased recruitment of motor units. This effect can last until 30 min after stimulation, but there is no significant effect on the dominant knee.
Collapse
Affiliation(s)
- Panpan Lu
- Department of Sports, Nanchang Institute of Technology, Nanchang, China
| | - Nicholas J Hanson
- Department of Human Performance and Health Education, College of Human Development and Education, Western Michigan University, Kalamazoo, MI, United States
| | - Lin Wen
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Feng Guo
- College of Human Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xiaoyu Tian
- School of Physical Education, Hainan Normal University, Haikou, China
| |
Collapse
|
31
|
Esposti R, Marchese SM, Farinelli V, Bolzoni F, Cavallari P. Dual-Hemisphere Transcranial Direct Current Stimulation on Parietal Operculum Does Not Affect the Programming of Intra-limb Anticipatory Postural Adjustments. Front Physiol 2021; 12:789886. [PMID: 34987420 PMCID: PMC8721103 DOI: 10.3389/fphys.2021.789886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Evidence shows that the postural and focal components within the voluntary motor command are functionally unique. In 2015, we reported that the supplementary motor area (SMA) processes Anticipatory Postural Adjustments (APAs) separately from the command to focal muscles, so we are still searching for a hierarchically higher area able to process both components. Among these, the parietal operculum (PO) seemed to be a good candidate, as it is a hub integrating both sensory and motor streams. However, in 2019, we reported that transcranial Direct Current Stimulation (tDCS), applied with an active electrode on the PO contralateral to the moving segment vs. a larger reference electrode on the opposite forehead, did not affect intra-limb APAs associated to brisk flexions of the index-finger. Nevertheless, literature reports that two active electrodes of opposite polarities, one on each PO (dual-hemisphere, dh-tDCS), elicit stronger effects than the "active vs. reference" arrangement. Thus, in the present study, the same intra-limb APAs were recorded before, during and after dh-tDCS on PO. Twenty right-handed subjects were tested, 10 for each polarity: anode on the left vs. cathode on the right, and vice versa. Again, dh-tDCS was ineffective on APA amplitude and timing, as well as on prime mover recruitment and index-finger kinematics. These results confirm the conclusion that PO does not take part in intra-limb APA control. Therefore, our search for an area in which the motor command to prime mover and postural muscles are still processed together will have to address other structures.
Collapse
Affiliation(s)
- Roberto Esposti
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Silvia M. Marchese
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Veronica Farinelli
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Bolzoni
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Paolo Cavallari
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
32
|
Haptic object recognition based on shape relates to visual object recognition ability. PSYCHOLOGICAL RESEARCH 2021; 86:1262-1273. [PMID: 34355269 PMCID: PMC8341045 DOI: 10.1007/s00426-021-01560-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/16/2021] [Indexed: 11/23/2022]
Abstract
Visual object recognition depends in large part on a domain-general ability (Richler et al. Psychol Rev 126(2): 226–251, 2019). Given evidence pointing towards shared mechanisms for object perception across vision and touch, we ask whether individual differences in haptic and visual object recognition are related. We use existing validated visual tests to estimate visual object recognition ability and relate it to performance on two novel tests of haptic object recognition ability (n = 66). One test includes complex objects that participants chose to explore with a hand grasp. The other test uses a simpler stimulus set that participants chose to explore with just their fingertips. Only performance on the haptic test with complex stimuli correlated with visual object recognition ability, suggesting a shared source of variance across task structures, stimuli, and modalities. A follow-up study using a visual version of the haptic test with simple stimuli shows a correlation with the original visual tests, suggesting that the limited complexity of the stimuli did not limit correlation with visual object recognition ability. Instead, we propose that the manner of exploration may be a critical factor in whether a haptic test relates to visual object recognition ability. Our results suggest a perceptual ability that spans at least across vision and touch, however, it may not be recruited during just fingertip exploration.
