1
|
Lauwereins L, Van Thillo Q, Demeyer S, Mentens N, Provost S, Jacobs K, Gielen O, Boogaerts L, de Bock CE, Andrieu G, Asnafi V, Cools J, Veloso A. TLE4 is a repressor of the oncogenic activity of TLX3 in T-cell acute lymphoblastic leukemia. Leukemia 2025:10.1038/s41375-025-02513-w. [PMID: 39838044 DOI: 10.1038/s41375-025-02513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease originating from the malignant transformation of T-cell progenitors, caused by the accumulation of genetic aberrations. One-fifth of T-ALL patients are characterized by ectopic expression of the homeobox transcription factor TLX3. However, the role of TLX3 in T-ALL remains elusive, partly due to the lack of suitable study models. Strikingly, this TLX3-positive subgroup has a high frequency of FLT3 mutations, predominantly FLT3-ITD, in pediatric cases. To investigate this, we generated ex vivo cultured pro-T cells driven by the co-expression of TLX3 and FLT3-ITD, which conferred IL7 independent growth. This model allowed us to confirm that TLX3 expression and FLT3 signaling cooperate to transform T-cells and induce an oncogenic context. Data from this cell model, combined with gene expression data from TLX3 positive T-ALL cases, revealed a strong downregulation of the transcriptional repressor TLE4. Furthermore, TLE4 showed to have a repressive effect on ex vivo TLX3 T-ALL cell growth, likely caused by a partial reversal of the TLX3 transcriptional profile. In conclusion, we developed a TLX3+FLT3-ITD pro-T cell model and used it to illustrate that TLX3 directly represses TLE4 expression, which is beneficial for the oncogenic function of TLX3.
Collapse
Affiliation(s)
- Lukas Lauwereins
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Quentin Van Thillo
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sofie Demeyer
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Nicole Mentens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sarah Provost
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Kris Jacobs
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Olga Gielen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lien Boogaerts
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Charles E de Bock
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Children's Cancer Institute, UNSW Sydney, Sydney, NSW, Australia
| | | | - Vahid Asnafi
- Institute Necker Enfants-Malades, INSERM U1151, Paris, France
- Laboratoire d'Onco-Hématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jan Cools
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
| | - Alexandra Veloso
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
| |
Collapse
|
2
|
Li N, Zhu C, Xue Y, Chen N, Xu W, Song M, Qi M, Huang S, Fang M. The matrix protease ADAMTS1 is transcriptionally activated by KLF6 and contributes to cardiac fibrosis in non-ischemic cardiomyopathy. Life Sci 2025; 361:123295. [PMID: 39643035 DOI: 10.1016/j.lfs.2024.123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
AIMS Aberrant cardiac fibrosis, defined as excessive production and deposition of extracellular matrix (ECM), is mediated by myofibroblasts. ECM-producing myofibroblasts are primarily derived from resident fibroblasts during cardiac fibrosis. The mechanism underlying fibroblast-myofibroblast transition is not fully understood. METHODS Cardiac fibrosis was induced by transverse aortic constriction (TAC) or by angiotensin II (Ang II) infusion in C57B6/j mice. Cellular transcriptome was evaluated by RNA-seq and CUT&Tag-seq. RESULTS Integrated transcriptomic screening revealed that a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) was a novel transcriptional target for Kruppel-like factor 6 (KLF6) in cardiac fibroblasts. Treatment with either TGF-β or Ang II up-regulated ADAMTS1 expression. KLF6 knockdown attenuated whereas KLF6 over-expression enhanced ADAMTS1 induction. ChIP assay and reporter assay showed that KLF6 was recruited to the ADAMTS1 promoter to activate its transcription. Consistently, ADAMTS1 knockdown suppressed fibroblast-myofibroblast transition in vitro. Importantly, myofibroblast-specific ADAMTS1 depletion attenuated cardiac fibrosis and normalized heart function in mice. SIGNIFICANCE In conclusion, our data demonstrate that ADAMTS1, as a downstream target of KLF6, contributes to cardiac fibrosis by regulating fibroblast-myofibroblast transition.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Chenghao Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yujia Xue
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Naxia Chen
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology, the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Wenping Xu
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Mingzi Song
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Mengwen Qi
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Shan Huang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology, the First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Mingming Fang
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.
| |
Collapse
|
3
|
Valbuena R, Nigam A, Tycko J, Suzuki P, Spees K, Aradhana, Arana S, Du P, Patel RA, Bintu L, Kundaje A, Bassik MC. Prediction and design of transcriptional repressor domains with large-scale mutational scans and deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614253. [PMID: 39386603 PMCID: PMC11463546 DOI: 10.1101/2024.09.21.614253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory proteins have evolved diverse repressor domains (RDs) to enable precise context-specific repression of transcription. However, our understanding of how sequence variation impacts the functional activity of RDs is limited. To address this gap, we generated a high-throughput mutational scanning dataset measuring the repressor activity of 115,000 variant sequences spanning more than 50 RDs in human cells. We identified thousands of clinical variants with loss or gain of repressor function, including TWIST1 HLH variants associated with Saethre-Chotzen syndrome and MECP2 domain variants associated with Rett syndrome. We also leveraged these data to annotate short linear interacting motifs (SLiMs) that are critical for repression in disordered RDs. Then, we designed a deep learning model called TENet ( T ranscriptional E ffector Net work) that integrates sequence, structure and biochemical representations of sequence variants to accurately predict repressor activity. We systematically tested generalization within and across domains with varying homology using the mutational scanning dataset. Finally, we employed TENet within a directed evolution sequence editing framework to tune the activity of both structured and disordered RDs and experimentally test thousands of designs. Our work highlights critical considerations for future dataset design and model training strategies to improve functional variant prioritization and precision design of synthetic regulatory proteins.
Collapse
|
4
|
Aziz SJ, Dickson BC, Lang P, Zeman CE. TLE1 Expression in NUT Carcinoma: A Case Report Highlighting a Potential Diagnostic Pitfall for the Pathologist. Int J Surg Pathol 2024; 32:1209-1214. [PMID: 38233028 DOI: 10.1177/10668969231217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
NUT carcinoma is a rare, aggressive malignancy defined as a carcinoma with a chromosomal rearrangement affecting the nuclear protein in testis (NUTM1) gene. This small round blue cell tumor classically exhibits focal abrupt keratinization and immunohistochemical positivity for keratin and squamous markers. However, keratinization is not always present and reports of positivity for other markers that may obscure the diagnosis are increasing. It is also noteworthy that gene fusions involving NUTM1 are not restricted to NUT carcinoma. Herein, we report a NUT carcinoma arising in the mediastinum of a male patient in his 40 s with morphological and immunohistochemical overlap with Ewing family sarcoma and poorly differentiated synovial sarcoma given a round cell morphology, diffuse strong immunoreactivity for CD99, and patchy strong immunoreactivity for TLE1. Squamous differentiation by morphology and p40 expression were notably absent in this case. Classification as NUT carcinoma was ultimately possible when the morphological and immunohistochemical findings were considered in the context of a BRD4::NUTM1 gene fusion identified by next-generation sequencing. While the patient initially responded to palliative radiotherapy, he died approximately one month later. To our knowledge, this is the first report of TLE1 immunoreactivity in NUT carcinoma. This case highlights a potential diagnostic pitfall and emphasizes the need for molecular confirmation in equivocal situations.
Collapse
Affiliation(s)
- Sarah J Aziz
- Department of Pathology and Laboratory Medicine, Western University and London Health Sciences Centre, London, Ontario, Canada
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Pencilla Lang
- Department of Oncology, Western University and London Health Sciences Centre, London, Ontario, Canada
| | - Cady E Zeman
- Department of Pathology and Laboratory Medicine, Western University and London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
5
|
Aberle T, Walter A, Piefke S, Hillgärtner S, Wüst HM, Wegner M, Küspert M. Sox10 Activity and the Timing of Schwann Cell Differentiation Are Controlled by a Tle4-Dependent Negative Feedback Loop. Int J Mol Sci 2024; 25:5234. [PMID: 38791273 PMCID: PMC11120983 DOI: 10.3390/ijms25105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The HMG-domain containing transcription factor Sox10 plays a crucial role in regulating Schwann cell survival and differentiation and is expressed throughout the entire Schwann cell lineage. While its importance in peripheral myelination is well established, little is known about its role in the early stages of Schwann cell development. In a search for direct target genes of Sox10 in Schwann cell precursors, the transcriptional co-repressor Tle4 was identified. At least two regions upstream of the Tle4 gene appear involved in mediating the Sox10-dependent activation. Once induced, Tle4 works in tandem with the bHLH transcriptional repressor Hes1 and exerts a dual inhibitory effect on Sox10 by preventing the Sox10 protein from transcriptionally activating maturation genes and by suppressing Sox10 expression through known enhancers of the gene. This mechanism establishes a regulatory barrier that prevents premature activation of factors involved in differentiation and myelin formation by Sox10 in immature Schwann cells. The identification of Tle4 as a critical downstream target of Sox10 sheds light on the gene regulatory network in the early phases of Schwann cell development. It unravels an elaborate regulatory circuitry that fine-tunes the timing and extent of Schwann cell differentiation and myelin gene expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Melanie Küspert
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany; (T.A.)
| |
Collapse
|
6
|
Zhang QC, Qian YM, Ren YH, Chen MM, Cao LM, Zheng SJ, Li BB, Wang M, Wu X, Xu K. Phenethyl isothiocyanate inhibits metastasis potential of non-small cell lung cancer cells through FTO mediated TLE1 m 6A modification. Acta Pharmacol Sin 2024; 45:619-632. [PMID: 37848553 PMCID: PMC10834501 DOI: 10.1038/s41401-023-01178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a prevalent RNA epigenetic modification, which plays a crucial role in tumor progression including metastasis. Isothiocyanates (ITCs) are natural compounds and inhibit the tumorigenesis of various cancers. Our previous studies show that ITCs inhibit the proliferation and metastasis of non-small cell lung cancer (NSCLC) cells, and have synergistic effects with chemotherapy drugs. In this study, we investigated the molecular mechanisms underlying the inhibitory effects of ITCs on cancer cell metastasis. We showed that phenethyl isothiocyanate (PEITC) dose-dependently inhibited the cell viability of both NSCLC cell lines H1299 and H226 with IC50 values of 17.6 and 15.2 μM, respectively. Furthermore, PEITC dose-dependently inhibited the invasion and migration of H1299 and H226 cells. We demonstrated that PEITC treatment dose-dependently increased m6A methylation levels and inhibited the expression of the m6A demethylase fat mass and obesity-associated protein (FTO) in H1299 and H226 cells. Knockdown of FTO significantly increased m6A methylation in H1299 and H226 cells, impaired their abilities of invasion and migration in vitro, and enhanced the inhibition of PEITC on tumor growth in vivo. Overexpression of FTO promoted the migration of NSCLC cells, and also mitigated the inhibitory effect of PEITC on migration of NSCLC cells. Furthermore, we found that FTO regulated the mRNA m6A modification of a transcriptional co-repressor Transducin-Like Enhancer of split-1 (TLE1) and further affected its stability and expression. TCGA database analysis revealed TLE1 was upregulated in NSCLC tissues compared to normal tissues, which might be correlated with the metastasis status. Moreover, we showed that PEITC suppressed the migration of NSCLC cells by inhibiting TLE1 expression and downstream Akt/NF-κB pathway. This study reveals a novel mechanism underlying ITC's inhibitory effect on metastasis of lung cancer cells, and provided valuable information for developing new therapeutics for lung cancer by targeting m6A methylation.
