1
|
Antigenic Evolution Characteristics and Immunological Evaluation of H9N2 Avian Influenza Viruses from 1994–2019 in China. Viruses 2022; 14:v14040726. [DOI: 10.3390/v14040726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 01/27/2023] Open
Abstract
The H9N2 subtype avian influenza viruses (AIVs) have been circulating in China for more than 20 years, attracting more and more attention due to the potential threat of them. At present, vaccination is a common prevention and control strategy in poultry farms, but as virus antigenicity evolves, the immune protection efficiency of vaccines has constantly been challenged. In this study, we downloaded the hemagglutinin (HA) protein sequences of the H9N2 subtype AIVs from 1994 to 2019 in China—with a total of 5138 sequences. The above sequences were analyzed in terms of time and space, and it was found that h9.4.2.5 was the most popular in various regions of China. Furthermore, the prevalence of H9N2 subtype AIVs in China around 2006 was different. The domestic epidemic branch was relatively diversified from 1994 to 2006. After 2006, the epidemic branch each year was h9.4.2.5. We compared the sequences around 2006 as a whole and screened out 15 different amino acid positions. Based on the HA protein of A/chicken/Guangxi/55/2005 (GX55), the abovementioned amino acid mutations were completed. According to the 12-plasmid reverse genetic system, the rescue of the mutant virus was completed using A/PuertoRico/8/1934 (H1N1) (PR8) as the backbone. The cross hemagglutination inhibition test showed that these mutant sites could transform the parental strain from the old to the new antigenic region. Animal experiments indicated that the mutant virus provided significant protection against the virus from the new antigenic region. This study revealed the antigenic evolution of H9N2 subtype AIVs in China. At the same time, it provided an experimental basis for the development of new vaccines.
Collapse
|
2
|
Generation and Evaluation of Recombinant Thermostable Newcastle Disease Virus Expressing the HA of H9N2 Avian Influenza Virus. Viruses 2021; 13:v13081606. [PMID: 34452473 PMCID: PMC8402907 DOI: 10.3390/v13081606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
H9N2 avian influenza virus (AIV) has become endemic in many countries, causing great economic losses when co-infected with other pathogens. So far, several live vaccines based on Newcastle disease virus (NDV) vectors expressing influenza hemagglutinin (HA) have been developed. However, the thermostable recombinant NDV is rarely reported. In this study, using a thermostable NDV rAHR09 strain as the vector, three recombinant NDVs expressing native HA, chimeric HA ectodomain with transmembrane domain/C-terminal cytoplasmic tail domain from fusion protein of NDV, and HA ectodomain were generated, designated rAHR09-HA, rAHR09-HAF, and rAHR09-HAE. The MDT value of three recombinant NDVs was above 120 h, their ICPI value was about 0.03, and the recombinant NDVs were still infectious when treated for 100 min under 56 °C, which demonstrated that the recombinant NDVs kept the lentogenic and thermostable nature of rAHR09. The immunization data showed that rAHR09-HA and rAHR09-HAF induced a higher HI antibody titer against H9N2 AIV and NDV. After being challenged with H9N2 AIV, the rAHR09-HA and rAHR09-HAF could significantly reduce the virus shedding in cloacal and tracheal swab samples. Our results suggest that rAHR09-HA and rAHR09-HAF might be vaccine candidates against H9N2 AIV.
Collapse
|
3
|
Abstract
Influenza A viruses (IAVs) of the H9 subtype are enzootic in Asia, the Middle East, and parts of North and Central Africa, where they cause significant economic losses to the poultry industry. Of note, some strains of H9N2 viruses have been linked to zoonotic episodes of mild respiratory diseases. Because of the threat posed by H9N2 viruses to poultry and human health, these viruses are considered of pandemic concern by the World Health Organization (WHO). H9N2 IAVs continue to diversify into multiple antigenically and phylogenetically distinct lineages that can further promote the emergence of strains with pandemic potential. Somewhat neglected compared with the H5 and H7 subtypes, there are numerous indicators that H9N2 viruses could be involved directly or indirectly in the emergence of the next influenza pandemic. The goal of this work is to discuss the state of knowledge on H9N2 IAVs and to provide an update on the contemporary global situation.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
4
|
Premanand B, Zhong Wee P, Prabakaran M. Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development. Viruses 2018; 10:E298. [PMID: 29857561 PMCID: PMC6024371 DOI: 10.3390/v10060298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
Vaccination is an efficient way to prevent the occurrence of many infectious diseases in humans. To date, several viral vectors have been utilized for the generation of vaccines. Among them, baculovirus-categorized as a nonhuman viral vector-has been used in wider applications. Its versatile features, like large cloning capacity, nonreplicative nature in mammalian cells, and broad tissue tropism, hold it at an excellent position among vaccine vectors. In addition to ease and safety during swift production, recent key improvements to existing baculovirus vectors (such as inclusion of hybrid promoters, immunostimulatory elements, etc.) have led to significant improvements in immunogenicity and efficacy of surface-displayed antigens. Furthermore, some promising preclinical results have been reported that mirror the scope and practicality of baculovirus as a vaccine vector for human applications in the near future. Herein, this review provides an overview of the induced immune responses by baculovirus surface-displayed vaccines against influenza and other infectious diseases in animal models, and highlights the strategies applied to enhance the protective immune responses against the displayed antigens.