Collapse
|
33
|
Firouzi M, Baetens K, Swinnen E, Baeken C, Van Overwalle F, Deroost N. Registered report: Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease? J Neurosci Res 2021; 99:2406-2415. [PMID: 34181300 DOI: 10.1002/jnr.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/10/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022]
Abstract
Implicit motor sequence learning (IMSL) is a cognitive function that is known to be directly associated with impaired motor function in Parkinson's disease (PD). Research on healthy young participants shows the potential for transcranial direct current stimulation (tDCS), a noninvasive brain stimulation technique, over the primary motor cortex (M1) to enhance IMSL. tDCS has direct effects on the underlying cortex, but also induces distant (basal ganglia) network effects-hence its potential value in PD, a prime model of basal ganglia dysfunction. To date, only null effects have been reported in persons with PD. However, these studies did not determine the reacquisition effects, although previous studies in healthy young adults suggest that tDCS specifically exerts its beneficial effects on IMSL on reacquisition rather than acquisition. In the current study, we will therefore establish possible reacquisition effects, which are of a particular interest, as long-term effects are vital for the successful functional rehabilitation of persons with PD. Using a sham-controlled, counterbalanced design, we will investigate the potential of tDCS delivered over M1 to enhance IMSL, as measured by the serial reaction time task, in persons with PD and a neurologically healthy age- and sex-matched control (HC) group. Multilevel Mixed Models will be implemented to analyze the sequence-specific aspect of IMSL (primary outcome) and general learning (secondary outcome). We will determine not only the immediate effects that may occur concurrently with the application of tDCS but also the short-term (5 min post-tDCS) and long-term (1 week post-tDCS) reacquisition effects.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium.,Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium.,Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), University Hospital Brussel (UZ Brussel), Brussels, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
34
|
Hikosaka M, Aramaki Y. Effects of Bilateral Transcranial Direct Current Stimulation on Simultaneous Bimanual Handgrip Strength. Front Hum Neurosci 2021; 15:674851. [PMID: 34149384 PMCID: PMC8206279 DOI: 10.3389/fnhum.2021.674851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Although the effects of transcranial direct current stimulation (tDCS) on contralateral unimanual movement have been well reported, its effects on coordinated multi-limb movements remain unclear. Because multi-limb coordination is often performed in daily activities and sports, clarifying the effects of tDCS on multi-limb coordination may have valuable implications. However, considering the neural crosstalk involved in bimanual movements, including the transcallosal pathway and ipsilateral motor pathway, the extent of tDCS-induced improvement may differ between unimanual and bimanual movement. We examined how tDCS affects simultaneous bimanual maximal voluntary contraction (MVC) by testing the effects of tDCS of the bilateral primary motor cortex (M1) on unimanual and bimanual handgrip strength. Twenty-one right-handed healthy adults underwent three bilateral tDCS protocols ("RaLc," with an anode on right M1 and a cathode on left M1, "RcLa," with an anode on left M1 and a cathode on right M1, and "Sham") in a randomized order. A 1.5 mA current was applied for 15 min during tDCS. Participants then performed maximal unimanual and bimanual handgrip tests. Bimanual handgrip force was higher in both hands in the RcLa condition than in the Sham condition. Similarly, unimanual handgrip force was higher in the RcLa condition than in the Sham condition. Stimulus responses were asymmetrical and were not observed in the RaLc condition. Our findings demonstrate that RcLa tDCS leads to neuromodulation that can produce greater unimanual and bimanual handgrip strength. This result provides basic evidence that tDCS may be useful in sports, particularly those involving bilateral coordination of upper limb movement.
Collapse
Affiliation(s)
- Mikito Hikosaka
- Graduate School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| | - Yu Aramaki
- School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| |
Collapse
|
35
|
Flix-Díez L, Delicado-Miralles M, Gurdiel-Álvarez F, Velasco E, Galán-Calle M, Lerma Lara S. Reversed Polarity bi-tDCS over M1 during a Five Days Motor Task Training Did Not Influence Motor Learning. A Triple-Blind Clinical Trial. Brain Sci 2021; 11:brainsci11060691. [PMID: 34070256 PMCID: PMC8225177 DOI: 10.3390/brainsci11060691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/04/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been investigated as a way of improving motor learning. Our purpose was to explore the reversal bilateral tDCS effects on manual dexterity training, during five days, with the retention component measured after 5 days to determine whether somatosensory effects were produced. In this randomized, triple-blind clinical trial, 28 healthy subjects (14 women) were recruited and randomized into tDCS and placebo groups, although only 23 participants (13 women) finished the complete protocol. Participants received the real or placebo treatment during five consecutive days, while performing a motor dexterity training program of 20 min. The motor dexterity and the sensitivity of the hand were assessed pre- and post-day 1, post 5 days of training, and 5 days after training concluded. Training improved motor dexterity, but tDCS only produced a tendency to improve retention. The intervention did not produce changes in the somatosensory variables assessed. Thus, reversal bi-tDCS had no effects during motor learning on healthy subjects, but it could favor the retention of the motor skills acquired. These results do not support the cooperative inter-hemispheric model.