Collapse
Affiliation(s)
- Qi-Cheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yong-Mei Qian
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying-Hui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Meng-Meng Chen
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Li-Min Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Si-Jia Zheng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bing-Bing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
7
|
Zhao X, Hu W, Park SR, Zhu S, Hu SS, Zang C, Peng W, Shan Q, Xue HH. The transcriptional cofactor Tle3 reciprocally controls effector and central memory CD8 + T cell fates. Nat Immunol 2024; 25:294-306. [PMID: 38238608 PMCID: PMC10916363 DOI: 10.1038/s41590-023-01720-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/28/2023] [Indexed: 02/03/2024]
Abstract
Antigen-experienced CD8+ T cells form effector and central memory T cells (TEM and TCM cells, respectively); however, the mechanism(s) controlling their lineage plasticity remains incompletely understood. Here we show that the transcription cofactor Tle3 critically regulates TEM and TCM cell fates and lineage stability through dynamic redistribution in antigen-responding CD8+ T cell genome. Genetic ablation of Tle3 promoted CD8+ TCM cell formation at the expense of CD8+ TEM cells. Lineage tracing showed that Tle3-deficient CD8+ TEM cells underwent accelerated conversion into CD8+ TCM cells while retaining robust recall capacity. Tle3 acted as a coactivator for Tbet to increase chromatin opening at CD8+ TEM cell-characteristic sites and to activate CD8+ TEM cell signature gene transcription, while engaging Runx3 and Tcf1 to limit CD8+ TCM cell-characteristic molecular features. Thus, Tle3 integrated functions of multiple transcription factors to guard lineage fidelity of CD8+ TEM cells, and manipulation of Tle3 activity could favor CD8+ TCM cell production.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Sung Rye Park
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Shengen Shawn Hu
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC, USA
| | - Qiang Shan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA.
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA.
| |
Collapse
|
8
|
Shen J, Lin S, Cui W. Releasing the TLE3 break to put T CM cells on a fast track. Nat Immunol 2024; 25:191-193. [PMID: 38238607 DOI: 10.1038/s41590-023-01732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Jian Shen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Siying Lin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
9
|
Chi P, Ou G, Qin D, Han Z, Li J, Xiao Q, Gao Z, Xu C, Qi Q, Liu Q, Liu S, Li J, Guo L, Lu Y, Chen J, Wang X, Shi H, Li L, Deng D. Structural basis of the subcortical maternal complex and its implications in reproductive disorders. Nat Struct Mol Biol 2024; 31:115-124. [PMID: 38177687 DOI: 10.1038/s41594-023-01153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/16/2023] [Indexed: 01/06/2024]
Abstract
The subcortical maternal complex (SCMC) plays a crucial role in early embryonic development. Malfunction of SCMC leads to reproductive diseases in women. However, the molecular function and assembly basis for SCMC remain elusive. Here we reconstituted mouse SCMC and solved the structure at atomic resolution using single-particle cryo-electron microscopy. The core complex of SCMC was formed by MATER, TLE6 and FLOPED, and MATER embraced TLE6 and FLOPED via its NACHT and LRR domains. Two core complexes further dimerize through interactions between two LRR domains of MATERs in vitro. FILIA integrates into SCMC by interacting with the carboxyl-terminal region of FLOPED. Zygotes from mice with Floped C-terminus truncation showed delayed development and resembled the phenotype of zygotes from Filia knockout mice. More importantly, the assembly of mouse SCMC was affected by corresponding clinical variants associated with female reproductive diseases and corresponded with a prediction based on the mouse SCMC structure. Our study paves the way for further investigations on SCMC functions during mammalian preimplantation embryonic development and reveals underlying causes of female reproductive diseases related to SCMC mutations, providing a new strategy for the diagnosis of female reproductive disorders.
Collapse
Affiliation(s)
- Pengliang Chi
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guojin Ou
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- Clinical Laboratory, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Han
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jialu Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Qingjie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qianqian Qi
- Clinical Laboratory, West China Second Hospital, Sichuan University, Chengdu, China
| | - Qingting Liu
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Sibei Liu
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jinhong Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Li Guo
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yuechao Lu
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- Department of Reproductive Medicine, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jing Chen
- Laboratory of Pediatric Surgery, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Hubing Shi
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Lee B, Church M, Hokamp K, Alhussain MM, Bamagoos AA, Fleming AB. Systematic analysis of tup1 and cyc8 mutants reveals distinct roles for TUP1 and CYC8 and offers new insight into the regulation of gene transcription by the yeast Tup1-Cyc8 complex. PLoS Genet 2023; 19:e1010876. [PMID: 37566621 PMCID: PMC10446238 DOI: 10.1371/journal.pgen.1010876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/23/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The Tup1-Cyc8 complex in Saccharomyces cerevisiae was one of the first global co-repressors of gene transcription discovered. However, despite years of study, a full understanding of the contribution of Tup1p and Cyc8p to complex function is lacking. We examined TUP1 and CYC8 single and double deletion mutants and show that CYC8 represses more genes than TUP1, and that there are genes subject to (i) unique repression by TUP1 or CYC8, (ii) redundant repression by TUP1 and CYC8, and (iii) there are genes at which de-repression in a cyc8 mutant is dependent upon TUP1, and vice-versa. We also reveal that Tup1p and Cyc8p can make distinct contributions to commonly repressed genes most likely via specific interactions with different histone deacetylases. Furthermore, we show that Tup1p and Cyc8p can be found independently of each other to negatively regulate gene transcription and can persist at active genes to negatively regulate on-going transcription. Together, these data suggest that Tup1p and Cyc8p can associate with active and inactive genes to mediate distinct negative and positive regulatory roles when functioning within, and possibly out with the complex.
Collapse
Affiliation(s)
- Brenda Lee
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Michael Church
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohamed M. Alhussain
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Atif A. Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alastair B. Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Klaus L, de Almeida BP, Vlasova A, Nemčko F, Schleiffer A, Bergauer K, Hofbauer L, Rath M, Stark A. Systematic identification and characterization of repressive domains in Drosophila transcription factors. EMBO J 2023; 42:e112100. [PMID: 36545802 PMCID: PMC9890238 DOI: 10.15252/embj.2022112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
All multicellular life relies on differential gene expression, determined by regulatory DNA elements and DNA-binding transcription factors that mediate activation and repression via cofactor recruitment. While activators have been extensively characterized, repressors are less well studied: the identities and properties of their repressive domains (RDs) are typically unknown and the specific co-repressors (CoRs) they recruit have not been determined. Here, we develop a high-throughput, next-generation sequencing-based screening method, repressive-domain (RD)-seq, to systematically identify RDs in complex DNA-fragment libraries. Screening more than 200,000 fragments covering the coding sequences of all transcription-related proteins in Drosophila melanogaster, we identify 195 RDs in known repressors and in proteins not previously associated with repression. Many RDs contain recurrent short peptide motifs, which are conserved between fly and human and are required for RD function, as demonstrated by motif mutagenesis. Moreover, we show that RDs that contain one of five distinct repressive motifs interact with and depend on different CoRs, such as Groucho, CtBP, Sin3A, or Smrter. These findings advance our understanding of repressors, their sequences, and the functional impact of sequence-altering mutations and should provide a valuable resource for further studies.
Collapse
Affiliation(s)
- Loni Klaus
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Bernardo P de Almeida
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Filip Nemčko
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Katharina Bergauer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Lorena Hofbauer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Martina Rath
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Medical University of ViennaVienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
12
|
Tup1 is critical for transcriptional repression in Quiescence in S. cerevisiae. PLoS Genet 2022; 18:e1010559. [PMID: 36542663 DOI: 10.1371/journal.pgen.1010559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Upon glucose starvation, S. cerevisiae shows a dramatic alteration in transcription, resulting in wide-scale repression of most genes and activation of some others. This coincides with an arrest of cellular proliferation. A subset of such cells enters quiescence, a reversible non-dividing state. Here, we demonstrate that the conserved transcriptional corepressor Tup1 is critical for transcriptional repression after glucose depletion. We show that Tup1-Ssn6 binds new targets upon glucose depletion, where it remains as the cells enter the G0 phase of the cell cycle. In addition, we show that Tup1 represses a variety of glucose metabolism and transport genes. We explored how Tup1 mediated repression is accomplished and demonstrated that Tup1 coordinates with the Rpd3L complex to deacetylate H3K23. We found that Tup1 coordinates with Isw2 to affect nucleosome positions at glucose transporter HXT family genes during G0. Finally, microscopy revealed that a quarter of cells with a Tup1 deletion contain multiple DAPI puncta. Taken together, these findings demonstrate the role of Tup1 in transcriptional reprogramming in response to environmental cues leading to the quiescent state.
