1
|
Baya B, Sanogo I, Kone M, Soumare D, Ouattara K, Somboro A, Wague M, Coulibaly N, Koloma I, Coulibaly M, Nantoume M, Perou M, Kone K, Coulibaly D, Boukary Diarra H, Kone B, Diarra A, Coulibaly MD, Sanogo M, Diarra B, Diakite M, Achenbach CJ, Doumbia S, Bishai WR, Klein SL, Holl JL, Diallo S, Murphy RL, Toloba Y, Dabitao D. Relationship between patient sex and anatomical sites of extrapulmonary tuberculosis in Mali. J Clin Tuberc Other Mycobact Dis 2023; 33:100389. [PMID: 37637324 PMCID: PMC10448223 DOI: 10.1016/j.jctube.2023.100389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Background Contribution of host factors in mediating susceptibility to extrapulmonary tuberculosis is not well understood. Objective To examine the influence of patient sex on anatomical localization of extrapulmonary tuberculosis. Methods We conducted a retrospective cross-sectional study in Mali, West Africa. Hospital records of 1,304 suspected cases of extrapulmonary tuberculosis, available in TB Registry of a tertiary tuberculosis referral center from 2019 to 2021, were examined. Results A total of 1,012 (77.6%) were confirmed to have extrapulmonary tuberculosis with a male to female ratio of 1.59:1. Four clinical forms of EPTB predominated, namely pleural (40.4%), osteoarticular (29.8%), lymph node (12.5%), and abdominal TB (10.3%). We found sex-based differences in anatomical localization of extrapulmonary tuberculosis, with males more likely than females to have pleural TB (OR: 1.51; 95% CI [1.16 to 1.98]). Conversely, being male was associated with 43% and 41% lower odds of having lymph node and abdominal TB, respectively (OR: 0.57 and 0.59). Conclusion Anatomical sites of extrapulmonary tuberculosis differ by sex with pleural TB being associated with male sex while lymph node and abdominal TB are predominately associated with female sex. Future studies are warranted to understand the role of sex in mediating anatomical site preference of tuberculosis.
Collapse
Affiliation(s)
- Bocar Baya
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
- Department of Pneumophtisiology, University Teaching Hospital of Point-G, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Ibrahim Sanogo
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Mahamadou Kone
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Dianguina Soumare
- Department of Pneumophtisiology, University Teaching Hospital of Point-G, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Kadidia Ouattara
- Department of Pneumophtisiology, University Teaching Hospital of Point-G, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Amadou Somboro
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Mamadou Wague
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Nadie Coulibaly
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Isaac Koloma
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Mariam Coulibaly
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Mohamed Nantoume
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Mamadou Perou
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Kadidia Kone
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Djeneba Coulibaly
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Hawa Boukary Diarra
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Bourahima Kone
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Ayouba Diarra
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Mamadou D. Coulibaly
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Moumine Sanogo
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Bassirou Diarra
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Mahamadou Diakite
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Chad J. Achenbach
- Northwestern University (NU), Division of Infectious Diseases and Havey Institute for Global Health, Feinberg School of Medicine, Chicago, IL, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - William R. Bishai
- Johns Hopkins School of Medicine, Department of Infectious Diseases, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Sabra L. Klein
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Jane L. Holl
- University of Chicago, Biological Sciences Division, Chicago, IL, USA
| | - Souleymane Diallo
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Robert L. Murphy
- Northwestern University (NU), Division of Infectious Diseases and Havey Institute for Global Health, Feinberg School of Medicine, Chicago, IL, USA
- University of Chicago, Biological Sciences Division, Chicago, IL, USA
| | - Yacouba Toloba
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
- Department of Pneumophtisiology, University Teaching Hospital of Point-G, Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Djeneba Dabitao
- University Clinical Research Center (UCRC), Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| |
Collapse
|
2
|
Bose M, Giri A, Varma-Basil M. Comparative Genetic Association Analysis of Human Genetic Susceptibility to Pulmonary and Lymph Node Tuberculosis. Genes (Basel) 2023; 14:genes14010207. [PMID: 36672948 PMCID: PMC9859508 DOI: 10.3390/genes14010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) manifests itself primarily in the lungs as pulmonary disease (PTB) and sometimes disseminates to other organs to cause extra-pulmonary TB, such as lymph node TB (LNTB). This study aimed to investigate the role of host genetic polymorphism in immunity related genes to find a genetic basis for such differences. METHODS Sixty-three, Single nucleotide polymorphisms (SNPs) in twenty-three, TB-immunity related genes including eleven innate immunity (SLCA11, VDR, TLR2, TLR4, TLR8, IRGM, P2RX7, LTA4H, SP110, DCSIGN and NOS2A) and twelve cytokine (TNFA, IFNG, IL2, Il12, IL18, IL1B, IL10, IL6, IL4, rs1794068, IL8 and TNFB) genes were investigated to find genetic associations in both PTB and LNTB as compared to healthy community controls. The serum cytokine levels were correlated for association with the genotypes. RESULTS PTB and LNTB showed differential genetic associations. The genetic variants in the cytokine genes (IFNG, IL12, IL4, TNFB and IL1RA and TLR2, 4 associated with PTB susceptibility and cytokine levels but not LNTB (p < 0.05). Similarly, genetic variants in LTA4H, P2RX7, DCSIGN and SP110 showed susceptibility to LNTB and not PTB. Pathway analysis showed abundance of cytokine related variants for PTB and apoptosis related variants for LNTB. CONCLUSIONS PTB and LNTB outcomes of TB infection have a genetic component and should be considered for any future functional studies or studies on susceptibility to pulmonary and extra-pulmonary TB.