Collapse
Affiliation(s)
- Laura Flix-Díez
- Department of Physical Therapy, University of Valencia (UV), 46003 Valencia, Spain;
| | - Miguel Delicado-Miralles
- Instituto de Neurociencias de Alicante (UMH-CSIC), 03550 Sant Joant d’Alacant, Spain; (M.D.-M.); (E.V.)
| | - Francisco Gurdiel-Álvarez
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine University of Rey Juan Carlos, 28922 Alcorcón, Spain;
| | - Enrique Velasco
- Instituto de Neurociencias de Alicante (UMH-CSIC), 03550 Sant Joant d’Alacant, Spain; (M.D.-M.); (E.V.)
| | - María Galán-Calle
- Health Sciences Faculty, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Sergio Lerma Lara
- Health Sciences Faculty, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Correspondence: ; Tel.: +34-91-5035900 (ext. 255)
| |
Collapse
|
36
|
Yang K, Xi X, Wang T, Wang J, Kong W, Zhao YB, Zhang Q. Effects of transcranial direct current stimulation on brain network connectivity and complexity in motor imagery. Neurosci Lett 2021; 757:135968. [PMID: 34023412 DOI: 10.1016/j.neulet.2021.135968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
Related experiments have shown that transcranial direct current stimulation (tDCS) anodal stimulation of the brain's primary motor cortex (M1) and supplementary motor area (SMA) can improve the motor control and clinical manifestations of stroke patients with aphasia and dyskinesia. In this study, to explore the different effects of tDCS on the M1 and SMA in motor imagery, 35 healthy volunteers participated in a double-blind randomized controlled experiment. Five subjects underwent sham stimulation (control), 15 subjects underwent tDCS anode stimulation of the M1, and the remaining 15 subjects underwent tDCS anode stimulation of the SMA. The electroencephalogram data of the subjects' left- and right-hand motor imagery under different stimulation paradigms were recorded. We used a functional brain network and sample entropy to examine the different complexities and functional connectivities in subjects undergoing sham-tDCS and the two stimulation paradigms. The results show that tDCS anodal stimulation of the SMA produces less obvious differences in the motor preparation phase, while tDCS anodal stimulation of the M1 produces significant differences during the motor imaging task execution phase. The effect of tDCS on the motor area of the brain is significant, especially in the M1.
Collapse
Affiliation(s)
- Kangbo Yang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Xugang Xi
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China.
| | - Ting Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Junhong Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Wanzeng Kong
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Yun-Bo Zhao
- Department of Automation, University of Science and Technology of China, Hefei, 230026, China
| | - Qizhong Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
37
|
Ting WKC, Fadul FAR, Fecteau S, Ethier C. Neurostimulation for Stroke Rehabilitation. Front Neurosci 2021; 15:649459. [PMID: 34054410 PMCID: PMC8160247 DOI: 10.3389/fnins.2021.649459] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Neurological injuries such as strokes can lead to important loss in motor function. Thanks to neuronal plasticity, some of the lost functionality may be recovered over time. However, the recovery process is often slow and incomplete, despite the most effective conventional rehabilitation therapies. As we improve our understanding of the rules governing activity-dependent plasticity, neuromodulation interventions are being developed to harness neural plasticity to achieve faster and more complete recovery. Here, we review the principles underlying stimulation-driven plasticity as well as the most commonly used stimulation techniques and approaches. We argue that increased spatiotemporal precision is an important factor to improve the efficacy of neurostimulation and drive a more useful neuronal reorganization. Consequently, closed-loop systems and optogenetic stimulation hold theoretical promise as interventions to promote brain repair after stroke.
Collapse
Affiliation(s)
- Windsor Kwan-Chun Ting
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| | - Faïza Abdou-Rahaman Fadul
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| | - Shirley Fecteau
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| | - Christian Ethier
- Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec City, QC, Canada
| |
Collapse
|
38
|
Shinde AB, Lerud KD, Munsch F, Alsop DC, Schlaug G. Effects of tDCS dose and electrode montage on regional cerebral blood flow and motor behavior. Neuroimage 2021; 237:118144. [PMID: 33991697 PMCID: PMC8653867 DOI: 10.1016/j.neuroimage.2021.118144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022] Open
Abstract
We used three dose levels (Sham, 2 mA, and 4 mA) and two different electrode montages (unihemispheric and bihemispheric) to examine DOSE and MONTAGE effects on regional cerebral blood flow (rCBF) as a surrogate marker of neural activity, and on a finger sequence task, as a surrogate behavioral measure drawing on brain regions targeted by transcranial direct current stimulation (tDCS). We placed the anodal electrode over the right motor region (C4) while the cathodal or return electrode was placed either over a left supraorbital region (unihemispheric montage) or over the left motor region (C3 in the bihemispheric montage). Performance changes in the finger sequence task for both hands (left hand: p = 0.0026, and right hand: p = 0.0002) showed a linear tDCS dose response but no montage effect. rCBF in the right hemispheric perirolandic area increased with dose under the anodal electrode (p = 0.027). In contrast, in the perirolandic ROI in the left hemisphere, rCBF showed a trend to increase with dose (p = 0.053) and a significant effect of montage (p = 0.00004). The bihemispheric montage showed additional rCBF increases in frontomesial regions in the 4mA condition but not in the 2 mA condition. Furthermore, we found strong correlations between simulated current density in the left and right perirolandic region and improvements in the finger sequence task performance (FSP) for the contralateral hand. Our data support not only a strong direct tDCS dose effect for rCBF and FSP as surrogate measures of targeted brain regions but also indirect effects on rCBF in functionally connected regions (e.g., frontomesial regions), particularly in the higher dose condition and on FSP of the ipsilateral hand (to the anodal electrode). At a higher dose and irrespective of polarity, a wider network of sensorimotor regions is positively affected by tDCS.