Collapse
|
13
|
Yu G, Chen Y, Hu Y, Zhou Y, Ding X, Zhou X. Roles of transducin-like enhancer of split (TLE) family proteins in tumorigenesis and immune regulation. Front Cell Dev Biol 2022; 10:1010639. [PMID: 36438567 PMCID: PMC9692235 DOI: 10.3389/fcell.2022.1010639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Mammalian transducin-like enhancer of split family proteins (TLEs) are homologous to Drosophila Groucho (Gro) and are essential transcriptional repressors. Seven TLE family members, TLE1-7, have been identified to date. These proteins do not bind DNA directly; instead, they bind a set of transcription factors and thereby inhibit target gene expression. Loss of TLEs in mice usually leads to defective early development; however, TLE functions in developmentally mature cells are unclear. Recent studies have revealed that TLEs are dysregulated in certain human cancer types and may function as oncogenes or tumor suppressors in different contexts. TLE levels also affect the efficacy of cancer treatments and the development of drug resistance. In addition, TLEs play critical roles in the development and function of immune cells, including macrophages and lymphocytes. In this review, we provide updates on the expression, function, and mechanism of TLEs; discuss the roles played by TLEs in tumorigenesis and the inflammatory response; and elaborate on several TLE-associated signaling pathways, including the Notch, Wnt, and MAPK pathways. Finally, we discuss potential strategies for targeting TLEs in cancer therapy.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Yiqi Chen
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yuwen Hu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yan Zhou
- Department of Periodontology, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiaoling Ding
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
14
|
A novel variant in TLE6 is associated with embryonic developmental arrest (EDA) in familial female infertility. Sci Rep 2022; 12:17664. [PMID: 36271123 PMCID: PMC9587212 DOI: 10.1038/s41598-022-22687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023] Open
Abstract
This study aims to identify genetic causes of familial female infertility characterized by embryonic developmental arrest (EDA) and repeated implantation failure (RIF) with oocyte donation IVF cycle. We used Whole-exome sequencing and Sanger validation to find causative genes in an Iranian consanguineous family that had 3 infertile daughters, 4 fertile daughters, and 2 fertile sons. All patients in this consanguineous family exhibited typical manifestations of unexplained RIF and EDA. Genetic analysis identified a homozygous missense variant (c.G1054C:p.G352R) in exon 13 of the TLE6 gene that cosegregated with the EDA phenotype in an autosomal recessive pattern. Other members of the family, the gene carriers, remain clinically asymptomatic and fertile. Our findings identify a novel nonsynonymous variant, c.G1054C:p.G352R, in the TLE6 gene within a consanguineous Iranian family with autosomal-recessive female infertility and broaden the genetic spectrum of TLE6-associated EDA.
Collapse
|
15
|
Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells 2022; 11:cells11091493. [PMID: 35563799 PMCID: PMC9104119 DOI: 10.3390/cells11091493] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic regulatory factors (MRFs). MRFs are regarded as master transcription factors that are upregulated during myogenesis and influence stem cells to differentiate into myogenic lineage cells. In this review, we summarize MRFs, their regulatory factors, such as TLE3, NF-κB, and MRF target genes, including non-myogenic genes such as taste receptors. Understanding the function of MRFs and the physiology or pathology of satellite cells will contribute to the development of cell therapy and drug discovery for muscle-related diseases.
Collapse
Affiliation(s)
- Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
- Correspondence: ; Tel.: +81-93-582-1131; Fax: +81-93-285-6000
| |
Collapse
|
16
|
Adachi Y, Masuda M, Sakakibara I, Uchida T, Niida Y, Mori Y, Kamei Y, Okumura Y, Ohminami H, Ohnishi K, Yamanaka-Okumura H, Nikawa T, Taketani Y. All-trans retinoic acid changes muscle fiber type via increasing GADD34 dependent on MAPK signal. Life Sci Alliance 2022; 5:5/7/e202101345. [PMID: 35318262 PMCID: PMC8960774 DOI: 10.26508/lsa.202101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
ATRA increases GADD34 expression by decreasing the expression of Six1, which down-regulates the transcriptional activity with TLE3 and increasing mRNA stability through blocking the interaction between TTP and ARE on GADD34 mRNA, resulting in muscle fiber type change. All-trans retinoic acid (ATRA) increases the sensitivity to unfolded protein response in differentiating leukemic blasts. The downstream transcriptional factor of PERK, a major arm of unfolded protein response, regulates muscle differentiation. However, the role of growth arrest and DNA damage-inducible protein 34 (GADD34), one of the downstream factors of PERK, and the effects of ATRA on GADD34 expression in muscle remain unclear. In this study, we identified ATRA increased the GADD34 expression independent of the PERK signal in the gastrocnemius muscle of mice. ATRA up-regulated GADD34 expression through the transcriptional activation of GADD34 gene via inhibiting the interaction of homeobox Six1 and transcription co-repressor TLE3 with the MEF3-binding site on the GADD34 gene promoter in skeletal muscle. ATRA also inhibited the interaction of TTP, which induces mRNA degradation, with AU-rich element on GADD34 mRNA via p-38 MAPK, resulting in the instability of GADD34 mRNA. Overexpressed GADD34 in C2C12 cells changes the type of myosin heavy chain in myotubes. These results suggest ATRA increases GADD34 expression via transcriptional and post-transcriptional regulation, which changes muscle fiber type.
Collapse
Affiliation(s)
- Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Iori Sakakibara
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Niida
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Mori
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Kamei
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yosuke Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hisami Yamanaka-Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
17
|
Role of Groucho and Groucho1-like in Regulating Metamorphosis and Ovary Development in Nilaparvata lugens (Stål). Int J Mol Sci 2022; 23:ijms23031197. [PMID: 35163119 PMCID: PMC8835753 DOI: 10.3390/ijms23031197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Juvenile hormone and ecdysone are key regulators in the metamorphosis and development. Grocho (Gro) is a highly conserved protein required for metamorphosis and development. Brown planthopper (Nilaparvata lugens) is a major pest affecting rice production in China and many Asian countries. Although the molecular function of Gro has been investigated in holometabolous insects such as Aedes aegypti and Drosophila melanogaster, their role in the hemimetabolous insect, brown planthopper, and the relationship between NlGro/NlGro1-L and JH/ecdysone signaling pathway, remained unknown. In this study, NlGroucho (NlGro) and NlGroucho1-like (NlGro1-L) were cloned. An analysis of the predicted protein sequence showed that NlGro has highly conserved Q domain and WD40 domain, and NlGro1-L has a highly conserved WD40 domain. The expression profiles of both genes were studied by quantitative real-time PCR (qRT-PCR). Their relative expressions were high in egg, head, wing, ovary, and testis. NlGro and NlGro1-L were found to interact genetically with juvenile hormone and ecdysone signaling by hormone treatment and RNAi of JH/ecdysone signaling-related genes. Moreover, when NlGro or NlGro1-L was down-regulated alone, the survival rate was decreased, the ovarian development was delayed, and the oviposition was also affected. All defects were aggravated when NlGro and NlGro1-L were down-regulated together. This study will help to develop new pesticides on the basis of the function of NlGro and NlGro1-L, and provide new possibilities for the control of Nilaparvata lugens.
Collapse
|
18
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
19
|
Simeoni F, Somervaille TCP. Enhancer recruitment of a RUNX1, HDAC1 and TLE3 co-repressor complex by mis-expressed FOXC1 blocks differentiation in acute myeloid leukemia. Mol Cell Oncol 2021; 8:2003161. [PMID: 35419467 PMCID: PMC8997249 DOI: 10.1080/23723556.2021.2003161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Tissue-inappropriate expression of FOXC1 (Forkhead Box C1) in acute myeloid leukemia confers a monocyte/macrophage lineage differentiation block. We discovered that FOXC1 interacts with RUNX1 (Runt-Related Transcription Factor 1) to stabilize a RUNX1, HDAC1 (Histone Deacetylase 1) and TLE3 (Transducin-like enhancer protein 3) repressor complex at enhancers controlling myeloid differentiation genes.
Collapse
Affiliation(s)
- Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Tim CP Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Nagel S. The Role of NKL Homeobox Genes in T-Cell Malignancies. Biomedicines 2021; 9:biomedicines9111676. [PMID: 34829904 PMCID: PMC8615965 DOI: 10.3390/biomedicines9111676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Homeobox genes encode transcription factors controlling basic developmental processes. The homeodomain is encoded by the homeobox and mediates sequence-specific DNA binding and interaction with cofactors, thus operating as a basic regulatory platform. Similarities in their homeobox sequences serve to arrange these genes in classes and subclasses, including NKL homeobox genes. In accordance with their normal functions, deregulated homeobox genes contribute to carcinogenesis along with hematopoietic malignancies. We have recently described the physiological expression of eleven NKL homeobox genes in the course of hematopoiesis and termed this gene expression pattern NKL-code. Due to the developmental impact of NKL homeobox genes these data suggest a key role for their activity in the normal regulation of hematopoietic cell differentiation including T-cells. On the other hand, aberrant overexpression of NKL-code members or ectopical activation of non-code members has been frequently reported in lymphoid and myeloid leukemia/lymphoma, demonstrating their oncogenic impact in the hematopoietic compartment. Here, we provide an overview of the NKL-code in normal hematopoiesis and discuss the oncogenic role of deregulated NKL homeobox genes in T-cell malignancies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| |
Collapse
|
21
|
Fiore M, Sambri A, Spinnato P, Zucchini R, Giannini C, Caldari E, Pirini MG, De Paolis M. The Biology of Synovial Sarcoma: State-of-the-Art and Future Perspectives. Curr Treat Options Oncol 2021; 22:109. [PMID: 34687366 PMCID: PMC8541977 DOI: 10.1007/s11864-021-00914-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 12/22/2022]
Abstract
New molecular insights are being achieved in synovial sarcoma (SS) that can provide new potential diagnostic and prognostic markers as well as therapeutic targets. In particular, the advancement of research on epigenomics and gene regulation is promising. The concrete hypothesis that the pathogenesis of SS might mainly depend on the disruption of the balance of the complex interaction between epigenomic regulatory complexes and the consequences on gene expression opens interesting new perspectives. The standard of care for primary SS is wide surgical resection combined with radiation in selected cases. The role of chemotherapy is still under refinement and can be considered in patients at high risk of metastasis or in those with advanced disease. Cytotoxic chemotherapy (anthracyclines, ifosfamide, trabectedin, and pazopanib) is the treatment of choice, despite several possible side effects. Many possible drug-able targets have been identified. However, the impact of these strategies in improving SS outcome is still limited, thus making current and future research strongly needed to improve the survival of patients with SS.
Collapse
Affiliation(s)
- Michele Fiore
- Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Andrea Sambri
- Alma Mater Studiorum - University of Bologna, Bologna, Italy. .,IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy.
| | | | | | | | - Emilia Caldari
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Maria Giulia Pirini
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Massimiliano De Paolis
- IRCCS Azienda Ospedaliero Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| |
Collapse
|
22
|
Naked cuticle inhibits wingless signaling in Drosophila wing development. Biochem Biophys Res Commun 2021; 576:1-6. [PMID: 34474244 DOI: 10.1016/j.bbrc.2021.08.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
Wnt signaling is one of the major signaling pathways that regulate cell differentiation, tissue patterning and stem cell homeostasis and its dysfunction causes many human diseases, such as cancer. It is of tremendous interests to understand how Wnt signaling is regulated in a precise manner both temporally and spatially. Naked cuticle (Nkd) acts as a negative-feedback inhibitor for Wingless (Wg, a fly Wnt) signaling in Drosophila embryonic development. However, the role of Nkd remains controversial in later fly development, particularly on the canonical Wg pathway. In the present study, we show that nkd is essential for wing pattern formation, such that both gain and loss of nkd result in the disruption of Wg target expression in larvae stage and abnormal adult wing morphologies. Furthermore, we demonstrate that a thirty amino acid fragment in Nkd, identified previously in Wharton lab, is critical for the canonical Wg signaling, but is dispensable for Wg/planar cell polarity pathway. Putting aside the pleiotropic nature of nkd function, i.e. its role in the Decapentaplegic signaling, we conclude that Nkd universally inhibits the canonical Wg pathway across a life span of Drosophila development.
