1
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
2
|
He J, Ding Y, Lin H, Liu X, Chen X, Shen W, Zhou S, Feng C, Wang M, Xia J, He N. Differential genome-wide associated variants and enriched pathways of ECG parameters among people with versus without HIV. AIDS 2023; 37:1871-1882. [PMID: 37418550 PMCID: PMC10481915 DOI: 10.1097/qad.0000000000003647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
OBJECTIVES People with HIV (PWH) are more likely to develop ECG abnormalities. Substantial evidence exists for genetic contribution to ECG parameters among general population. However, whether and how would host genome associate with ECG parameters among PWH is unclear. Our research aims to analyze and compare genetic variants, mapped genes, and enriched pathways of ECG parameters among PWH and HIV-negative controls. DESIGN A cross-sectional study. METHOD We performed a large original genome-wide association study (GWAS) of ECG parameters among PWH ( n = 1730) and HIV-negative controls ( n = 3746). Genome-wide interaction analyses were also conducted. RESULTS A total of 18 novel variants were detected among PWH, six for PR interval including rs76345397 at ATL2 , 11 for QRS duration including rs10483994 at KCNK10 and rs2478830 at JCAD , and one for QTc interval (rs9815364). Among HIV-negative controls, we identified variants located at previously reported ECG-related genes ( SCN5A , CNOT1 ). Genetic variants had a significant interaction with HIV infection ( P < 5 × 10 -8 ), implying that HIV infection and host genome might jointly influence ECG parameters. Mapped genes for PR interval and QRS duration among PWH were enriched in the biological process of viral genome replication and host response to virus, respectively, whereas enriched pathways for PR interval among HIV-negative controls were in the cellular component of voltage-gated sodium channel complex. CONCLUSION The present GWAS indicated a distinctive impact of host genome on quantitative ECG parameters among PWH. Different from HIV-negative controls, host genome might influence the cardiac electrical activity by interfering with HIV viral infection, production, and latency among PWH.
Collapse
Affiliation(s)
- Jiayu He
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education
- Yi-Wu Research Institute
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai
| | - Yingying Ding
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education
- Yi-Wu Research Institute
| | - Haijiang Lin
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education
- Taizhou City Center for Disease Control and Prevention, Zhejiang Province, China
| | - Xing Liu
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education
- Yi-Wu Research Institute
| | - Xiaoxiao Chen
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education
- Taizhou City Center for Disease Control and Prevention, Zhejiang Province, China
| | - Weiwei Shen
- Taizhou City Center for Disease Control and Prevention, Zhejiang Province, China
| | - Sujuan Zhou
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education
- Yi-Wu Research Institute
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai
| | - Cheng Feng
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education
- Yi-Wu Research Institute
| | - Miaochen Wang
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education
- Yi-Wu Research Institute
| | - Jingjing Xia
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education
- Yi-Wu Research Institute
| | - Na He
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education
- Yi-Wu Research Institute
- Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai
| |
Collapse
|
3
|
Abstract
OBJECTIVE Interindividual variability in the clinical progression of COVID-19 may be explained by host genetics. Emerging literature supports a potential inherited predisposition to severe forms of COVID-19. Demographic and inflammatory characteristics of COVID-19 suggest that acquired hematologic mutations leading to clonal hematopoiesis (CH) may further increase vulnerability to adverse sequelae. This review summarizes the available literature examining genetic predispositions to severe COVID-19 and describes how these findings could eventually be used to improve its clinical management. DATA SOURCES A PubMed literature search was performed. STUDY SELECTION Studies examining the significance of inherited genetic variation or acquired CH mutations in severe COVID-19 were selected for inclusion. DATA EXTRACTION Relevant genetic association data and aspects of study design were qualitatively assessed and narratively synthesized. DATA SYNTHESIS Genetic variants affecting inflammatory responses may increase susceptibility to severe COVID-19. Genome-wide association studies and candidate gene approaches have identified a list of inherited mutations, which likely alter cytokine and interferon secretion, and lung-specific mechanisms of immunity in COVID-19. The potential role of CH in COVID-19 is more uncertain at present; however, the available evidence suggests that the various types of acquired mutations and their differential influence on immune cell function must be carefully considered. CONCLUSIONS The current literature supports the hypothesis that host genetic factors affect vulnerability to severe COVID-19. Further research is required to confirm the full scope of relevant variants and the causal mechanisms underlying these associations. Clinical approaches, which consider the genetic basis of interindividual variability in COVID-19 and potentially other causes of critical illness, could optimize hospital resource allocation, predict responsiveness to treatment, identify more efficacious drug targets, and ultimately improve outcomes.
Collapse
|
4
|
Association of Polymorphisms in NHEJ Pathway Genes with HIV-1 Infection and AIDS Progression in a Northern Chinese MSM Population. DISEASE MARKERS 2022; 2022:5126867. [PMID: 36312587 PMCID: PMC9605847 DOI: 10.1155/2022/5126867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/23/2021] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Aims Men who have sex with men (MSM) are at high risk of HIV infection. The nonhomologous end joining (NHEJ) pathway is the main way of double-stranded DNA break (DSB) repair in the higher eukaryotes and can repair the DSB timely at any time in cell cycle. It is also indicated that the NHEJ pathway is associated with HIV-1 infection since the DSB in host genome DNA occurs in the process of HIV-1 integration. The aim of the present investigation was to evaluate associations of single-nucleotide polymorphisms (SNPs) in NHEJ pathway genes with susceptibility to HIV-1 infection and AIDS progression among MSM residing in northern China. Methods A total of 481 HIV-1 seropositive men and 493 HIV-1 seronegative men were included in this case-control study. Genotyping of 22 SNPs in NHEJ pathway genes was performed using the SNPscan™ Kit. Results Positive associations were observed between XRCC6 rs132770 and XRCC4 rs1056503 genotypes and the susceptibility to HIV-1 infection. In gene-gene interaction analysis, significant SNP-SNP interactions of XRCC6 and XRCC4 genetic variations were found to play a potential role in the risk of HIV-1 infection. In stratified analysis, XRCC5 rs16855458 was significantly associated with CD4+ T cell counts in AIDS patients, whereas LIG4 rs1805388 was linked to the clinical phases of AIDS patients. Conclusions NHEJ gene polymorphisms can be considered to be risk factors of HIV-1 infection and AIDS progression in the northern Chinese MSM population.
Collapse
|
5
|
Ojeda-Juárez D, Kaul M. Transcriptomic and Genetic Profiling of HIV-Associated Neurocognitive Disorders. Front Mol Biosci 2021; 8:721954. [PMID: 34778371 PMCID: PMC8586712 DOI: 10.3389/fmolb.2021.721954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Early in the HIV pandemic, it became evident that people living with HIV (PLWH) develop a wide range of neurological and neurocognitive complications. Even after the introduction of combination antiretroviral therapy (cART), which dramatically improved survival of PLWH, the overall number of people living with some form of HIV-associated neurocognitive disorders (HAND) seemed to remain unchanged, although the incidence of dementia declined and questions about the incidence and diagnosis of the mildest form of HAND arose. To better understand this complex disease, several transcriptomic analyses have been conducted in autopsy samples, as well as in non-human primates and small animal rodent models. However, genetic studies in the HIV field have mostly focused on the genetic makeup of the immune system. Much less is known about the genetic underpinnings of HAND. Here, we provide a summary of reported transcriptomic and epigenetic changes in HAND, as well as some of the potential genetic underpinnings that have been linked to HAND, and discuss future directions with hurdles to overcome and angles that remain to be explored.