Collapse
Affiliation(s)
- Mridula Bose
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
- Correspondence: (A.); (M.B.)
| | - Astha Giri
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| |
Collapse
|
3
|
Dabitao D, Bishai WR. Sex and Gender Differences in Tuberculosis Pathogenesis and Treatment Outcomes. Curr Top Microbiol Immunol 2023; 441:139-183. [PMID: 37695428 DOI: 10.1007/978-3-031-35139-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Tuberculosis remains a daunting public health concern in many countries of the world. A consistent observation in the global epidemiology of tuberculosis is an excess of cases of active pulmonary tuberculosis among males compared with females. Data from both humans and animals also suggest that males are more susceptible than females to develop active pulmonary disease. Similarly, male sex has been associated with poor treatment outcomes. Despite this growing body of evidence, little is known about the mechanisms driving sex bias in tuberculosis disease. Two dominant hypotheses have been proposed to explain the predominance of active pulmonary tuberculosis among males. The first is based on the contribution of biological factors, such as sex hormones and genetic factors, on host immunity during tuberculosis. The second is focused on non-biological factors such as smoking, professional exposure, and health-seeking behaviors, known to be influenced by gender. In this chapter, we review the literature regarding these two prevailing hypotheses by presenting human but also experimental animal studies. In addition, we presented studies aiming at examining the impact of sex and gender on other clinical forms of tuberculosis such as latent tuberculosis infection and extrapulmonary tuberculosis, which both appear to have their own specificities in relation to sex. We also highlighted potential intersections between sex and gender in the context of tuberculosis and shared future directions that could guide in elucidating mechanisms of sex-based differences in tuberculosis pathogenesis and treatment outcomes.
Collapse
Affiliation(s)
- Djeneba Dabitao
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - William R Bishai
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Ndong Sima CAA, Smith D, Petersen DC, Schurz H, Uren C, Möller M. The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics 2022; 75:215-230. [DOI: 10.1007/s00251-022-01290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
|
5
|
Genetic architecture of tuberculosis susceptibility: A comprehensive research synopsis, meta-analyses, and epidemiological evidence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 104:105352. [PMID: 35998870 DOI: 10.1016/j.meegid.2022.105352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
To date, many studies have been conducted to investigate associations between variants and tuberculosis risk; however, the results have been inconclusive. Here, we systematically provide a summary of the understanding of the genetic architecture of tuberculosis susceptibility. We searched PubMed, Embase and Web of Science to identify genetic association studies of tuberculosis published through October 31, 2021. We conducted meta-analyses for the genetic association with tuberculosis risk. We graded levels of cumulative epidemiological evidence of significant associations with risk of tuberculosis and false-positive report probability tests. We performed functional annotations for these variants using data from the Encyclopedia of DNA Elements (ENCODE) Project and other databases. We identified 703 eligible articles comprising 298,074 cases and 879,593 controls through screening a total of 24,398 citations. Meta-analyses were conducted for 614 genetic variants in 469 genes or loci. We found 39 variants that were nominally significantly associated with tuberculosis risk. Cumulative epidemiological evidence for a significant association was graded strong for 9 variants in or near 9 genes. Among them, 5 variants were associated with tuberculosis risk in at least three main ethnicity (African, Asian and White) which together explained approximately 9.59% of the familial relative risk of tuberculosis. Data from ENCODE and other databases suggested that 8 of these 9 genetic variants with strong evidence might fall within putative functional regions. Our study summarizes the current literature on the genetic architecture of tuberculosis susceptibility and provides useful data for designing future studies to investigate the genetic association with tuberculosis risk.
Collapse
|
6
|
Asante-Poku A, Morgan P, Osei-Wusu S, Aboagye SY, Asare P, Otchere ID, Adadey SM, Mnika K, Esoh K, Mawuta KH, Arthur N, Forson A, Mazandu GK, Wonkam A, Yeboah-Manu D. Genetic Analysis of TB Susceptibility Variants in Ghana Reveals Candidate Protective Loci in SORBS2 and SCL11A1 Genes. Front Genet 2022; 12:729737. [PMID: 35242163 PMCID: PMC8886735 DOI: 10.3389/fgene.2021.729737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022] Open
Abstract
Despite advancements made toward diagnostics, tuberculosis caused by Mycobacterium africanum (Maf) and Mycobacterium tuberculosis sensu stricto (Mtbss) remains a major public health issue. Human host factors are key players in tuberculosis (TB) outcomes and treatment. Research is required to probe the interplay between host and bacterial genomes. Here, we explored the association between selected human/host genomic variants and TB disease in Ghana. Paired host genotype datum and infecting bacterial isolate information were analyzed for associations using a multinomial logistic regression. Mycobacterium tuberculosis complex (MTBC) isolates were obtained from 191 TB patients and genotyped into different phylogenetic lineages by standard methods. Two hundred and thirty-five (235) nondisease participants were used as healthy controls. A selection of 29 SNPs from TB disease-associated genes with high frequency among African populations was assayed using a TaqMan® SNP Genotyping Assay and iPLEX Gold Sequenom Mass Genotyping Array. Using 26 high-quality SNPs across 326 case-control samples in an association analysis, we found a protective variant, rs955263, in the SORBS2 gene against both Maf and Mtb infections (P BH = 0.05; OR = 0.33; 95% CI = 0.32-0.34). A relatively uncommon variant, rs17235409 in the SLC11A1 gene was observed with an even stronger protective effect against Mtb infection (MAF = 0.06; PBH = 0.04; OR = 0.05; 95% CI = 0.04-0.05). These findings suggest SLC11A1 and SORBS2 as a potential protective gene of substantial interest for TB, which is an important pathogen in West Africa, and highlight the need for in-depth host-pathogen studies in West Africa.