Collapse
|
23
|
Simeoni F, Romero-Camarero I, Camera F, Amaral FMR, Sinclair OJ, Papachristou EK, Spencer GJ, Lie-A-Ling M, Lacaud G, Wiseman DH, Carroll JS, Somervaille TCP. Enhancer recruitment of transcription repressors RUNX1 and TLE3 by mis-expressed FOXC1 blocks differentiation in acute myeloid leukemia. Cell Rep 2021; 36:109725. [PMID: 34551306 PMCID: PMC8480281 DOI: 10.1016/j.celrep.2021.109725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Despite absent expression in normal hematopoiesis, the Forkhead factor FOXC1, a critical mesenchymal differentiation regulator, is highly expressed in ∼30% of HOXAhigh acute myeloid leukemia (AML) cases to confer blocked monocyte/macrophage differentiation. Through integrated proteomics and bioinformatics, we find that FOXC1 and RUNX1 interact through Forkhead and Runt domains, respectively, and co-occupy primed and active enhancers distributed close to differentiation genes. FOXC1 stabilizes association of RUNX1, HDAC1, and Groucho repressor TLE3 to limit enhancer activity: FOXC1 knockdown induces loss of repressor proteins, gain of CEBPA binding, enhancer acetylation, and upregulation of nearby genes, including KLF2. Furthermore, it triggers genome-wide redistribution of RUNX1, TLE3, and HDAC1 from enhancers to promoters, leading to repression of self-renewal genes, including MYC and MYB. Our studies highlight RUNX1 and CEBPA transcription factor swapping as a feature of leukemia cell differentiation and reveal that FOXC1 prevents this by stabilizing enhancer binding of a RUNX1/HDAC1/TLE3 transcription repressor complex to oncogenic effect.
Collapse
Affiliation(s)
- Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Isabel Romero-Camarero
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Francesco Camera
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Oliver J Sinclair
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | | | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield SK10 4TG, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield SK10 4TG, UK
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Group, Oglesby Cancer Research Building, The University of Manchester, Manchester M20 4GJ, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK.
| |
Collapse
|
24
|
Ma Q, Xiao F, Hao Y, Song Z, Zhang J, Si C, Liang C, Liu D. The prognostic role of the Transducin-like Enhancer of split protein family in lung adenocarcinoma. Transl Lung Cancer Res 2021; 10:3251-3263. [PMID: 34430362 PMCID: PMC8350083 DOI: 10.21037/tlcr-21-582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023]
Abstract
Background Lung cancer claims more lives than any other cancer worldwide. Lung adenocarcinoma (LUAD) accounts for approximately 40% of all lung cancers. Members of the Transducin-like Enhancer of split (TLE) protein family repress transcription through multiple mechanisms; however, their prognostic value in LUAD is still unclear. Methods A dataset from The Cancer Genome Atlas was used to analyze the relationship between the expression of TLE family members and outcomes of LUAD. The expression of TLE family members in 59 normal and 513 tumor samples in the TCGA dataset was selected. For paired analysis, 57 normal and 57 tumor paired tissues were selected. Gene Ontology (GO) term and Reactome pathway enrichment analyses of the TLE family members were performed. Progression-free survival (PFS) and overall survival (OS) served as endpoints in this study. All statistical analyses were performed with R 3.6.0. Results The expression levels of TLE family proteins differed between 59 normal and 513 tumor samples. High TLE1 and low TLE2 levels were associated with poor progression-free and OS (all P<0.050). Multivariate analysis demonstrated that high TLE1 expression and low TLE2 expression were independent risk factors for a poor outcome in LUAD. Moreover, the combined expression of these two proteins was a good tool for prognostication. Conclusions High TLE1 expression and low TLE2 are independent adverse prognostic factors in LUAD and can serve as prognostic biomarkers.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Fei Xiao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yang Hao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhiyi Song
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Chaozeng Si
- Department of Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Deruo Liu
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
25
|
Liu Y, Feng Z, Chen H. Integrated analysis of the expression, involved functions, and regulatory network of RUNX3 in melanoma. Comb Chem High Throughput Screen 2021; 25:1552-1564. [PMID: 34397327 DOI: 10.2174/1386207324666210816121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND As a tumor suppressor or oncogenic gene, abnormal expression of RUNX family transcription factor 3 (RUNX3) has been reported in various cancers. <p> Introduction: This study aimed to investigate the role of RUNX3 in melanoma. <p> Methods: The expression level of RUNX3 in melanoma tissues was analyzed by immunohistochemistry and the Oncomine database. Based on microarray datasets GSE3189 and GSE7553, differentially expressed genes (DEGs) in melanoma samples were screened, followed by functional enrichment analysis. Gene Set Enrichment Analysis (GSEA) was performed for RUNX3. DEGs that co-expressed with RUNX3 were analyzed, and the transcription factors (TFs) of RUNX3 and its co-expressed genes were predicted. The protein-protein interactions (PPIs) for RUNX3 were analyzed utilizing the GeneMANIA database. MicroRNAs (miRNAs) that could target RUNX3 expression, were predicted. <p> Results: RUNX3 expression was significantly up-regulated in melanoma tissues. GSEA showed that RUNX3 expression was positively correlated with melanogenesis and melanoma pathways. Eleven DEGs showed significant co-expression with RUNX3 in melanoma, for example, TLE4 was negatively co-expressed with RUNX3. RUNX3 was identified as a TF that regulated the expression of both itself and its co-expressed genes. PPI analysis showed that 20 protein-encoding genes interacted with RUNX3, among which 9 genes were differentially expressed in melanoma, such as CBFB and SMAD3. These genes were significantly enriched in transcriptional regulation by RUNX3, RUNX3 regulates BCL2L11 (BIM) transcription, regulation of I-kappaB kinase/NF-kappaB signaling, and signaling by NOTCH. A total of 31 miRNAs could target RUNX3, such as miR-326, miR-330-5p, and miR-373-3p. <p> Conclusion: RUNX3 expression was up-regulated in melanoma and was implicated in the development of melanoma.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhang Feng
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Huaxia Chen
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
26
|
Shin TH, Theodorou E, Holland C, Yamin R, Raggio CL, Giampietro PF, Sweetser DA. TLE4 Is a Critical Mediator of Osteoblast and Runx2-Dependent Bone Development. Front Cell Dev Biol 2021; 9:671029. [PMID: 34422801 PMCID: PMC8377417 DOI: 10.3389/fcell.2021.671029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Healthy bone homeostasis hinges upon a delicate balance and regulation of multiple processes that contribute to bone development and metabolism. While examining hematopoietic regulation by Tle4, we have uncovered a previously unappreciated role of Tle4 on bone calcification using a novel Tle4 null mouse model. Given the significance of osteoblasts in both hematopoiesis and bone development, this study investigated how loss of Tle4 affects osteoblast function. We used dynamic bone formation parameters and microCT to characterize the adverse effects of Tle4 loss on bone development. We further demonstrated loss of Tle4 impacts expression of several key osteoblastogenic genes, including Runx2, Oc, and Ap, pointing toward a potential novel mechanism for Tle4-dependent regulation of mammalian bone development in collaboration with the RUNX family members.
Collapse
Affiliation(s)
- Thomas H. Shin
- Department of Pediatrics, Center of Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Evangelos Theodorou
- Department of Pediatrics, Center of Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Carl Holland
- Department of Pediatrics, Center of Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rae’e Yamin
- Department of Pediatrics, Center of Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cathleen L. Raggio
- Department of Pediatric Orthopedics, Hospital for Special Surgery, New York, NY, United States
| | | | - David A. Sweetser
- Department of Pediatrics, Center of Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Plant AR, Larrieu A, Causier B. Repressor for hire! The vital roles of TOPLESS-mediated transcriptional repression in plants. THE NEW PHYTOLOGIST 2021; 231:963-973. [PMID: 33909309 DOI: 10.1111/nph.17428] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 05/15/2023]
Abstract
Transcriptional corepressors play important roles in establishing the appropriate levels of gene expression during growth and development. The TOPLESS (TPL) family of corepressors are critical for all plant life. TPLs are involved in numerous developmental processes and in the response to extrinsic challenges. As such these proteins have been the focus of intense study since Long and colleagues first described the TPL corepressor in 2006. In this review we will explore the evolutionary history of these essential plant-specific proteins, their mechanism of action based on recent structural analyses, and the myriad of pathways in which they function. We speculate how relatively minor changes in the peptide sequence of transcriptional regulators allowed them to recruit TPL into new processes, driving innovation and resulting in TPL becoming vital for plant development.
Collapse
Affiliation(s)
- Alastair Robert Plant
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Antoine Larrieu
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Barry Causier
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
28
|
Tsyporin J, Tastad D, Ma X, Nehme A, Finn T, Huebner L, Liu G, Gallardo D, Makhamreh A, Roberts JM, Katzman S, Sestan N, McConnell SK, Yang Z, Qiu S, Chen B. Transcriptional repression by FEZF2 restricts alternative identities of cortical projection neurons. Cell Rep 2021; 35:109269. [PMID: 34161768 PMCID: PMC8327856 DOI: 10.1016/j.celrep.2021.109269] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Projection neuron subtype identities in the cerebral cortex are established by expressing pan-cortical and subtype-specific effector genes that execute terminal differentiation programs bestowing neurons with a glutamatergic neuron phenotype and subtype-specific morphology, physiology, and axonal projections. Whether pan-cortical glutamatergic and subtype-specific characteristics are regulated by the same genes or controlled by distinct programs remains largely unknown. Here, we show that FEZF2 functions as a transcriptional repressor, and it regulates subtype-specific identities of both corticothalamic and subcerebral neurons by selectively repressing expression of genes inappropriate for each neuronal subtype. We report that TLE4, specifically expressed in layer 6 corticothalamic neurons, is recruited by FEZF2 to inhibit layer 5 subcerebral neuronal genes. Together with previous studies, our results indicate that a cortical glutamatergic identity is specified by multiple parallel pathways active in progenitor cells, whereas projection neuron subtype-specific identity is achieved through selectively repressing genes associated with alternate identities in differentiating neurons.