Collapse
Affiliation(s)
- Daniel Ojeda-Juárez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Wang MG, Wang J, He JQ. Genetic association of TOLLIP gene polymorphisms and HIV infection: a case-control study. BMC Infect Dis 2021; 21:590. [PMID: 34154540 PMCID: PMC8215734 DOI: 10.1186/s12879-021-06303-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Background Previous studies have indicated that host genetic factors play an essential role in immunity to human immunodeficiency virus (HIV) infection. We aimed to investigate the association between the toll-interacting protein (TOLLIP) and mannose-binding lectin 2 (MBL2) genes and HIV infection susceptibility among Chinese Han patients. Methods This is a case-control study. A total of 435 HIV-infected patients and 1013 seronegative healthy individuals were recruited. DNA was extracted from whole blood. Two SNPs in the MBL2 gene (rs7096206 and rs1800450) and three SNPs in the TOLLIP gene (rs5743899, rs3750920, and rs5743867) were selected and genotyped using a SNPscan Kit (Cat#: G0104, Genesky Biotechnologies Inc., Shanghai, China). Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated using unconditional binary logistic regression. Results A significant association between the minor alleles rs5743899 (C allele) and rs5743867 (G allele) in the TOLLIP gene and susceptibility to HIV infection was found in this study after adjusting for age and sex (Pa = 0.011 and < 0.001, respectively). The rs5743867 in the TOLLIP gene was significantly associated with the risk of HIV infection in dominant, recessive, and additive models when adjusted for age and sex (Pa < 0.05). No significant association was found between MBL2 gene polymorphisms and HIV infection. Conclusion Our study found a statistically significant association between the two SNPs (rs5743867 and rs5743899) in the TOLLIP gene and susceptibility to HIV infection in a Chinese Han population. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06303-4.
Collapse
Affiliation(s)
- Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Jing Wang
- Department of Infectious Disease, Neijiang Second People's Hospital, Neijiang, Sichuan Province, People's Republic of China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
7
|
Sterken MG, van Sluijs L, Wang YA, Ritmahan W, Gultom ML, Riksen JAG, Volkers RJM, Snoek LB, Pijlman GP, Kammenga JE. Punctuated Loci on Chromosome IV Determine Natural Variation in Orsay Virus Susceptibility of Caenorhabditis elegans Strains Bristol N2 and Hawaiian CB4856. J Virol 2021; 95:e02430-20. [PMID: 33827942 PMCID: PMC8315983 DOI: 10.1128/jvi.02430-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2020] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
Host-pathogen interactions play a major role in evolutionary selection and shape natural genetic variation. The genetically distinct Caenorhabditis elegans strains, Bristol N2 and Hawaiian CB4856, are differentially susceptible to the Orsay virus (OrV). Here, we report the dissection of the genetic architecture of susceptibility to OrV infection. We compare OrV infection in the relatively resistant wild-type CB4856 strain to the more susceptible canonical N2 strain. To gain insight into the genetic architecture of viral susceptibility, 52 fully sequenced recombinant inbred lines (CB4856 × N2 RILs) were exposed to OrV. This led to the identification of two loci on chromosome IV associated with OrV resistance. To verify the two loci and gain additional insight into the genetic architecture controlling virus infection, introgression lines (ILs) that together cover chromosome IV, were exposed to OrV. Of the 27 ILs used, 17 had an CB4856 introgression in an N2 background, and 10 had an N2 introgression in a CB4856 background. Infection of the ILs confirmed and fine-mapped the locus underlying variation in OrV susceptibility, and we found that a single nucleotide polymorphism in cul-6 may contribute to the difference in OrV susceptibility between N2 and CB4856. An allele swap experiment showed the strain CB4856 became as susceptible as the N2 strain by having an N2 cul-6 allele, although having the CB4856 cul-6 allele did not increase resistance in N2. In addition, we found that multiple strains with nonoverlapping introgressions showed a distinct infection phenotype from the parental strain, indicating that there are punctuated locations on chromosome IV determining OrV susceptibility. Thus, our findings reveal the genetic complexity of OrV susceptibility in C. elegans and suggest that viral susceptibility is governed by multiple genes.IMPORTANCE Genetic variation determines the viral susceptibility of hosts. Yet, pinpointing which genetic variants determine viral susceptibility remains challenging. Here, we have exploited the genetic tractability of the model organism Caenorhabditis elegans to dissect the genetic architecture of Orsay virus infection. Our results provide novel insight into natural determinants of Orsay virus infection.
Collapse
Affiliation(s)
- Mark G Sterken
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Yiru A Wang
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Wannisa Ritmahan
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Mitra L Gultom
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Rita J M Volkers
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - L Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
8
|
Sherman BT, Hu X, Singh K, Haine L, Rupert AW, Neaton JD, Lundgren JD, Imamichi T, Chang W, Lane HC. Genome-wide association study of high-sensitivity C-reactive protein, D-dimer, and interleukin-6 levels in multiethnic HIV+ cohorts. AIDS 2021; 35:193-204. [PMID: 33095540 PMCID: PMC7789909 DOI: 10.1097/qad.0000000000002738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2020] [Revised: 07/28/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Elevated levels of interleukin-6 (IL-6), D-dimer, and C-reactive protein (hsCRP) are associated with increased incidence of comorbid disease and mortality among people living with HIV (PLWH). Prior studies suggest a genetic basis for these biomarker elevations in the general population. The study objectives are to identify the genetic basis for these biomarkers among PLWH. METHODS Baseline levels of hsCRP, D-dimer, and IL-6, and single nucleotide polymorphisms (SNPs) were determined for 7768 participants in three HIV treatment trials. Single variant analysis was performed for each biomarker on samples from each of three ethnic groups [African (AFR), Admixed American (AMR), European (EUR)] within each trial including covariates relevant to biomarker levels. For each ethnic group, the results were pooled across trials, then further pooled across ethnicities. RESULTS The transethnic analysis identified three, two, and one known loci associated with hsCRP, D-dimer, and IL-6 levels, respectively, and two novel loci, FGB and GCNT1, associated with D-dimer levels. Lead SNPs exhibited similar effects across ethnicities. Additionally, three novel, ethnic-specific loci were identified: CATSPERG associated with D-dimer in AFR and PROX1-AS1 and TRAPPC9 associated with IL-6 in AFR and AMR, respectively. CONCLUSION Eleven loci associated with three biomarker levels were identified in PLWH from the three studies including six loci known in the general population and five novel loci associated with D-dimer and IL-6 levels. These findings support the hypothesis that host genetics may partially contribute to chronic inflammation in PLWH and help to identify potential targets for intervention of serious non-AIDS complications.
Collapse
Affiliation(s)
- Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Xiaojun Hu
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Kanal Singh
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Lillian Haine
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Adam W. Rupert
- AIDS Monitoring Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James D. Neaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Jens D. Lundgren
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Human genetic polymorphisms known to influence HIV acquisition and disease progression occur in Papua New Guinea (PNG). However, no genetic association study has been reported so far. In this article, we review research findings, with a view to stimulate genotype-to-phenotype research. RECENT FINDINGS PNG, a country in Oceania, has a high prevalence of HIV and many sexually transmitted infections. While limited data is available from this country regarding the distribution of human genetic polymorphisms known to influence clinical outcomes of HIV/AIDS, genetic association studies are lacking. Our studies, in the past decade, have revealed that polymorphisms in chemokine receptor-ligand (CCR2-CCR5, CXCL12), innate immune (Toll-like receptor, β-defensin), and antiretroviral drug-metabolism enzyme (CYP2B6, UGT2B7) genes are prevalent in PNG. Although our results need to be validated in further studies, it is urgent to pursue large-scale, comprehensive genetic association studies that include these as well as additional genetic polymorphisms.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Kulski JK. Long Noncoding RNA HCP5, a Hybrid HLA Class I Endogenous Retroviral Gene: Structure, Expression, and Disease Associations. Cells 2019; 8:cells8050480. [PMID: 31137555 PMCID: PMC6562477 DOI: 10.3390/cells8050480] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
The HCP5 RNA gene (NCBI ID: 10866) is located centromeric of the HLA-B gene and between the MICA and MICB genes within the major histocompatibility complex (MHC) class I region. It is a human species-specific gene that codes for a long noncoding RNA (lncRNA), composed mostly of an ancient ancestral endogenous antisense 3′ long terminal repeat (LTR, and part of the internal pol antisense sequence of endogenous retrovirus (ERV) type 16 linked to a human leukocyte antigen (HLA) class I promoter and leader sequence at the 5′-end. Since its discovery in 1993, many disease association and gene expression studies have shown that HCP5 is a regulatory lncRNA involved in adaptive and innate immune responses and associated with the promotion of some autoimmune diseases and cancers. The gene sequence acts as a genomic anchor point for binding transcription factors, enhancers, and chromatin remodeling enzymes in the regulation of transcription and chromatin folding. The HCP5 antisense retroviral transcript also interacts with regulatory microRNA and immune and cellular checkpoints in cancers suggesting its potential as a drug target for novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia.
