1
|
Tan Z, Bussies PL, Sarn NB, Irfan M, DeSilva T, Eng C. Morphological and functional differences between hippocampal and cortical microglia and its impact on neuronal over-excitation in a germline Pten mutant mouse model. Neuroscience 2025:S0306-4522(25)00162-9. [PMID: 39984030 DOI: 10.1016/j.neuroscience.2025.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
High-throughput, transcriptomic analyses of the brain have revealed significant differences of microglia between the hippocampus and the cortex. However, it remains unclear whether these regional differences translate into different microglial behaviors and impact disease progression. Here, we show that microglia possess higher morphological complexity and phagocytic capacity in the hippocampus compared to the cortex of wild-type mice. These regional differences are preserved in mice harboring a germline Pten mutation, which have a general increase of microglial ramification and phagocytic capacity. Moreover, we find that Pten-mutant microglia protect neurons from over-excitation through pruning excessive excitatory synapses and forming more microglia-neuron junctions. However, Pten-mutation induced neuronal over-excitation is normalized in the hippocampus but not the cortex which we are attributing to regional differences of microglia in both function and morphology. These Pten-mutant microglia may protect Pten mutant mice from developing spontaneous seizures, but cannot eliminate their heightened risk of provoked seizure. Collectively, our findings have revealed a potential protective role of microglia in an over-excited brain, underscoring the impact of microglial regional heterogeneity in disease development and highlighting their prospect as a therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Zhibing Tan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Parker L Bussies
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nicholas B Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Muhammad Irfan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tara DeSilva
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Cairns JL, Huber J, Lewen A, Jung J, Maurer SJ, Bausbacher T, Schmidt S, Levkin PA, Sevin D, Göpfrich K, Koch P, Kann O, Hopf C. Mass-Guided Single-Cell MALDI Imaging of Low-Mass Metabolites Reveals Cellular Activation Markers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410506. [PMID: 39665230 PMCID: PMC11791930 DOI: 10.1002/advs.202410506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Indexed: 12/13/2024]
Abstract
Single-cell MALDI mass spectrometry imaging (MSI) of lipids and metabolites >200 Da has recently come to the forefront of biomedical research and chemical biology. However, cell-targeting and metabolome-preserving methods for analysis of low mass, hydrophilic metabolites (<200 Da) in large cell populations are lacking. Here, the PRISM-MS (PRescan Imaging for Small Molecule - Mass Spectrometry) mass-guided MSI workflow is presented, which enables space-efficient single cell lipid and metabolite analysis. In conjunction with giant unilamellar vesicles (GUVs) as MSI ground truth for cell-sized objects and Monte Carlo reference-based consensus clustering for data-dependent identification of cell subpopulations, PRISM-MS enables MSI and on-cell MS2-based identification of low-mass metabolites like amino acids or Krebs cycle intermediates involved in stimulus-dependent cell activation. The utility of PRISM-MS is demonstrated through the characterization of complex metabolome changes in lipopolysaccharide (LPS)-stimulated microglial cells and human-induced pluripotent stem cell-derived microglia. Translation of single cell results to endogenous microglia in organotypic hippocampal slice cultures indicates that LPS-activation involves changes of the itaconate-to-taurine ratio and alterations in neuron-to-glia glutamine-glutamate shuttling. The data suggests that PRISM-MS can serve as a standard method in single cell metabolomics, given its capability to characterize larger cell populations and low-mass metabolites.
Collapse
Affiliation(s)
- James L. Cairns
- Center for Mass Spectrometry and Optical SpectroscopyCeMOSMannheim University of Applied Sciences68163MannheimGermany
- Medical FacultyHeidelberg University69120HeidelbergGermany
| | - Johanna Huber
- Center for Mass Spectrometry and Optical SpectroscopyCeMOSMannheim University of Applied Sciences68163MannheimGermany
| | - Andrea Lewen
- Institute of Physiology and PathophysiologyHeidelberg University69120HeidelbergGermany
| | - Jessica Jung
- Dept. Translational Brain ResearchCentral Institute for Mental Health (CIMH)68159MannheimGermany
- German Cancer Research Center (DKFZ)69120HeidelbergGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)68159MannheimGermany
| | - Stefan J. Maurer
- Biophysical Engineering GroupCenter for Molecular Biology of Heidelberg University (ZMBH)69120HeidelbergGermany
- Biophysical Engineering GroupMax‐Planck Institute for Medical Research69120HeidelbergGermany
| | - Tobias Bausbacher
- Center for Mass Spectrometry and Optical SpectroscopyCeMOSMannheim University of Applied Sciences68163MannheimGermany
| | - Stefan Schmidt
- Center for Mass Spectrometry and Optical SpectroscopyCeMOSMannheim University of Applied Sciences68163MannheimGermany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology76344KarlsruheGermany
- Institute of Organic ChemistryKarlsruhe Institute of Technology76344KarlsruheGermany
| | | | - Kerstin Göpfrich
- Biophysical Engineering GroupCenter for Molecular Biology of Heidelberg University (ZMBH)69120HeidelbergGermany
- Biophysical Engineering GroupMax‐Planck Institute for Medical Research69120HeidelbergGermany
| | - Philipp Koch
- Dept. Translational Brain ResearchCentral Institute for Mental Health (CIMH)68159MannheimGermany
- German Cancer Research Center (DKFZ)69120HeidelbergGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)68159MannheimGermany
- Mannheim Center for Translational Neuroscience (MCTN)Heidelberg University68167MannheimGermany
| | - Oliver Kann
- Institute of Physiology and PathophysiologyHeidelberg University69120HeidelbergGermany
- Interdisciplinary Center for Neurosciences (IZN)Heidelberg University69120HeidelbergGermany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical SpectroscopyCeMOSMannheim University of Applied Sciences68163MannheimGermany
- Medical FacultyHeidelberg University69120HeidelbergGermany
- Mannheim Center for Translational Neuroscience (MCTN)Heidelberg University68167MannheimGermany
| |
Collapse
|
3
|
Koga M, Satoh Y, Kashitani M, Nakagawa R, Sato M, Asai F, Ishizuka T, Kinoshita M, Saitoh D, Nagamine M, Toda H, Yoshino A. Augmentation of psychiatric symptom onset vulnerability in male mice due to mild traumatic brain injury. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111153. [PMID: 39332579 DOI: 10.1016/j.pnpbp.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/05/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Mild traumatic brain injury (mTBI) can induce psychiatric symptoms, including anxiety, depression, and diminished interest. These symptoms can manifest shortly after injury or exhibit delayed onset months or years later, often worsening in severity. Therefore, early intervention and effective treatment are crucial. However, mTBI lacks clear diagnostic markers, making the underlying pathophysiological mechanisms elusive. Additionally, there is a dearth of suitable animal models and a limited understanding of the biochemical changes in the brain that contribute to post-mTBI psychological symptoms. In this study, we hypothesized that mTBI can trigger brain vulnerability mechanisms, which eventually lead to symptom manifestation in response to subsequent stressors. Using a mouse model, we induced very mild blast-induced mTBI without overt trauma or behavioral changes and subsequently subjected the mice to psychological stress. We analyzed the behavioral alterations and gene expression changes in the brain, focusing on microglial and astrocytic markers involved in the immune system and immune responses. The mice exposed to both blast and defeat stress exhibited significantly lower preference scores in the social interaction test than the mice subjected to blast exposure alone, defeat stress alone, or the control condition. Gene expression analysis revealed a distinct set of genes associated with blast exposure during the development of psychiatric symptoms and genes associated with social defeat stress. The results revealed that neither blast exposure nor defeat stress alone significantly affected mouse social behavior; however, their combined influence resulted in noticeable aberrations in social interactions and/or interest. The findings of the present study provide critical insights into the complex interplay between mTBI and psychological stress. Additionally, they provide a novel mouse model for future research aimed at elucidating the pathophysiological mechanisms underlying the psychiatric symptoms associated with mTBI. Ultimately, this knowledge may enhance early intervention and therapeutic strategies for individuals with mTBI-related psychiatric disorders.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan.
| | - Yasushi Satoh
- Department of Biochemistry, The National Defense Medical College, Saitama, Japan
| | - Masashi Kashitani
- Department of Aerospace Engineering, National Defense Academy, Kanagawa, Japan
| | - Ryuichi Nakagawa
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Mayumi Sato
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Fumiho Asai
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, The National Defense Medical College, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, National Defense Medical College Research Institute, The National Defense Medical College, Saitama, Japan
| | - Masanori Nagamine
- Division of Behavioral Science, National Defense Medical College Research Institute, The National Defense Medical College, Saitama, Japan
| | - Hiroyuki Toda
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Aihide Yoshino
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| |
Collapse
|
4
|
Onat F, Andersson M, Çarçak N. The Role of Glial Cells in the Pathophysiology of Epilepsy. Cells 2025; 14:94. [PMID: 39851521 PMCID: PMC11763453 DOI: 10.3390/cells14020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management. Astrocytes regulate neuronal homeostasis, excitability, and synaptic plasticity, playing key roles in maintaining the blood-brain barrier (BBB) and mediating neuroinflammatory responses. Dysregulated astrocyte functions, such as reactive astrogliosis, can lead to abnormal neuronal activity and seizure generation. They release gliotransmitters, cytokines, and chemokines that may exacerbate or mitigate seizures. Microglia, the innate immune cells of the CNS, contribute to neuroinflammation, glutamate excitotoxicity, and the balance between excitatory and inhibitory neurotransmission, underscoring their dual role in seizure promotion and protection. Meanwhile, oligodendrocytes, primarily involved in myelination, also modulate axonal excitability and contribute to the neuron-glia network underlying seizure pathogenesis. Understanding the dynamic interactions of glial cells with neurons provides promising avenues for novel epilepsy therapies. Targeting these cells may lead to improved seizure control and better clinical outcomes, offering hope for patients with refractory epilepsy.
Collapse
Affiliation(s)
- Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
| | - My Andersson
- Department of Experimental Medicine, Faculty of Medicine, Lund University, 221 00 Lund, Sweden;
| | - Nihan Çarçak
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34452 Istanbul, Türkiye
| |
Collapse
|
5
|
Lee CY, Yang CH. The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications. Int J Mol Sci 2025; 26:378. [PMID: 39796231 PMCID: PMC11720318 DOI: 10.3390/ijms26010378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies. Fractalkine (CX3CL1), a chemokine with dual roles as a membrane-bound adhesion molecule and a soluble chemoattractant, has emerged as a potential therapeutic target. Its receptor, CX3CR1, is expressed on immune cells and mediates processes such as immune cell recruitment and microglial activation through intracellular signaling pathways. In DR, soluble fractalkine plays critical roles in retinal inflammation, angiogenesis, and neuroprotection, balancing tissue damage and repair. In DR, elevated fractalkine levels are associated with retinal inflammation and endothelial dysfunction. Experimental studies suggest that fractalkine deficiency exacerbates the severity of diabetic retinopathy (DR), whereas exogenous fractalkine appears to reduce inflammation, oxidative stress, and neuronal damage. However, its role in pathological angiogenesis within DR remains unclear and warrants further investigation. Preclinical evidence indicates that fractalkine may hold therapeutic potential, particularly in mitigating tissue injury and inflammation associated with early-stage DR.