Collapse
Affiliation(s)
- Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Portia Morgan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Samuel Yaw Aboagye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Samuel Mawuli Adadey
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Khuthala Mnika
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kevin Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kenneth Hayibor Mawuta
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Nelly Arthur
- Department of Chest Diseases, Korle-Bu Teaching Hospital Korle-Bu, Accra, Ghana
| | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital Korle-Bu, Accra, Ghana
| | - Gaston Kuzamunu Mazandu
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
7
|
Swart Y, Uren C, van Helden PD, Hoal EG, Möller M. Local Ancestry Adjusted Allelic Association Analysis Robustly Captures Tuberculosis Susceptibility Loci. Front Genet 2021; 12:716558. [PMID: 34721521 PMCID: PMC8554120 DOI: 10.3389/fgene.2021.716558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex disease. The risk of developing active TB is in part determined by host genetic factors. Most genetic studies investigating TB susceptibility fail to replicate association signals particularly across diverse populations. South African populations arose because of multi-wave genetic admixture from the indigenous KhoeSan, Bantu-speaking Africans, Europeans, Southeast Asian-and East Asian populations. This has led to complex genetic admixture with heterogenous patterns of linkage disequilibrium and associated traits. As a result, precise estimation of both global and local ancestry is required to prevent both false positive and false-negative associations. Here, 820 individuals from South Africa were genotyped on the SNP-dense Illumina Multi-Ethnic Genotyping Array (∼1.7M SNPs) followed by local and global ancestry inference using RFMix. Local ancestry adjusted allelic association (LAAA) models were utilized owing to the extensive genetic heterogeneity present in this population. Hence, an interaction term, comprising the identification of the minor allele that corresponds to the ancestry present at the specific locus under investigation, was included as a covariate. One SNP (rs28647531) located on chromosome 4q22 was significantly associated with TB susceptibility and displayed a SNP minor allelic effect (G allele, frequency = 0.204) whilst correcting for local ancestry for Bantu-speaking African ancestry (p-value = 5.518 × 10-7; OR = 3.065; SE = 0.224). Although no other variants passed the significant threshold, clear differences were observed between the lead variants identified for each ancestry. Furthermore, the LAAA model robustly captured the source of association signals in multi-way admixed individuals from South Africa and allowed the identification of ancestry-specific disease risk alleles associated with TB susceptibility that have previously been missed.
Collapse
Affiliation(s)
- Yolandi Swart
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Caitlin Uren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Müller SJ, Schurz H, Tromp G, van der Spuy GD, Hoal EG, van Helden PD, Owusu-Dabo E, Meyer CG, Muntau B, Thye T, Niemann S, Warren RM, Streicher E, Möller M, Kinnear C. A multi-phenotype genome-wide association study of clades causing tuberculosis in a Ghanaian- and South African cohort. Genomics 2021; 113:1802-1815. [PMID: 33862184 DOI: 10.1016/j.ygeno.2021.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 01/31/2023]
Abstract
Despite decades of research and advancements in diagnostics and treatment, tuberculosis remains a major public health concern. New computational methods are needed to interrogate the intersection of host- and bacterial genomes. Paired host genotype datum and infecting bacterial isolate information were analysed for associations using a multinomial logistic regression framework implemented in SNPTest. A cohort of 853 admixed South African participants and a Ghanaian cohort of 1359 participants were included. Two directly genotyped variants, namely rs529920 and rs41472447, were identified in the Ghanaian cohort as being statistically significantly associated with risk for infection with strains of different members of the MTBC. Thus, a multinomial logistic regression using paired host-pathogen data may prove valuable for investigating the complex relationships driving infectious disease.
Collapse
Affiliation(s)
- Stephanie J Müller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Haiko Schurz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gian D van der Spuy
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ellis Owusu-Dabo
- School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian G Meyer
- Institute of Tropical Medicine, Eberhard-Karls University, Tübingen, Germany; Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Birgit Muntau
- National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thorsten Thye
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stefan Niemann
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizabeth Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
9
|
Bi L, Wang H, Tian Y. Silencing FAM135B enhances radiosensitivity of esophageal carcinoma cell. Gene 2020; 772:145358. [PMID: 33340561 DOI: 10.1016/j.gene.2020.145358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 12/09/2022]
Abstract
FAM135B (family with sequence similarity 135, member B) is related to the progression of esophageal squamous cell carcinoma (ESCC). However, the role played by the gene in radiosensitivity remains unknown. Herein, we examined the relationship between FAM135B and radiosensitivity. According to the results, FAM135B is highly expressed in ESCC cells, and ESCC cells with high levels of FAM135B are resistant to irradiation. Silencing FAM135B inhibits colony formation capability and cell cycle protein expression (pP53, CDK1), promotes cell cycle arrest at the G2/M phase following irradiation. Moreover, transcriptome sequencing analysis demonstrates that FAM135B regulates downstream PI3K/Akt/mTOR signaling pathway, and western blot verifies the result. One of the mechanisms of increasing radiosensitivity by silencing FAM135B expression in ESCC cells may be achieved by regulating the PI3K/Akt/mTOR signaling pathway. Silencing FAM135B shows synergy with PI3K/Akt/mTOR pathway inhibitor (rapamycin) in increasing radiosensitivity, regulating the expression of cell cycle protein and inducing apoptosis of ESCC cells. The results indicate that FAM135B could be a potential treatment target for ESCC in management of radiosensitivity.
Collapse
Affiliation(s)
- Liangwen Bi
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, 1055 San Xiang Road, Suzhou, Jiangsu 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu 215004, China; Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing, Jiangsu 210011, China
| | - Haijing Wang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing, Jiangsu 210011, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, 1055 San Xiang Road, Suzhou, Jiangsu 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
10
|
Xu M, Li J, Xiao Z, Lou J, Pan X, Ma Y. Integrative genomics analysis identifies promising SNPs and genes implicated in tuberculosis risk based on multiple omics datasets. Aging (Albany NY) 2020; 12:19173-19220. [PMID: 33051402 PMCID: PMC7732298 DOI: 10.18632/aging.103744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
More than 10 GWASs have reported numerous genetic loci associated with tuberculosis (TB). However, the functional effects of genetic variants on TB remains largely unknown. In the present study, by combining a reported GWAS summary dataset (N = 452,264) with 3 independent eQTL datasets (N = 2,242) and other omics datasets downloaded from public databases, we conducted an integrative genomics analysis to highlight SNPs and genes implicated in TB risk. Based on independent biological and technical validations, we prioritized 26 candidate genes with eSNPs significantly associated with gene expression and TB susceptibility simultaneously; such as, CDC16 (rs7987202, rs9590408, and rs948182) and RCN3 (rs2946863, rs2878342, and rs3810194). Based on the network-based enrichment analysis, we found these 26 highlighted genes were jointly connected to exert effects on TB susceptibility. The co-expression patterns among these 26 genes were remarkably changed according to Mycobacterium tuberculosis (MTB) infection status. Based on 4 independent gene expression datasets, 21 of 26 genes (80.77%) showed significantly differential expressions between TB group and control group in mesenchymal stem cells, mice blood and lung tissues, as well as human alveolar macrophages. Together, we provide robust evidence to support 26 highlighted genes as important candidates for TB.