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan.
| |
Collapse
|
11
|
Ramarathinam SH, Gras S, Alcantara S, Yeung AWS, Mifsud NA, Sonza S, Illing PT, Glaros EN, Center RJ, Thomas SR, Kent SJ, Ternette N, Purcell DFJ, Rossjohn J, Purcell AW. Identification of Native and Posttranslationally Modified HLA-B*57:01-Restricted HIV Envelope Derived Epitopes Using Immunoproteomics. Proteomics 2018; 18:e1700253. [PMID: 29437277 DOI: 10.1002/pmic.201700253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2017] [Revised: 01/29/2018] [Indexed: 12/20/2022]
Abstract
The recognition of pathogen-derived peptides by T lymphocytes is the cornerstone of adaptive immunity, whereby intracellular antigens are degraded in the cytosol and short peptides assemble with class I human leukocyte antigen (HLA) molecules in the ER. These peptide-HLA complexes egress to the cell surface and are scrutinized by cytotoxic CD8+ T-cells leading to the eradication of the infected cell. Here, naturally presented HLA-B*57:01 bound peptides derived from the envelope protein of the human immunodeficiency virus (HIVenv) are identified. HIVenv peptides are present at a very small percentage of the overall HLA-B*57:01 peptidome (<0.1%) and both native and posttranslationally modified forms of two distinct HIV peptides are identified. Notably, a peptide bearing a natively encoded C-terminal tryptophan residue is also present in a modified form containing a kynurenine residue. Kynurenine is a major product of tryptophan catabolism and is abundant during inflammation and infection. Binding of these peptides at a molecular level and their immunogenicity in preliminary functional studies are examined. Modest immune responses are observed to the modified HIVenv peptide, highlighting a potential role for kynurenine-modified peptides in the immune response to HIV and other viral infections.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Stephanie Gras
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Amanda W S Yeung
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Patricia T Illing
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Elias N Glaros
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Robert J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.,Burnet Institute, Melbourne, Australia
| | - Shane R Thomas
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.,Melbourne Sexual Health Centre, Central Clinical School, Monash University, Melbourne, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia
| | - Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, UK
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
12
|
Tsiara CG, Nikolopoulos GK, Dimou NL, Pantavou KG, Bagos PG, Mensah B, Talias M, Braliou GG, Paraskeva D, Bonovas S, Hatzakis A. Interleukin gene polymorphisms and susceptibility to HIV-1 infection: a meta-analysis. J Genet 2018; 97:235-251. [PMID: 29666343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
Some subjects are repeatedly exposed to human immunodeficiency virus (HIV), yet they remain uninfected. This suggests the existence of host-resistance mechanisms. The current study synthesizes the evidence regarding the association between interleukin (IL) gene polymorphisms and HIV susceptibility. Medline, Scopus and the Web of Science databases were systematically searched, and a meta-analysis of case-control studies was conducted. Univariate and bivariate methods were used. The literature search identified 42 eligible studies involving 15,727 subjects. Evidence was obtained on eight single-nucleotide polymorphisms (SNPs): IL1A -889 C>T (rs1800587), IL1B +3953/4 C>T (rs1143634), IL4 -589/90 C>T (rs2243250), IL6 -174 G>C (rs1800795), IL10 -592 C>A (rs1800872), IL10-1082 A>G (rs1800896), IL12B -1188 A>C (rs3212227) and IL28B C>T (rs12979860). The IL1B +3953/4 C>T variant appears to increase the risk of HIV acquisition, under the assumption of a recessive genetic model (odds ratio (OR): 4.47, 95% CI: 2.35-8.52). The AA homozygotes of the IL10 -592 C>A SNP had an increased, marginally nonsignificant, risk (OR: 1.39, 95% CI: 0.97-2.01). It reached, however, significance in sub analyses (OR: 1.49, 95% CI: 1.04-2.12). Finally, the well-studied hepatitis C virus (HCV) infection IL28B (rs12979860) CT/TT genotypes were associated with a 27% decrease in HIV infection risk, especially in populations infected with HCV (OR: 0.73, 95% CI: 0.57-0.95). Interleukin signalling is perhaps important in HIV infection and some interleukin genetic variants may affect the risk of HIV acquisition. Approaches targeting specific genes and genome wide association studies should be conducted to decipher the effect of these polymorphisms.
Collapse
Affiliation(s)
- Chrissa G Tsiara
- Hellenic Centre for Disease Control and Prevention, 15123 Athens, Greece. ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Viral suppression of human immunodeficiency virus (HIV) with combination antiviral therapy (cART) has led to increasing longevity but has not enabled a complete return to health among aging HIV-infected individuals (HIV+). Viral coinfections are prevalent in the HIV+ host and are implicated in cancer, liver disease, and accelerated aging. We must move beyond a simplistic notion of HIV becoming a "chronic controllable illness" and develop an understanding of how viral suppression alters the natural history of HIV infection, especially at the intersection of HIV with other common viral coinfections in the context of an altered, aging immune system.
Collapse
|
14
|
Effects of Mutations on Replicative Fitness and Major Histocompatibility Complex Class I Binding Affinity Are Among the Determinants Underlying Cytotoxic-T-Lymphocyte Escape of HIV-1 Gag Epitopes. mBio 2017; 8:mBio.01050-17. [PMID: 29184023 PMCID: PMC5705913 DOI: 10.1128/mbio.01050-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Certain “protective” major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8+ cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape.
Collapse
|
15
|
van Sluijs L, Pijlman GP, Kammenga JE. Why do Individuals Differ in Viral Susceptibility? A Story Told by Model Organisms. Viruses 2017; 9:E284. [PMID: 28973976 PMCID: PMC5691635 DOI: 10.3390/v9100284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/30/2023] Open
Abstract
Viral susceptibility and disease progression is determined by host genetic variation that underlies individual differences. Genetic polymorphisms that affect the phenotype upon infection have been well-studied for only a few viruses, such as HIV-1 and Hepatitis C virus. However, even for well-studied viruses the genetic basis of individual susceptibility differences remains elusive. Investigating the effect of causal polymorphisms in humans is complicated, because genetic methods to detect rare or small-effect polymorphisms are limited and genetic manipulation is not possible in human populations. Model organisms have proven a powerful experimental platform to identify and characterize polymorphisms that underlie natural variations in viral susceptibility using quantitative genetic tools. We summarize and compare the genetic tools available in three main model organisms, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans, and illustrate how these tools can be applied to detect polymorphisms that determine the viral susceptibility. Finally, we analyse how candidate polymorphisms from model organisms can be used to shed light on the underlying mechanism of individual variation. Insights in causal polymorphisms and mechanisms underlying individual differences in viral susceptibility in model organisms likely provide a better understanding in humans.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands.