Collapse
Affiliation(s)
- Cheng-Yung Lee
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Hospital, No. 25, Ln. 442, Sec. 1, Jingguo Rd., North Dist., Hsinchu City 300195, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road Section 1, Taipei City 10051, Taiwan
| |
Collapse
|
6
|
Ghasemi M, Mehranfard N. Neuroprotective actions of norepinephrine in neurological diseases. Pflugers Arch 2024; 476:1703-1725. [PMID: 39136758 DOI: 10.1007/s00424-024-02999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Shafa Street, Urmia, 5715793731, Iran.
| |
Collapse
|
7
|
Manickam V, Maity S, Murali SV, Gawande DY, Stothert AR, Batalkina L, Cardona AE, Kaur T. Local delivery of soluble fractalkine (CX3CL1) peptide restores ribbon synapses after noise-induced cochlear synaptopathy. Front Cell Neurosci 2024; 18:1486740. [PMID: 39539341 PMCID: PMC11557324 DOI: 10.3389/fncel.2024.1486740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Cochlear ribbon synapses between sensory inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are vulnerable to rapid and primary damage and/or loss due to noise overexposure. Such damaged ribbon synapses can repair spontaneously in mouse and guinea pig. However, the mechanisms for synaptic repair are unclear. Previously, we have demonstrated a critical role for the fractalkine signaling axis (CX3CL1-CX3CR1) in synaptic repair, wherein noise-damaged ribbon synapses are spontaneously repaired in the presence of fractalkine receptor (CX3CR1) expressed by cochlear macrophages. Here, we examined whether local administration of chemokine fractalkine ligand (CX3CL1 or FKN) in the form of a peptide is effective in restoring synapses and hearing loss after noise-induced cochlear synaptopathy (NICS). Specifically, the efficacy of different isoforms of FKN was evaluated for restoration of loss of IHC ribbon synapses and hearing after NICS. A single transtympanic injection of soluble isoform of FKN (sFKN) peptide at 1 day after synaptopathic noise trauma for 2 hours at 93 decibel sound pressure level led to significant recovery of auditory brainstem response (ABR) thresholds, ABR peak I amplitudes and ribbon synapses in FKN knockout mice when compared to mice injected with membrane-bound FKN peptide (mFKN). Likewise, local treatment with sFKN peptide in FKN wild type mice restored synaptopathic noise-damaged ribbon synapses and ABR peak I amplitudes. Mechanistically, FKN regulates macrophage numbers in the damaged cochlea and in the absence of macrophages, sFKN failed to restore loss of synapses and hearing after NICS. Furthermore, sFKN treatment attenuated cochlear inflammation after NICS without altering the expression of CX3CR1. Finally, injected sFKN peptide was detectable inside the cochlea for 24 h localized to the basilar membrane and spiral lamina near the sensory epithelium. These data provide a proof-of-principle that local delivery of an immune factor, sFKN is effective in restoring ribbon synapses and hearing loss after NICS in a macrophage-dependent manner and highlights the potential of sFKN as an immunotherapy for cochlear synaptopathy due to noise.
Collapse
Affiliation(s)
| | - Sibaprasad Maity
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Sree Varshini Murali
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
- Department of Otolaryngology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Dinesh Y. Gawande
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
- Department of Otolaryngology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Andrew R. Stothert
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Lyudamila Batalkina
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Astrid E. Cardona
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX, United States
| | - Tejbeer Kaur
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
- Department of Otolaryngology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
8
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
9
|
Vadisiute A, Meijer E, Therpurakal RN, Mueller M, Szabó F, Messore F, Jursenas A, Bredemeyer O, Krone LB, Mann E, Vyazovskiy V, Hoerder-Suabedissen A, Molnár Z. Glial cells undergo rapid changes following acute chemogenetic manipulation of cortical layer 5 projection neurons. Commun Biol 2024; 7:1286. [PMID: 39384971 PMCID: PMC11464517 DOI: 10.1038/s42003-024-06994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2023] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Bidirectional communication between neurons and glial cells is crucial to establishing and maintaining normal brain function. Some of these interactions are activity-dependent, yet it remains largely unexplored how acute changes in neuronal activity affect glial-to-neuron and neuron-to-glial dynamics. Here, we use excitatory and inhibitory designer receptors exclusively activated by designer drugs (DREADD) to study the effects of acute chemogenetic manipulations of a subpopulation of layer 5 cortical projection and dentate gyrus neurons in adult (Rbp4Cre) mouse brains. We show that acute chemogenetic neuronal activation reduces synaptic density, and increases microglia and astrocyte reactivity, but does not affect parvalbumin (PV+) neurons, only perineuronal nets (PNN). Conversely, acute silencing increases synaptic density and decreases glial reactivity. We show fast glial response upon clozapine-N-oxide (CNO) administration in cortical and subcortical regions. Together, our work provides evidence of fast, activity-dependent, bidirectional interactions between neurons and glial cells.
Collapse
Affiliation(s)
- Auguste Vadisiute
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom.
- St John's College, University of Oxford, St Giles', Oxford, United Kingdom.
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Rajeevan Narayanan Therpurakal
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- Department of Neurology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Marissa Mueller
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Florina Szabó
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Fernando Messore
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | | | - Oliver Bredemeyer
- St John's College, University of Oxford, St Giles', Oxford, United Kingdom
| | - Lukas B Krone
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Centre for Experimental Neurology, University of Bern, Bern, Switzerland
| | - Ed Mann
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Vladyslav Vyazovskiy
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- Kavli Institute for Nanoscience Discovery, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- Kavli Institute for Nanoscience Discovery, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom.
- St John's College, University of Oxford, St Giles', Oxford, United Kingdom.
| |
Collapse
|
10
|
Cangalaya C, Sun W, Stoyanov S, Dunay IR, Dityatev A. Integrity of neural extracellular matrix is required for microglia-mediated synaptic remodeling. Glia 2024; 72:1874-1892. [PMID: 38946065 DOI: 10.1002/glia.24588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Microglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.
Collapse
Affiliation(s)
- Carla Cangalaya
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Weilun Sun
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Stoyan Stoyanov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
11
|
Kaur S, K M, Sharma A, Giridharan VV, Dandekar MP. Brain resident microglia in Alzheimer's disease: foe or friends. Inflammopharmacology 2024:10.1007/s10787-024-01550-8. [PMID: 39167311 DOI: 10.1007/s10787-024-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
The neurobiology of Alzheimer's disease (AD) is unclear due to its multifactorial nature. Although a wide range of studies revealed several pathomechanisms of AD, dementia is yet unmanageable with current pharmacotherapies. The recent growing literature illustrates the role of microglia-mediated neuroinflammation in the pathogenesis of AD. Indeed, microglia serve as predominant sentinels of the brain, which diligently monitor the neuroimmune axis by phagocytosis and releasing soluble factors. In the case of AD, microglial cells are involved in synaptic pruning and remodeling by producing inflammatory mediators. The conditional inter-transformation of classical activation (proinflammatory) or alternative activation (anti-inflammatory) microglia is responsible for most brain disorders. In this review, we discussed the role of microglia in neuroinflammatory processes in AD following the accumulation of amyloid-β and tau proteins. We also described the prominent phenotypes of microglia, such as disease-associated microglia (DAM), dark microglia, interferon-responsive microglia (IRMs), human AD microglia (HAMs), and microglial neurodegenerative phenotype (MGnD), which are closely associated with AD incidence. Considering the key role of microglia in AD progression, microglial-based therapeutics may hold promise in mitigating cognitive deficits by addressing the neuroinflammatory responses.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India
| | - Malleshwari K
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India
| | - Anamika Sharma
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioural Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
12
|
Lana D, Traini C, Bulli I, Sarti G, Magni G, Attorre S, Giovannini MG, Vannucchi MG. Chronic administration of prebiotics and probiotics ameliorates pathophysiological hallmarks of Alzheimer's disease in a APP/PS1 transgenic mouse model. Front Pharmacol 2024; 15:1451114. [PMID: 39166107 PMCID: PMC11333230 DOI: 10.3389/fphar.2024.1451114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction: The gut microbiota (MB), although one of the main producers of Aβ in the body, in physiological conditions contributes to the maintainance of a healthy brain. Dysbiosis, the dysbalance between Gram-negative and Gram-positive bacteria in the MB increases Aβ production, contributing to the accumulation of Aβ plaques in the brain, the main histopathological hallmark of Alzheimer's disease (AD). Administration of prebiotics and probiotics, maintaining or recovering gut-MB composition, could represent a nutraceutical strategy to prevent or reduce AD sympthomathology. Aim of this research was to evaluate whether treatment with pre- and probiotics could modify the histopathological signs of neurodegeneration in hippocampal CA1 and CA3 areas of a transgenic mouse model of AD (APP/PS1 mice). The hippocampus is one of the brain regions involved in AD. Methods: Tg mice and Wt littermates (Wt-T and Tg-T) were fed daily for 6 months from 2 months of age with a diet supplemented with prebiotics (a multi-extract of fibers and plant complexes, containing inulin/fruit-oligosaccharides) and probiotics (a 50%-50% mixture of Lactobacillus rhamnosus and Lactobacillus paracasei). Controls were Wt and Tg mice fed with a standard diet. Brain sections were immunostained for Aβ plaques, neurons, astrocytes, microglia, and inflammatory proteins that were evaluated qualitatively and quantitatively by immunofluorescence, confocal microscopy and digital imaging with ImageJ software. Results: Quantitative analyses demonstrated that: 1) The treatment with pre- and probiotics significantly decreased Aβ plaques in CA3, while in CA1 the reduction was not significant; 2) Neuronal damage in CA1 Stratum Pyramidalis was significantly prevented in Tg-T mice; no damage was found in CA3; 3) In both CA1 and CA3 the treatment significantly increased astrocytes density, and GFAP and IBA1 expression, especially around plaques; 4) Microglia reacted differently in CA1 and CA3: in CA3 of Tg-T mice there was a significant increase of CD68+ phagocytic microglia (ball-and-chain phenomic) and of CX3CR1 compared with CA1. Discussion: The higher microglia reactivity could be responsible for their more efficient scavenging activity towards Aβ plaques in CA3 in comparison to CA1. Treatment with pre- and probiotics, modifying many of the physiopathological hallmarks of AD, could be considered an effective nutraceutical strategy against AD symptomatology.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Chiara Traini
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Irene Bulli
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giorgia Sarti
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giada Magni
- Cnr — Istituto di Fisica Applicata “Nello Carrara”, Sesto Fiorentino, Italy
| | - Selene Attorre
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Giuliana Vannucchi
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Leavy A, Phelan J, Jimenez-Mateos EM. Contribution of microglia to the epileptiform activity that results from neonatal hypoxia. Neuropharmacology 2024; 253:109968. [PMID: 38692453 DOI: 10.1016/j.neuropharm.2024.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Microglia are described as the immune cells of the brain, their immune properties have been extensively studied since first described, however, their neural functions have only been explored over the last decade. Microglia have an important role in maintaining homeostasis in the central nervous system by surveying their surroundings to detect pathogens or damage cells. While these are the classical functions described for microglia, more recently their neural functions have been defined; they are critical to the maturation of neurons during embryonic and postnatal development, phagocytic microglia remove excess synapses during development, a process called synaptic pruning, which is important to overall neural maturation. Furthermore, microglia can respond to neuronal activity and, together with astrocytes, can regulate neural activity, contributing to the equilibrium between excitation and inhibition through a feedback loop. Hypoxia at birth is a serious neurological condition that disrupts normal brain function resulting in seizures and epilepsy later in life. Evidence has shown that microglia may contribute to this hyperexcitability after neonatal hypoxia. This review will summarize the existing data on the role of microglia in the pathogenesis of neonatal hypoxia and the plausible mechanisms that contribute to the development of hyperexcitability after hypoxia in neonates. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Aisling Leavy
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Jessie Phelan
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Eva M Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Islam R, Choudhary H, Rajan R, Vrionis F, Hanafy KA. An overview on microglial origin, distribution, and phenotype in Alzheimer's disease. J Cell Physiol 2024; 239:e30829. [PMID: 35822939 PMCID: PMC9837313 DOI: 10.1002/jcp.30829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2022] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease that is responsible for about one-third of dementia cases worldwide. It is believed that AD is initiated with the deposition of Ab plaques in the brain. Genetic studies have shown that a high number of AD risk genes are expressed by microglia, the resident macrophages of brain. Common mode of action by microglia cells is neuroinflammation and phagocytosis. Moreover, it has been discovered that inflammatory marker levels are increased in AD patients. Recent studies advocate that neuroinflammation plays a major role in AD progression. Microglia have different activation profiles depending on the region of brain and stimuli. In different activation, profile microglia can generate either pro-inflammatory or anti-inflammatory responses. Microglia defend brain cells from pathogens and respond to injuries; also, microglia can lead to neuronal death along the way. In this review, we will bring the different roles played by microglia and microglia-related genes in the progression of AD.
