1
|
Mortberg MA, Gentile JE, Nadaf N, Vanderburg C, Simmons S, Dubinsky D, Slamin A, Maldonado S, Petersen C, Jones N, Kordasiewicz H, Zhao H, Vallabh S, Minikel E. A single-cell map of antisense oligonucleotide activity in the brain. Nucleic Acids Res 2023; 51:7109-7124. [PMID: 37188501 PMCID: PMC10415122 DOI: 10.1093/nar/gkad371] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Antisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the central nervous system (CNS). By modulating RNA, they hold the promise of targeting root molecular causes of disease and hold potential to treat myriad CNS disorders. Realization of this potential requires that ASOs must be active in the disease-relevant cells, and ideally, that monitorable biomarkers also reflect ASO activity in these cells. The biodistribution and activity of such centrally delivered ASOs have been deeply characterized in rodent and non-human primate (NHP) models, but usually only in bulk tissue, limiting our understanding of the distribution of ASO activity across individual cells and across diverse CNS cell types. Moreover, in human clinical trials, target engagement is usually monitorable only in a single compartment, CSF. We sought a deeper understanding of how individual cells and cell types contribute to bulk tissue signal in the CNS, and how these are linked to CSF biomarker outcomes. We employed single nucleus transcriptomics on tissue from mice treated with RNase H1 ASOs against Prnp and Malat1 and NHPs treated with an ASO against PRNP. Pharmacologic activity was observed in every cell type, though sometimes with substantial differences in magnitude. Single cell RNA count distributions implied target RNA suppression in every single sequenced cell, rather than intense knockdown in only some cells. Duration of action up to 12 weeks post-dose differed across cell types, being shorter in microglia than in neurons. Suppression in neurons was generally similar to, or more robust than, the bulk tissue. In macaques, PrP in CSF was lowered 40% in conjunction with PRNP knockdown across all cell types including neurons, arguing that a CSF biomarker readout is likely to reflect ASO pharmacodynamic effect in disease-relevant cells in a neuronal disorder. Our results provide a reference dataset for ASO activity distribution in the CNS and establish single nucleus sequencing as a method for evaluating cell type specificity of oligonucleotide therapeutics and other modalities.
Collapse
Affiliation(s)
- Meredith A Mortberg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Juliana E Gentile
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Naeem M Nadaf
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sean Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dan Dubinsky
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Adam Slamin
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Salome Maldonado
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Caroline L Petersen
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Nichole Jones
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | | | - Hien T Zhao
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Sonia M Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA02115, USA
- Prion Alliance, Cambridge, MA 02139, USA
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA02115, USA
- Prion Alliance, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Herbst A, Aiken JM, Kim C, Gushue D, McKenzie D, Moore TM, Zhou J, Hoang AN, Choi S, Wanagat J. Age- and time-dependent mitochondrial genotoxic and myopathic effects of beta-guanidinopropionic acid, a creatine analog, on rodent skeletal muscles. GeroScience 2023; 45:555-567. [PMID: 36178599 PMCID: PMC9886740 DOI: 10.1007/s11357-022-00667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023] Open
Abstract
Beta-guanidinopropionic acid (GPA) is a creatine analog suggested as a treatment for hypertension, diabetes, and obesity, which manifest primarily in older adults. A notable side effect of GPA is the induction of mitochondrial DNA deletion mutations. We hypothesized that mtDNA deletions contribute to muscle aging and used the mutation promoting effect of GPA to examine the impact of mtDNA deletions on muscles with differential vulnerability to aging. Rats were treated with GPA for up to 4 months starting at 14 or 30 months of age. We examined quadriceps and adductor longus muscles as the quadriceps exhibits profound age-induced deterioration, while adductor longus is maintained. GPA decreased body and muscle mass and mtDNA copy number while increasing mtDNA deletion frequency. The interactions between age and GPA treatment observed in the quadriceps were not observed in the adductor longus. GPA had negative mitochondrial effects in as little as 4 weeks. GPA treatment exacerbated mtDNA deletions and muscle aging phenotypes in the quadriceps, an age-sensitive muscle, while the adductor longus was spared. GPA has been proposed for use in age-associated diseases, yet the pharmacodynamics of GPA differ with age and include the detrimental induction of mtDNA deletions, a mitochondrial genotoxic stress that is pronounced in muscles that are most vulnerable to aging. Further research is needed to determine if the proposed benefits of GPA on hypertension, diabetes, and obesity outweigh the detrimental mitochondrial and myopathic side effects.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
- US Geological Survey National Wildlife Health Center, Madison, WI, USA
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Chiye Kim
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Danielle Gushue
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Timothy M Moore
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Jin Zhou
- Department of Medicine, Statistics Core, UCLA, Los Angeles, CA, USA
- Department of Biostatistics, UCLA, Los Angeles, CA, USA
| | - Austin N Hoang
- Department of Medicine, Division of Geriatrics, UCLA, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA, 90095, USA
| | - Solbie Choi
- Department of Medicine, Division of Geriatrics, UCLA, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA, 90095, USA
| | - Jonathan Wanagat
- Department of Medicine, Division of Geriatrics, UCLA, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA, 90095, USA.