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
16
|
Mozzi A, Pontremoli C, Sironi M. Genetic susceptibility to infectious diseases: Current status and future perspectives from genome-wide approaches. INFECTION GENETICS AND EVOLUTION 2017; 66:286-307. [PMID: 28951201 PMCID: PMC7106304 DOI: 10.1016/j.meegid.2017.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWASs) have been widely applied to identify genetic factors that affect complex diseases or traits. Presently, the GWAS Catalog includes > 2800 human studies. Of these, only a minority have investigated the susceptibility to infectious diseases or the response to therapies for the treatment or prevention of infections. Despite their limited application in the field, GWASs have provided valuable insights by pinpointing associations to both innate and adaptive immune response loci, as well as novel unexpected risk factors for infection susceptibility. Herein, we discuss some issues and caveats of GWASs for infectious diseases, we review the most recent findings ensuing from these studies, and we provide a brief summary of selected GWASs for infections in non-human mammals. We conclude that, although the general trend in the field of complex traits is to shift from GWAS to next-generation sequencing, important knowledge on infectious disease-related traits can be still gained by GWASs, especially for those conditions that have never been investigated using this approach. We suggest that future studies will benefit from the leveraging of information from the host's and pathogen's genomes, as well as from the exploration of models that incorporate heterogeneity across populations and phenotypes. Interactions within HLA genes or among HLA variants and polymorphisms located outside the major histocompatibility complex may also play an important role in shaping the susceptibility and response to invading pathogens. Relatively few GWASs for infectious diseases were performed. Phenotype heterogeneity and case/control misclassification can affect GWAS power. Adaptive and innate immunity loci were identified in several infectious disease GWASs. Unexpected loci (e.g., lncRNAs) were also associated with infection susceptibility. GWASs should integrate host and pathogen diversity and use complex association models.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E.MEDEA, 23842 Bosisio Parini, Italy.
| |
Collapse
|
17
|
Westrop SJ, Cocker ATH, Boasso A, Sullivan AK, Nelson MR, Imami N. Enrichment of HLA Types and Single-Nucleotide Polymorphism Associated With Non-progression in a Strictly Defined Cohort of HIV-1 Controllers. Front Immunol 2017; 8:746. [PMID: 28702030 PMCID: PMC5484768 DOI: 10.3389/fimmu.2017.00746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2017] [Accepted: 06/12/2017] [Indexed: 11/26/2022] Open
Abstract
HIV-1 controllers (HIC) are extremely rare patients with the ability to control viral replication, maintain unchanging CD4 T-cell count, and evade disease progression for extensive periods of time, in the absence of antiretroviral therapy. In order to establish the representation of key genetic correlates of atypical disease progression within a cohort of HIV-1+ individuals who control viral replication, we examine four-digit resolution HLA type and single-nucleotide polymorphisms (SNP) previously identified to be correlated to non-progressive infection, in strictly defined HIC. Clinical histories were examined to identify patients exhibiting HIC status. Genomic DNA was extracted, and high definition HLA typing and genome-wide SNP analysis was performed. Data were compared with frequencies of SNP in European long-term non-progressors (LTNP) and primary infection cohorts. HLA-B alleles associated with atypical disease progression were at very high frequencies in the group of five HIC studied. All four HIC of European ancestry were HLA-B*57+ and half were also HLA-B*27+. All HIC, including one of self-reported African ethnicity, had the HLA-Cw*0602 allele, and the HLA-DQ9 allele was present only in HIC of European ancestry. A median 95% of the top 19 SNP known to be associated with LTNP status was observed in European HIC (range 78–100%); 17/19 of the SNP considered mapped to chromosome 6 in the HLA region, whereas 2/19 mapped to chromosome 8. The HIC investigated here demonstrated high enrichment of HLA types and SNP previously associated with long-term non-progression. These findings suggest that the extreme non-progressive phenotype considered here is associated with a genetic signature characterized by a single-genetic unit centered around the HLA-B*57 haplotype and the possible additive effect of HLA-B*27.
Collapse
Affiliation(s)
- Samantha J Westrop
- Centre for Immunology and Vaccinology, Imperial College London, London, United Kingdom
| | - Alexander T H Cocker
- Centre for Immunology and Vaccinology, Imperial College London, London, United Kingdom
| | - Adriano Boasso
- Centre for Immunology and Vaccinology, Imperial College London, London, United Kingdom
| | - Ann K Sullivan
- Department of HIV/GU Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R Nelson
- Department of HIV/GU Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Nesrina Imami
- Centre for Immunology and Vaccinology, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Xie W, Agniel D, Shevchenko A, Malov SV, Svitin A, Cherkasov N, Baum MK, Campa A, Gaseitsiwe S, Bussmann H, Makhema J, Marlink R, Novitsky V, Lee TH, Cai T, O'Brien SJ, Essex M. Genome-Wide Analyses Reveal Gene Influence on HIV Disease Progression and HIV-1C Acquisition in Southern Africa. AIDS Res Hum Retroviruses 2017; 33:597-609. [PMID: 28132517 DOI: 10.1089/aid.2016.0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Sub-Saharan Africans infected with HIV-1C make up the largest AIDS patient population in the world and exhibit large heterogeneity in disease progression before initiating antiretroviral therapy. To identify host variants associated with HIV disease progression, we performed genome-wide association studies on a total of 556 treatment-naive HIV-infected individuals in Botswana. We characterized the pattern of HIV disease progression using a novel functional principal component analysis, which can better capture longitudinal CD4 and viral load (VL) trajectories. Two single-nucleotide polymorphisms (SNPs) near HCG22 (chr6, peak variant rs2535307, combined p = 3.72 × 10-7, minor allele as risky allele) and CCNG1 (chr5, peak variant kgp22385164, combined p = 1.88 × 10-6, minor allele as risky allele) were significantly associated with CD4 and VL dynamics. Inspection of SNPs in these gene regions in a third Botswana cohort (using GWATCH) also revealed a strong association of HCG22 with HIV-1C acquisition, suggesting that this region is associated with infection as well as disease progression. Our study uncovered two genetic regions that are significant and have specific effects on HIV-1C acquisition or progression in sub-Saharan Africans, and the result suggested new potential targets for AIDS prevention and treatment. In addition, our results also indicate the possibility of using genetic markers as HIV disease progression indicators in sub-Saharan Africans to prioritize fast progressors for antiretroviral treatment.
Collapse
Affiliation(s)
- Wen Xie
- Harvard T.H. Chan School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| | - Denis Agniel
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Andrey Shevchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Sergey V. Malov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
- Department of Mathematics, St. Petersburg Electrotechnical University, St Petersburg, Russia
| | - Anton Svitin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Nikolay Cherkasov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Marianna K. Baum
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida
| | - Adriana Campa
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida
| | - Simani Gaseitsiwe
- Harvard T.H. Chan School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| | - Hermann Bussmann
- Harvard T.H. Chan School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| | - Joseph Makhema
- Harvard T.H. Chan School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| | - Richard Marlink
- Harvard T.H. Chan School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| | - Vladimir Novitsky
- Harvard T.H. Chan School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| | - Tun-Hou Lee
- Harvard T.H. Chan School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Tianxi Cai
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen J. O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
- Oceanographic Center, Nova Southeastern University, Ft. Lauderdale, Florida
| | - M. Essex
- Harvard T.H. Chan School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| |
Collapse
|
19
|
Novel genetic associations and gene-gene interactions of chemokine receptor and chemokine genetic polymorphisms in HIV/AIDS. AIDS 2017; 31:1235-1243. [PMID: 28358741 DOI: 10.1097/qad.0000000000001491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the influence of candidate polymorphisms on chemokine receptor/ligand genes on HIV infection and AIDS progression (HIV/AIDS). DESIGN Fifteen polymorphisms of the CCR3, CCR4, CCR5, CCR6, CCR8, CXCR3, CXCR6, CCL20, CCL22 and CXCL10 genes were analysed in 206 HIV-positive patients classified as rapid progressors (n = 40), or nonrapid progressors (n = 166), and in 294 HIV-seronegative patients. METHODS The polymorphisms were genotyped using minisequencing. Genetic models were tested using binomial logistic regression; nonparametric multifactor dimensionality reduction (MDR) was used to detect gene-gene interactions. RESULTS The CCR3 rs3091250 [TT, adjusted odds ratio (AOR): 2.147, 95% confidence interval (CI) 1.076-4.287, P = 0.030], CCR8 rs2853699 (GC/CC, AOR: 1.577, 95% CI 1.049-2.371, P = 0.029), CXCL10 rs56061981 (CT/TT, AOR: 1.819, 95% CI 1.074-3.081, P = 0.026) and CCL22 rs4359426 (CA/AA, AOR: 1.887, 95% CI 1.021-3.487, P = 0.043) polymorphisms were associated with susceptibility to HIV infection. The CCL20 rs13034664 (CC, OR: 0.214, 95% CI 0.063-0.730, P = 0.014) and CCL22 rs4359426 (CA/AA, OR: 2.685, 95% CI 1.128-6.392, P = 0.026) variants were associated with rapid progression to AIDS. In MDR analyses revealed that the CXCL10 rs56061981 and CCL22 rs4359426 combination was the best model, with 57% accuracy (P = 0.008) for predicting susceptibility to HIV infection. CONCLUSION Our results provide new insights into the influence of candidate chemokine receptor/ligand polymorphisms and significant evidence for gene-gene interactions on HIV/AIDS susceptibility.