Collapse
Affiliation(s)
- Anant B Shinde
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA; Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA 01003, USA.
| | - Karl D Lerud
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA
| | - Fanny Munsch
- Department of Radiology, MRI Research, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| | - David C Alsop
- Department of Radiology, MRI Research, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| | - Gottfried Schlaug
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA; Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA 01003, USA; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| |
Collapse
|
39
|
Philip BA, McAvoy MP, Frey SH. Interhemispheric Parietal-Frontal Connectivity Predicts the Ability to Acquire a Nondominant Hand Skill. Brain Connect 2021; 11:308-318. [PMID: 33403906 PMCID: PMC8112712 DOI: 10.1089/brain.2020.0916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: After chronic impairment of the right dominant hand, some individuals are able to compensate with increased performance with the intact left nondominant hand. This process may depend on the nondominant (right) hemisphere's ability to access dominant (left) hemisphere mechanisms. To predict or modulate patients' ability to compensate with the left hand, we must understand the neural mechanisms and connections that underpin this process. Methods: We studied 17 right-handed healthy adults who underwent resting-state functional connectivity (FC) magnetic resonance imaging scans before 10 days of training on a left-hand precision drawing task. We sought to identify right-hemisphere areas where FC from left-hemisphere seeds (primary motor cortex, intraparietal sulcus [IPS], inferior parietal lobule) would predict left-hand skill learning or magnitude. Results: Left-hand skill learning was predicted by convergent FC from left primary motor cortex and left IPS onto the same small region (0.31 cm3) in the right superior parietal lobule (SPL). Discussion: For patients who must compensate with the left hand, the right SPL may play a key role in integrating left-hemisphere mechanisms that typically control the right hand. Our study provides the first model of how interhemispheric functional connections in the human brain may support compensation after chronic injury to the right hand.
Collapse
Affiliation(s)
- Benjamin A. Philip
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Mark P. McAvoy
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott H. Frey
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
40
|
Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:256-313. [PMID: 32710772 PMCID: PMC8059493 DOI: 10.1093/ijnp/pyaa051] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.
Collapse
Affiliation(s)
- Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Mirret M El-Hagrassy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Sandra Carvalho
- Neurotherapeutics and experimental Psychopathology Group (NEP), Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Universidade Portucalense, Porto, Portugal
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Sao Paulo, Brazil
| | - Jerome Brunelin
- CH Le Vinatier, PSYR2 team, Lyon Neuroscience Research Center, UCB Lyon 1, Bron, France
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brasil (Dr Nakamura-Palacios)
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS) Surgery Department, School of Medicine, UFRGS; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA) Laboratory of Pain and Neuromodulation at HCPA, Porto Alegre, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, New York
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry & Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Wang B, Xiao S, Yu C, Zhou J, Fu W. Effects of Transcranial Direct Current Stimulation Combined With Physical Training on the Excitability of the Motor Cortex, Physical Performance, and Motor Learning: A Systematic Review. Front Neurosci 2021; 15:648354. [PMID: 33897361 PMCID: PMC8062775 DOI: 10.3389/fnins.2021.648354] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 01/28/2023] Open
Abstract
Purpose: This systematic review aims to examine the efficacy of transcranial direct current stimulation (tDCS) combined with physical training on the excitability of the motor cortex, physical performance, and motor learning. Methods: A systematic search was performed on PubMed, Web of Science, and EBSCO databases for relevant research published from inception to August 2020. Eligible studies included those that used a randomized controlled design and reported the effects of tDCS combined with physical training to improve motor-evoked potential (MEP), dynamic posture stability index (DPSI), reaction time, and error rate on participants without nervous system diseases. The risk of bias was assessed by the Cochrane risk of bias assessment tool. Results: Twenty-four of an initial yield of 768 studies met the eligibility criteria. The risk of bias was considered low. Results showed that anodal tDCS combined with physical training can significantly increase MEP amplitude, decrease DPSI, increase muscle strength, and decrease reaction time and error rate in motor learning tasks. Moreover, the gain effect is significantly greater than sham tDCS combined with physical training. Conclusion: tDCS combined with physical training can effectively improve the excitability of the motor cortex, physical performance, and motor learning. The reported results encourage further research to understand further the synergistic effects of tDCS combined with physical training.