Collapse
Affiliation(s)
- Jeremiah Tsyporin
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - David Tastad
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Xiaokuang Ma
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA
| | - Antoine Nehme
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA
| | - Thomas Finn
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Liora Huebner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Daisy Gallardo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Amr Makhamreh
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Jacqueline M Roberts
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Solomon Katzman
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
29
|
Deogharkar A, Singh SV, Bharambe HS, Paul R, Moiyadi A, Goel A, Shetty P, Sridhar E, Gupta T, Jalali R, Goel N, Gadewal N, Muthukumar S, Shirsat NV. Downregulation of ARID1B, a tumor-suppressor in the WNT subgroup medulloblastoma, activates multiple oncogenic signaling pathways. Hum Mol Genet 2021; 30:1721-1733. [PMID: 33949667 DOI: 10.1093/hmg/ddab134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Medulloblastoma, a common pediatric malignant brain tumor, consists of four distinct molecular subgroups WNT, SHH, Group 3, and Group 4. Exome sequencing of 11 WNT subgroup medulloblastomas from an Indian cohort identified mutations in several chromatin modifier genes, including genes of the mammalian SWI/SNF complex. The genome of WNT subgroup tumors is known to be stable except for monosomy 6. Two tumors, having monosomy 6, carried a loss of function mutation in the ARID1B gene located on chromosome 6. ARID1B expression is also lower in the WNT subgroup tumors compared to other subgroups and normal cerebellar tissues that could result in haploinsufficiency. The shRNA-mediated knockdown of ARID1B expression resulted in a significant increase in the malignant potential of medulloblastoma cells. Transcriptome sequencing identified upregulation of several genes encoding cell adhesion proteins, matrix metalloproteases indicating the epithelial-mesenchymal transition. The ARID1B knockdown also upregulated ERK1/ERK2 and PI3K/AKT signaling with a decrease in the expression of several negative regulators of these pathways. The expression of negative regulators of the WNT signaling like TLE1, MDFI, GPX3, ALX4, DLC1, MEST decreased upon ARID1B knockdown resulting in the activation of the canonical WNT signaling pathway. Synthetic lethality has been reported between SWI-SNF complex mutations and EZH2 inhibition, suggesting EZH2 inhibition as a possible therapeutic modality for WNT subgroup medulloblastomas. Thus, the identification of ARID1B as a tumor suppressor and its downregulation resulting in the activation of multiple signaling pathways opens up opportunities for novel therapeutic modalities for the treatment of WNT subgroup medulloblastoma.
Collapse
Affiliation(s)
- Akash Deogharkar
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210
| | - Satishkumar Vishram Singh
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210
| | - Harish Shrikrishna Bharambe
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210
| | - Raikamal Paul
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210
| | | | | | | | | | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital, Tata Memorial Centre, Parel, Mumbai 400012
| | - Rakesh Jalali
- Department of Radiation Oncology, Tata Memorial Hospital, Tata Memorial Centre, Parel, Mumbai 400012
| | - Naina Goel
- Department of Pathology, Seth G. S. Medical College, Parel, Mumbai 400012
| | - Nikhil Gadewal
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210
| | - Sahana Muthukumar
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210
| | - Neelam Vishwanath Shirsat
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210
| |
Collapse
|
30
|
NKL-Code in Normal and Aberrant Hematopoiesis. Cancers (Basel) 2021; 13:cancers13081961. [PMID: 33921702 PMCID: PMC8073162 DOI: 10.3390/cancers13081961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Gene codes represent expression patterns of closely related genes in particular tissues, organs or body parts. The NKL-code describes the activity of NKL homeobox genes in the hematopoietic system. NKL homeobox genes encode transcription factors controlling basic developmental processes. Therefore, aberrations of this code may contribute to deregulated hematopoiesis including leukemia and lymphoma. Normal and abnormal activities of NKL homeobox genes are described and mechanisms of (de)regulation, function, and diseases exemplified. Abstract We have recently described physiological expression patterns of NKL homeobox genes in early hematopoiesis and in subsequent lymphopoiesis and myelopoiesis, including terminally differentiated blood cells. We thereby systematized differential expression patterns of eleven such genes which form the so-called NKL-code. Due to the developmental impact of NKL homeobox genes, these data suggest a key role for their activity in normal hematopoietic differentiation processes. On the other hand, the aberrant overexpression of NKL-code-members or the ectopical activation of non-code members have been frequently reported in lymphoid and myeloid leukemia/lymphoma, revealing the oncogenic potential of these genes in the hematopoietic compartment. Here, I provide an overview of the NKL-code in normal hematopoiesis and instance mechanisms of deregulation and oncogenic functions of selected NKL genes in hematologic cancers. As well as published clinical studies, our conclusions are based on experimental work using hematopoietic cell lines which represent useful models to characterize the role of NKL homeobox genes in specific tumor types.
Collapse
|
31
|
Theis A, Singer RA, Garofalo D, Paul A, Narayana A, Sussel L. Groucho co-repressor proteins regulate β cell development and proliferation by repressing Foxa1 in the developing mouse pancreas. Development 2021; 148:dev.192401. [PMID: 33658226 DOI: 10.1242/dev.192401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for β cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4 Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential β cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced β cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.
Collapse
Affiliation(s)
- Alexandra Theis
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ruth A Singer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY 10032, USA
| | - Diana Garofalo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Alexander Paul
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.,Graduate program in Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Anila Narayana
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lori Sussel
- Department of Pediatrics and Cell & Developmental Biology, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA .,Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
32
|
Lee YJ, Choi S, Kwon SY, Lee Y, Lee JK, Heo EY, Chung HS, Kim DK. A Genome-Wide Association Study in Early COPD: Identification of One Major Susceptibility Loci. Int J Chron Obstruct Pulmon Dis 2020; 15:2967-2975. [PMID: 33235445 PMCID: PMC7680157 DOI: 10.2147/copd.s269263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background Identifying the genetic basis of airflow limitation is one of the most interesting issues for understanding chronic obstructive pulmonary disease (COPD) pathophysiology. Several studies have shown that some genetic variants associated with COPD have been identified in genome-wide association study (GWAS), especially in patients with moderate to severe COPD; genetic susceptibility for airflow limitation in the early COPD phase has not been widely studied. Objective We investigated the genetic variants in early COPD. Methods The present study analyzed Gene-environment interaction and phenotype (GENIE) cohort that included participants who received health screening examination. The association between single nucleotide polymorphism (SNP) and susceptibility to early COPD (FEV1 predicted ≥50% and FEV1/FVC <0.7) was tested. Results A total of 130 patients with early COPD and 3478 controls (1700 ever smokers and 1778 never smokers) were recruited. When compared with the total controls, certain SNPs (rs2818103, rs875033, rs9354627, rs34552148) on chromosome 6 were included at the top of our list (p= 5.6 × 10–7 ~9.6 × 10–6) although they did not reach genome-wide significance. When compared with the never smoker controls, two SNPs (rs2857210, rs2621419) of the HLA-DQB2 gene class were persistently associated with susceptibility to early COPD. Conclusion Certain SNPs located on chromosome 6 or the HLA-DQB2 gene were the top-scoring SNPs for the association with susceptibility to early COPD in the Korean GENIE cohort.
Collapse
Affiliation(s)
- Ye-Jin Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - SeungHo Choi
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 135-984 Korea
| | - Sung-Youn Kwon
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 135-984 Korea
| | - Yunhwan Lee
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 135-984 Korea
| | - Jung Kyu Lee
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Eun Young Heo
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hee Soon Chung
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Ren Y, Ouyang Z, Hou Z, Yan Y, Zhi Z, Shi M, Du M, Liu H, Wen Y, Shao Y. CIC Is a Mediator of the ERK1/2-DUSP6 Negative Feedback Loop. iScience 2020; 23:101635. [PMID: 33103082 PMCID: PMC7578760 DOI: 10.1016/j.isci.2020.101635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/01/2020] [Accepted: 09/29/2020] [Indexed: 01/10/2023] Open
Abstract
DUSP6 functions as an important negative feedback component of the MAPK/ERK signaling pathway. Although DUSP6 expression is tightly regulated by ERK1/2 signaling, the molecular mechanism of this regulation remains partially understood. In this work, we show that the transcriptional repressor CIC functions downstream of the ERK1/2 signaling to negatively regulate DUSP6 expression. CIC directly represses DUSP6 transcription by binding to three cis-regulatory elements (CREs) in DUSP6 promoter. p90RSK, a downstream target of ERK1/2, phosphorylates CIC at S173 and S301 sites, which creates a 14-3-3 recognition motif, resulting in 14-3-3-mediated nuclear export of CIC and derepression of DUSP6. Finally, we demonstrate that the oncogenic CIC-DUX4 fusion protein acts as a transcriptional activator of DUSP6 and its nuclear/cytoplasmic distribution remains regulated by ERK1/2 signaling. These results complete an ERK1/2/p90RSK/CIC/DUSP6 negative feedback circuit and elucidate the molecular mechanism of how RTK/MAPK signaling harnesses the transcriptional repressor activity of CIC in mammalian cells. CIC represses DUSP6 transcription through direct promoter binding p90RSK phosphorylates CIC at S173 and S301 sites S173/S301 phosphorylated CIC binds to 14-3-3 to promote its nuclear export ERK/p90RSK signaling regulates the subcellular localization of CIC-DUX4 protein
Collapse
Affiliation(s)
- Yibo Ren
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenlin Ouyang
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhanwu Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuwei Yan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhe Zhi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengjin Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengtao Du
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huadong Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yurong Wen
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
34
|
Nagel AC, Maier D, Scharpf J, Ketelhut M, Preiss A. Limited Availability of General Co-Repressors Uncovered in an Overexpression Context during Wing Venation in Drosophila melanogaster. Genes (Basel) 2020; 11:genes11101141. [PMID: 32998295 PMCID: PMC7601384 DOI: 10.3390/genes11101141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022] Open
Abstract
Cell fate is determined by the coordinated activity of different pathways, including the conserved Notch pathway. Activation of Notch results in the transcription of Notch targets that are otherwise silenced by repressor complexes. In Drosophila, the repressor complex comprises the transcription factor Suppressor of Hairless (Su(H)) bound to the Notch antagonist Hairless (H) and the general co-repressors Groucho (Gro) and C-terminal binding protein (CtBP). The latter two are shared by different repressors from numerous pathways, raising the possibility that they are rate-limiting. We noted that the overexpression during wing development of H mutants HdNT and HLD compromised in Su(H)-binding induced ectopic veins. On the basis of the role of H as Notch antagonist, overexpression of Su(H)-binding defective H isoforms should be without consequence, implying different mechanisms but repression of Notch signaling activity. Perhaps excess H protein curbs general co-repressor availability. Supporting this model, nearly normal wings developed upon overexpression of H mutant isoforms that bound neither Su(H) nor co-repressor Gro and CtBP. Excessive H protein appeared to sequester general co-repressors, resulting in specific vein defects, indicating their limited availability during wing vein development. In conclusion, interpretation of overexpression phenotypes requires careful consideration of possible dominant negative effects from interception of limiting factors.