Collapse
Affiliation(s)
- Balraj Premanand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Poh Zhong Wee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
5
|
Gu M, Xu L, Wang X, Liu X. Current situation of H9N2 subtype avian influenza in China. Vet Res 2017; 48:49. [PMID: 28915920 PMCID: PMC5603032 DOI: 10.1186/s13567-017-0453-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2017] [Accepted: 07/18/2017] [Indexed: 11/12/2022] Open
Abstract
In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.
Collapse
Affiliation(s)
- Min Gu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lijun Xu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Yangzhou Entry-Exit Inspection and Quarantine Bureau, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
6
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
7
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
|
8
|
Immunization with baculovirus displayed H6 hemagglutinin vaccine protects mice against lethal H6 influenza virus challenge. Antiviral Res 2014; 109:42-53. [PMID: 24973759 DOI: 10.1016/j.antiviral.2014.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2012] [Revised: 05/21/2014] [Accepted: 06/02/2014] [Indexed: 11/22/2022]
Abstract
Low pathogenic influenza viruses of H6 hemagglutinin (HA) subtype have a high prevalence among aquatic and domestic birds and have caused outbreaks in poultry worldwide. The first human infection with wild avian influenza H6N1 virus was reported in Taiwan and these subtype viruses may continue to evolve and accumulate changes which increasing the potential risk of human-to-human transmission. To develop a vaccine against influenza viruses of the H6 subtype, we displayed the HA gene on the baculovirus surface (Bac-HA), and studied its vaccine efficacy against a lethal challenge with mouse-adapted RG-H6(Shorebird) virus carrying the H6 HA gene from A/shorebird/DE/12/2004 (H6N8) virus and 7 genes from A/Puerto Rico/8/1934 (H1N1) virus. Immunization with 256 HA units of Bac-HA via the intranasal route triggered HA-specific serum and mucosal antibodies in mice besides increased HA inhibition titers compared to mice immunized subcutaneously. Moreover, we observed an increase in cellular immune response (IL-4) and improved in vitro neutralization activity in the mice immunized intranasally with live Bac-HA compared to mice immunized with inactivated influenza virus (IV). Interestingly, Bac-HA intranasal immunized mice showed one fold higher neutralization titer against heterologous H6 influenza virus compared to inactivated IV immunized mice. In addition, the live Bac-HA, administered through either immunization route, as well as the adjuvanted inactivated Bac-HA, administered subcutaneously, conferred 100% protection to mice challenged with homologous mouse-adapted RG-H6(Shorebird) virus. The reduction in viral titers and extend of histopathological changes of Bac-HA immunized mice lungs further demonstrated the protective efficacy of Bac-HA. Hence, the recombinant baculovirus subunit vaccine is an alternative candidate against H6 subtypes that could be propagated and administered with minimal biosafety concerns.
Collapse
|
9
|
Zhang J, Chen XW, Tong TZ, Ye Y, Liao M, Fan HY. BacMam virus-based surface display of the infectious bronchitis virus (IBV) S1 glycoprotein confers strong protection against virulent IBV challenge in chickens. Vaccine 2013; 32:664-70. [PMID: 24342247 DOI: 10.1016/j.vaccine.2013.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022]
Abstract
Avian infectious bronchitis virus (IBV) is associated with production inefficiencies in domestic fowl, and causes massive economic losses to the poultry industry worldwide. Progress has been made in designing novel and efficient candidate vaccines to control IBV infection. BacMam virus, a modified baculovirus mediating transgene expression under the control of a mammalian promoter, has emerged as a versatile and safe vector during vaccine development. In previous work, we generated the BacMam virus Ac-CMV-S1, which expressed the S1 glycoprotein of IBV-M41. We showed that Ac-CMV-S1 induced excellent cellular immunity, but did not confer adequate protection in chickens compared with the conventional inactivated vaccine. In the current study, we generated an improved BacMam virus, BV-Dual-S1. This virus displayed the S1 glycoprotein on the baculovirus envelope, and was capable of expressing it in mammalian cells. BV-Dual-S1 elicited stronger humoral and cell-mediated immune responses, and showed greater capacity for induction of cytotoxic T lymphocyte responses, compared with Ac-CMV-S1 in specific pathogen-free chickens. A significant difference was not observed for protection rates between chickens immunized with BV-Dual-S1 (83%) or inactivated vaccine (89%) following challenge with virulent IBV-M41. Our findings show that the protective efficacy of BV-Dual-S1 could be significantly enhanced by baculovirus display technology. BacMam virus-based surface display strategies could serve as effective tools in designing vaccines against IB and other infectious diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Wei Chen
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tie-Zhu Tong
- Huizhou Entry-Exit Inspection and Quarantine Bureau, Huizhou 516001, China
| | - Yu Ye
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui-Ying Fan
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|