Collapse
Affiliation(s)
- Mengqiu Xu
- Department of Infectious Diseases, Shengzhou People’s Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengshou 312400, Zhejiang, China
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Zhaoying Xiao
- Department of Infectious Diseases, Shengzhou People’s Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengshou 312400, Zhejiang, China
| | - Jiongpo Lou
- Department of Infectious Diseases, Shengzhou People’s Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengshou 312400, Zhejiang, China
| | - Xinrong Pan
- Department of Infectious Diseases, Shengzhou People’s Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengshou 312400, Zhejiang, China
| | - Yunlong Ma
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China,School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
11
|
Wang T, Lv X, Jiang S, Han S, Wang Y. Expression of ADAM29 and FAM135B in the pathological evolution from normal esophageal epithelium to esophageal cancer: Their differences and clinical significance. Oncol Lett 2020; 19:1727-1734. [PMID: 32194665 PMCID: PMC7039107 DOI: 10.3892/ol.2020.11272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 11/17/2019] [Indexed: 12/24/2022] Open
Abstract
A Disintegrin And Metalloprotease Domain 29 (ADAM29) and Family with sequence similarity 135 member B (FAM135B) genes have been reported to be associated with a carcinogenic risk of esophageal squamous cell carcinoma (ESCC). However, to the best of our knowledge, the expression of ADAM29 and FAM135B in the pathological evolution from normal esophageal epithelial cells to ESCC has not yet been investigated. The present study aimed to investigate the expression of ADAM29 and FAM135B in normal esophageal mucosal epithelium, low-grade and high-grade esophageal intraepithelial neoplasia, and ESCC. Furthermore, the present study aimed to investigate the role of ADAM29 and FAM135B in the development of esophageal lesions. Immunohistochemistry was performed in order to detect the expression levels of ADAM29 and FAM135B proteins in normal esophageal mucosa samples (40 cases), low-grade intraepithelial neoplasia samples (20 cases), high-grade intraepithelial neoplasia samples (20 cases) and ESCC samples (40 cases). The results of the present study demonstrated that the positive rates of ADAM29 and FAM135B proteins increased gradually from normal esophageal mucosal epithelium and esophageal intraepithelial neoplasia, to ESCC (P<0.05). Furthermore, the expression levels of ADAM29 and FAM135B proteins in ESCC were not associated with age and the tumor size (P>0.05); however, the protein levels were associated with the pathological stage, clinical stage and lymph node metastasis of ESCC (P<0.05). In addition, there was a significant association between the expression levels of ADAM29 protein and FAM135B protein (χ2=60.071; P<0.001). The results of the present study demonstrated that the expression levels of ADAM29 and FAM135B were associated with the tumor behavior characteristics and the progression of esophageal cancer, the expression of which could be used for the diagnosis of early esophageal cancer, and provide the basis for guiding individualized treatment.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Radiation Oncology, PLA 960th Hospital, Jinan, Shandong 250031, P.R. China
| | - Xiaoyan Lv
- Department of Radiation Oncology, PLA 960th Hospital, Jinan, Shandong 250031, P.R. China
| | - Shen Jiang
- Department of Emergency Internal Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 201203, P.R. China
| | - Shaorong Han
- Department of Radiation Oncology, PLA 960th Hospital, Jinan, Shandong 250031, P.R. China
| | - Yanming Wang
- Department of Radiation Oncology, PLA 960th Hospital, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
12
|
Schurz H, Kinnear CJ, Gignoux C, Wojcik G, van Helden PD, Tromp G, Henn B, Hoal EG, Möller M. A Sex-Stratified Genome-Wide Association Study of Tuberculosis Using a Multi-Ethnic Genotyping Array. Front Genet 2019; 9:678. [PMID: 30713548 PMCID: PMC6346682 DOI: 10.3389/fgene.2018.00678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex disease with a known human genetic component. Males seem to be more affected than females and in most countries the TB notification rate is twice as high in males than in females. While socio-economic status, behavior and sex hormones influence the male bias they do not fully account for it. Males have only one copy of the X chromosome, while diploid females are subject to X chromosome inactivation. In addition, the X chromosome codes for many immune-related genes, supporting the hypothesis that X-linked genes could contribute to TB susceptibility in a sex-biased manner. We report the first TB susceptibility genome-wide association study (GWAS) with a specific focus on sex-stratified autosomal analysis and the X chromosome. A total of 810 individuals (410 cases and 405 controls) from an admixed South African population were genotyped using the Illumina Multi Ethnic Genotyping Array, specifically designed as a suitable platform for diverse and admixed populations. Association testing was done on the autosome (8,27,386 variants) and X chromosome (20,939 variants) in a sex stratified and combined manner. SNP association testing was not statistically significant using a stringent cut-off for significance but revealed likely candidate genes that warrant further investigation. A genome wide interaction analysis detected 16 significant interactions. Finally, the results highlight the importance of sex-stratified analysis as strong sex-specific effects were identified on both the autosome and X chromosome.