Collapse
|
35
|
Hu S, Chen Z, Gu J, Tan L, Zhang M, Lin W. TLE2 is associated with favorable prognosis and regulates cell growth and gemcitabine sensitivity in pancreatic cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1017. [PMID: 32953817 PMCID: PMC7475492 DOI: 10.21037/atm-20-5492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The transducin-like enhancer of split (TLE) proteins are a group of transcriptional corepressors. They play a crucial role in cellular homeostasis and are involved in various cancers. Compared with other TLE family members, little is known about the role and the underlying mechanism of TLE2 in human cancers. This study aimed to investigate the role of TLE2 in pancreatic ductal adenocarcinoma (PDAC) using in silico analysis and in vitro experiments. Methods Data were obtained from the Cancer Genome Atlas (TCGA) database to evaluate the prognostic value of TLE2 in PDAC. The MiaPaCa-2 cell line was transfected with siRNA to inhibit endogenous TLE2 expression, and a PANC-1 cell line with stable TLE2 overexpression was constructed using lentiviral transfection, which were confirmed by real-time polymerase chain reaction and western blotting. MTT assay, transwell invasion assays, and flow cytometry were carried out to assess cell viability, invasion, and apoptosis, respectively. TLE2 expression in PDAC cells was altered to evaluate their sensitivity to gemcitabine. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to predict the biological role of TLE2. Results High expression of TLEs was significantly associated with increased overall survival (OS) and disease-free survival (DFS) in patients with PDAC. Among the PDAC cell lines, TLE2 expression was lowest and highest in PANC-1 cells and MiaPaCa-2 cells, respectively. TLE2 overexpression impaired the proliferation ability of PANC-1 cells and downregulation of TLE2 promoted the proliferation of MiaPaCa-2 cells. Upregulation of TLE2 in PANC-1 cells induced S-phase accumulation and sensitivity to gemcitabine. In contrast, the downregulation of TLE2 in MiaPaCa-2 cells promoted resistance to gemcitabine. Moreover, bioinformatics analysis also revealed the potential tumor suppressor role of TLE2 and uncovered a close relationship between TLE2 expression and cell cycle regulation. Conclusions Our results suggest that TLE2 expression is correlated with prognosis in patients with PDAC and show that TLE2 plays a central role in the regulation of cell proliferation, the cell cycle, and gemcitabine sensitivity. This study provides new insights and evidence that TLE2 functions as a tumor suppressor gene and prognostic marker in PDAC.
Collapse
Affiliation(s)
- Shixiong Hu
- The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhengbo Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinling Gu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liyang Tan
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Meifeng Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weidong Lin
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| |
Collapse
|
36
|
He M, Zhang R, Jiao S, Zhang F, Ye D, Wang H, Sun Y. Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors. PLoS Biol 2020; 18:e3000561. [PMID: 32702011 PMCID: PMC7402524 DOI: 10.1371/journal.pbio.3000561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 08/04/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal β-catenin activity is essential and critical for dorsal induction and its dorsal activation has been thoroughly studied. However, how the maternal β-catenin activity is suppressed in the nondorsal cells remains poorly understood. Nanog is known to play a central role for maintenance of the pluripotency and maternal -zygotic transition (MZT). Here, we reveal a novel role of Nanog as a strong repressor of maternal β-catenin signaling to safeguard the embryo against hyperactivation of maternal β-catenin activity and hyperdorsalization. In zebrafish, knockdown of nanog at different levels led to either posteriorization or dorsalization, mimicking zygotic or maternal activation of Wnt/β-catenin activities, and the maternal zygotic mutant of nanog (MZnanog) showed strong activation of maternal β-catenin activity and hyperdorsalization. Although a constitutive activator-type Nanog (Vp16-Nanog, lacking the N terminal) perfectly rescued the MZT defects of MZnanog, it did not rescue the phenotypes resulting from β-catenin signaling activation. Mechanistically, the N terminal of Nanog directly interacts with T-cell factor (TCF) and interferes with the binding of β-catenin to TCF, thereby attenuating the transcriptional activity of β-catenin. Therefore, our study establishes a novel role for Nanog in repressing maternal β-catenin activity and demonstrates a transcriptional switch between β-catenin/TCF and Nanog/TCF complexes, which safeguards the embryo from global activation of maternal β-catenin activity. Maternal β-catenin activity induces the primary dorsal axis during early development, but how the activity is suppressed in the non-dorsal cells remains poorly understood. This study reveals Nanog as a strong repressor of nuclear β-catenin to safeguard embryogenesis against global activation of maternal β-catenin activity and hyper-dorsalization in zebrafish.
Collapse
Affiliation(s)
- Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
37
|
Chen W, Zheng D, Mou T, Pu J, Dai J, Huang Z, Luo Y, Zhang Y, Wu Z. Tle1 attenuates hepatic ischemia/reperfusion injury by suppressing NOD2/NF-κB signaling. Biosci Biotechnol Biochem 2020; 84:1176-1182. [PMID: 32114961 DOI: 10.1080/09168451.2020.1735928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver damage induced by ischemia/reperfusion (I/R) remains a primary issue in multiple hepatic surgeries. Innate immune-mediated inflammatory responses during the reperfusion stage aggravate the injury. Nevertheless, the detailed mechanism of hepatic I/R has not been fully clarified yet. Our research focuses on the role of Transducin-like enhancer of split-1 (Tle1) in the liver I/R injury and the relation between Tle1 and Nucleotide-binding oligomerization domain 2 (NOD2). To answer these questions, we constructed mouse models of I/R and cell models of hypoxia/reoxygenation (H/R). We found decreased Tle1 accompanied by increased NOD2 during reperfusion. Mice pro-injected with Tle1-siRNA emerged aggravated liver dysfunction. Repression of Tle1 had a significant impact on NOD2 and downstream NF-κB signaling in vitro. However, alteration of NOD2 failed to affect the expression of Tle1. To conclude, our study demonstrates that Tle1 shelters the liver from I/R injury through suppression of NOD2-dependent NF-κB activation and subsequent inflammatory responses.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daofeng Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tong Mou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junliang Pu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangwen Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhai Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuke Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
El Beaino M, Jupiter DC, Assi T, Rassy E, Lazar AJ, Araujo DM, Lin PP. Diagnostic Value of TLE1 in Synovial Sarcoma: A Systematic Review and Meta-Analysis. Sarcoma 2020; 2020:7192347. [PMID: 32322158 PMCID: PMC7166261 DOI: 10.1155/2020/7192347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Synovial sarcoma can present morphologically in multiple forms, including biphasic and monophasic subtypes. As a result, the histological diagnosis can sometimes be challenging. Transducin-Like Enhancer 1 (TLE1) is a transcriptional corepressor that normally is involved in embryogenesis and hematopoiesis but is also expressed in certain tumors. This systematic review examines the potential role of TLE1 as a diagnostic biomarker for the synovial sarcoma. Materials and Methods. A literature review and meta-analysis were conducted using the electronic databases Pubmed, the Cochrane Library, and Google Scholar. Thirteen studies met our eligibility criteria and were selected for in-depth analysis. RESULTS The mean sensitivity and specificity of TLE1 in detecting synovial sarcoma were 94% (95% CI 91%-97%) and 81% (95% CI 72%-91%), respectively, when all studies were aggregated together. The mean positive predictive value (PPV) of TLE1 was 75% (95% CI 62%-87%), whereas the negative predictive value (NPV) was 96% (95% CI 93%-98%). CONCLUSION TLE1 is a sensitive and specific marker for synovial sarcoma that can aid in its diagnosis. Due to its involvement in several relevant signaling pathways, TLE1 might have direct relevance to the pathophysiology of the disease.
Collapse
Affiliation(s)
- Marc El Beaino
- Department of Orthopaedic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Daniel C. Jupiter
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX, USA
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA
| | - Tarek Assi
- Department of Cancer Medicine, Gustave Roussy Institute, F-94805 Villejuif, France
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institute, F-94805 Villejuif, France
| | - Alexander J. Lazar
- Departments of Pathology & Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dejka M. Araujo
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick P. Lin
- Department of Orthopaedic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
Deregulated NKL Homeobox Genes in B-Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11121874. [PMID: 31779217 PMCID: PMC6966443 DOI: 10.3390/cancers11121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
Recently, we have described physiological expression patterns of NKL homeobox genes in early hematopoiesis and in subsequent lymphopoiesis. We identified nine genes which constitute the so-called NKL-code. Aberrant overexpression of code-members or ectopically activated non-code NKL homeobox genes are described in T-cell leukemia and in T- and B-cell lymphoma, highlighting their oncogenic role in lymphoid malignancies. Here, we introduce the NKL-code in normal hematopoiesis and focus on deregulated NKL homeobox genes in B-cell lymphoma, including HLX, MSX1 and NKX2-2 in Hodgkin lymphoma; HLX, NKX2-1 and NKX6-3 in diffuse large B-cell lymphoma; and NKX2-3 in splenic marginal zone lymphoma. Thus, the roles of various members of the NKL homeobox gene subclass are considered in normal and pathological hematopoiesis in detail.
Collapse
|
40
|
Pukhalskaya T, Smoller BR. TLE1 expression fails to distinguish between synovial sarcoma, atypical fibroxanthoma, and dermatofibrosarcoma protuberans. J Cutan Pathol 2019; 47:135-138. [PMID: 31614009 DOI: 10.1111/cup.13596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 11/29/2022]
Abstract
Transducin-like enhancer of split 1 (TLE1) belongs to the Groucho/TLE/Grg family. It functions as a transcriptional corepressor and is widely used as a biomarker of synovial sarcoma (SS). Within the skin, atypical fibroxanthoma (AFX) and dermatofibrosarcoma protuberans (DFSP) often enter the histopathologic differential diagnosis. TLE1 expression has not been evaluated in these neoplasms. We examined archived tissues sections from the surgical pathology files from 10 adult patients diagnosed with AFX and 10 adult patients diagnosed with DFSP. We found nuclear staining in 10 of 10 AFX and 2 of 10 DFSP. We also noticed three patterns of staining in AFX: predominantly spindle component, predominantly epithelioid component, or mixed pattern of both epithelioid and spindle components. The group with the predominantly spindle pattern expressed the strongest nuclear TLE1 staining. In the DFSP group, one lesion demonstrated staining of epithelioid cells, with strong, diffuse nuclear TLE 1 expression, and the second lesion stained only the spindled cells, with weak nuclear TLE1 marking. In conclusion, TLE1, while a sensitive marker for SS, is not specific. A wide range of cutaneous spindle cell neoplasms also express TLE1. AFX and DFSP should be added to this list. TLE1 might be added to a diagnostic panel in this differential diagnosis.