Collapse
Affiliation(s)
- Rezwanul Islam
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Hadi Choudhary
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Robin Rajan
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| | - Frank Vrionis
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| | - Khalid A. Hanafy
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
- Marcus Neuroscience Institute, Boca Raton Medical Center, Boca Raton, FL
| |
Collapse
|
15
|
Brenet A, Somkhit J, Csaba Z, Ciura S, Kabashi E, Yanicostas C, Soussi-Yanicostas N. Microglia Mitigate Neuronal Activation in a Zebrafish Model of Dravet Syndrome. Cells 2024; 13:684. [PMID: 38667299 PMCID: PMC11049242 DOI: 10.3390/cells13080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
It has been known for a long time that epileptic seizures provoke brain neuroinflammation involving the activation of microglial cells. However, the role of these cells in this disease context and the consequences of their inflammatory activation on subsequent neuron network activity remain poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation. Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures displayed morphological and biochemical changes characteristic of M1-like pro-inflammatory activation; i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia expressing pro-inflammatory cytokine Il1β. More importantly, LFP recording, Ca2+ imaging, and swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an increase in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD individuals with microglia. These findings strongly suggest that despite microglia activation and the synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic neuronal networks, making these cells a promising therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Alexandre Brenet
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Julie Somkhit
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Zsolt Csaba
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Sorana Ciura
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Edor Kabashi
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Constantin Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| | - Nadia Soussi-Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
16
|
Rodriguez D, Church KA, Pietramale AN, Cardona SM, Vanegas D, Rorex C, Leary MC, Muzzio IA, Nash KR, Cardona AE. Fractalkine isoforms differentially regulate microglia-mediated inflammation and enhance visual function in the diabetic retina. J Neuroinflammation 2024; 21:42. [PMID: 38311721 PMCID: PMC10840196 DOI: 10.1186/s12974-023-02983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2023] [Accepted: 12/01/2023] [Indexed: 02/06/2024] Open
Abstract
Diabetic retinopathy (DR) affects about 200 million people worldwide, causing leakage of blood components into retinal tissues, leading to activation of microglia, the resident phagocytes of the retina, promoting neuronal and vascular damage. The microglial receptor, CX3CR1, binds to fractalkine (FKN), an anti-inflammatory chemokine that is expressed on neuronal membranes (mFKN), and undergoes constitutive cleavage to release a soluble domain (sFKN). Deficiencies in CX3CR1 or FKN showed increased microglial activation, inflammation, vascular damage, and neuronal loss in experimental mouse models. To understand the mechanism that regulates microglia function, recombinant adeno-associated viral vectors (rAAV) expressing mFKN or sFKN were delivered to intact retinas prior to diabetes. High-resolution confocal imaging and mRNA-seq were used to analyze microglia morphology and markers of expression, neuronal and vascular health, and inflammatory mediators. We confirmed that prophylactic intra-vitreal administration of rAAV expressing sFKN (rAAV-sFKN), but not mFKN (rAAV-mFKN), in FKNKO retinas provided vasculo- and neuro-protection, reduced microgliosis, mitigated inflammation, improved overall optic nerve health by regulating microglia-mediated inflammation, and prevented fibrin(ogen) leakage at 4 weeks and 10 weeks of diabetes induction. Moreover, administration of sFKN improved visual acuity. Our results elucidated a novel intervention via sFKN gene therapy that provides an alternative pathway to implement translational and therapeutic approaches, preventing diabetes-associated blindness.
Collapse
Affiliation(s)
- Derek Rodriguez
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kaira A Church
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Alicia N Pietramale
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Sandra M Cardona
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Colin Rorex
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Micah C Leary
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Isabel A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33620, USA
| | - Astrid E Cardona
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
17
|
Tripathi S, Nathan CL, Tate MC, Horbinski CM, Templer JW, Rosenow JM, Sita TL, James CD, Deneen B, Miller SD, Heimberger AB. The immune system and metabolic products in epilepsy and glioma-associated epilepsy: emerging therapeutic directions. JCI Insight 2024; 9:e174753. [PMID: 38193532 PMCID: PMC10906461 DOI: 10.1172/jci.insight.174753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2024] Open
Abstract
Epilepsy has a profound impact on quality of life. Despite the development of new antiseizure medications (ASMs), approximately one-third of affected patients have drug-refractory epilepsy and are nonresponsive to medical treatment. Nearly all currently approved ASMs target neuronal activity through ion channel modulation. Recent human and animal model studies have implicated new immunotherapeutic and metabolomic approaches that may benefit patients with epilepsy. In this Review, we detail the proinflammatory immune landscape of epilepsy and contrast this with the immunosuppressive microenvironment in patients with glioma-related epilepsy. In the tumor setting, excessive neuronal activity facilitates immunosuppression, thereby contributing to subsequent glioma progression. Metabolic modulation of the IDH1-mutant pathway provides a dual pathway for reversing immune suppression and dampening seizure activity. Elucidating the relationship between neurons and immunoreactivity is an area for the prioritization and development of the next era of ASMs.
Collapse
Affiliation(s)
- Shashwat Tripathi
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | | | | | - Craig M. Horbinski
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
- Department of Pathology, and
| | | | | | - Timothy L. Sita
- Department of Neurological Surgery
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles D. James
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
18
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
19
|
Gellner AK, Reis J, Fiebich BL, Fritsch B. Cx3cr1 deficiency interferes with learning- and direct current stimulation-mediated neuroplasticity of the motor cortex. Eur J Neurosci 2024; 59:177-191. [PMID: 38049944 DOI: 10.1111/ejn.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2023] [Revised: 10/18/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
Microglia are essential contributors to synaptic transmission and stability and communicate with neurons via the fractalkine pathway. Transcranial direct current stimulation [(t)DCS], a form of non-invasive electrical brain stimulation, modulates cortical excitability and promotes neuroplasticity, which has been extensively demonstrated in the motor cortex and for motor learning. The role of microglia and their fractalkine receptor CX3CR1 in motor cortical neuroplasticity mediated by DCS or motor learning requires further elucidation. We demonstrate the effects of pharmacological microglial depletion and genetic Cx3cr1 deficiency on the induction of DCS-induced long-term potentiation (DCS-LTP) ex vivo. The relevance of microglia-neuron communication for DCS response and structural neuroplasticity underlying motor learning are assessed via 2-photon in vivo imaging. The behavioural consequences of impaired CX3CR1 signalling are investigated for both gross and fine motor learning. We show that DCS-mediated neuroplasticity in the motor cortex depends on the presence of microglia and is driven in part by CX3CR1 signalling ex vivo and provide the first evidence of microglia interacting with neurons during DCS in vivo. Furthermore, CX3CR1 signalling is required for motor learning and underlying structural neuroplasticity in concert with microglia interaction. Although we have recently demonstrated the microglial response to DCS in vivo, we now provide a link between microglial integrity and neuronal activity for the expression of DCS-dependent neuroplasticity. In addition, we extend the knowledge on the relevance of CX3CR1 signalling for motor learning and structural neuroplasticity. The underlying molecular mechanisms and the potential impact of DCS in rescuing CX3CR1 deficits remain to be addressed in the future.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Neurology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany
| | - Janine Reis
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brita Fritsch
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
20
|
Lanooij SD, Drinkenburg WHIM, Eisel ULM, van der Zee EA, Kas MJH. The effects of social environment on AD-related pathology in hAPP-J20 mice and tau-P301L mice. Neurobiol Dis 2023; 187:106309. [PMID: 37748620 DOI: 10.1016/j.nbd.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-β plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301LK18), while control mice received a PBS injection (P301LPBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301LK18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - W H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands; Department of Neuroscience, Janssen Research & Development, a Division on Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - U L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - E A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
21
|
Sun H, Xu L, Wang K, Li Y, Bai T, Dong S, Wu H, Yao Z. κ-Carrageenan Oligosaccharides Protect Nerves by Regulating Microglial Autophagy in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3540-3550. [PMID: 37650601 DOI: 10.1021/acschemneuro.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/01/2023] Open
Abstract
κ-Carrageenan is a linear sulfated polysaccharide extracted from the cell wall of marine red algae, and its enzymatically digested oligosaccharides (KOS) can inhibit microglial hyperactivation. Alzheimer's disease (AD) is a common chronic neurodegenerative disease, characterized by cognitive and memory impairment accompanied by nerve cell damage. Microglia activation causing enhancement of proinflammatory effects and neurotoxicity is one of the early events in AD disease. In this study, whether KOS have therapeutic or preventive effects in the AD model prepared from APP/PS1 transgenic mice was determined. Learning and memory of AD mice were detected by water maze experiments, and microglial activation-related protein expression and deposition of APP and Aβ1-42 in the brain were examined. The effects of KOS on expressed inflammatory factors and inflammation-related proteins by microglia were tested by cell experiments. Transwell coculture was used to investigate the effect of microglia on neural cell activity after KOS treatment. The results showed that KOS could relieve the clinical symptoms in AD mice, and a decrease in the expression of inflammatory factors and inflammation-related proteins in brain tissue was detected. KOS alleviated nerve cell apoptosis by inhibiting the overactivation of microglia, thus exhibiting neuroprotective effects. Exploring the protective effect of KOS inhibition of microglia inflammation is expected to provide a theoretical basis for KOS as a therapeutic drug for neurodegenerative diseases.