Collapse
Affiliation(s)
- Haiko Schurz
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Genevieve Wojcik
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Paul D. van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | - Brenna Henn
- Department of Anthropology, UC Davis Genome Center, University of California, Davis, Davis, CA, United States
| | - Eileen G. Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
13
|
The arms race between man and Mycobacterium tuberculosis: Time to regroup. INFECTION GENETICS AND EVOLUTION 2018; 66:361-375. [DOI: 10.1016/j.meegid.2017.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022]
|
14
|
Möller M, Kinnear CJ, Orlova M, Kroon EE, van Helden PD, Schurr E, Hoal EG. Genetic Resistance to Mycobacterium tuberculosis Infection and Disease. Front Immunol 2018; 9:2219. [PMID: 30319657 PMCID: PMC6170664 DOI: 10.3389/fimmu.2018.02219] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Natural history studies of tuberculosis (TB) have revealed a spectrum of clinical outcomes after exposure to Mycobacterium tuberculosis, the cause of TB. Not all individuals exposed to the bacterium will become diseased and depending on the infection pressure, many will remain infection-free. Intriguingly, complete resistance to infection is observed in some individuals (termed resisters) after intense, continuing M. tuberculosis exposure. After successful infection, the majority of individuals will develop latent TB infection (LTBI). This infection state is currently (and perhaps imperfectly) defined by the presence of a positive tuberculin skin test (TST) and/or interferon gamma release assay (IGRA), but no detectable clinical disease symptoms. The majority of healthy individuals with LTBI are resistant to clinical TB, indicating that infection is remarkably well-contained in these non-progressors. The remaining 5-15% of LTBI positive individuals will progress to active TB. Epidemiological investigations have indicated that the host genetic component contributes to these infection and disease phenotypes, influencing both susceptibility and resistance. Elucidating these genetic correlates is therefore a priority as it may translate to new interventions to prevent, diagnose or treat TB. The most successful approaches in resistance/susceptibility investigation have focused on specific infection and disease phenotypes and the resister phenotype may hold the key to the discovery of actionable genetic variants in TB infection and disease. This review will not only discuss lessons from epidemiological studies, but will also focus on the contribution of epidemiology and functional genetics to human genetic resistance to M. tuberculosis infection and disease.
Collapse
Affiliation(s)
- Marlo Möller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Elouise E. Kroon
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Eileen G. Hoal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Sharma K, Verma R, Advani J, Chatterjee O, Solanki HS, Sharma A, Varma S, Modi M, Ray P, Mukherjee KK, Sharma M, Dhillion MS, Suar M, Chatterjee A, Pandey A, Prasad TSK, Gowda H. Whole Genome Sequencing of Mycobacterium tuberculosis Isolates From Extrapulmonary Sites. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:413-425. [PMID: 28692415 DOI: 10.1089/omi.2017.0070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tuberculosis (TB) remains one of the leading causes of morbidity and mortality worldwide. Extrapulmonary tuberculosis (EPTB) constitutes around 15-20% of TB cases in immunocompetent individuals. Extrapulmonary sites that are affected by TB include bones, lymph nodes, meningitis, pleura, and genitourinary tract. Whole genome sequencing has emerged as a powerful tool to map genetic diversity among Mycobacterium tuberculosis (MTB) isolates and identify the genomic signatures associated with drug resistance, pathogenesis, and disease transmission. Several pulmonary isolates of MTB have been sequenced over the years. However, availability of whole genome sequences of MTB isolates from extrapulmonary sites is limited. Some studies suggest that genetic variations in MTB might contribute to disease presentation in extrapulmonary sites. This can be addressed if whole genome sequence data from large number of extrapulmonary isolates becomes available. In this study, we have performed whole genome sequencing of five MTB clinical isolates derived from EPTB sites using next-generation sequencing platform. We identified 1434 nonsynonymous single nucleotide variations (SNVs), 143 insertions and 105 deletions. This includes 279 SNVs that were not reported before in publicly available datasets. We found several mutations that are known to confer resistance to drugs. All the five isolates belonged to East-African-Indian lineage (lineage 3). We identified 9 putative prophage DNA integrations and 14 predicted clustered regularly interspaced short palindromic repeats (CRISPR) in MTB genome. Our analysis indicates that more work is needed to map the genetic diversity of MTB. Whole genome sequencing in conjunction with comprehensive drug susceptibility testing can reveal clinically relevant mutations associated with drug resistance.
Collapse
Affiliation(s)
- Kusum Sharma
- 1 Department of Medical Microbiology, PGIMER , Chandigarh, India
| | - Renu Verma
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,3 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Jayshree Advani
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Manipal University , Manipal, India
| | - Oishi Chatterjee
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,5 School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Hitendra S Solanki
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,3 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Aman Sharma
- 6 Department of Internal Medicine, PGIMER, Chandigarh, India
| | - Subhash Varma
- 6 Department of Internal Medicine, PGIMER, Chandigarh, India
| | - Manish Modi
- 7 Department of Neurology, PGIMER, Chandigarh, India
| | - Pallab Ray
- 1 Department of Medical Microbiology, PGIMER , Chandigarh, India
| | | | - Megha Sharma
- 1 Department of Medical Microbiology, PGIMER , Chandigarh, India
| | | | - Mrutyunjay Suar
- 3 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Aditi Chatterjee
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,10 YU-IOB Center for Systems Biology and Molecular Medicine , Mangalore, India
| | - Akhilesh Pandey
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,11 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland.,12 Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland.,13 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland.,14 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Thottethodi Subrahmanya Keshava Prasad
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,10 YU-IOB Center for Systems Biology and Molecular Medicine , Mangalore, India .,15 NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore, India
| | - Harsha Gowda
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India .,10 YU-IOB Center for Systems Biology and Molecular Medicine , Mangalore, India
| |
Collapse
|
16
|
刘 江, 朱 君, 张 亚, 白 杨. [Expression pattern of FAM135B and K (lysine) acetyltransferase 5 in esophageal squamous cell carcinoma in Uygur patients]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:224-228. [PMID: 29502064 PMCID: PMC6743880 DOI: 10.3969/j.issn.1673-4254.2018.02.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To explore the expression of the family with sequence similarity 135 member B (FAM135B) and K(lysine) acetyltransferase 5 (KAT5) in esophageal squamous cell carcinoma (ESCC) in Uygur patients. METHODS The expression of FAM135B and KAT5 in ESCC tissues and paired adjacent tissues from 40 Uygur patients were detected using Roche Benchmark XT. The correlation of FAM135B and KAT5 and their correlation with the clinicopathological characteristics of the patients were analyzed. RESULTS The positivity rates of FAM135B and KAT5 in ESCC tissues were 92.50% (37/40) and 15.00%(6/40) in these patients, respectively. The ESCC tissues showed a significantly higher rate of strong FAM135B expression than the adjacent tissues [45.00% (18/40) vs 22.50% (9/40); Χ2=4.528, P=0.033], but the rates of negative KAT5 expression was similar between ESCC and adjacent tissues [85.00% (34/40) vs 87.50% (35/40); Χ2=0.105, P=0.745]. Strong expressions of FAM135B in ESCC tissues and the paired adjacent tissues were well correlated (Kendall's coefficient = 0.707, P<0.001). In ESCC tissues, a strong expression of FAM135B showed a significant negative correlation with KAT5 expression (Kendall's coefficient=-0.946, P<0.001). Neither FAM135B nor KAT5 expression was associated with the patients' gender, age, tumor site, tumor differentiation, invasion, lymph node metastasis and clinical stage (all P>0.05). CONCLUSION A strong expression of FAM135B may be an important molecular basis for the occurrence of ESCC in Uygur patients and plays its role by negatively regulating the expression of KAT5.