Collapse
|
20
|
Gonzalo-Gil E, Ikediobi U, Sutton RE. Mechanisms of Virologic Control and Clinical Characteristics of HIV+ Elite/Viremic Controllers. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:245-259. [PMID: 28656011 PMCID: PMC5482301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) disease is pandemic, with approximately 36 million infected individuals world-wide. For the vast majority of these individuals, untreated HIV eventually causes CD4+ T cell depletion and profound immunodeficiency, resulting in morbidity and mortality. But for a remarkable few (0.2 to 0.5 percent), termed elite controllers (ECs), viral loads (VLs) remain suppressed to undetectable levels (< 50 copies/ml) and peripheral CD4+ T cell counts remain high (200 to 1000/μl), all in the absence of antiretroviral therapy (ART). Viremic controllers (VCs) are a similar but larger subset of HIV-1 infected individuals who have the ability to suppress their VLs to low levels. These patients have been intensively studied over the last 10 years in order to determine how they are able to naturally control HIV in the absence of medications, and a variety of mechanisms have been proposed. Defective HIV does not explain the clinical status of most ECs/VCs; rather these individuals appear to somehow control HIV infection, through immune or other unknown mechanisms. Over time, many ECs and VCs eventually lose the ability to control HIV, leading to CD4+ T cell depletion and immunologic dysfunction in the absence of ART. Elucidating novel mechanisms of HIV control in this group of patients will be an important step in understanding HIV infection. This will extend our knowledge of HIV-host interaction and may pave the way for the development of new therapeutic approaches and advance the cure agenda.
Collapse
Affiliation(s)
- Elena Gonzalo-Gil
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine
| | - Uchenna Ikediobi
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine
| | - Richard E. Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine
| |
Collapse
|
21
|
Nititham J, Gupta R, Zeng X, Hartogensis W, Nixon DF, Deeks SG, Hecht FM, Liao W. Psoriasis risk SNPs and their association with HIV-1 control. Hum Immunol 2017; 78:179-184. [PMID: 27810495 PMCID: PMC5253078 DOI: 10.1016/j.humimm.2016.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
Human evolution has resulted in selection for genetic polymorphisms beneficial in the defense against pathogens. However, such polymorphisms may have the potential to heighten the risk of autoimmune disease. Here, we investigated whether psoriasis-associated single nucleotide polymorphisms influence host control of HIV-1 infection. We studied psoriasis and viral immune response variants in three HIV-positive cohorts: (1) HIV-1 controllers and non-controllers in the Study of the Consequences of the Protease Inhibitor Era (SCOPE) cohort (n=366), (2) Individuals with primary HIV infection in the Options cohort (n=675), and (3) HIV-positive injection drug users from the Urban Health Study (UHS) (n=987). We found a strong association of two psoriasis MHC variants, rs9264942 and rs3021366, with both HIV-1 controller status and viral load, and identified another Class III MHC variant rs9368699 to be strongly associated with viral load. A number of genetic variants outside the MHC (SOX5, TLR9, SDC4, PROX1, IL12B, TLR4, MBL-2, TYK2, IFIH1) demonstrated nominal significance. Overall, our data suggest that several psoriasis variants within the MHC have a robust impact on HIV-1 control, while variants outside the MHC require further investigation.
Collapse
Affiliation(s)
- Joanne Nititham
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Rashmi Gupta
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Xue Zeng
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Wendy Hartogensis
- Division of HIV/AIDS, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Douglas F Nixon
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Steven G Deeks
- Division of HIV/AIDS, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Frederick M Hecht
- Division of HIV/AIDS, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Valverde-Villegas JM, Dos Santos BP, de Medeiros RM, Mattevi VS, Lazzaretti RK, Sprinz E, Kuhmmer R, Chies JAB. Endosomal toll-like receptor gene polymorphisms and susceptibility to HIV and HCV co-infection - Differential influence in individuals with distinct ethnic background. Hum Immunol 2017; 78:221-226. [PMID: 28062211 DOI: 10.1016/j.humimm.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2016] [Revised: 12/19/2016] [Accepted: 01/02/2017] [Indexed: 12/18/2022]
Abstract
The genetic background of human populations can influence the susceptibility and outcome of infection diseases. Toll-like receptors (TLRs) have been previously associated with susceptibility to human immunodeficiency virus (HIV) infection, disease progression and hepatitis C, virus (HCV) co-infection in different populations, although mostly in Europeans. In this study, we investigated the genetic role of endosomal TLRs on susceptibility to HIV infection and HCV co-infection through the analysis of TLR7 rs179008, TLR8 rs3764880, TLR9 rs5743836 and TLR9 rs352140 polymorphisms in 789 Brazilian individuals (374 HIV+ and 415 HIV-), taking into account their ethnic background. Amongst the 357 HIV+ individuals with available data concerning HCV infection, 98 were positive. In European descendants, the TLR9 rs5743836 C carriers displayed a higher susceptibility to HIV infection [dominant, Odds Ratio (OR)=1.53; 95% CI: 1.05-2.23; P=0.027]. In African descendants, TLR9 rs5743836 CT genotype was associated with protection to HIV infection (codominant, OR=0.51; 95% CI: 0.30-0.87; P=0.013). Also, the TLR9 rs352140 AA variant genotype was associated with susceptibility to HIV+/HCV+ co-infection in African descendants (recessive, OR=2.92; 95% CI: 1.22-6.98, P=0.016). These results are discussed in the context of the different ethnic background of the studied individuals highlighting the influence of this genetic/ethnic background on the susceptibility to HIV infection and HIV/HCV co-infection in Brazilian individuals.
Collapse
Affiliation(s)
| | - Bruno Paiva Dos Santos
- Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil; INSERM U1026, Tissue Bioengineering, Université de Bordeaux, Bordeaux F-33076, France
| | | | - Vanessa Suñé Mattevi
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Eduardo Sprinz
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Regina Kuhmmer
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Sips M, Liu Q, Draghi M, Ghebremichael M, Berger CT, Suscovich TJ, Sun Y, Walker BD, Carrington M, Altfeld M, Brouckaert P, De Jager PL, Alter G. HLA-C levels impact natural killer cell subset distribution and function. Hum Immunol 2016; 77:1147-1153. [PMID: 27521484 PMCID: PMC6684021 DOI: 10.1016/j.humimm.2016.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2016] [Revised: 07/09/2016] [Accepted: 08/10/2016] [Indexed: 01/11/2023]
Abstract
Differences in HLA-C expression are inversely correlated with HIV viral load set-point and slower progression to AIDS, linked to enhanced cytotoxic T cell immunity. Yet, beyond T cells, HLA-C serves as a dominant ligand for natural killer (NK) cell killer immunoglobulin-like receptors (KIR). Thus, we speculated that HLA-C expression levels may also impact NK activity, thereby modulating HIV antiviral control. Phenotypic and functional profiling was performed on freshly isolated PBMCs. HLA-C expression was linked to changes in NK subset distribution and licensing, particularly in HLA-C1/C1, KIR2DL3+2DL2-individuals. Moreover, high levels of HLA-C, were associated with reduced frequencies of anergic CD56neg NKs and lower frequencies of KIR2DL1/2/3+ NK cells, pointing to an HLA-C induced influence on the NK cell development in the absence of disease. In HIV infection, several spontaneous controllers, that expressed higher levels of HLA-C demonstrated robust NK-IFN-γ secretion in response to target cells, highlighting a second disease induced licensing phenotype. Thus this population study points to a potential role for HLA-C levels both in NK cell education and development.
Collapse
Affiliation(s)
- Magdalena Sips
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Qingquan Liu
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University, Xi'an, ShaanXi, China
| | - Monia Draghi
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Christoph T Berger
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; University Hospital Basel, Basel, Switzerland
| | | | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, ShaanXi, China
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Womens Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA; Program in Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
24
|
HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity. PLoS One 2016; 11:e0150835. [PMID: 27100290 PMCID: PMC4839606 DOI: 10.1371/journal.pone.0150835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2015] [Accepted: 02/20/2016] [Indexed: 12/13/2022] Open
Abstract
The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter)/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count).