Collapse
Affiliation(s)
- Haojian Sun
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Ling Xu
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Dalian University, Liaoning 116021, Dalian, China
| | - Kangkang Wang
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Yanfeng Li
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Tongning Bai
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Shuo Dong
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Haige Wu
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Ziang Yao
- College of Life Science, Dalian Minzu University, No. 18 Liaohe West Road, Jinpu New Area, Liaoning 116600, Dalian, China
| |
Collapse
|
22
|
Lana D, Magni G, Landucci E, Wenk GL, Pellegrini-Giampietro DE, Giovannini MG. Phenomic Microglia Diversity as a Druggable Target in the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13668. [PMID: 37761971 PMCID: PMC10531074 DOI: 10.3390/ijms241813668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Phenomics, the complexity of microglia phenotypes and their related functions compels the continuous study of microglia in disease animal models to find druggable targets for neurodegenerative disorders. Activation of microglia was long considered detrimental for neuron survival, but more recently it has become apparent that the real scenario of microglia morphofunctional diversity is far more complex. In this review, we discuss the recent literature on the alterations in microglia phenomics in the hippocampus of animal models of normal brain aging, acute neuroinflammation, ischemia, and neurodegenerative disorders, such as AD. Microglia undergo phenomic changes consisting of transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. The classical subdivision of microglia into M1 and M2, two different, all-or-nothing states is too simplistic, and does not correspond to the variety of phenotypes recently discovered in the brain. We will discuss the phenomic modifications of microglia focusing not only on the differences in microglia reactivity in the diverse models of neurodegenerative disorders, but also among different areas of the brain. For instance, in contiguous and highly interconnected regions of the rat hippocampus, microglia show a differential, finely regulated, and region-specific reactivity, demonstrating that microglia responses are not uniform, but vary significantly from area to area in response to insults. It is of great interest to verify whether the differences in microglia reactivity may explain the differential susceptibility of different brain areas to insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli. Understanding the spatiotemporal heterogeneity of microglia phenomics in health and disease is of paramount importance to find new druggable targets for the development of novel microglia-targeted therapies in different CNS disorders. This will allow interventions in three different ways: (i) by suppressing the pro-inflammatory properties of microglia to limit the deleterious effect of their activation; (ii) by modulating microglia phenotypic change to favor anti-inflammatory properties; (iii) by influencing microglia priming early in the disease process.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Giada Magni
- Institute of Applied Physics “Nello Carrara”, National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Florence, Italy;
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Gary L. Wenk
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA;
| | - Domenico Edoardo Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| |
Collapse
|
23
|
Latham AS, Moreno JA, Geer CE. Biological agents and the aging brain: glial inflammation and neurotoxic signaling. FRONTIERS IN AGING 2023; 4:1244149. [PMID: 37649972 PMCID: PMC10464498 DOI: 10.3389/fragi.2023.1244149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Neuroinflammation is a universal characteristic of brain aging and neurological disorders, irrespective of the disease state. Glial inflammation mediates this signaling, through astrocyte and microglial polarization from neuroprotective to neurotoxic phenotypes. Glial reactivity results in the loss of homeostasis, as these cells no longer provide support to neurons, in addition to the production of chronically toxic pro-inflammatory mediators. These glial changes initiate an inflammatory brain state that injures the central nervous system (CNS) over time. As the brain ages, glia are altered, including increased glial cell numbers, morphological changes, and either a pre-disposition or inability to become reactive. These alterations induce age-related neuropathologies, ultimately leading to neuronal degradation and irreversible damage associated with disorders of the aged brain, including Alzheimer's Disease (AD) and other related diseases. While the complex interactions of these glial cells and the brain are well studied, the role additional stressors, such as infectious agents, play on age-related neuropathology has not been fully elucidated. Both biological agents in the periphery, such as bacterial infections, or in the CNS, including viral infections like SARS-CoV-2, push glia into neuroinflammatory phenotypes that can exacerbate pathology within the aging brain. These biological agents release pattern associated molecular patterns (PAMPs) that bind to pattern recognition receptors (PRRs) on glial cells, beginning an inflammatory cascade. In this review, we will summarize the evidence that biological agents induce reactive glia, which worsens age-related neuropathology.
Collapse
Affiliation(s)
- Amanda S. Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, Colorado State University, Fort Collins, CO, United States
| | - Julie A. Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Brain Research Center, Colorado State University, Fort Collins, CO, United States
| | - Charlize E. Geer
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
24
|
Suleymanova I, Bychkov D, Kopra J. A deep convolutional neural network for efficient microglia detection. Sci Rep 2023; 13:11139. [PMID: 37429956 PMCID: PMC10333175 DOI: 10.1038/s41598-023-37963-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Microglial cells are a type of glial cells that make up 10-15% of all brain cells, and they play a significant role in neurodegenerative disorders and cardiovascular diseases. Despite their vital role in these diseases, developing fully automated microglia counting methods from immunohistological images is challenging. Current image analysis methods are inefficient and lack accuracy in detecting microglia due to their morphological heterogeneity. This study presents development and validation of a fully automated and efficient microglia detection method using the YOLOv3 deep learning-based algorithm. We applied this method to analyse the number of microglia in different spinal cord and brain regions of rats exposed to opioid-induced hyperalgesia/tolerance. Our numerical tests showed that the proposed method outperforms existing computational and manual methods with high accuracy, achieving 94% precision, 91% recall, and 92% F1-score. Furthermore, our tool is freely available and adds value to exploring different disease models. Our findings demonstrate the effectiveness and efficiency of our new tool in automated microglia detection, providing a valuable asset for researchers in neuroscience.
Collapse
Affiliation(s)
- Ilida Suleymanova
- Faculty of Biological and Environmental Sciences, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Dmitrii Bychkov
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jaakko Kopra
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
McGregor R, Matzeu A, Thannickal TC, Wu F, Cornford M, Martin-Fardon R, Siegel JM. Sensitivity of Hypocretin System to Chronic Alcohol Exposure: A Human and Animal Study. Neuroscience 2023; 522:1-10. [PMID: 37121379 PMCID: PMC10681027 DOI: 10.1016/j.neuroscience.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2022] [Revised: 03/31/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
Human heroin addicts and mice administered morphine for a 2 week period show a greatly increased number of hypothalamic hypocretin (Hcrt or orexin) producing neurons with a concomitant reduction in Hcrt cell size. Male rats addicted to cocaine similarly show an increased number of detectable Hcrt neurons. These findings led us to hypothesize that humans with alcohol use disorder (AUD) would show similar changes. We now report that humans with AUD have a decreased number and size of detectable Hcrt neurons. In addition, the intermingled melanin concentrating hormone (MCH) neurons are reduced in size. We saw no change in the size and number of tuberomammillary histamine neurons in AUD. Within the Hcrt/MCH neuronal field we found that microglia cell size was increased in AUD brains. In contrast, male rats with 2 week alcohol exposure, sufficient to elicit withdrawal symptoms, show no change in the number or size of Hcrt, MCH and histamine neurons, and no change in the size of microglia. The present study indicates major differences between the response of Hcrt neurons to opioids and that to alcohol in human subjects with a history of substance abuse.
Collapse
Affiliation(s)
- Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA.
| | - Alessandra Matzeu
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, SR-107, La Jolla, CA 92037, USA
| | - Thomas C Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA
| | - Frank Wu
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA
| | - Marcia Cornford
- Department of Pathology, Harbor University of California, Los Angeles, Medical, Center, Torrance, CA 90509, USA
| | - Rémi Martin-Fardon
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, SR-107, La Jolla, CA 92037, USA
| | - Jerome M Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA
| |
Collapse
|
26
|
Kadlecova M, Freude K, Haukedal H. Complexity of Sex Differences and Their Impact on Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051261. [PMID: 37238932 DOI: 10.3390/biomedicines11051261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Sex differences are present in brain morphology, sex hormones, aging processes and immune responses. These differences need to be considered for proper modelling of neurological diseases with clear sex differences. This is the case for Alzheimer's disease (AD), a fatal neurodegenerative disorder with two-thirds of cases diagnosed in women. It is becoming clear that there is a complex interplay between the immune system, sex hormones and AD. Microglia are major players in the neuroinflammatory process occurring in AD and have been shown to be directly affected by sex hormones. However, many unanswered questions remain as the importance of including both sexes in research studies has only recently started receiving attention. In this review, we provide a summary of sex differences and their implications in AD, with a focus on microglia action. Furthermore, we discuss current available study models, including emerging complex microfluidic and 3D cellular models and their usefulness for studying hormonal effects in this disease.
Collapse
Affiliation(s)
- Marion Kadlecova
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| |
Collapse
|
27
|
CSF1R inhibitors induce a sex-specific resilient microglial phenotype and functional rescue in a tauopathy mouse model. Nat Commun 2023; 14:118. [PMID: 36624100 PMCID: PMC9829908 DOI: 10.1038/s41467-022-35753-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2021] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Microglia are central to pathogenesis in many neurological conditions. Drugs targeting colony-stimulating factor-1 receptor (CSF1R) to block microglial proliferation in preclinical disease models have shown mixed outcomes, thus the therapeutic potential of this approach remains unclear. Here, we show that CSF1R inhibitors given by multiple dosing paradigms in the Tg2541 tauopathy mouse model cause a sex-independent reduction in pathogenic tau and reversion of non-microglial gene expression patterns toward a normal wild type signature. Despite greater drug exposure in male mice, only female mice have functional rescue and extended survival. A dose-dependent upregulation of immediate early genes and neurotransmitter dysregulation are observed in the brains of male mice only, indicating that excitotoxicity may preclude functional benefits. Drug-resilient microglia in male mice exhibit morphological and gene expression patterns consistent with increased neuroinflammatory signaling, suggesting a mechanistic basis for sex-specific excitotoxicity. Complete microglial ablation is neither required nor desirable for neuroprotection and therapeutics targeting microglia must consider sex-dependent effects.
Collapse
|
28
|
Kamikubo Y, Jin H, Zhou Y, Niisato K, Hashimoto Y, Takasugi N, Sakurai T. Ex vivo analysis platforms for monitoring amyloid precursor protein cleavage. Front Mol Neurosci 2023; 15:1068990. [PMID: 36683852 PMCID: PMC9852844 DOI: 10.3389/fnmol.2022.1068990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most common cause of dementia in the elderly. The presence of large numbers of senile plaques, neurofibrillary tangles, and cerebral atrophy is the characteristic feature of AD. Amyloid β peptide (Aβ), derived from the amyloid precursor protein (APP), is the main component of senile plaques. AD has been extensively studied using methods involving cell lines, primary cultures of neural cells, and animal models; however, discrepancies have been observed between these methods. Dissociated cultures lose the brain's tissue architecture, including neural circuits, glial cells, and extracellular matrix. Experiments with animal models are lengthy and require laborious monitoring of multiple parameters. Therefore, it is necessary to combine these experimental models to understand the pathology of AD. An experimental platform amenable to continuous observation and experimental manipulation is required to analyze long-term neuronal development, plasticity, and progressive neurodegenerative diseases. In the current study, we provide a practical method to slice and cultivate rodent hippocampus to investigate the cleavage of APP and secretion of Aβ in an ex vivo model. Furthermore, we provide basic information on Aβ secretion using slice cultures. Using our optimized method, dozens to hundreds of long-term stable slice cultures can be coordinated simultaneously. Our findings are valuable for analyses of AD mouse models and senile plaque formation culture models.