Collapse
Affiliation(s)
- Baofeng Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Changxiao Yu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Weijie Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
42
|
Iarrobino I, Bongiardina A, Dal Monte O, Sarasso P, Ronga I, Neppi-Modona M, Actis-Grosso R, Salatino A, Ricci R. Right and left inferior frontal opercula are involved in discriminating angry and sad facial expressions. Brain Stimul 2021; 14:607-615. [PMID: 33785407 DOI: 10.1016/j.brs.2021.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/21/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Neuroimaging studies suggest that the inferior frontal operculum (IFO) is part of a neuronal network involved in facial expression processing, but the causal role of this region in emotional face discrimination remains elusive. OBJECTIVE We used cathodal (inhibitory) tDCS to test whether right (r-IFO) and left (l-IFO) IFO play a role in discriminating basic facial emotions in healthy volunteers. Specifically, we tested if the two sites are selectively involved in the processing of facial expressions conveying high or low arousal emotions. Based on the Arousal Hypothesis we expected to find a modulation of high and low arousal emotions by cathodal tDCS of the r-IFO and the l-IFO, respectively. METHODS First, we validated an Emotional Faces Discrimination Task (EFDT). Then, we targeted the r-IFO and the l-IFO with cathodal tDCS (i.e. the cathode was placed over the right or left IFO, while the anode was placed over the contralateral supraorbital area) during facial emotions discrimination on the EFDT. Non-active (i.e. sham) tDCS was a control condition. RESULTS Overall, participants manifested the "happy face advantage". Interestingly, tDCS to r-IFO enhanced discrimination of faces expressing anger (a high arousal emotion), whereas, tDCS to l-IFO decreased discrimination of faces expressing sadness (a low arousal emotion). CONCLUSIONS Our findings revealed a differential causal role of r-IFO and l-IFO in the discrimination of specific high and low arousal emotions. Crucially, these results suggest that cathodal tDCS might reduce the neural noise triggered by facial emotions, improving discrimination of high arousal emotions but disrupting discrimination of low arousal emotions. These findings offer new insights for treating clinical population with deficits in processing facial expressions.
Collapse
Affiliation(s)
- Igor Iarrobino
- Psychology Department, University of Turin, Torino, Italy; Institute of Neuroscience, Université Catholique de Louvain, Woluwe-Saint-Lambert, Bruxelles, Belgium
| | | | - Olga Dal Monte
- Psychology Department, University of Turin, Torino, Italy; Psychology Department, Yale University, New Haven, CT, USA
| | - Pietro Sarasso
- Psychology Department, University of Turin, Torino, Italy
| | - Irene Ronga
- Psychology Department, University of Turin, Torino, Italy
| | | | - Rossana Actis-Grosso
- Psychology Department, University Milano-Bicocca, Milano, Italy; NeuroMi, Milan Center for Neuroscience, Milano, Italy
| | | | | |
Collapse
|
43
|
Korai SA, Ranieri F, Di Lazzaro V, Papa M, Cirillo G. Neurobiological After-Effects of Low Intensity Transcranial Electric Stimulation of the Human Nervous System: From Basic Mechanisms to Metaplasticity. Front Neurol 2021; 12:587771. [PMID: 33658972 PMCID: PMC7917202 DOI: 10.3389/fneur.2021.587771] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Non-invasive low-intensity transcranial electrical stimulation (tES) of the brain is an evolving field that has brought remarkable attention in the past few decades for its ability to directly modulate specific brain functions. Neurobiological after-effects of tES seems to be related to changes in neuronal and synaptic excitability and plasticity, however mechanisms are still far from being elucidated. We aim to review recent results from in vitro and in vivo studies that highlight molecular and cellular mechanisms of transcranial direct (tDCS) and alternating (tACS) current stimulation. Changes in membrane potential and neural synchronization explain the ongoing and short-lasting effects of tES, while changes induced in existing proteins and new protein synthesis is required for long-lasting plastic changes (LTP/LTD). Glial cells, for decades supporting elements, are now considered constitutive part of the synapse and might contribute to the mechanisms of synaptic plasticity. This review brings into focus the neurobiological mechanisms and after-effects of tDCS and tACS from in vitro and in vivo studies, in both animals and humans, highlighting possible pathways for the development of targeted therapeutic applications.