Collapse
Affiliation(s)
- 江 刘
- 南方医科大学南方医院 消化内科,广东 广州 510515Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou 510515, China
| | - 君玲 朱
- 新疆喀什地区第一人民医院病理科,新疆 喀什 844000Dpartment of Pathology, Kashi First People's Hospital, Kashi 84400, China
| | - 亚历 张
- 南方医科大学南方医院 消化内科,广东 广州 510515Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou 510515, China
| | - 杨 白
- 南方医科大学南方医院 消化内科,广东 广州 510515Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
A Role for Phosphodiesterase 11A (PDE11A) in the Formation of Social Memories and the Stabilization of Mood. ADVANCES IN NEUROBIOLOGY 2018; 17:201-230. [PMID: 28956334 DOI: 10.1007/978-3-319-58811-7_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The most recently discovered 3',5'-cyclic nucleotide phosphodiesterase family is the Phosphodiesterase 11 (PDE11) family, which is encoded by a single gene PDE11A. PDE11A is a dual-specific PDE, breaking down both cAMP and cGMP. There are four PDE11A splice variants (PDE11A1-4) with distinct tissue expression profiles and unique N-terminal regulatory regions, suggesting that each isoform could be individually targeted with a small molecule or biologic. PDE11A4 is the PDE11A isoform expressed in brain and is found in the hippocampal formation of humans and rodents. Studies in rodents show that PDE11A4 mRNA expression in brain is, in fact, restricted to the hippocampal formation (CA1, possibly CA2, subiculum, and the adjacently connected amygdalohippocampal area). Within the hippocampal formation of rodents, PDE11A4 protein is expressed in neurons but not astrocytes, with a distribution across nuclear, cytoplasmic, and membrane compartments. This subcellular localization of PDE11A4 is altered in response to social experience in mouse, and in vitro studies show the compartmentalization of PDE11A4 is controlled, at least in part, by homodimerization and N-terminal phosphorylation. PDE11A4 expression dramatically increases in the hippocampus with age in the rodent hippocampus, from early postnatal life to late aging, suggesting PDE11A4 function may evolve across the lifespan. Interestingly, PDE11A4 protein shows a three to tenfold enrichment in the rodent ventral hippocampal formation (VHIPP; a.k.a. anterior in primates) versus dorsal hippocampal formation (DHIPP). Consistent with this enrichment in VHIPP, studies in knockout mice show that PDE11A regulates the formation of social memories and the stabilization of mood and is a critical mechanism by which social experience feeds back to modify the brain and subsequent social behaviors. PDE11A4 likely controls behavior by regulating hippocampal glutamatergic, oxytocin, and cytokine signaling, as well as protein translation. Given its unique tissue distribution and relatively selective effects on behavior, PDE11A may represent a novel therapeutic target for neuropsychiatric, neurodevelopmental, or age-related disorders. Therapeutically targeting PDE11A4 may be a way to selectively restore aberrant cyclic nucleotide signaling in the hippocampal formation while leaving the rest of the brain and periphery untouched, thus, relieving deficits while avoiding unwanted side effects.
Collapse
|
18
|
Kinnear C, Hoal EG, Schurz H, van Helden PD, Möller M. The role of human host genetics in tuberculosis resistance. Expert Rev Respir Med 2017; 11:721-737. [PMID: 28703045 DOI: 10.1080/17476348.2017.1354700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tuberculosis (TB) remains a public health problem: the latest estimate of new incident cases per year is a staggering 10.4 million. Despite this overwhelming number, the majority of the immunocompetent population can control infection with Mycobacterium tuberculosis. The human genome underlies the immune response and contributes to the outcome of TB infection. Areas covered: Investigations of TB resistance in the general population have closely mirrored those of other infectious diseases and initially involved epidemiological observations. Linkage and association studies, including studies of VDR, SLC11A1 and HLA-DRB1 followed. Genome-wide association studies of common variants, not necessarily sufficient for disease, became possible after technological advancements. Other approaches involved the identification of those individuals with rare disease-causing mutations that strongly predispose to TB, epistasis and the role of ethnicity in disease. Despite these efforts, infection outcome, on an individual basis, cannot yet be predicted. Expert commentary: The early identification of future disease progressors is necessary to stem the TB epidemic. Human genetics may contribute to this endeavour and could in future suggest pathways to target for disease prevention. This will however require concerted efforts to establish large, well-phenotyped cohorts from different ethnicities, improved genomic resources and a better understanding of the human genome architecture.