Collapse
Affiliation(s)
- Tatsiana Pukhalskaya
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Bruce R Smoller
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
41
|
You Y, Zhai Q, An C, Li C. LEUNIG_HOMOLOG Mediates MYC2-Dependent Transcriptional Activation in Cooperation with the Coactivators HAC1 and MED25. THE PLANT CELL 2019; 31:2187-2205. [PMID: 31320481 PMCID: PMC6751132 DOI: 10.1105/tpc.19.00115] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 07/17/2019] [Indexed: 05/19/2023]
Abstract
Groucho/Thymidine uptake 1 (Gro/Tup1) family proteins are evolutionarily conserved transcriptional coregulators in eukaryotic cells. Despite their prominent function in transcriptional repression, little is known about their role in transcriptional activation and the underlying mechanism. Here, we report that the plant Gro/Tup1 family protein LEUNIG_HOMOLOG (LUH) activates MYELOCYTOMATOSIS2 (MYC2)-directed transcription of JAZ2 and LOX2 via the Mediator complex coactivator and the histone acetyltransferase HAC1. We show that the Mediator subunit MED25 physically recruits LUH to MYC2 target promoters that then links MYC2 with HAC1-dependent acetylation of Lys-9 of histone H3 (H3K9ac) to activate JAZ2 and LOX2 Moreover, LUH promotes hormone-dependent enhancement of protein interactions between MYC2 and its coactivators MED25 and HAC1. Our results demonstrate that LUH interacts with MED25 and HAC1 through its distinct domains, thus imposing a selective advantage by acting as a scaffold for MYC2 activation. Therefore, the function of LUH in regulating jasmonate signaling is distinct from the function of TOPLESS, another member of the Gro/Tup1 family that represses MYC2-dependent gene expression in the resting stage.
Collapse
Affiliation(s)
- Yanrong You
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunpeng An
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Ogawa M, Yaginuma T, Nakatomi C, Nakajima T, Tada-Shigeyama Y, Addison WN, Urata M, Matsubara T, Watanabe K, Matsuo K, Sato T, Honda H, Hikiji H, Watanabe S, Kokabu S. Transducin-like enhancer of split 3 regulates proliferation of melanoma cells via histone deacetylase activity. Oncotarget 2019; 10:404-414. [PMID: 30719233 PMCID: PMC6349449 DOI: 10.18632/oncotarget.26552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022] Open
Abstract
Melanoma, one of the most aggressive neoplasms, is characterized by rapid cell proliferation. Transducin-like Enhancer of Split (TLE) is an important regulator of cell proliferation via Histone deacetylase (HDAC) recruitment. Given that HDAC activity is associated with melanoma progression, we examined the relationship between TLE3, a TLE family member, and melanoma. TLE3 expression was increased during the progression of human patient melanoma (p < 0.05). Overexpression of Tle3 in B16 murine melanoma cells led to an increase in cell proliferation (p < 0.01) as well as the number of cyclinD1-positive cells. in vivo injection of mice with B16 cells overexpressing Tle3 resulted in larger tumor formation than in mice injected with control cells (p < 0.05). In contrast, siRNA-mediated knockdown of Tle3 in B16 cells or TLE3 in HMV-II human melanoma cells decreased proliferation (p < 0.01). Treatment of B16 cells with trichostatin A (2.5 μM), a class I and II HDAC inhibitor, prevented the effect s of Tle3 on proliferation. In conclusion, these data indicate that Tle3 is required, at least in part, for proliferation in the B16 mouse melanoma model.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuki Yaginuma
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chihiro Nakatomi
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tsuyoshi Nakajima
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yukiyo Tada-Shigeyama
- Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - William N Addison
- Research Unit, Shriners Hospitals for Children-Canada, Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mariko Urata
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Koji Watanabe
- Division of Developmental Stomatognathic Function Science, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Kou Matsuo
- Division of Oral Pathology, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Hiromi Honda
- School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Hisako Hikiji
- School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Seiji Watanabe
- Division of Dental Anesthesiology, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
43
|
Sena E, Rocques N, Borday C, Amin HSM, Parain K, Sitbon D, Chesneau A, Durand BC. Barhl2 maintains T-cell factors as repressors, and thereby switches off the Wnt/β-Catenin response driving Spemann organizer formation. Development 2019; 146:dev.173112. [DOI: 10.1242/dev.173112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
A hallmark of Wnt/β-Catenin signaling is the extreme diversity of its transcriptional response, which varies depending on cell and developmental context. What controls this diversity is poorly understood. In all cases, the switch from transcriptional repression to activation depends on a nuclear increase in β-Catenin, which detaches the transcription factor T-cell Factor-7 like 1 (Tcf7l1) bound to Groucho (Gro) transcriptional co-repressors from its DNA binding sites and transiently converts Tcf7/Lymphoid enhancer binding factor 1 (Lef1) into a transcriptional activator. One of the earliest and evolutionarily conserved functions of Wnt/β-Catenin signaling is the induction of the blastopore lip organizer. Here, we demonstrate that the evolutionarily conserved BarH-like homeobox-2 (Barhl2) protein stabilizes the Tcf7l1-Gro complex and maintains repressed expression of Tcf target genes by a mechanism that depends on histone deacetylase 1 (Hdac-1) activity. In this way, Barhl2 switches off the Wnt/β-Catenin-dependent early transcriptional response, thereby limiting the formation of the organizer in time and/or space. This study reveals a novel nuclear inhibitory mechanism of Wnt/Tcf signaling that switches off organizer fate determination.
Collapse
Affiliation(s)
- Elena Sena
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
| | - Nathalie Rocques
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
| | - Caroline Borday
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Harem Sabr Muhamad Amin
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, S1.7 CNRS 8197, INSERM U1024 46 rue d'Ulm 75005, Paris F-75005, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - David Sitbon
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Albert Chesneau
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Béatrice C. Durand
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, S1.7 CNRS 8197, INSERM U1024 46 rue d'Ulm 75005, Paris F-75005, France
| |
Collapse
|
44
|
Chytoudis-Peroudis CC, Siskos N, Kalyviotis K, Fysekis I, Ypsilantis P, Simopoulos C, Skavdis G, Grigoriou ME. Spatial distribution of the full-length members of the Grg family during embryonic neurogenesis reveals a "Grg-mediated repression map" in the mouse telencephalon. PLoS One 2018; 13:e0209369. [PMID: 30571765 PMCID: PMC6301688 DOI: 10.1371/journal.pone.0209369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/04/2018] [Indexed: 11/25/2022] Open
Abstract
The full-length members of the Groucho/Transducin-like Enhancer of split gene family, namely Grg1-4, encode nuclear corepressors that act either directly, via interaction with transcription factors, or indirectly by modifying histone acetylation or chromatin structure. In this work we describe a detailed expression analysis of Grg1-4 family members during embryonic neurogenesis in the developing murine telencephalon. Grg1-4 presented a unique, complex yet overlapping expression pattern; Grg1 and Grg3 were mainly detected in the proliferative zones of the telencephalon, Grg2 mainly in the subpallium and finally, Grg4 mainly in the subpallial post mitotic neurons. In addition, comparative analysis of the expression of Grg1-4 revealed that, at these stages, distinct telencephalic progenitor domains or structures are characterized by the presence of different combinations of Grg repressors, thus forming a “Grg-mediated repression map”.
Collapse
Affiliation(s)
| | - Nikistratos Siskos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Kalyviotis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Fysekis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Petros Ypsilantis
- School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - George Skavdis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria E. Grigoriou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- * E-mail:
| |
Collapse
|
45
|
Larabee JL, Hauck G, Ballard JD. Unique, Intersecting, and Overlapping Roles of C/EBP β and CREB in Cells of the Innate Immune System. Sci Rep 2018; 8:16931. [PMID: 30446701 PMCID: PMC6240029 DOI: 10.1038/s41598-018-35184-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
CREB and C/EBP β signaling pathways are modulated during inflammation and also targeted by Bacillus anthracis edema toxin (ET), but how these factors individually and jointly contribute to changes in immune cell function is poorly understood. Using CRISPR/Cas9 gene editing, macrophage cell lines lacking CREB and isoforms of C/EBP β were generated and analyzed for changes in responses to LPS, ET, and IL-4. Macrophages lacking C/EBP β suppressed induction of IL-10 and Arg1, while IL-6 was increased in these cells following exposure to LPS. Examination of C/EBP β isoforms indicated the 38 kDa isoform was necessary for the expression of IL-10 and Arg1. ChIP-Seq analysis of CREB and C/EBP β binding to targets on the chromosome of human PBMC identified several regions where both factors overlapped in their binding, suggesting similar gene targeting or cooperative effects. Based on the ChIP-Seq data, a panel of previously unknown targets of CREB and C/EBP β was identified and includes genes such as VNN2, GINS4, CTNNBL1, and SULF2. Isoforms of a transcriptional corepressor, transducin-like enhancer of Split (TLE), were also found to have CREB and C/EBP β binding their promoter and were up regulated by ET. Finally, we explore a possible layer of C/EBP β regulation by a protein complex consisting of adenomatous polyposis coli (APC) and PKA. Collectively, these data provide new insights into the role of CREB and C/EBP β as immunosignaling regulators and targets of an important bacterial virulence factor.