Collapse
Affiliation(s)
- Sohaib Ali Korai
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federico Ranieri
- Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, University Campus Bio-Medico, Rome, Italy
| | - Michele Papa
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy.,ISBE Italy, SYSBIO Centre of Systems Biology, Milan, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy - Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", Naples, Italy.,Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
44
|
Boonzaier J, Straathof M, Ardesch DJ, van der Toorn A, van Vliet G, van Heijningen CL, Otte WM, Dijkhuizen RM. Activation response and functional connectivity change in rat cortex after bilateral transcranial direct current stimulation-An exploratory study. J Neurosci Res 2021; 99:1377-1389. [PMID: 33511664 PMCID: PMC8048424 DOI: 10.1002/jnr.24793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique implicated as a promising adjunct therapy to improve motor function through the neuromodulation of brain networks. Particularly bilateral tDCS, which affects both hemispheres, may yield stronger effects on motor learning than unilateral stimulation. Therefore, the aim of this exploratory study was to develop an experimental model for simultaneous magnetic resonance imaging (MRI) and bilateral tDCS in rats, to measure instant and resultant effects of tDCS on network activity and connectivity. Naïve, male Sprague‐Dawley rats were divided into a tDCS (n = 7) and sham stimulation group (n = 6). Functional MRI data were collected during concurrent bilateral tDCS over the sensorimotor cortex, while resting‐state functional MRI and perfusion MRI were acquired directly before and after stimulation. Bilateral tDCS induced a hemodynamic activation response, reflected by a bilateral increase in blood oxygenation level‐dependent signal in different cortical areas, including the sensorimotor regions. Resting‐state functional connectivity within the cortical sensorimotor network decreased after a first stimulation session but increased after a second session, suggesting an interaction between multiple tDCS sessions. Perfusion MRI revealed no significant changes in cerebral blood flow after tDCS. Our exploratory study demonstrates successful application of an MRI‐compatible bilateral tDCS setup in an animal model. Our results indicate that bilateral tDCS can locally modulate neuronal activity and connectivity, which may underlie its therapeutic potential.
Collapse
Affiliation(s)
- Julia Boonzaier
- Biomedical Magnetic Resonance Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Milou Straathof
- Biomedical Magnetic Resonance Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Dirk Jan Ardesch
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Annette van der Toorn
- Biomedical Magnetic Resonance Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Gerard van Vliet
- Biomedical Magnetic Resonance Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Caroline L van Heijningen
- Biomedical Magnetic Resonance Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Willem M Otte
- Biomedical Magnetic Resonance Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.,Department of Pediatric Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical Magnetic Resonance Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
45
|
Romanella SM, Sprugnoli G, Ruffini G, Seyedmadani K, Rossi S, Santarnecchi E. Noninvasive Brain Stimulation & Space Exploration: Opportunities and Challenges. Neurosci Biobehav Rev 2020; 119:294-319. [PMID: 32937115 PMCID: PMC8361862 DOI: 10.1016/j.neubiorev.2020.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/22/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
As NASA prepares for longer space missions aiming for the Moon and Mars, astronauts' health and performance are becoming a central concern due to the threats associated with galactic cosmic radiation, unnatural gravity fields, and life in extreme environments. In space, the human brain undergoes functional and structural changes related to fluid shift and changes in intracranial pressure. Behavioral abnormalities, such as cognitive deficits, sleep disruption, and visuomotor difficulties, as well as psychological effects, are also an issue. We discuss opportunities and challenges of noninvasive brain stimulation (NiBS) methods - including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES) - to support space exploration in several ways. NiBS includes safe and portable techniques already applied in a wide range of cognitive and motor domains, as well as therapeutically. NiBS could be used to enhance in-flight performance, supporting astronauts during pre-flight Earth-based training, as well as to identify biomarkers of post-flight brain changes for optimization of rehabilitation/compensatory strategies. We review these NiBS techniques and their effects on brain physiology, psychology, and cognition.