Collapse
|
25
|
Patarčić I, Gelemanović A, Kirin M, Kolčić I, Theodoratou E, Baillie KJ, de Jong MD, Rudan I, Campbell H, Polašek O. The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta-analyses and field synopsis. Sci Rep 2015; 5:16119. [PMID: 26524966 PMCID: PMC4630784 DOI: 10.1038/srep16119] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022] Open
Abstract
Host genetic factors have frequently been implicated in respiratory infectious diseases, often with inconsistent results in replication studies. We identified 386 studies from the total of 24,823 studies identified in a systematic search of four bibliographic databases. We performed meta-analyses of studies on tuberculosis, influenza, respiratory syncytial virus, SARS-Coronavirus and pneumonia. One single-nucleotide polymorphism from IL4 gene was significant for pooled respiratory infections (rs2070874; 1.66 [1.29–2.14]). We also detected an association of TLR2 gene with tuberculosis (rs5743708; 3.19 [2.03–5.02]). Subset analyses identified CCL2 as an additional risk factor for tuberculosis (rs1024611; OR = 0.79 [0.72–0.88]). The IL4-TLR2-CCL2 axis could be a highly interesting target for translation towards clinical use. However, this conclusion is based on low credibility of evidence - almost 95% of all identified studies had strong risk of bias or confounding. Future studies must build upon larger-scale collaborations, but also strictly adhere to the highest evidence-based principles in study design, in order to reduce research waste and provide clinically translatable evidence.
Collapse
Affiliation(s)
- Inga Patarčić
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Andrea Gelemanović
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Mirna Kirin
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Kenneth J Baillie
- Roslin Institute, University of Edinburgh, Midlothian, UK.,Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, Split, Croatia.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Mehlotra RK, Hall NB, Bruse SE, John B, Zikursh MJB, Stein CM, Siba PM, Zimmerman PA. CCR2, CCR5, and CXCL12 variation and HIV/AIDS in Papua New Guinea. INFECTION GENETICS AND EVOLUTION 2015; 36:165-173. [PMID: 26397046 DOI: 10.1016/j.meegid.2015.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/03/2015] [Revised: 08/28/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Polymorphisms in chemokine receptors, serving as HIV co-receptors, and their ligands are among the well-known host genetic factors associated with susceptibility to HIV infection and/or disease progression. Papua New Guinea (PNG) has one of the highest adult HIV prevalences in the Asia-Pacific region. However, information regarding the distribution of polymorphisms in chemokine receptor (CCR5, CCR2) and chemokine (CXCL12) genes in PNG is very limited. In this study, we genotyped a total of nine CCR2-CCR5 polymorphisms, including CCR2 190G >A, CCR5 -2459G >A and Δ32, and CXCL12 801G >A in PNG (n=258), North America (n=184), and five countries in West Africa (n=178). Using this data, we determined previously characterized CCR5 haplotypes. In addition, based on the previously reported associations of CCR2 190, CCR5 -2459, CCR5 open reading frame, and CXCL12 801 genotypes with HIV acquisition and/or disease progression, we calculated composite full risk scores, considering both protective as well as susceptibility effects of the CXCL12 801 AA genotype. We observed a very high frequency of the CCR5 -2459A allele (0.98) in the PNG population, which together with the absence of Δ32 resulted in a very high frequency of the HHE haplotype (0.92). These frequencies were significantly higher than in any other population (all P-values<0.001). Regardless of whether we considered the CXCL12 801 AA genotype protective or susceptible, the risk scores were significantly higher in the PNG population compared with any other population (all P-values<0.001). The results of this study provide new insights regarding CCR5 variation in the PNG population, and suggest that the collective variation in CCR2, CCR5, and CXCL12 may increase the risk of HIV/AIDS in a large majority of Papua New Guineans.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Noemi B Hall
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Shannon E Bruse
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bangan John
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Melinda J Blood Zikursh
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Catherine M Stein
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.,Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
27
|
Jiang C, Li Z, Chen P, Chen L. Association between the tumor necrosis factor-α-308G/A gene polymorphism and HIV-1 susceptibility: a meta-analysis. AIDS Res Hum Retroviruses 2015; 31:859-65. [PMID: 26077837 DOI: 10.1089/aid.2015.0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
The tumor necrosis factor-α (TNF-α)-308G/A gene polymorphism influences the pathogenesis and evolution of HIV-1 disease. Many studies have evaluated the association between this polymorphism and HIV-1 susceptibility, but the exact relationship between them remains ambiguous and contradictory. Accordingly, the present study evaluates the exact association between TNF-α-308G/A gene polymorphism and HIV-1 susceptibility. A systematic literature search was conducted and the case-control studies that were found assessing the association between TNF-α-308G/A gene polymorphism and HIV-1 susceptibility were analyzed. The pooled odds ratios (ORs) and 95% confidence interval (CI) were calculated by a fixed effect model. Heterogeneity was analyzed by Cochran's Q and the I(2) statistics. Publication bias was assessed using the Begg's funnel plot and Egger's test. A total of 679 cases and 873 controls from five studies were included. Overall, no significant relationship was found between TNF-α-308G/A gene polymorphism and HIV-1 susceptibility in this meta-analysis study (A versus G genotype model: OR=0.89, 95% CI=0.59-1.32, p=0.553; GG versus AA+AG model: OR=1.23, 95% CI=0.75-2.02, p=0.407; GG+AG versus AA model: OR=1.40, 95% CI=0.70-2.82, p=0.345; GG versus AA model: OR=1.39, 95% CI=0.69-2.80, p=0.362; AG versus AA model: OR=1.43, 95% CI=0.70-2.96, p=0.329; GG+AA versus AG model: OR=0.76, 95% CI=0.44-1.29, p=0.304). The meta-analysis found no marked association between TNF-α-308G/A gene polymorphism and HIV-1 susceptibility.
Collapse
Affiliation(s)
- CaiXiao Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan Province, China
| | - ZhanZhan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Peng Chen
- Xiangya Medical School, Central South University, Changsha, Hunan Province, China
| | - Lizhang Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
28
|
Simmons S, Berger B. One Size Doesn't Fit All: Measuring Individual Privacy in Aggregate Genomic Data. PROCEEDINGS. IEEE SYMPOSIUM ON SECURITY AND PRIVACY. WORKSHOPS 2015; 2015:41-49. [PMID: 29202050 DOI: 10.1109/spw.2015.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Even in the aggregate, genomic data can reveal sensitive information about individuals. We present a new model-based measure, PrivMAF, that provides provable privacy guarantees for aggregate data (namely minor allele frequencies) obtained from genomic studies. Unlike many previous measures that have been designed to measure the total privacy lost by all participants in a study, PrivMAF gives an individual privacy measure for each participant in the study, not just an average measure. These individual measures can then be combined to measure the worst case privacy loss in the study. Our measure also allows us to quantify the privacy gains achieved by perturbing the data, either by adding noise or binning. Our findings demonstrate that both perturbation approaches offer significant privacy gains. Moreover, we see that these privacy gains can be achieved while minimizing perturbation (and thus maximizing the utility) relative to stricter notions of privacy, such as differential privacy. We test PrivMAF using genotype data from the Wellcome Trust Case Control Consortium, providing a more nuanced understanding of the privacy risks involved in an actual genome-wide association studies. Interestingly, our analysis demonstrates that the privacy implications of releasing MAFs from a study can differ greatly from individual to individual. An implementation of our method is available at http://privmaf.csail.mit.edu.