Collapse
Affiliation(s)
- Jason L Larabee
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Garrett Hauck
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA.
| |
Collapse
|
46
|
Brassesco MS, Pezuk JA, Cortez MA, Bezerra Salomão K, Scrideli CA, Tone LG. TLE1 as an indicator of adverse prognosis in pediatric acute lymphoblastic leukemia. Leuk Res 2018; 74:42-46. [PMID: 30286331 DOI: 10.1016/j.leukres.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 06/27/2018] [Accepted: 09/22/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is the most common type of cancer in children, and despite the high rate of cure (over 80%) it still has a big impact on morbidity and mortality. The Transducin-like enhancer of split 1 (TLE1), a transcriptional corepressor, has been described as dysregulated and recently emerged as a tumor marker in several cancer types, including hematologic malignancies. METHODS In the present study TLE1 gene expression was evaluated by RT-qPCR. A total of 60 consecutive pathological ALL samples and 8 normal bone marrow samples were included. Associations between TLE1 levels and clinicopathological features were estimated using Mann-Whitney tests. RESULTS TLE1 mRNA levels were significantly diminished in ALL samples when compared to normal counterparts (fold change -1.45, p-value 0.039). Lower TLE1 expression levels were associated with poorer prognostic features such as age at diagnosis (<1 or >9 years-old), absence of the Common Acute Lymphoblastic Leukemia Antigen (CALLA) and high white cell count. Considering immunophenotype, decreased expression of TLE1 was only evident for T-cell ALL, what was validated using gene expression profiling data available in public repositories. No associations with event or overall survival were observed. However, TLE1 expression was statistically different between patients who achieved complete clinical remission (CCR) from those that relapsed or died. CONCLUSION These data are of particular interest and give support for a plausible role of TLE1 as a tumor suppressor in T-cell ALL. Moreover, the prognostic value of this corepressor may assist ALL treatment stratification and suggest the need of alternative regimens.
Collapse
Affiliation(s)
- María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, Brazil.
| | - Julia Alejandra Pezuk
- Department of Pharmacy and Department of Biotechnology and Health Innovation, Anhanguera University of Sao Paulo, UNIAN/SP, Brazil
| | - Maria Angelica Cortez
- Experimental Radiation Oncology, The University of Texas, MD Anderson Cancer Center, USA
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | | | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| |
Collapse
|
47
|
Chanoumidou K, Hadjimichael C, Athanasouli P, Ahlenius H, Klonizakis A, Nikolaou C, Drakos E, Kostouros A, Stratidaki I, Grigoriou M, Kretsovali A. Groucho related gene 5 (GRG5) is involved in embryonic and neural stem cell state decisions. Sci Rep 2018; 8:13790. [PMID: 30214018 PMCID: PMC6137157 DOI: 10.1038/s41598-018-31696-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Groucho related gene 5 (GRG5) is a multifunctional protein that has been implicated in late embryonic and postnatal mouse development. Here, we describe a previously unknown role of GRG5 in early developmental stages by analyzing its function in stem cell fate decisions. By both loss and gain of function approaches we demonstrate that ablation of GRG5 deregulates the Embryonic Stem Cell (ESC) pluripotent state whereas its overexpression leads to enhanced self-renewal and acquisition of cancer cell-like properties. The malignant characteristics of teratomas generated by ESCs that overexpress GRG5 reveal its pro-oncogenic potential. Furthermore, transcriptomic analysis and cell differentiation approaches underline GRG5 as a multifaceted signaling regulator that represses mesendodermal-related genes. When ESCs exit pluripotency, GRG5 promotes neuroectodermal specification via Wnt and BMP signaling suppression. Moreover, GRG5 promotes the neuronal reprogramming of fibroblasts and maintains the self-renewal of Neural Stem Cells (NSCs) by sustaining the activity of Notch/Hes and Stat3 signaling pathways. In summary, our results demonstrate that GRG5 has pleiotropic roles in stem cell biology functioning as a stemness factor and a neural fate specifier.
Collapse
Affiliation(s)
- Konstantina Chanoumidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupoli, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Lund Stem Cell Center, University Hospital, SE-221 84, Lund, Sweden
| | - Christiana Hadjimichael
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Paraskevi Athanasouli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Department of Biology, University of Crete, 71409, Heraklion, Crete, Greece
| | - Henrik Ahlenius
- Lund Stem Cell Center, University Hospital, SE-221 84, Lund, Sweden
| | - Antonis Klonizakis
- Department of Biology, University of Crete, 71409, Heraklion, Crete, Greece
| | | | - Elias Drakos
- School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Antonis Kostouros
- School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Irene Stratidaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Maria Grigoriou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupoli, Greece
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.
| |
Collapse
|
48
|
Pane LS, Fulcoli FG, Cirino A, Altomonte A, Ferrentino R, Bilio M, Baldini A. Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior heart field enhancer. Dis Model Mech 2018; 11:11/9/dmm029967. [PMID: 30166330 PMCID: PMC6176997 DOI: 10.1242/dmm.029967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
The TBX1 gene is haploinsufficient in 22q11.2 deletion syndrome (22q11.2DS), and genetic evidence from human patients and mouse models points to a major role of this gene in the pathogenesis of this syndrome. Tbx1 can activate and repress transcription, and previous work has shown that one of its functions is to negatively modulate cardiomyocyte differentiation. Tbx1 occupies the anterior heart field (AHF) enhancer of the Mef2c gene, which encodes a key cardiac differentiation transcription factor. Here, we show that increased dosage of Tbx1 correlates with downregulation of Mef2c expression and reduced acetylation of its AHF enhancer in cultured mouse myoblasts. Consistently, 22q11.2DS-derived and in vitro-differentiated human induced pluripotent stem cells (hiPSCs) expressed higher levels of MEF2C and showed increased AHF acetylation, compared with hiPSCs from a healthy donor. Most importantly, we show that in mouse embryos, loss of Tbx1 enhances the expression of the Mef2c-AHF-Cre transgene in a specific region of the splanchnic mesoderm, and in a dosage-dependent manner, providing an in vivo correlate of our cell culture data. These results indicate that Tbx1 regulates the Mef2c AHF enhancer by inducing histone deacetylation.
Collapse
Affiliation(s)
- Luna Simona Pane
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Filomena Gabriella Fulcoli
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Andrea Cirino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy
| | - Alessandra Altomonte
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rosa Ferrentino
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Marchesa Bilio
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Antonio Baldini
- CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy .,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy
| |
Collapse
|
49
|
Shen C, Du Y, Qiao F, Kong T, Yuan L, Zhang D, Wu X, Li D, Wu YD. Biophysical and structural characterization of the thermostable WD40 domain of a prokaryotic protein, Thermomonospora curvata PkwA. Sci Rep 2018; 8:12965. [PMID: 30154510 PMCID: PMC6113231 DOI: 10.1038/s41598-018-31140-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/10/2018] [Indexed: 01/25/2023] Open
Abstract
WD40 proteins belong to a big protein family with members identified in every eukaryotic proteome. However, WD40 proteins were only reported in a few prokaryotic proteomes. Using WDSP (http://wu.scbb.pkusz.edu.cn/wdsp/), a prediction tool, we identified thousands of prokaryotic WD40 proteins, among which few proteins have been biochemically characterized. As shown in our previous bioinformatics study, a large proportion of prokaryotic WD40 proteins have higher intramolecular sequence identity among repeats and more hydrogen networks, which may indicate better stability than eukaryotic WD40s. Here we report our biophysical and structural study on the WD40 domain of PkwA from Thermomonospora curvata (referred as tPkwA-C). We demonstrated that the stability of thermophilic tPkwA-C correlated to ionic strength and tPkwA-C exhibited fully reversible unfolding under different denaturing conditions. Therefore, the folding kinetics was also studied through stopped-flow circular dichroism spectra. The crystal structure of tPkwA-C was further resolved and shed light on the key factors that stabilize its beta-propeller structure. Like other WD40 proteins, DHSW tetrad has a significant impact on the stability of tPkwA-C. Considering its unique features, we proposed that tPkwA-C should be a great structural template for protein engineering to study key residues involved in protein-protein interaction of a WD40 protein.
Collapse
Affiliation(s)
- Chen Shen
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ye Du
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Medical Research Center, The People's Hospital of Longhua, Shenzhen, 518109, China
| | - Fangfang Qiao
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tian Kong
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lirong Yuan
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Delin Zhang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xianhui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dongyang Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,College of Chemistry, Peking University, Beijing, 100871, China.
| |
Collapse
|
50
|
Xing S, Shao P, Li F, Zhao X, Seo W, Wheat JC, Ramasamy S, Wang J, Li X, Peng W, Yu S, Liu C, Taniuchi I, Sweetser DA, Xue HH. Tle corepressors are differentially partitioned to instruct CD8 + T cell lineage choice and identity. J Exp Med 2018; 215:2211-2226. [PMID: 30045946 PMCID: PMC6080905 DOI: 10.1084/jem.20171514] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/05/2018] [Accepted: 06/29/2018] [Indexed: 01/15/2023] Open
Abstract
Xing et al demonstrate the requirements for Tle transcriptional corepressors in CD8+ T cell development. Tle proteins are differentially partitioned to the Runx and Tcf/Lef complexes to promote CD8+ lineage choice and establish CD8+ T cell identity, respectively. Tle/Groucho proteins are transcriptional corepressors interacting with Tcf/Lef and Runx transcription factors, but their physiological roles in T cell development remain unknown. Conditional targeting of Tle1, Tle3 and Tle4 revealed gene dose–dependent requirements for Tle proteins in CD8+ lineage cells. Upon ablating all three Tle proteins, generation of CD8+ T cells was greatly diminished, largely owing to redirection of MHC-I–selected thymocytes to CD4+ lineage; the remaining CD8-positive T cells showed aberrant up-regulation of CD4+ lineage-associated genes including Cd4, Thpok, St8sia6, and Foxp3. Mechanistically, Tle3 bound to Runx-occupied Thpok silencer, in post-selection double-positive thymocytes to prevent excessive ThPOK induction and in mature CD8+ T cells to silence Thpok expression. Tle3 also bound to Tcf1-occupied sites in a few CD4+ lineage-associated genes, including Cd4 silencer and St8sia6 introns, to repress their expression in mature CD8+ T cells. These findings indicate that Tle corepressors are differentially partitioned to Runx and Tcf/Lef complexes to instruct CD8+ lineage choice and cooperatively establish CD8+ T cell identity, respectively.
Collapse
Affiliation(s)
- Shaojun Xing
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Fengyin Li
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Xudong Zhao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Justin C Wheat
- Department of Pediatrics, Divisions of Medical Genetics and Pediatric Hematology/Oncology, Center for Genetics Research and MGH Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Selvi Ramasamy
- Department of Pediatrics, Divisions of Medical Genetics and Pediatric Hematology/Oncology, Center for Genetics Research and MGH Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Jianfeng Wang
- Department of Pediatrics, Divisions of Medical Genetics and Pediatric Hematology/Oncology, Center for Genetics Research and MGH Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Xiang Li
- Department of Physics, The George Washington University, Washington, DC
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC
| | - Shuyang Yu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - David A Sweetser
- Department of Pediatrics, Divisions of Medical Genetics and Pediatric Hematology/Oncology, Center for Genetics Research and MGH Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|