Collapse
Affiliation(s)
- Craig Kinnear
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Eileen G Hoal
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Haiko Schurz
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Paul D van Helden
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Marlo Möller
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| |
Collapse
|
19
|
Uren C, Henn BM, Franke A, Wittig M, van Helden PD, Hoal EG, Möller M. A post-GWAS analysis of predicted regulatory variants and tuberculosis susceptibility. PLoS One 2017; 12:e0174738. [PMID: 28384278 PMCID: PMC5383035 DOI: 10.1371/journal.pone.0174738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/14/2017] [Indexed: 01/19/2023] Open
Abstract
Utilizing data from published tuberculosis (TB) genome-wide association studies (GWAS), we use a bioinformatics pipeline to detect all polymorphisms in linkage disequilibrium (LD) with variants previously implicated in TB disease susceptibility. The probability that these variants had a predicted regulatory function was estimated using RegulomeDB and Ensembl's Variant Effect Predictor. Subsequent genotyping of these 133 predicted regulatory polymorphisms was performed in 400 admixed South African TB cases and 366 healthy controls in a population-based case-control association study to fine-map the causal variant. We detected associations between tuberculosis susceptibility and six intronic polymorphisms located in MARCO, IFNGR2, ASHAS2, ACACA, NISCH and TLR10. Our post-GWAS approach demonstrates the feasibility of combining multiple TB GWAS datasets with linkage information to identify regulatory variants associated with this infectious disease.
Collapse
Affiliation(s)
- Caitlin Uren
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brenna M. Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Rosalind-Franklin-Strasse Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Rosalind-Franklin-Strasse Kiel, Germany
| | - Paul D. van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G. Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
20
|
Berg S, Schelling E, Hailu E, Firdessa R, Gumi B, Erenso G, Gadisa E, Mengistu A, Habtamu M, Hussein J, Kiros T, Bekele S, Mekonnen W, Derese Y, Zinsstag J, Ameni G, Gagneux S, Robertson BD, Tschopp R, Hewinson G, Yamuah L, Gordon SV, Aseffa A. Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection. BMC Infect Dis 2015; 15:112. [PMID: 25886866 PMCID: PMC4359574 DOI: 10.1186/s12879-015-0846-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/19/2015] [Indexed: 11/14/2022] Open
Abstract
Background Ethiopia, a high tuberculosis (TB) burden country, reports one of the highest incidence rates of extra-pulmonary TB dominated by cervical lymphadenitis (TBLN). Infection with Mycobacterium bovis has previously been excluded as the main reason for the high rate of extrapulmonary TB in Ethiopia. Methods Here we examined demographic and clinical characteristics of 953 pulmonary (PTB) and 1198 TBLN patients visiting 11 health facilities in distinct geographic areas of Ethiopia. Clinical characteristics were also correlated with genotypes of the causative agent, Mycobacterium tuberculosis. Results No major patient or bacterial strain factor could be identified as being responsible for the high rate of TBLN, and there was no association with HIV infection. However, analysis of the demographic data of involved patients showed that having regular and direct contact with live animals was more associated with TBLN than with PTB, although no M. bovis was isolated from patients with TBLN. Among PTB patients, those infected with Lineage 4 reported “contact with other TB patient” more often than patients infected with Lineage 3 did (OR = 1.6, CI 95% 1.0-2.7; p = 0.064). High fever, in contrast to low and moderate fever, was significantly associated with Lineage 4 (OR = 2.3; p = 0.024). On the other hand, TBLN cases infected with Lineage 4 tended to get milder symptoms overall for the constitutional symptoms than those infected with Lineage 3. Conclusions The study suggests a complex role for multiple interacting factors in the epidemiology of extrapulmonary TB in Ethiopia, including factors that can only be derived from population-based studies, which may prove to be significant for TB control in Ethiopia. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-0846-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Berg
- Animal and Plant Health Agency, TB Research Group, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Esther Schelling
- Swiss Tropical and Public Health Institute, PO Box CH-4002, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Elena Hailu
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Rebuma Firdessa
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia. .,University of Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany.
| | - Balako Gumi
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Girume Erenso
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Endalamaw Gadisa
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Araya Mengistu
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Meseret Habtamu
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Jemal Hussein
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Teklu Kiros
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Shiferaw Bekele
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Wondale Mekonnen
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Yohannes Derese
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, PO Box CH-4002, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia.
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, PO Box CH-4002, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Brian D Robertson
- Center for Molecular Bacteriology and Infection, Department of Medicine, Flowers building, South Kensington, Imperial College London, London, SW7 2AZ, UK.
| | - Rea Tschopp
- Swiss Tropical and Public Health Institute, PO Box CH-4002, Basel, Switzerland. .,Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia. .,University of Basel, Basel, Switzerland.
| | - Glyn Hewinson
- Animal and Plant Health Agency, TB Research Group, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Lawrence Yamuah
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Stephen V Gordon
- UCD Schools of Veterinary Medicine, Medicine and Medical Science, Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin, Republic of Ireland.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| |
Collapse
|
21
|
Beam AL, Motsinger-Reif A, Doyle J. Bayesian neural networks for detecting epistasis in genetic association studies. BMC Bioinformatics 2014; 15:368. [PMID: 25413600 PMCID: PMC4256933 DOI: 10.1186/s12859-014-0368-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/30/2014] [Indexed: 12/02/2022] Open
Abstract
Background Discovering causal genetic variants from large genetic association studies poses many difficult challenges. Assessing which genetic markers are involved in determining trait status is a computationally demanding task, especially in the presence of gene-gene interactions. Results A non-parametric Bayesian approach in the form of a Bayesian neural network is proposed for use in analyzing genetic association studies. Demonstrations on synthetic and real data reveal they are able to efficiently and accurately determine which variants are involved in determining case-control status. By using graphics processing units (GPUs) the time needed to build these models is decreased by several orders of magnitude. In comparison with commonly used approaches for detecting interactions, Bayesian neural networks perform very well across a broad spectrum of possible genetic relationships. Conclusions The proposed framework is shown to be a powerful method for detecting causal SNPs while being computationally efficient enough to handle large datasets. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0368-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew L Beam
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA. .,Department of Statistics, North Carolina State University, Raleigh, NC, USA.
| | - Jon Doyle
- Department of Computer Science, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
22
|
Abstract
The relation of Mycobacterium avium ss paratuberculosis (MAP) to Crohn's Disease (CD) and other MAP-associated conditions remains controversial. New data, coupled with the analogous Helicobacter pylori (H. pylori) story, has permitted us to piece together the MAP puzzle and move forward with a more scientific way of treating inflammatory bowel disease, particularly CD. As infection moves centre stage in inflammatory bowel disease, the dated "aberrant reaction" etiology has lost scientific credibility. Now, our growing understanding of MAP-associated diseases demands review and articulation. We focus here on (1) the concept of MAP-associated diseases; (2) causality, Johne Disease, the "aberrant reaction" hypothesis; and (3) responses to published misconceptions questioning MAP as a pathogen in CD.