Collapse
|
29
|
Calderazzo S, Covert M, Alba DD, Bowley BE, Pessina MA, Rosene DL, Buller B, Medalla M, Moore TL. Neural recovery after cortical injury: Effects of MSC derived extracellular vesicles on motor circuit remodeling in rhesus monkeys. IBRO Neurosci Rep 2022; 13:243-254. [PMID: 36590089 PMCID: PMC9795302 DOI: 10.1016/j.ibneur.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2022] [Revised: 07/01/2022] [Accepted: 08/07/2022] [Indexed: 01/04/2023] Open
Abstract
Reorganization of motor circuits in the cortex and corticospinal tract are thought to underlie functional recovery after cortical injury, but the mechanisms of neural plasticity that could be therapeutic targets remain unclear. Recent work from our group have shown that systemic treatment with mesenchymal stem cell derived (MSCd) extracellular vesicles (EVs) administered after cortical damage to the primary motor cortex (M1) of rhesus monkeys resulted in a robust recovery of fine motor function and reduced chronic inflammation. Here, we used immunohistochemistry for cfos, an activity-dependent intermediate early gene, to label task-related neurons in the surviving primary motor and premotor cortices, and markers of axonal and synaptic plasticity in the spinal cord. Compared to vehicle, EV treatment was associated with a greater density of cfos+ pyramidal neurons in the deep layers of M1, greater density of cfos+ inhibitory interneurons in premotor areas, and lower density of synapses on MAP2+ lower motor neurons in the cervical spinal cord. These data suggest that the anti-inflammatory effects of EVs may reduce injury-related upper motor neuron damage and hyperexcitability, as well as aberrant compensatory re-organization in the cervical spinal cord to improve motor function.
Collapse
Key Words
- CB, Calbindin
- CR, Calretinin
- CSC, Cervical Spinal Cord
- Circuit Remodeling
- Cortical Injury
- DH, Dorsal Horn
- EVs, Extracellular Vesicles
- Extracellular Vesicles
- Ischemia
- LCST, Lateral Corticospinal Tract
- M1, Primary Motor Cortex
- MAP2, Microtubule Associated Protein 2
- MSCd, Mesenchymal Stem Cell derived
- Motor Cortex
- NHP, Non-Human Primate
- PV, Parvalbumin
- Plasticity
- ROS, Reactive Oxygen Species
- SYN, Synaptophysin
- Stem Cell-Based Treatments
- VH, Ventral Horn
- dPMC, dorsal Premotor Cortex
- miRNA, Micro RNA
- periM1, Perilesional Primary Motor Cortex
Collapse
Affiliation(s)
| | | | | | | | | | - Douglas L. Rosene
- Anatomy and Neurobiology Dept, BUSM, USA
- Center for Systems Neuroscience, BU, USA
| | | | - Maria Medalla
- Anatomy and Neurobiology Dept, BUSM, USA
- Center for Systems Neuroscience, BU, USA
| | - Tara L. Moore
- Anatomy and Neurobiology Dept, BUSM, USA
- Center for Systems Neuroscience, BU, USA
| |
Collapse
|
30
|
Muacevic A, Adler JR. Effects of Suberoylanilide Hydroxamic Acid (SAHA) on the Inflammatory Response in Lipopolysaccharide-Induced N9 Microglial Cells. Cureus 2022; 14:e32428. [PMID: 36644097 PMCID: PMC9832526 DOI: 10.7759/cureus.32428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/12/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Epigenetics has shown promising results for understanding the different behaviors of microglia under the context of neuroinflammation. However, to our knowledge, the results of this complex mechanism with novel pharmacological agents such as histone deacetylase inhibitors (HDACis) are still missing. In this study, we aimed to investigate the effects of suberoylanilide hydroxamic acid (SAHA), a pan-HDACi, on the lipopolysaccharide (LPS)-induced neuroinflammation model in the N9 microglial cells. METHODS Microglial cells were treated with SAHA (0.25, 0.5, 1.0, 1.25, 1.5 µM) and LPS (100 ng/mL) for 24 hours. Then, levels of the pro/anti-inflammatory cytokines interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor alpha (TNF-α), and IL-10 were determined by the enzyme-linked immunosorbent assay. The total cellular HDAC activity was determined by colorimetric analysis. Additionally, the expression levels of nuclear factor kappa-B (NF-κB) were quantified via western blotting. RESULTS SAHA (1.0 and 1.25 µM) attenuated the LPS-induced inflammatory response of microglial cells via decreasing NF-κB expression and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) in the N9 microglial cells. Moreover, SAHA treatment improved IL-10 levels and prevented the LPS-induced increase in the HDAC activity in the microglial cells. CONCLUSION Our results suggest SAHA attenuates the LPS-induced inflammatory response in the N9 microglial cells, and regulation of histone acetylation with HDACis might be a rational approach for the treatment of neuroinflammation.
Collapse
|
31
|
Gaige S, Barbouche R, Barbot M, Boularand S, Dallaporta M, Abysique A, Troadec JD. Constitutively active microglial populations limit anorexia induced by the food contaminant deoxynivalenol. J Neuroinflammation 2022; 19:280. [PMID: 36403004 PMCID: PMC9675145 DOI: 10.1186/s12974-022-02631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
Microglia are involved in neuroinflammatory processes during diverse pathophysiological conditions. To date, the possible contribution of these cells to deoxynivalenol (DON)-induced brain inflammation and anorexia has not yet been evaluated. DON, one of the most abundant trichothecenes found in cereals, has been implicated in mycotoxicosis in both humans and farm animals. DON-induced toxicity is characterized by reduced food intake, weight gain, and immunological effects. We previously showed that exposure to DON induces an inflammatory response within the hypothalamus and dorsal vagal complex (DVC) which contributes to DON-induced anorexia. Here, in response to anorectic DON doses, we reported microglial activation within two circumventricular organs (CVOs), the area postrema (AP) and median eminence (ME) located in the DVC and the hypothalamus, respectively. Interestingly, this microglial activation was observed while DON-induced anorexia was ongoing (i.e., 3 and 6 h after DON administration). Next, we took advantage of pharmacological microglia deletion using PLX3397, a colony-stimulating factor 1 receptor (CSF1R)-inhibitor. Surprisingly, microglia-depleted mice exhibited an increased sensitivity to DON since non-anorectic DON doses reduced food intake in PLX3397-treated mice. Moreover, low DON doses induced c-Fos expression within feeding behavior-associated structures in PLX3397-treated mice but not in control mice. In parallel, we have highlighted heterogeneity in the phenotype of microglial cells present in and around the AP and ME of control animals. In these areas, microglial subpopulations expressed IBA1, TMEM119, CD11b and CD68 to varying degrees. In addition, a CD68 positive subpopulation showed, under resting conditions, a noticeable phagocytotic/endocytotic activity. We observed that DON strongly reduced CD68 in the hypothalamus and DVC. Finally, inactivation of constitutively active microglia by intraperitoneal administration of minocycline resulted in anorexia with a DON dose ineffective in control mice. Taken together, these results strongly suggest that various populations of microglial cells residing in and around the CVOs are maintained in a functionally active state even under physiological conditions. We propose that these microglial cell populations are attempting to protect the brain parenchyma from hazardous molecules coming from the blood. This study could contribute to a better understanding of how microglia respond to environmental contaminants.
Collapse
Affiliation(s)
- Stéphanie Gaige
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Rym Barbouche
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Manon Barbot
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Sarah Boularand
- Aix-Marseille University, CNRS, Centrale Marseille, FSCM (FR1739), PRATIM, 13397, Marseille, France
| | - Michel Dallaporta
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Anne Abysique
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France.
| | - Jean-Denis Troadec
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France.
| |
Collapse
|
32
|
Sun Y, Wang Y, Ye F, Cui V, Lin D, Shi H, Zhang Y, Wu A, Wei C. SIRT1 activation attenuates microglia-mediated synaptic engulfment in postoperative cognitive dysfunction. Front Aging Neurosci 2022; 14:943842. [PMID: 36437988 PMCID: PMC9685341 DOI: 10.3389/fnagi.2022.943842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2022] [Accepted: 09/14/2022] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a debilitating neurological complication in surgical patients. Current research has focused mainly on microglial activation, but less is known about the resultant neuronal synaptic changes. Recent studies have suggested that Sirtuin-1 (SIRT1) plays a critical role in several different neurological disorders via its involvement in microglial activation. In this study, we evaluate the effects of SIRT1 activation in a POCD mouse model. MATERIALS AND METHODS Exploratory laparotomy was performed in mice aged 12-14 months under sevoflurane anesthesia to establish our animal POCD model. Transcriptional changes in the hippocampus after anesthesia and surgery were evaluated by RNA sequencing. SIRT1 expression was verified by Western Blot. Mice were treated with SIRT1 agonist SRT1720 or vehicle after surgery. Changes in microglia morphology, microglial phagocytosis, presence of dystrophic neurites, and dendritic spine density were evaluated. Cognitive performance was evaluated using the Y maze and Morris water maze (MWM). RESULTS Sirtuin-1 expression levels were downregulated in POCD. Exposure to anesthesia and surgery lead to alteration in microglia morphology, increased synaptic engulfment, dendritic spine loss, and cognitive deficits. These effects were alleviated by SRT1720 administration. CONCLUSION This study suggests an important neuroprotective role for SIRT1 in POCD pathogenesis. Increasing SIRT1 function represents a promising therapeutic strategy for prevention and treatment of POCD.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuzhu Wang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Victoria Cui
- Department of General Surgery, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Dandan Lin
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hui Shi
- Department of Clinical Psychology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Vidal-Itriago A, Radford RAW, Aramideh JA, Maurel C, Scherer NM, Don EK, Lee A, Chung RS, Graeber MB, Morsch M. Microglia morphophysiological diversity and its implications for the CNS. Front Immunol 2022; 13:997786. [PMID: 36341385 PMCID: PMC9627549 DOI: 10.3389/fimmu.2022.997786] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 07/30/2023] Open
Abstract
Microglia are mononuclear phagocytes of mesodermal origin that migrate to the central nervous system (CNS) during the early stages of embryonic development. After colonizing the CNS, they proliferate and remain able to self-renew throughout life, maintaining the number of microglia around 5-12% of the cells in the CNS parenchyma. They are considered to play key roles in development, homeostasis and innate immunity of the CNS. Microglia are exceptionally diverse in their morphological characteristics, actively modifying the shape of their processes and soma in response to different stimuli. This broad morphological spectrum of microglia responses is considered to be closely correlated to their diverse range of functions in health and disease. However, the morphophysiological attributes of microglia, and the structural and functional features of microglia-neuron interactions, remain largely unknown. Here, we assess the current knowledge of the diverse microglial morphologies, with a focus on the correlation between microglial shape and function. We also outline some of the current challenges, opportunities, and future directions that will help us to tackle unanswered questions about microglia, and to continue unravelling the mysteries of microglia, in all its shapes.