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Mercer RCC, Harris DA. Mechanisms of prion-induced toxicity. Cell Tissue Res 2022; 392:81-96. [PMID: 36070155 DOI: 10.1007/s00441-022-03683-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are devastating neurodegenerative diseases caused by the structural conversion of the normally benign prion protein (PrPC) to an infectious, disease-associated, conformer, PrPSc. After decades of intense research, much is known about the self-templated prion conversion process, a phenomenon which is now understood to be operative in other more common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide the current state of knowledge concerning a relatively poorly understood aspect of prion diseases: mechanisms of neurotoxicity. We provide an overview of proposed functions of PrPC and its interactions with other extracellular proteins in the central nervous system, in vivo and in vitro models used to delineate signaling events downstream of prion propagation, the application of omics technologies, and the emerging appreciation of the role played by non-neuronal cell types in pathogenesis.
Collapse
Affiliation(s)
- Robert C C Mercer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Susceptibility of Beavers to Chronic Wasting Disease. BIOLOGY 2022; 11:biology11050667. [PMID: 35625395 PMCID: PMC9137852 DOI: 10.3390/biology11050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Chronic wasting disease (CWD) is a contagious, fatal, neurodegenerative prion disease of cervids. The expanding geographical range and rising prevalence of CWD are increasing the risk of pathogen transfer and spillover of CWD to non-cervid sympatric species. As beavers have close contact with environmental and food sources of CWD infectivity, we hypothesized that they may be susceptible to CWD prions. We evaluated the susceptibility of beavers to prion diseases by challenging transgenic mice expressing beaver prion protein (tgBeaver) with five strains of CWD, four isolates of rodent-adapted prions and one strain of Creutzfeldt-Jakob disease. All CWD strains transmitted to the tgBeaver mice, with attack rates highest from moose CWD and the 116AG and H95+ strains of deer CWD. Mouse-, rat-, and especially hamster-adapted prions were also transmitted with complete attack rates and short incubation periods. We conclude that the beaver prion protein is an excellent substrate for sustaining prion replication and that beavers are at risk for CWD pathogen transfer and spillover.
Collapse
|
5
|
O’Hara E, Herbst A, Kommadath A, Aiken JM, McKenzie D, Goodarzi N, Skinner P, Stothard P. Neural transcriptomic signature of chronic wasting disease in white-tailed deer. BMC Genomics 2022; 23:69. [PMID: 35062879 PMCID: PMC8783489 DOI: 10.1186/s12864-022-08306-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background The increasing prevalence and expanding geographical range of the chronic wasting disease (CWD) panzootic in cervids is threatening human, animal, environmental and economic health. The pathogenesis of CWD in cervids is, however, not well understood. We used RNA sequencing (RNA-seq) to compare the brain transcriptome from white-tailed deer (WTD; Odocoileus virginianus) clinically affected with CWD (n = 3) to WTD that tested negative (n = 8) for CWD. In addition, one preclinical CWD+ brain sample was analyzed by RNA-seq. Results We found 255 genes that were significantly deregulated by CWD, 197 of which were upregulated. There was a high degree of overlap in differentially expressed genes (DEGs) identified when using either/both the reference genome assembly of WTD for mapping sequenced reads to or the better characterized genome assembly of a closely related model species, Bos taurus. Quantitative PCR of a subset of the DEGs confirmed the RNA-seq data. Gene ontology term enrichment analysis found a majority of genes involved in immune activation, consistent with the neuroinflammatory pathogenesis of prion diseases. A metagenomic analysis of the RNA-seq data was conducted to look for the presence of spiroplasma and other bacteria in CWD infected deer brain tissue. Conclusions The gene expression changes identified highlight the role of innate immunity in prion infection, potential disease associated biomarkers and potential targets for therapeutic agents. An association between CWD and spiroplasma infection was not found. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08306-0.