Collapse
|
23
|
Abebe G, Deribew A, Apers L, Abdissa A, Deribie F, Woldemichael K, Shiffa J, Tesfaye M, Jira C, Bezabih M, Aseffa A, Bekele A, Colebunders R. Tuberculosis lymphadenitis in Southwest Ethiopia: a community based cross-sectional study. BMC Public Health 2012; 12:504. [PMID: 22770435 PMCID: PMC3418151 DOI: 10.1186/1471-2458-12-504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 07/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Ethiopia where there is no strong surveillance system and diagnostic facilities are limited, the real burden of tuberculosis (TB) lymphadenitis is not well known. Therefore, we conducted a study to estimate the prevalence of TB lymphadenitis in Southwest Ethiopia. METHODS A community based cross-sectional study was conducted from February to March 2009 in the Gilgel Gibe field research area. A total of 30,040 individuals 15 years or older in 10,882 households were screened for TB lymphadenitis. Any individual 15 years or older with lumps in the neck, armpits or groin up on interview were considered TB lymphadenitis suspect. The diagnosis of TB lymphadenitis was established when acid fast bacilli (AFB) smear microscopy of fine needle aspiration (FNA) sample, culture or cytology suggested TB. HIV counseling and testing was offered to all TB lymphadenitis suspects. Descriptive and bivariate analysis was done using SPSS version 15. RESULTS Complete data were available for 27,597 individuals. A total of 87 TB lymphadenitis suspects were identified. Most of the TB lymphadenitis suspects were females (72.4%). Sixteen cases of TB lymphadenitis were confirmed. The prevalence of TB lymphadenitis was thus 58.0 per 100,000 people (16/27,597) (95% CI 35.7-94.2). Individuals who had a contact history with chronic coughers (OR 5.58, 95% CI 1.23-25.43) were more likely to have TB lymphadenitis. Lymph nodes with caseous FNA were more likely to be positive for TB lymphadenitis (OR 5.46, 95% CI 1.69-17.61). CONCLUSION The prevalence of TB lymphadenitis in Gilgel Gibe is similar with the WHO estimates for Ethiopia. Screening of TB lymphadenitis particularly for family members who have contact with chronic coughers is recommended. Health extension workers could be trained to screen and refer TB lymphadenitis suspects using simple methods.
Collapse
Affiliation(s)
- Gemeda Abebe
- Department of Medical Laboratory Sciences and Pathology, Jimma University, Jimma, Ethiopia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Translational research in infectious disease: current paradigms and challenges ahead. Transl Res 2012; 159:430-53. [PMID: 22633095 PMCID: PMC3361696 DOI: 10.1016/j.trsl.2011.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/23/2011] [Accepted: 12/24/2012] [Indexed: 12/25/2022]
Abstract
In recent years, the biomedical community has witnessed a rapid scientific and technologic evolution after the development and refinement of high-throughput methodologies. Concurrently and consequentially, the scientific perspective has changed from the reductionist approach of meticulously analyzing the fine details of a single component of biology to the "holistic" approach of broadmindedly examining the globally interacting elements of biological systems. The emergence of this new way of thinking has brought about a scientific revolution in which genomics, proteomics, metabolomics, and other "omics" have become the predominant tools by which large amounts of data are amassed, analyzed, and applied to complex questions of biology that were previously unsolvable. This enormous transformation of basic science research and the ensuing plethora of promising data, especially in the realm of human health and disease, have unfortunately not been followed by a parallel increase in the clinical application of this information. On the contrary, the number of new potential drugs in development has been decreasing steadily, suggesting the existence of roadblocks that prevent the translation of promising research into medically relevant therapeutic or diagnostic application. In this article, we will review, in a noninclusive fashion, several recent scientific advancements in the field of translational research, with a specific focus on how they relate to infectious disease. We will also present a current picture of the limitations and challenges that exist for translational research, as well as ways that have been proposed by the National Institutes of Health to improve the state of this field.
Collapse
Key Words
- 2-de, 2-dimensional electrophoresis
- 2-d dige, 2-dimensional differential in-gel electrophoresis
- cf, cystic fibrosis
- ctsa, clinical and translational science awards program
- ebv, epstein-barr virus
- fda, u.s. food and drug administration
- gwas, genome-wide association studies
- hcv, hepatitis c virus
- hmp, human microbiome project
- hplc, high-pressure liquid chromatography
- lc, liquid chromatography
- lsb, laboratory of systems biology
- mab, monoclonal antibody
- mrm/srm, multiple reaction monitoring/selective reaction monitoring
- ms, mass spectrometry
- ms/ms, tandem mass spectrometry
- ncats, national center for advancing translational sciences
- ncrr, national center of research resources
- niaid, national institute of allergy and infectious disease
- nih, national institutes of health
- nme, new molecular entity
- nmr, nuclear magnetic resonance
- pbmc, peripheral blood mononuclear cell
- pcr, polymerase chain reaction
- prr, pathogen recognition receptor
- qqq, triple quadrupole mass spectrometry
- sars-cov, coronavirus associated with severe acute respiratory syndrome
- snp, single nucleotide polymorphism
- tb, tuberculosis
- uti, urinary tract infection
- yfv, yellow fever virus
Collapse
|