Collapse
Affiliation(s)
- Andrés Vidal-Itriago
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Rowan A. W. Radford
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Jason A. Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Cindy Maurel
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Natalie M. Scherer
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Emily K. Don
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Albert Lee
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Roger S. Chung
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Marco Morsch
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
34
|
Madani Neishaboori A, Eshraghi A, Tasouji Asl A, Shariatpanahi M, Yousefifard M, Gorji A. Adipose tissue-derived stem cells as a potential candidate in treatment of Alzheimer's disease: A systematic review on preclinical studies. Pharmacol Res Perspect 2022; 10:e00977. [PMID: 35718918 PMCID: PMC9207226 DOI: 10.1002/prp2.977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/09/2022] Open
Abstract
In recent years, numerous investigations have evaluated the efficacy of adipose tissue-derived stem cells (ADSCs) and their exosome transplantation in managing Alzheimer's disease (AD) in different animal models. However, there are still many contradictions among the studies that hinder reaching a reliable conclusion. Therefore, we aimed to systematically review the existing evidence regarding the efficacy of ADSCs administration in treatment of AD. The systematic search was conducted in the databases of Medline (via PubMed), Embase, Scopus, and Web of Science, in addition to the manual search in Google and Google scholar, to find articles published until March 13, 2021. Preclinical studies were included and two independent reviewers summarized the eligible papers. Ten articles were included in our review. The treatment strategies varied between isolated ADSC, ADSCs exosomes, ADSCs conditioned medium, and combination therapy (ADSCs plus conditioned medium in one study, and ADSCs plus melatonin in another study). Overview of the included articles showed promising results of ADSCs and its conditioned medium/exosome administration in animal models of AD. These studies showed significant learning and memory improvements through ADSCs and their conditioned medium/exosome administration in animal models of AD. In addition, the application of ADSCs reduced the amyloid-beta plaque deposits in the hippocampus and neocortex of these animals. Based on the aforementioned evidence, studies have suggested potential beneficial effects of ADSCs in the treatment of AD, particularly through decreasing the size of Aβ plaques and improvement of cognitive deficits. Further investigations regarding the subject are encouraged to achieve more accurate conclusions.
Collapse
Affiliation(s)
| | - Azadeh Eshraghi
- Emergency Medicine Management Research Center, Health Management Research InstituteIran University of Medical SciencesTehranIran
| | | | - Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of PharmacyIran University of Medical SciencesTehranIran
- Neuroscience Research Center (NRC)Iran University of Medical SciencesTehranIran
| | | | - Ali Gorji
- Epilepsy Research Center, Neurosurgery DepartmentWestfälische‐Wilhelms‐UniversitätMünsterGermany
- Shefa Neuroscience Research CenterKhatam Alanbia HospitalTehranIran
- Neuroscience Research CenterMashhad University of Medical SciencesTehranIran
| |
Collapse
|
35
|
Westacott LJ, Wilkinson LS. Complement Dependent Synaptic Reorganisation During Critical Periods of Brain Development and Risk for Psychiatric Disorder. Front Neurosci 2022; 16:840266. [PMID: 35600620 PMCID: PMC9120629 DOI: 10.3389/fnins.2022.840266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
We now know that the immune system plays a major role in the complex processes underlying brain development throughout the lifespan, carrying out a number of important homeostatic functions under physiological conditions in the absence of pathological inflammation or infection. In particular, complement-mediated synaptic pruning during critical periods of early life may play a key role in shaping brain development and subsequent risk for psychopathology, including neurodevelopmental disorders such as schizophrenia and autism spectrum disorders. However, these disorders vary greatly in their onset, disease course, and prevalence amongst sexes suggesting complex interactions between the immune system, sex and the unique developmental trajectories of circuitries underlying different brain functions which are yet to be fully understood. Perturbations of homeostatic neuroimmune interactions during different critical periods in which regional circuits mature may have a plethora of long-term consequences for psychiatric phenotypes, but at present there is a gap in our understanding of how these mechanisms may impact on the structural and functional changes occurring in the brain at different developmental stages. In this article we will consider the latest developments in the field of complement mediated synaptic pruning where our understanding is beginning to move beyond the visual system where this process was first described, to brain areas and developmental periods of potential relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Laura J. Westacott
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Hodge Centre for Neuropsychiatric Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
36
|
Comparison of Microglial Morphology and Function in Primary Cerebellar Cell Cultures on Collagen and Collagen-Mimetic Hydrogels. Biomedicines 2022; 10:biomedicines10051023. [PMID: 35625762 PMCID: PMC9139096 DOI: 10.3390/biomedicines10051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/07/2022] Open
Abstract
Neuronal-glial cell cultures are usually grown attached to or encapsulated in an adhesive environment as evenly distributed networks lacking tissue-like cell density, organization and morphology. In such cultures, microglia have activated amoeboid morphology and do not display extended and intensively branched processes characteristic of the ramified tissue microglia. We have recently described self-assembling functional cerebellar organoids promoted by hydrogels containing collagen-like peptides (CLPs) conjugated to a polyethylene glycol (PEG) core. Spontaneous neuronal activity was accompanied by changes in the microglial morphology and behavior, suggesting the cells might play an essential role in forming the functional neuronal networks in response to the peptide signalling. The present study examines microglial cell morphology and function in cerebellar cell organoid cultures on CLP-PEG hydrogels and compares them to the cultures on crosslinked collagen hydrogels of similar elastomechanical properties. Material characterization suggested more expressed fibril orientation and denser packaging in crosslinked collagen than CLP-PEG. However, CLP-PEG promoted a significantly higher microglial motility (determined by time-lapse imaging) accompanied by highly diverse morphology including the ramified (brightfield and confocal microscopy), more active Ca2+ signalling (intracellular Ca2+ fluorescence recordings), and moderate inflammatory cytokine level (ELISA). On the contrary, on the collagen hydrogels, microglial cells were significantly less active and mostly round-shaped. In addition, the latter hydrogels did not support the neuron synaptic activity. Our findings indicate that the synthetic CLP-PEG hydrogels ensure more tissue-like microglial morphology, motility, and function than the crosslinked collagen substrates.
Collapse
|
37
|
Su J, Dou Z, Hong H, Xu F, Lu X, Lu Q, Ye T, Huang C. KRIBB11: A Promising Drug that Promotes Microglial Process Elongation and Suppresses Neuroinflammation. Front Pharmacol 2022; 13:857081. [PMID: 35370703 PMCID: PMC8971675 DOI: 10.3389/fphar.2022.857081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are key components of the central innate immune system. The over-activation of microglia, which occurs in nervous system disorders, is usually accompanied with retractions of their ramified processes. Reversing of microglial process retraction is a potential strategy for the prevention of neuroinflammation. Our previous studies have reported some endogenous molecules and drugs that can promote microglial process elongation at conditions in vitro and in vivo, such as butyrate and β-hydroxybutyrate, sulforaphane, and diallyl disulfide. Here, reported another compound that can promote microglial process elongation. We found that KRIBB11, a compound which has been reported to suppress nitric oxide production in microglia, induced significant elongations of the processes in microglia in cultured and in vivo conditions in a reversible manner. KRIBB11 pretreatment also prevented lipopolysaccharide (LPS)-induced shortenings of microglial process in cultured conditions and in vivo conditions, inflammatory responses in primary cultured microglia and the prefrontal cortex, and depression-like behaviors in mice. Mechanistic studies revealed that KRIBB11 incubation up-regulated phospho-Akt in cultured microglia and Akt inhibition blocked the pro-elongation effect of KRIBB11 on microglial process in cultured conditions and in vivo conditions, suggesting that the regulatory effect of KRIBB11 is Akt-dependent. Akt inhibition was also found to abrogate the preventive effect of KRIBB11 on LPS-induced inflammatory responses in primary cultured microglia and prefrontal cortexes as well as LPS-induced depression-like behaviors in mice. Collectively, our findings demonstrated that KRIBB11 is a novel compound that can prevent microglial activation and neuroinflammation-associated behavioral deficits possibly through inducing the Akt-mediated elongation of microglial process.
Collapse
Affiliation(s)
- Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
- *Correspondence: Jianbin Su, ; Chao Huang,
| | - Zhihua Dou
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Hongxiang Hong
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
- *Correspondence: Jianbin Su, ; Chao Huang,
| |
Collapse
|
38
|
Tamegart L, Abbaoui A, Oukhrib M, Bouyatas MM, Gamrani H. Physiological Alterations of Subchronic Lead Exposure Induced Degeneration of Epithelial Cells in Proximal Tubules and the Remedial Effect of Curcumin-III in Meriones shawi: a Possible Link with Vasopressin Release. Biol Trace Elem Res 2022; 200:1303-1311. [PMID: 34176078 DOI: 10.1007/s12011-021-02751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/20/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
At the industrial working conditions, lead exposure could induce several alterations for the human body. Subchronic lead exposure is linked with several injuries including cerebral and renal dysfunctions. The present work discusses the effects of subchronic lead toxicity (3 g/l) in drinking water during the period of treatment (6 weeks) on vasopressin system and epithelial cells in proximal tubules. Also, we aimed to evaluate the protective effect of curcumin-III administered orally by gavage (30 mg/kg BW), against subchronic Pb exposure in Meriones shawi. The biochemical and histopathological examinations demonstrate renal damages induced by lead toxicity. In addition, the behavioral and immunohistochemical studies revealed that Pb neurotoxicity exhibited an anxious behavior with a significant elevation of the vasopressin (AVP) staining within the paraventricular nuclei. The study showed also curcumin-III restored the renal alterations with an anxiolytic effect. Moreover, it restored the AVP level in the studying nuclei. Our work supports a possible link between AVP release and epithelial degeneration in the proximal tubules, and shows a new pharmacological effect of curcumin-III as an anxiolytic agent against lead toxicity.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mjid Oukhrib
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mouly Mustapha Bouyatas
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- Department of Biology, Multidisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.
- Neurosciences, Pharmacology and Environment Unit, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Avenue My Abdellah, B.P. 2390, Marrakesh, Morocco.
| |
Collapse
|
39
|
Mu X, Zhang X, Gao H, Gao L, Li Q, Zhao C. Crosstalk between peripheral and the brain-resident immune components in epilepsy. J Integr Neurosci 2022; 21:9. [PMID: 35164445 DOI: 10.31083/j.jin2101009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2021] [Revised: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is one of the most common neurology diseases. It is characterized by recurrent, spontaneous seizures and accompanied by various comorbidities which can significantly affect a person's life. Accumulating evidence indicates an essential pathophysiological role for neuroinflammation in epilepsy, which involves activation of microglia and astrocytes, recruitment of peripheral leukocytes into the central nervous system, and release of some inflammatory mediators, including pro-inflammatory factors and anti-inflammatory cytokines. There is complex crosstalk between the central nervous system and peripheral immune responses associated with the progression of epilepsy. This review provides an update of current knowledge about the contribution of this crosstalk associated with epilepsy. Additionally, how gut microbiota is involved in epilepsy and its possible influence on crosstalk is also discussed. Such recent advances in understanding suggest innovative methods for targeting the molecules correlated with the crosstalk and may provide a better prognosis for patients diagnosed with epilepsy.
Collapse
Affiliation(s)
- Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Honghua Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Lianbo Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Stroke Center, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| |
Collapse
|
40
|
The Effects of Modified Curcumin Preparations on Glial Morphology in Aging and Neuroinflammation. Neurochem Res 2022; 47:813-824. [PMID: 34988899 DOI: 10.1007/s11064-021-03499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is characterized by reactive microglia and astrocytes (collectively called gliosis) in the central nervous system and is considered as one of the main pathological hallmarks in different neurodegenerative diseases such as Alzheimer's disease, age-related dementia, and multiple sclerosis. Upon activation, glia undergoes structural and morphological changes such as the microglial cells swell in size and astrocytes become bushy, which play both beneficial and detrimental roles. Hence, they are unable to perform the normal physiological role in brain immunity. Curcumin, a cytokine suppressive anti-inflammatory drug, has a high proven pre-clinical potency and efficacy to reverse chronic neuroinflammation by attenuating the activation and morphological changes that occur in the microglia and astrocytes. This review will highlight the recent findings on the tree structure changes of microglia and astrocytes in neuroinflammation and the effects of curcumin against the activation and morphology of glial cells.