Collapse
|
6
|
Gushue D, Herbst A, Sim V, McKenzie D, Aiken JM. 14-3-3 and enolase abundances in the CSF of Prion diseased rats. Prion 2018; 12:253-260. [PMID: 30149773 PMCID: PMC6277185 DOI: 10.1080/19336896.2018.1513317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is characterized by an extended asymptomatic preclinical phase followed by rapid neurodegeneration. There are no effective treatments. CJD diagnosis is initially suspected based upon the clinical presentation of the disease and the exclusion of other etiologies. Neurologic symptoms are assessed in combination with results from cerebrospinal fluid (CSF) biomarker abundances, electroencephalography (EEG), magnetic resonance imaging (MRI), and in some countries, real-time quaking-induced conversion (RT-QuIC). Inconsistencies in sensitivities and specificities of prion disease biomarker abundance in CSF have been described, which can affect diagnostic certainty, but the utility of biomarkers for prognosis has not been fully explored. The clinical presentation of CJD is variable, and factors such as prion protein polymorphic variants, prion strain, and other genetic or environmental contributions may affect the disease progression, confounding the appearance or abundance of biomarkers in the CSF. These same factors may also affect the appearance or abundance of biomarkers, further confounding diagnosis. In this study, we controlled for many of these variables through the analysis of serial samples of CSF from prion-infected and control rats. Prion disease in laboratory rodents follows a defined disease course as the infection route and time, prion strain, genotype, and environmental conditions are all controlled. We measured the relative abundance of 14-3-3 and neuron-specific enolase (NSE) in CSF during the course of prion infection in rats. Even when disease-related, environmental and genetic variables were controlled, CSF 14-3-3 and NSE abundances were variable. Our study emphasizes the considerable diagnostic and prognostic limitations of these prion biomarkers.
Collapse
Affiliation(s)
- Danielle Gushue
- a Department of Agricultural, Food and Nutritional Sciences, Centre for Prions and Protein Folding Diseases , University of Alberta , Edmonton , Canada
| | - Allen Herbst
- a Department of Agricultural, Food and Nutritional Sciences, Centre for Prions and Protein Folding Diseases , University of Alberta , Edmonton , Canada
| | - Valerie Sim
- b Department of Medicine - Division of Neurology, Centre for Prions and Protein Folding Diseases , University of Alberta , Edmonton , Canada
| | - Debbie McKenzie
- c Department of Biological Sciences, Centre for Prions and Protein Folding Diseases , University of Alberta , Edmonton , Canada
| | - Judd M Aiken
- a Department of Agricultural, Food and Nutritional Sciences, Centre for Prions and Protein Folding Diseases , University of Alberta , Edmonton , Canada
| |
Collapse
|
7
|
Abstract
Prion diseases are unique neurodegenerative pathologies that can occur with sporadic, genetic, and acquired etiologies. Human and animal prion diseases can be recapitulated in laboratory animals with good reproducibility providing highly controlled models for studying molecular mechanisms of neurodegeneration. In this chapter the overall area of omics research in prion diseases is described. The term omics includes all fields of studies that employ a comprehensive, unbiased, and high-throughput approach to areas of research such as functional genomics, transcriptomics, and proteomics. These kind of approaches can be extremely helpful in identifying disease susceptibility factors and pathways that are dysregulated upon the onset and the progression of the disease. Herein, the most important research about the various forms of prion pathologies in human and in models of prion diseases in animals is presented and discussed.
Collapse
|