Collapse
Affiliation(s)
- Sean Simmons
- Department of Mathematics and CSAIL, Massachusetts Institute of Technology
| | - Bonnie Berger
- Department of Mathematics and CSAIL, Massachusetts Institute of Technology
| |
Collapse
|
29
|
Mitochondrial DNA Haplogroup A Decreases the Risk of Drug Addiction but Conversely Increases the Risk of HIV-1 Infection in Chinese Addicts. Mol Neurobiol 2015; 53:3873-3881. [PMID: 26162319 DOI: 10.1007/s12035-015-9323-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2015] [Accepted: 06/24/2015] [Indexed: 01/19/2023]
Abstract
Drug addiction is one of the most serious social problems in the world today and addicts are always at a high risk of acquiring HIV infection. Mitochondrial impairment has been reported in both drug addicts and in HIV patients undergoing treatment. In this study, we aimed to investigate whether mitochondrial DNA (mtDNA) haplogroup could affect the risk of drug addiction and HIV-1 infection in Chinese. We analyzed mtDNA sequence variations of 577 Chinese intravenous drug addicts (289 with HIV-1 infection and 288 without) and compared with 2 control populations (n = 362 and n = 850). We quantified the viral load in HIV-1-infected patients with and without haplogroup A status and investigated the potential effect of haplogroup A defining variants m.4824A > G and m.8794C > T on the cellular reactive oxygen species (ROS) levels by using an allotopic expression assay. mtDNA haplogroup A had a protective effect against drug addiction but appeared to confer an increased risk of HIV infection in addicts. HIV-1-infected addicts with haplogroup A had a trend for a higher viral load, although the mean viral load was similar between carriers of haplogroup A and those with other haplogroup. Hela cells overexpressing allele m.8794 T showed significantly decreased ROS levels as compared to cells with the allele m.8794C (P = 0.03). Our results suggested that mtDNA haplogroup A might protect against drug addiction but increase the risk of HIV-1 infection. The contradictory role of haplogroup A might be caused by an alteration in mitochondrial function due to a particular mtDNA ancestral variant.
Collapse
|
30
|
Protective Effect of HLA-B*5701 and HLA-C -35 Genetic Variants in HIV-Positive Caucasians from Northern Poland. PLoS One 2015; 10:e0127867. [PMID: 26068923 PMCID: PMC4465896 DOI: 10.1371/journal.pone.0127867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2014] [Accepted: 04/21/2015] [Indexed: 11/24/2022] Open
Abstract
Aim of the Study Association of two HLA class I variants with HIV-1 pretreatment viremia, CD4+ T cell count at the care-entry and CD4+ T cell nadir. Methods 414 HIV-positive Caucasians (30% women) aged 19-73 years were genotyped for HLA-C -35 (rs9264942) and HLA-B*5701 variants. HIV-1 viral load, as well as CD4+ T cell count at care-entry and nadir, were compared across alleles, genotypes and haplotypes. Results HLA-C -35 C/C genotype was found in 17.6% patients, C/T genotype in 48.1%, and T/T genotype in 34.3% patients. HLA-B*5701 variant was present in 5.8% of studied population. HIV plasma viremia in the group with C allele was significantly lower (p=0.0002) compared to T/T group [mean:4.66 log (SD:1.03) vs. 5.07 (SD:0.85) log HIV-RNA copies/ml, respectively], while CD4+ T cell count at baseline was notably higher among C allele carriers compared to T/T homozygotes [median: 318 (IQR:127-537) cells/μl vs. median: 203 (IQR:55-410) cells/μl, respectively] (p=0.0007). Moreover, CD4+ T cell nadir among patients with C allele [median: 205 (IQR:83.5-390) cells/μl] was significantly higher compared to T/T group [median: 133 (IQR:46-328) cells/μl] (p=0.006). Among cases with HLA-B*5701 allele, significantly lower pretreatment viremia and higher baseline CD4+ T cell count were found (mean: 4.08 [SD: 1.2] vs. mean: 4.84 [SD:0.97] log HIV-RNA copies/ml, p=0.003 and 431 vs. 270 cells/μl, p=0.04, respectively) compared to HLA-B*5701 negative individuals. The lowest viremia (mean: 3.85 log [SD:1.3]) HIV-RNA copies/ml and the highest baseline and nadir CD4+ T cell [median: 476 (IQR:304-682) vs. median: 361 (IQR: 205-574) cells/μl, respectively) were found in individuals with HLA-B*5701(+)/HLA-C –35 C/C haplotype. Conclusions HLA-C -35 C and HLA-B*5701 allele exert a favorable effect on the immunological (higher baseline and nadir CD4+ T cell count) and virologic (lower pretreatment HIV viral load) variables. This protective effect is additive for the compound HLA-B*5701(+)/HLA-C -35 C/C haplotype.
Collapse
|
31
|
Abstract
In much of the developed world, the HIV epidemic has largely been controlled by antiretroviral treatment. Even so, there is growing concern that HIV-infected individuals may be at risk for accelerated brain aging and a range of cognitive impairments. What promotes or resists these changes is largely unknown. There is also interest in discovering factors that promote resilience to HIV and combat its adverse effects in children. Here, we review recent developments in brain imaging that reveal how the virus affects the brain. We relate these brain changes to changes in blood markers, cognitive function, and other patient outcomes or symptoms, such as apathy or neuropathic pain. We focus on new and emerging techniques, including new variants of brain MRI. Diffusion tensor imaging, for example, can map the brain's structural connections, while fMRI can uncover functional connections. Finally, we suggest how large-scale global research alliances, such as ENIGMA, may resolve controversies over effects where evidence is now lacking. These efforts pool scans from tens of thousands of individuals and offer a source of power not previously imaginable for brain imaging studies.
Collapse
Affiliation(s)
- Paul Thompson
- Dept. of Neurology, Keck USC School of Medicine, Imaging Genetics Center, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA 90292, Phone: (323) 44-BRAIN Fax: (323) 442-0137
| | - Neda Jahanshad
- Dept. of Neurology, Keck USC School of Medicine, Imaging Genetics Center, University of Southern California, 4676 Admiralty Way, Marina del Rey, CA 90292, Phone: (323) 44-BRAIN Fax: (323) 442-0137
| |
Collapse
|
32
|
Pirrone V, Mell J, Janto B, Wigdahl B. Biomarkers of HIV Susceptibility and Disease Progression. EBioMedicine 2014; 1:99-100. [PMID: 26137515 PMCID: PMC4457401 DOI: 10.1016/j.ebiom.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Vanessa Pirrone
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, United States ; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Joshua Mell
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, United States ; Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Benjamin Janto
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, United States ; Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, United States ; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, United States ; Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
33
|
Luo Y, Muesing MA. Mass spectrometry-based proteomic approaches for discovery of HIV-host interactions. Future Virol 2014; 9:979-992. [PMID: 25544858 DOI: 10.2217/fvl.14.86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
A molecular understanding of viral infection requires a multi-disciplinary approach. Mass spectrometry has emerged as an indispensable tool to investigate the complex and dynamic interactions between HIV-1 and its host. It has been employed to study protein associations, changes in protein abundance and post-translational modifications occurring after viral infection. Here, we review and provide examples of mass spectrometry-based proteomic approaches currently used to explore virus-host interaction. Efforts in this area are certain to accelerate the discovery of the unique molecular strategies utilized by the virus to commandeer the cell as well as mechanisms of host defense.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| | - Mark A Muesing
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| |
Collapse
|
34
|
Association of Toll-like receptor polymorphisms with HIV status in North Americans. Genes Immun 2014; 15:569-77. [PMID: 25253287 PMCID: PMC4257894 DOI: 10.1038/gene.2014.54] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2014] [Revised: 07/11/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in toll-like receptor (TLR) genes TLR2-4 and TLR7-9, but not in TLR1 and TLR6, have been previously evaluated regarding HIV acquisition and disease progression in various populations, most of which were European. In the present study, we examined associations between a total of 41 SNPs in 8 TLR genes (TLR1-4, TLR6-9) and HIV status in North American subjects (total n = 276 [Caucasian, n = 102; African American, n = 150; other, n = 24]). Stratification of the data by self-identified race revealed that a total of 9 SNPs in TLR1, TLR4, TLR6, and TLR8 in Caucasians, and 2 other SNPs, one each in TLR4 and TLR8, in African Americans were significantly associated with HIV status at P < 0.05. Concordant with the odds ratios of these SNPs, significant differences were observed in the SNP allele frequencies between HIV+ and HIV− subjects. Finally, in Caucasians, certain haplotypes of single (TLR1, TLR4) and heterodimer (TLR2_TLR6) genes may be inferred as “susceptible” or “protective”. Our study provides in-depth insight into the associations between TLR variants, particularly TLR1 and TLR6, and HIV status in North Americans, and suggests that these associations may be race-specific.