Collapse
|
41
|
Gulino M, Santos SD, Pêgo AP. Biocompatibility of Platinum Nanoparticles in Brain ex vivo Models in Physiological and Pathological Conditions. Front Neurosci 2022; 15:787518. [PMID: 34975386 PMCID: PMC8714788 DOI: 10.3389/fnins.2021.787518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022] Open
Abstract
Platinum nanoparticles (PtNPs) have unique physico-chemical properties that led to their use in many branches of medicine. Recently, PtNPs gathered growing interest as delivery vectors for drugs, biosensors and as surface coating on chronically implanted biomedical devices for improving electrochemical properties. However, there are contradictory statements about their biocompatibility and impact on target organs such as the brain tissue, where these NPs are finding many applications. Furthermore, many of the reported studies are conducted in homeostasis conditions and, consequently, neglect the impact of the pathologic conditions on the tissue response. To expand our knowledge on the effects of PtNPs on neuronal and glial cells, we investigated the acute effects of monodisperse sodium citrate-coated PtNPs on rat organotypic hippocampal cultures in physiological or neuronal excitotoxic conditions induced by kainic acid (KA). The cellular responses of the PtNPs were evaluated through cytotoxic assays and confocal microscopy analysis. To mimic a pathologic scenario, 7-day organotypic hippocampal cultures were exposed to KA for 24 h. Subsequently, PtNPs were added to each slice. We show that incubation of the slices with PtNPs for 24 h, does not severely impact cell viability in normal conditions, with no significant differences when comparing the dentate gyrus (DG), as well as CA3 and CA1 pyramidal cell layers. Such effects are not exacerbated in KA-treated slices, where the presence of PtNPs does not cause additional neuronal propidium iodide (PI) uptake in CA3 and CA1 pyramidal cell layers. However, PtNPs cause microglial cell activation and morphological alterations in CA3 and DG regions indicating the establishment of an inflammatory reaction. Morphological analysis revealed that microglia acquire activated ameboid morphology with loss of ramifications, as a result of their response to PtNPs contact. Surprisingly, this effect is not increased in pathological conditions. Taken together, these results show that PtNPs cause microglia alterations in short-term studies. Additionally, there is no worsening of the tissue response in a neuropathological induced scenario. This work highlights the need of further research to allow for the safe use of PtNPs. Also, it supports the demand of the development of novel and more biocompatible NPs to be applied in the brain.
Collapse
Affiliation(s)
- Maurizio Gulino
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Sofia Duque Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
42
|
El Khiat A, El Hiba O, Tamegart L, Rais H, Fdil N, Sellami S, El Mokhtar MA, Gamrani H. Time dependent alteration of locomotor behavior in rat with acute liver failure induced cerebellar neuroinflammation and neuro-astroglial damage. J Chem Neuroanat 2021; 119:102055. [PMID: 34863855 DOI: 10.1016/j.jchemneu.2021.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Hepatic encephalopathy (HE) is a neurophysiological syndrome secondary to acute or chronic liver failure. Studies showed that HE patients exhibit a deficit in motor coordination, which may result from cerebellar functional impairment. The aim of this study is to assess the time-dependent alteration of locomotor behavior and the glial and neuronal alteration in rat with acute HE induced chemically. The study was carried out in male Sprague-Dawley rats with thioacetamide (TAA) induced acute liver failure at different stages 12 h, 24 h and 36 h. Hepatic and renal functions were assessed via various biochemical and histopathological examinations, while the cerebellum and the midbrain were examined using histology and immunohistochemistry for tyrosine hydroxylase (TH), cyclooxygenase-2 (COX-2) and glial fibrillary acidic protein (GFAP). We used as well, the open field test and the Rotarod test for assessing the locomotor activity and coordination. Our data showed a progressive loss of liver function and a progressive alteration in locomotor behavior and motor coordination in acute HE rats. In the cerebellum, we noted an increase in the degeneration of cerebellar Purkinje neurons parallel to increased COX-2 immunoreactivity together with astrocytic morphology and density changes. Likewise, in substantia nigra pars compacta, TH levels were reduced. We showed through the current study, a progressive deterioration in locomotor behavior in acute HE rats, as a result of Purkinje neurons death and a deficient dopaminergic neurotransmission, together with the morpho-functional astroglial modifications involving the oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Abdelaati El Khiat
- Laboratory of Clinical and Experimental Neurosciences and Environment, faculty of Medicine and Pharmacy, Cadi Ayyad University, 4000 Marrakech, Morocco; Higher Institute of Nursing Professions and Health Techniques, Ouarzazate, Morocco.
| | - Omar El Hiba
- Nutritional Physiopathologies and Toxicology Team, faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco.
| | - Lahcen Tamegart
- Laboratory of Clinical and Experimental Neurosciences and Environment, faculty of Medicine and Pharmacy, Cadi Ayyad University, 4000 Marrakech, Morocco; Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Hanane Rais
- Laboratory of Morphosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Morocco; Mohammed VI University Hospital, Marrakech, Morocco
| | - Naima Fdil
- Metabolics platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayyad University, Sidi Abbad, BP 40000 Marrakech, Morocco
| | | | - Mohamed Ait El Mokhtar
- Laboratory of Biochemistry, Environment &Agri-food URAC 36, Department of Biology, Faculty of Sciences and Techniques, Mohmmedia, Hassan II University of Casablanca, Morocco
| | - Halima Gamrani
- Laboratory of Clinical and Experimental Neurosciences and Environment, faculty of Medicine and Pharmacy, Cadi Ayyad University, 4000 Marrakech, Morocco.
| |
Collapse
|
43
|
IGF1 Gene Therapy Reversed Cognitive Deficits and Restored Hippocampal Alterations After Chronic Spinal Cord Injury. Mol Neurobiol 2021; 58:6186-6202. [PMID: 34463925 DOI: 10.1007/s12035-021-02545-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2020] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
The hippocampus is implicated in the generation of memory and learning, processes which involve extensive neuroplasticity. The generation of hippocampal adult-born neurons is particularly regulated by glial cells of the neurogenic niche and the surrounding microenvironment. Interestingly, recent evidence has shown that spinal cord injury (SCI) in rodents leads to hippocampal neuroinflammation, neurogenesis reduction, and cognitive impairments. In this scenario, the aim of this work was to evaluate whether an adenoviral vector expressing IGF1 could reverse hippocampal alterations and cognitive deficits after chronic SCI. SCI caused neurogenesis reduction and impairments of both recognition and working memories. We also found that SCI increased the number of hypertrophic arginase-1 negative microglia concomitant with the decrease of the number of ramified surveillance microglia in the hilus, molecular layer, and subgranular zone of the dentate gyrus. RAd-IGF1 treatment restored neurogenesis and improved recognition and working memory impairments. In addition, RAd-IGF1 gene therapy modulated differentially hippocampal regions. In the hilus and molecular layer, IGF1 gene therapy recovered the number of surveillance microglia coincident with a reduction of hypertrophic microglia cell number. However, in the neurogenic niche, IGF1 reduced the number of ramified microglia and increased the number of hypertrophic microglia, which as a whole expressed arginase-1. In summary, RAd-IGF1 gene therapy might surge as a new therapeutic strategy for patients with hippocampal microglial alterations and cognitive deficits such as those with spinal cord injury and other neurodegenerative diseases.
Collapse
|
44
|
Schilling S, Chausse B, Dikmen HO, Almouhanna F, Hollnagel JO, Lewen A, Kann O. TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain Behav Immun 2021; 96:80-91. [PMID: 34015428 DOI: 10.1016/j.bbi.2021.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/12/2020] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of pathogen- or damage-associated molecular patterns (PAMPs, DAMPs) by innate Toll-like receptors (TLRs) is central to the activation of microglia (brain macrophages) in many CNS diseases. Notably, TLR-mediated microglial activation is complex and modulated by additional exogenous and endogenous immunological signals. The impact of different microglial reactive phenotypes on electrical activity and neurotransmission is widely unknown, however. We explored the effects of TLR ligands on microglia and neuronal network function in rat organotypic hippocampal slice cultures (in situ), i.e., postnatal cortical tissue lacking adaptive immunity. Single exposure of slice cultures to TLR2 or TLR3 ligands [PGN, poly(I:C)] for 2-3 days induced moderate microglial activation featuring IL-6 and TNF-α release and only mild alterations of fast neuronal gamma band oscillations (30-70 Hz) that are fundamental to higher cognitive functions, such as perception, memory and behavior. Paired exposure to TLR3/TLR2 or TLR3/TLR4 ligands (LPS) induced nitric oxide (NO) release, enhanced TNF-α release, and associated with advanced network dysfunction, including slowing to the beta frequency band (12-30 Hz) and neural bursts (hyperexcitability). Paired exposure to a TLR ligand and the leukocyte cytokine IFN-γ enhanced NO release and associated with severe network dysfunction, albeit sensitive parvalbumin- and somatostatin-positive inhibitory interneurons were preserved. Notably, the neuronal disturbance was prevented by either microglial depletion or pharmacological inhibition of oxidant-producing enzymes, inducible NO synthase (iNOS) and NADPH oxidase. In conclusion, TLR-activated microglia can induce different levels of neuronal network dysfunction, in which severe dysfunction is mainly caused by reactive oxygen and nitrogen species rather than proinflammatory cytokines. Our findings provide a mechanistic insight into microglial activation and functional neuronal network impairment, with relevance to neuroinflammation and neurodegeneration observed in, e.g., meningoencephalitis, multiple sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Simone Schilling
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Hasan Onur Dikmen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Kremer B, Coburn M, Weinandy A, Nolte K, Clusmann H, Veldeman M, Höllig A. Argon treatment after experimental subarachnoid hemorrhage: evaluation of microglial activation and neuronal survival as a subanalysis of a randomized controlled animal trial. Med Gas Res 2021; 10:103-109. [PMID: 33004706 PMCID: PMC8086619 DOI: 10.4103/2045-9912.296039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Hereinafter, we evaluate argon's neuroprotective and immunomodulatory properties after experimental subarachnoid hemorrhage (SAH) examining various localizations (hippocampal and cortical regions) with respect to neuronal damage and microglial activation 6, 24 and 72 hours after SAH. One hour after SAH (endovascular perforation rat model) or sham surgery, a mixture of gas containing 50% argon (argon group) or 50% nitrogen (control group) was applied for 1 hour. At 6 hours after SAH, argon reduced neuronal damage in the hippocampal regions in the argon group compared to the control group (P < 0.034). Hippocampal microglial activation did not differ between the treatment groups over time. The basal cortical regions did not show a different lesion pattern, but microglial activation was significantly reduced in the argon group 72 hours after SAH (P = 0.034 vs. control group). Whereas callosal microglial activation was significantly reduced at 24 hours in the argon-treated group (P = 0.018). Argon treatment ameliorated only early hippocampal neuronal damage after SAH. Inhibition of microglial activation was seen in some areas later on. Thus, argon may influence the microglial inflammatory response and neuronal survival after SAH; however, due to low sample sizes the interpretation of our results is limited. The study protocol was approved by the Government Agency for Animal Use and Protection (Protocol number: TVA 10416G1; initially approved by the "Landesamt für Natur, Umwelt und Verbraucherschutz NRW," Recklinghausen, Germany, on April 28, 2009).