Collapse
Affiliation(s)
- S M Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - G Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - G Ruffini
- Neuroelectrics Corporation, Cambridge, MA, USA
| | - K Seyedmadani
- University Space Research Association NASA Johnson Space Center, Houston, TX, USA; Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA
| | - S Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - E Santarnecchi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Breaking the ice to improve motor outcomes in patients with chronic stroke: a retrospective clinical study on neuromodulation plus robotics. Neurol Sci 2020; 42:2785-2793. [PMID: 33159273 DOI: 10.1007/s10072-020-04875-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Stroke is one of the main causes of impairment affecting daily activities and quality of life. There is a growing effort to potentiate the recovery of functional gait and to enable stroke patients to walk independently. AIM To estimate the effects of dual-site transcranial direct current stimulation (dstDCS) on gait recovery in chronic stroke patients provided with robot-aided gait training (RAGT). METHODS Thirty-seven patients were included in this retrospective clinical study. Nine patients were provided with dstDCS during the first 10 min of RAGT by using Lokomat®Pro (on-RAGT), 15 patients immediately after RAGT (post-RAGT), and 13 patients immediately before RAGT (pre-RAGT). RESULTS Each group improved over time concerning disability burden and lower limb strength. on-RAGT and post-RAGT experienced better improvement in balance (p < 0.001) and, moderately, gait endurance (p = 0.04) as compared to pre-RAGT. Furthermore, all treatments decreased the facilitation of the unaffected hemisphere (p < 0.001) and the inhibition of the affected hemisphere (p < 0.001). The duration of such aftereffects was found to be greater for post-RAGT. DISCUSSION AND CONCLUSION This is the first trial with dstDCS coupled with RAGT in chronic stroke patients with gait impairment. When timely coupled with RAGT, dstDCS may be considered an effective tool for the recovery of lower limb function in patients with first unilateral stroke in the chronic phase. Moreover, our data suggest the ductility of dstDCS concerning RAGT timing, thus making this intervention suitable in a neurorehabilitation setting and well adaptable to patients' needs.
Collapse
|
47
|
Clinical Application of Virtual Reality for Upper Limb Motor Rehabilitation in Stroke: Review of Technologies and Clinical Evidence. J Clin Med 2020; 9:jcm9103369. [PMID: 33096678 PMCID: PMC7590210 DOI: 10.3390/jcm9103369] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Neurorehabilitation for stroke is important for upper limb motor recovery. Conventional rehabilitation such as occupational therapy has been used, but novel technologies are expected to open new opportunities for better recovery. Virtual reality (VR) is a technology with a set of informatics that provides interactive environments to patients. VR can enhance neuroplasticity and recovery after a stroke by providing more intensive, repetitive, and engaging training due to several advantages, including: (1) tasks with various difficulty levels for rehabilitation, (2) augmented real-time feedback, (3) more immersive and engaging experiences, (4) more standardized rehabilitation, and (5) safe simulation of real-world activities of daily living. In this comprehensive narrative review of the application of VR in motor rehabilitation after stroke, mainly for the upper limbs, we cover: (1) the technologies used in VR rehabilitation, including sensors; (2) the clinical application of and evidence for VR in stroke rehabilitation; and (3) considerations for VR application in stroke rehabilitation. Meta-analyses for upper limb VR rehabilitation after stroke were identified by an online search of Ovid-MEDLINE, Ovid-EMBASE, the Cochrane Library, and KoreaMed. We expect that this review will provide insights into successful clinical applications or trials of VR for motor rehabilitation after stroke.
Collapse
|
48
|
Codella R, Alongi R, Filipas L, Luzi L. Ergogenic Effects of Bihemispheric Transcranial Direct Current Stimulation on Fitness: a Randomized Cross-over Trial. Int J Sports Med 2020; 42:66-73. [PMID: 32781476 DOI: 10.1055/a-1198-8525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several types of routines and methods have been experimented to gain neuromuscular advantages, in terms of exercise performance, in athletes and fitness enthusiasts. The aim of the present study was to evaluate the impact of biemispheric transcranial direct current stimulation on physical fitness indicators of healthy, physically active, men. In a randomized, single-blinded, crossover fashion, seventeen subjects (age: 30.9 ± 6.5 years, BMI: 24.8±3.1 kg/m2) underwent either stimulation or sham, prior to: vertical jump, sit & reach, and endurance running tests. Mixed repeated measures anova revealed a large main effect of stimulation for any of the three physical fitness measures. Stimulation determined increases of lower limb power (+ 5%), sit & reach amplitude (+ 9%) and endurance running capacity (+ 12%) with respect to sham condition (0.16<ηp2 < 0.41; p<0.05). Ratings-of-perceived-exertion, recorded at the end of each test session, did not change across all performances. However, in the stimulated-endurance protocol, an average lower rate-of-perceived-exertion at iso-time was inferred. A portable transcranial direct current stimulation headset could be a valuable ergogenic resource for individuals seeking to improve physical fitness in daily life or in athletic training.