Collapse
|
35
|
African ancestry influences CCR5 -2459G>A genotype-associated virologic success of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2014; 66:102-7. [PMID: 24714069 DOI: 10.1097/qai.0000000000000129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION In a North American, HIV-positive, highly active antiretroviral therapy (HAART)-treated, adherent cohort of self-identified white and black patients, we previously observed that chemokine (C-C motif) receptor 5 (CCR5) -2459G>A genotype had a strong association with time to achieve virologic success (TVLS) in black but not in white patients. METHODS Using 128 genome-wide ancestry informative markers, we performed a quantitative assessment of ancestry in these patients (n = 310) to determine (1) whether CCR5 -2459G>A genotype is still associated with TVLS of HAART when ancestry, not self-identified race, is considered and (2) whether this association is influenced by varying African ancestry. RESULTS We found that the interaction between CCR5 -2459G>A genotype and African ancestry (≤ 0.125 vs. ≥ 0.425 and <0.71 vs. ≥ 0.71) was significantly associated with TVLS (GG compared with AA, P = 0.044 and 0.018, respectively). Furthermore, the association between CCR5 -2459G>A genotype and TVLS was stronger in patients with African ancestry ≥ 0.71 than in patients with African ancestry ≥ 0.452, in both Kaplan-Meier (log-rank P = 0.039 and 0.057, respectively, for AA, GA, and GG) and Cox proportional hazards regression (relative hazard for GG compared with AA 2.59 [95% confidence interval: 1.27 to 5.22; P = 0.01] and 2.26 [95% confidence interval: 1.18 to 4.32; P = 0.01], respectively) analyses. CONCLUSIONS We observed that the association between CCR5 -2459G>A genotype and TVLS of HAART increased with stronger African ancestry. Understanding the genomic mechanisms by which African ancestry influences this association is critical and requires further studies.
Collapse
|
36
|
Freddy meets Wagner. Microbes Infect 2014; 16:451-3. [PMID: 24819213 DOI: 10.1016/j.micinf.2014.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 11/22/2022]
|
37
|
Vidal F, Leal M, Alcamí J, Domingo P. Current situation of the pharmacogenetics of immune recovery in treated HIV-infected patients. Pharmacogenomics 2014; 15:569-72. [DOI: 10.2217/pgs.14.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Francesc Vidal
- Infectious Diseases & HIV/AIDS Unit, Department of Internal Medicine, Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Manuel Leal
- Laboratorio de Inmunovirologia del VIH, UGC de Enfermedades Infecciosas, Microbiologia y Medicina Preventiva, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Spain
| | - José Alcamí
- Unidad de Inmunopatologia del Sida, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | - Pere Domingo
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Santa-Marta M, de Brito PM, Godinho-Santos A, Goncalves J. Host Factors and HIV-1 Replication: Clinical Evidence and Potential Therapeutic Approaches. Front Immunol 2013; 4:343. [PMID: 24167505 PMCID: PMC3807056 DOI: 10.3389/fimmu.2013.00343] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2013] [Accepted: 10/06/2013] [Indexed: 12/17/2022] Open
Abstract
HIV and human defense mechanisms have co-evolved to counteract each other. In the process of infection, HIV takes advantage of cellular machinery and blocks the action of the host restriction factors (RF). A small subset of HIV+ individuals control HIV infection and progression to AIDS in the absence of treatment. These individuals known as long-term non-progressors (LNTPs) exhibit genetic and immunological characteristics that confer upon them an efficient resistance to infection and/or disease progression. The identification of some of these host factors led to the development of therapeutic approaches that attempted to mimic the natural control of HIV infection. Some of these approaches are currently being tested in clinical trials. While there are many genes which carry mutations and polymorphisms associated with non-progression, this review will be specifically focused on HIV host RF including both the main chemokine receptors and chemokines as well as intracellular RF including, APOBEC, TRIM, tetherin, and SAMHD1. The understanding of molecular profiles and mechanisms present in LTNPs should provide new insights to control HIV infection and contribute to the development of novel therapies against AIDS.
Collapse
Affiliation(s)
- Mariana Santa-Marta
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa , Lisboa , Portugal ; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| | | | | | | |
Collapse
|
39
|
Abstract
HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy. This chapter reviews key advances in the field of neuropathogenesis and studies that have highlighted how molecular diversity within the HIV genome may impact HIV-associated neurologic disease. We also discuss the possible functional implications of genetic variation within the viral promoter and possibly other regions of the viral genome, especially in the cells of monocyte-macrophage lineage, which are arguably key cellular players in HIV-associated CNS disease.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan P Irish
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Vieira VC, Soares MA. The role of cytidine deaminases on innate immune responses against human viral infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:683095. [PMID: 23865062 PMCID: PMC3707226 DOI: 10.1155/2013/683095] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/16/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 02/06/2023]
Abstract
The APOBEC family of proteins comprises deaminase enzymes that edit DNA and/or RNA sequences. The APOBEC3 subgroup plays an important role on the innate immune system, acting on host defense against exogenous viruses and endogenous retroelements. The role of APOBEC3 proteins in the inhibition of viral infection was firstly described for HIV-1. However, in the past few years many studies have also shown evidence of APOBEC3 action on other viruses associated with human diseases, including HTLV, HCV, HBV, HPV, HSV-1, and EBV. APOBEC3 inhibits these viruses through a series of editing-dependent and independent mechanisms. Many viruses have evolved mechanisms to counteract APOBEC effects, and strategies that enhance APOBEC3 activity constitute a new approach for antiviral drug development. On the other hand, novel evidence that editing by APOBEC3 constitutes a source for viral genetic diversification and evolution has emerged. Furthermore, a possible role in cancer development has been shown for these host enzymes. Therefore, understanding the role of deaminases on the immune response against infectious agents, as well as their role in human disease, has become pivotal. This review summarizes the state-of-the-art knowledge of the impact of APOBEC enzymes on human viruses of distinct families and harboring disparate replication strategies.
Collapse
Affiliation(s)
- Valdimara C. Vieira
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rua André Cavalcanti, No. 37–4 Andar, Bairro de Fátima, 20231-050 Rio de Janeiro, RJ, Brazil
| | - Marcelo A. Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rua André Cavalcanti, No. 37–4 Andar, Bairro de Fátima, 20231-050 Rio de Janeiro, RJ, Brazil
- Departamento de Genética, Universidade Federal do Rio de Janeiro, 21949-570 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
41
|
Abstract
Vaccines are the most cost effective public health measure for preventing viral infection and limiting epidemic spread within susceptible populations. However, the efficacy of current protective vaccines is highly variable, particularly in aging populations. In addition, there have been a number of challenges in the development of new vaccines due to a lack of detailed understanding of the immune correlates of protection. To identify the mechanisms underlying the variability of the immune response to vaccines, system-level tools need to be developed that will further our understanding of virus-host interactions and correlates of vaccine efficacy. This will provide critical information for rational vaccine design and allow the development of an analog to the "precision medicine" framework (already acknowledged as a powerful approach in medicine and therapeutics) to be applied to vaccinology.
Collapse
Affiliation(s)
- Michael Mooney
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Oregon, United States
| | | | | |
Collapse
|
42
|
Abstract
In the 1990 s, the variability of responses to human immunodeficiency virus (HIV) could only be tracked by phenotypic criteria such as the number of CD4T lymphocytes, the occurrence of opportunistic infection, the disease free survival without treatment. In 1996, the viral load is the leading phenotype for genetic studies. Ever since, thanks to a better understanding of the HIV infection pathophysiology, numerous studies helped to highlight the influence of genetic variability on inter-individual response to this virus. Among the genes having an impact, we can quote the following examples: CCR5, HLA-B and HLA-C genes. Practical applications of genetics in clinical medicine include search for HLA-B*57:01 before abacavir introduction. Recently, an eradicating treatment for HIV disease after bone marrow transplantation with a donor homozygote for a CCR5 gene non-functional variant (CCR5Δ32) has been reported. Interest in genetics of chronic viral infection is not specific to HIV. It has also been used on other viral diseases and it has gained a major place on the management of diseases.
Collapse
|