Collapse
Affiliation(s)
- Benedikt Kremer
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mark Coburn
- Department of Anaesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Agnieszka Weinandy
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Kay Nolte
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
46
|
The Dual Role of the GABA A Receptor in Peripheral Inflammation and Neuroinflammation: A Study in Hyperammonemic Rats. Int J Mol Sci 2021; 22:ijms22136772. [PMID: 34202516 PMCID: PMC8268725 DOI: 10.3390/ijms22136772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cognitive and motor impairment in minimal hepatic encephalopathy (MHE) are mediated by neuroinflammation, which is induced by hyperammonemia and peripheral inflammation. GABAergic neurotransmission in the cerebellum is altered in rats with chronic hyperammonemia. The mechanisms by which hyperammonemia induces neuroinflammation remain unknown. We hypothesized that GABAA receptors can modulate cerebellar neuroinflammation. The GABAA antagonist bicuculline was administrated daily (i.p.) for four weeks in control and hyperammonemic rats. Its effects on peripheral inflammation and on neuroinflammation as well as glutamate and GABA neurotransmission in the cerebellum were assessed. In hyperammonemic rats, bicuculline decreases IL-6 and TNFα and increases IL-10 in the plasma, reduces astrocyte activation, induces the microglia M2 phenotype, and reduces IL-1β and TNFα in the cerebellum. However, in control rats, bicuculline increases IL-6 and decreases IL-10 plasma levels and induces microglial activation. Bicuculline restores the membrane expression of some glutamate and GABA transporters restoring the extracellular levels of GABA in hyperammonemic rats. Blocking GABAA receptors improves peripheral inflammation and cerebellar neuroinflammation, restoring neurotransmission in hyperammonemic rats, whereas it induces inflammation and neuroinflammation in controls. This suggests a complex interaction between GABAergic and immune systems. The modulation of GABAA receptors could be a suitable target for improving neuroinflammation in MHE.
Collapse
|
47
|
El-Derany MO, Noureldein MH. Bone marrow mesenchymal stem cells and their derived exosomes resolve doxorubicin-induced chemobrain: critical role of their miRNA cargo. Stem Cell Res Ther 2021; 12:322. [PMID: 34090498 PMCID: PMC8180158 DOI: 10.1186/s13287-021-02384-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Doxorubicin (DOX), a widely used chemotherapeutic agent, can cause neurodegeneration in the brain, which leads to a condition known as chemobrain. In fact, chemobrain is a deteriorating condition which adversely affects the lives of cancer survivors. This study aimed to examine the potential therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) and their derived exosomes (BMSCs-Exo) in DOX-induced chemobrain in rat models. Methods Chemobrain was induced by exposing rats to DOX (2 mg/kg, i.p) once weekly for 4 consecutive weeks. After 48 h of the last DOX dose, a subset of rats was supplied with either an intravenous injection of BMSCs (1 × 106) or a single dose of 150 μg of BMSCs-Exo. Behavioral tests were conducted 7 days post injection. Rats were sacrificed after 14 days from BMSCs or BMSCs-Exo injection. Results BMSCs and BMSCs-Exo successfully restored DOX-induced cognitive and behavioral distortion. These actions were mediated via decreasing hippocampal neurodegeneration and neural demyelination through upregulating neural myelination factors (myelin%, Olig2, Opalin expression), neurotropic growth factors (BDNF, FGF-2), synaptic factors (synaptophysin), and fractalkine receptor expression (Cx3cr1). Halting neurodegeneration in DOX-induced chemobrain was achieved through epigenetic induction of key factors in Wnt/β-catenin and hedgehog signaling pathways mediated primarily by the most abundant secreted exosomal miRNAs (miR-21-5p, miR-125b-5p, miR-199a-3p, miR-24-3p, let-7a-5p). Moreover, BMSCs and BMSCs-Exo significantly abrogate the inflammatory state (IL-6, TNF-α), apoptotic state (BAX/Bcl2), astrocyte, and microglia activation (GFAP, IBA-1) in DOX-induced chemobrain with a significant increase in the antioxidant mediators (GSH, GPx, SOD activity). Conclusions BMSCs and their derived exosomes offer neuroprotection against DOX-induced chemobrain via genetic and epigenetic abrogation of hippocampal neurodegeneration through modulating Wnt/β-catenin and hedgehog signaling pathways and through reducing inflammatory, apoptotic, and oxidative stress state. Graphical abstract Proposed mechanisms of the protective effects of bone marrow stem cells (BMSCs) and their exosomes (BMSCs-Exo) in doxorubicin (DOX)-induced chemobrain. Blue arrows: induce. Red arrows: inhibit.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02384-9.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Mohamed H Noureldein
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes Program, Beirut, Lebanon
| |
Collapse
|
48
|
Nemes-Baran AD, White DR, DeSilva TM. Fractalkine-Dependent Microglial Pruning of Viable Oligodendrocyte Progenitor Cells Regulates Myelination. Cell Rep 2021; 32:108047. [PMID: 32814050 PMCID: PMC7478853 DOI: 10.1016/j.celrep.2020.108047] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Oligodendrogenesis occurs during early postnatal development, coincident with neurogenesis and synaptogenesis, raising the possibility that microglia-dependent pruning mechanisms that modulate neurons regulate myelin sheath formation. Here we show a population of ameboid microglia migrating from the ventricular zone into the corpus callosum during early postnatal development, termed “the fountain of microglia,” phagocytosing viable oligodendrocyte progenitor cells (OPCs) before onset of myelination. Fractalkine receptor-deficient mice exhibit a reduction in microglial engulfment of viable OPCs, increased numbers of oligodendrocytes, and reduced myelin thickness but no change in axon number. These data provide evidence that microglia phagocytose OPCs as a homeostatic mechanism for proper myelination. A hallmark of hypomyelinating developmental disorders such as periventricular leukomalacia and of adult demyelinating diseases such as multiple sclerosis is increased numbers of oligodendrocytes but failure to myelinate, suggesting that microglial pruning of OPCs may be impaired in pathological states and hinder myelination. Nemes-Baran et al. show that ameboid microglia engulf living oligodendrocyte progenitor cells (OPCs) during brain development. Fractalkine receptor-deficient microglia exhibit a reduction in engulfment of OPCs, resulting in a surplus of oligodendrocytes and impaired myelination. These data provide evidence that microglia phagocytose OPCs as a homeostatic mechanism required for normal myelination.
Collapse
Affiliation(s)
- Ashley D Nemes-Baran
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Donovan R White
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tara M DeSilva
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
49
|
Moraes CA, Zaverucha-do-Valle C, Fleurance R, Sharshar T, Bozza FA, d’Avila JC. Neuroinflammation in Sepsis: Molecular Pathways of Microglia Activation. Pharmaceuticals (Basel) 2021; 14:ph14050416. [PMID: 34062710 PMCID: PMC8147235 DOI: 10.3390/ph14050416] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Frequently underestimated, encephalopathy or delirium are common neurological manifestations associated with sepsis. Brain dysfunction occurs in up to 80% of cases and is directly associated with increased mortality and long-term neurocognitive consequences. Although the central nervous system (CNS) has been classically viewed as an immune-privileged system, neuroinflammation is emerging as a central mechanism of brain dysfunction in sepsis. Microglial cells are major players in this setting. Here, we aimed to discuss the current knowledge on how the brain is affected by peripheral immune activation in sepsis and the role of microglia in these processes. This review focused on the molecular pathways of microglial activity in sepsis, its regulatory mechanisms, and their interaction with other CNS cells, especially with neuronal cells and circuits.
Collapse
Affiliation(s)
- Carolina Araújo Moraes
- Immunopharmacology Lab, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil;
| | - Camila Zaverucha-do-Valle
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro 21040-360, Brazil; (C.Z.-d.-V.); (F.A.B.)
| | - Renaud Fleurance
- UCB Biopharma SRL, 1420 Braine L’Alleud, Belgium;
- Experimental Neuropathology, Infection, and Epidemiology Department, Institut Pasteur, 75015 Paris, France;
- Université de Paris Sciences et Lettres, 75006 Paris Paris, France
| | - Tarek Sharshar
- Experimental Neuropathology, Infection, and Epidemiology Department, Institut Pasteur, 75015 Paris, France;
- Neuro-Anesthesiology and Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, 75015 Paris, France
| | - Fernando Augusto Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro 21040-360, Brazil; (C.Z.-d.-V.); (F.A.B.)
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Joana Costa d’Avila
- Immunopharmacology Lab, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil;
- School of Medicine, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil
- Correspondence:
| |
Collapse
|
50
|
Tamegart L, Abbaoui A, El Khiat A, Bouyatas MM, Gamrani H. Lead (Pb) exposure induces physiological alterations in the serotoninergic and vasopressin systems causing anxiogenic-like behavior in Meriones shawi: Assessment of BDMC as a neuroprotective compound for Pb-neurotoxicity and kidney damages. J Trace Elem Med Biol 2021; 65:126722. [PMID: 33524682 DOI: 10.1016/j.jtemb.2021.126722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/26/2020] [Revised: 12/25/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Studies have shown that lead (Pb) is one of hazardous heavy metals with various adverse effects on human health including mental health; Pb can induce psychiatric disorders like anxiety. In the present work, we examined the potential of bisdemethoxycurcumin (BDMC) as a neuroprotective agent against lead induced anxiety inMeriones shawi (M. shawi). METHODS We asses, the potential of three consecutive day exposure to Pb (25 mg/kg body weight) in inducing anxiogenic effect, serotoninergic and vasopressinergic disruptions inM. shawi. This was done using neurobehavioral tests (open field, elevated plus maze), immunohistochemestry by anti-serotonin (5-HT), and anti-vasopressin (AVP) antibodies. We also measured the possible restorative potential of BDMC (30 mg/kg body weight), delivered by oral gavage. After that, a biochemical and histopathological studies were done. RESULTS Our results showed that lead exposure for three consecutive days increases significantly the 5-HT-immunoreactivity in dorsal raphe nucleus (DRN) accompanied with a significant enhancement of AVP-immunoreactivity in the cell bodies and fibers in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus. In the collecting tube, AVP binds to the V2 receptor of the epithelial cells and increases the water permeability. Our results showed clearly the epithelial cells degeneration after lead exposure, then we suggest that the increased AVP could be a response to the hydric balance disrupted after degenerative effect of lead exposure on epithelial cells. BDMC produced an anxiolytic effect in meriones. Moreover, it restored 5-HT and AVP immunoreactivity within studying nuclei. The biochemical and histopathological studies showed that Pb induced renal damages. In addition, BDMC restored the renal alterations. CONCLUSION According to the obtained results, we suggest new pharmacological effects of BDMC; while it has an anxiolytic effect against Pb-induced anxiety by working on serotoninergic and vasopressinergic systems with an obvious restoration of the renal injuries induced by lead exposure.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdelaati El Khiat
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Moulay Mustapha Bouyatas
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco; Cadi Ayyad University, Multidisciplinary Faculty of Safi, Department of Biology, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.
| |
Collapse
|