Collapse
Affiliation(s)
- Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.,Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Rosario Alongi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.,Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.,Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
49
|
Wiltshire CEE, Watkins KE. Failure of tDCS to modulate motor excitability and speech motor learning. Neuropsychologia 2020; 146:107568. [PMID: 32687836 PMCID: PMC7534039 DOI: 10.1016/j.neuropsychologia.2020.107568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) modulates cortical excitability in a polarity-specific way and, when used in combination with a behavioural task, it can alter performance. TDCS has the potential, therefore, for use as an adjunct to therapies designed to treat disorders affecting speech, including, but not limited to acquired aphasias and developmental stuttering. For this reason, it is important to conduct studies evaluating its effectiveness and the parameters optimal for stimulation. Here, we aimed to evaluate the effects of bi-hemispheric tDCS over speech motor cortex on performance of a complex speech motor learning task, namely the repetition of tongue twisters. A previous study in older participants showed that tDCS could modulate performance on a similar task. To further understand the effects of tDCS, we also measured the excitability of the speech motor cortex before and after stimulation. Three groups of 20 healthy young controls received: (i) anodal tDCS to the left IFG/LipM1 and cathodal tDCS to the right hemisphere homologue; or (ii) cathodal tDCS over the left and anodal over the right; or (iii) sham stimulation. Participants heard and repeated novel tongue twisters and matched simple sentences before, during and 10 min after the stimulation. One mA tDCS was delivered concurrent with task performance for 13 min. Motor excitability was measured using transcranial magnetic stimulation to elicit motor-evoked potentials in the lip before and immediately after tDCS. The study was double-blind, randomized, and sham-controlled; the design and analysis were pre-registered. Performance on the task improved from baseline to after stimulation but was not significantly modulated by tDCS. Similarly, a small decrease in motor excitability was seen in all three stimulation groups but did not differ among them and was unrelated to task performance. Bayesian analyses provide substantial evidence in support of the null hypotheses in both cases, namely that tongue twister performance and motor excitability were not affected by tDCS. We discuss our findings in the context of the previous positive results for a similar task. We conclude that tDCS may be most effective when brain function is sub-optimal due to age-related declines or pathology. Further study is required to determine why tDCS failed to modulate excitability in the speech motor cortex in the expected ways.
Collapse
Affiliation(s)
- Charlotte E E Wiltshire
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, OX2 6GG, UK.
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, OX2 6GG, UK.
| |
Collapse
|
50
|
Elsner B, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving aphasia after stroke: a systematic review with network meta-analysis of randomized controlled trials. J Neuroeng Rehabil 2020; 17:88. [PMID: 32641152 PMCID: PMC7346463 DOI: 10.1186/s12984-020-00708-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Transcranial Direct Current Stimulation (tDCS) is an emerging approach for improving aphasia after stroke. However, it remains unclear what type of tDCS stimulation is most effective. Our aim was to give an overview of the evidence network regarding the efficacy and safety of tDCS and to estimate the effectiveness of the different stimulation types. METHODS This is a systematic review of randomized controlled trials with network meta-analysis (NMA). We searched the following databases until 4 February 2020: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED, Web of Science, and four other databases. We included studies with adult people with stroke. We compared any kind of active tDCS (anodal, cathodal, or dual, that is applying anodal and cathodal tDCS concurrently) regarding improvement of our primary outcome of functional communication, versus control, after stroke. PROSPERO ID CRD42019135696. RESULTS We included 25 studies with 471 participants. Our NMA showed that tDCS did not improve our primary outcome, that of functional communication. There was evidence of an effect of anodal tDCS, particularly over the left inferior frontal gyrus, in improving our secondary outcome, that of performance in naming nouns (SMD = 0.51; 95% CI 0.11 to 0.90). There was no difference in safety between tDCS and its control interventions, measured by the number of dropouts and adverse events. CONCLUSION Comparing different application/protocols of tDCS shows that the anodal application, particularly over the left inferior frontal gyrus, seems to be the most promising tDCS treatment option to improve performance in naming in people with stroke.
Collapse
Affiliation(s)
- Bernhard Elsner
- Department of Public Health, Dresden Medical School, Technical University Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Physiotherapy and Neurorehabilitation, SRH University of Applied Health Sciences Gera, Gera, Germany.
| | - Joachim Kugler
- Department of Public Health, Dresden Medical School, Technical University Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jan Mehrholz
- Department of Public Health, Dresden Medical School, Technical University Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Physiotherapy and Neurorehabilitation, SRH University of Applied Health Sciences Gera, Gera, Germany
- Wissenschaftliches Institut, Private Europäische Medizinische Akademie der Klinik Bavaria in Kreischa GmbH, Kreischa, Germany
| |
Collapse
|