1
|
Loganathan V, Ahamed A, Radhakrishnan S, Z. Gaafar AR, Gurusamy R, Akbar I. Synthesis of anthraquinone-connected coumarin derivatives via grindstone method and their evaluation of antibacterial, antioxidant, tyrosinase inhibitory activities with molecular docking, and DFT calculation studies. Heliyon 2024; 10:e25168. [PMID: 38356501 PMCID: PMC10864903 DOI: 10.1016/j.heliyon.2024.e25168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Anthraquinones and coumarins have excellent pharmacological activities and are an important class of natural plant metabolites with various biological activities. In this study, anthraquinone-9,10-dione and coumarin derivatives were combined to develop a novel anthraquinone-connected coumarin-derivative sequence. The synthesised novel anthraquinone-connected coumarin derivatives (1a-t) were screened for in vitro antibacterial, antioxidant, and tyrosinase inhibitory activities. The antibacterial activities of the synthesised compounds (1a-t) were tested against both gram-positive and gram-negative bacteria. Specifically, compound 1t was more active against E. aerogenes than ciprofloxacin. With regard to antioxidant activity, compound 1o (50.68 % at 100 μg/mL) was highly active compared to the other compounds, whereas it was less active than the standard BHT (76.74 % at 100 μg/mL). In terms of compound 1r (9.31 ± 0.45 μg/mL) was highly active against tyrosinase inhibitory activity compared with kojic acid (10.42 ± 0.98 μg/mL). In the molecular docking study, compound 1r had a higher docking score (-8.8 kcal mol-1) than kojic acid (-1.7 kcal mol-1). DFT calculations were performed to determine the energy gap of highly active compound 1r (ΔE = 0.11) and weakly active compound 1a (ΔE = 0.12). In this study, we found that every molecule displayed significant antibacterial, antioxidant, and tyrosinase inhibitory properties. Based on these reports, compounds 1r and 1t may act as multi-target agents.
Collapse
Affiliation(s)
- Velmurugan Loganathan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, 621007, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Surendrakumar Radhakrishnan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, 621007, India
| | - Abdel-Rhman Z. Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Raman Gurusamy
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Gyeongsan-buk, South Korea
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, 621007, India
| |
Collapse
|
2
|
Finina BF, Mersha AK. Nano-enabled antimicrobial thin films: design and mechanism of action. RSC Adv 2024; 14:5290-5308. [PMID: 38357038 PMCID: PMC10866018 DOI: 10.1039/d3ra07884a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Antimicrobial thin films are types of protective coatings that are applied to surfaces such as medical devices, food packaging materials, water-resistant coatings, and other systems. These films prevent and reduce the spread of microbial organisms, including bacteria, fungi, and viruses. Antimicrobial thin films can be prepared from a variety of nanostructured materials including metal nanoparticles, metal oxides, plant materials, enzymes, bacteriocins and polymers. Their antimicrobial mechanism varies mostly based on the types of active agents from which the film is made of. Antimicrobial thin films are becoming increasingly popular microbial treatment methods due to their advantages such as enhanced stability, reduced toxicity levels, extended effectiveness over time and broad spectrum antimicrobial action without side effects on human health or the environment. This popularity and enhanced performance is mainly due to the extended possibility of film designs. Thin films offer convenient formulation methods which makes them suitable for commercial practices aiming at high turnover rates along with residential applications requiring frequent application cycles. This review focuses on recent developments in the possible processing methods and design approaches for assembling the various types of antimicrobial materials into nanostructured thin film-based delivery systems, along with mechanisms of action against microbes.
Collapse
Affiliation(s)
- Bilisuma Fekadu Finina
- Department of Industrial Chemistry, Addis Ababa Science and Technology University Addis Ababa Ethiopia
- Department of Chemistry, Kotebe University of Education Addis Ababa Ethiopia
| | - Anteneh Kindu Mersha
- Department of Industrial Chemistry, Addis Ababa Science and Technology University Addis Ababa Ethiopia
- Nanotechnology Center of Excellence, Addis Ababa Science and Technology University Addis Ababa Ethiopia
| |
Collapse
|
3
|
Amorim J, Vásquez V, Cabrera A, Martínez M, Carpio J. In Silico and In Vitro Identification of 1,8-Dihydroxy-4,5-dinitroanthraquinone as a New Antibacterial Agent against Staphylococcus aureus and Enterococcus faecalis. Molecules 2023; 29:203. [PMID: 38202786 PMCID: PMC10779913 DOI: 10.3390/molecules29010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Increasing rates of bacterial resistance to antibiotics are a growing concern worldwide. The search for potential new antibiotics has included several natural products such as anthraquinones. However, comparatively less attention has been given to anthraquinones that exhibit functional groups that are uncommon in nature. In this work, 114 anthraquinones were evaluated using in silico methods to identify inhibitors of the enzyme phosphopantetheine adenylyltransferase (PPAT) of Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli. Virtual screenings based on molecular docking and the pharmacophore model, molecular dynamics simulations, and free energy calculations pointed to 1,8-dihydroxy-4,5-dinitroanthraquinone (DHDNA) as the most promising inhibitor. In addition, these analyses highlighted the contribution of the nitro group to the affinity of this anthraquinone for the nucleotide-binding site of PPAT. Furthermore, DHDNA was active in vitro towards Gram-positive bacteria with minimum inhibitory concentration (MIC) values of 31.25 µg/mL for S. aureus and 62.5 µg/mL for E. faecalis against both antibiotic-resistant isolates and reference strains but was ineffective against E. coli. Experiments on kill-time kinetics indicated that, at the tested concentrations, DHDNA produced bacteriostatic effects on both Gram-positive bacteria. Overall, our results present DHDNA as a potential PPAT inhibitor, showing antibacterial activity against antibiotic-resistant isolates of S. aureus and E. faecalis, findings that point to nitro groups as key to explaining these results.
Collapse
Affiliation(s)
| | | | | | | | - Juan Carpio
- Unidad de Salud y Bienestar, Facultad de Bioquímica y Farmacia, Universidad Católica de Cuenca, Av. Las Américas, Cuenca 010105, Ecuador
| |
Collapse
|
4
|
Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, Wang X, Zhou W. Antibacterial activities of anthraquinones: structure-activity relationships and action mechanisms. RSC Med Chem 2023; 14:1446-1471. [PMID: 37593578 PMCID: PMC10429894 DOI: 10.1039/d3md00116d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
With the increasing prevalence of untreatable infections caused by antibiotic-resistant bacteria, the discovery of new drugs from natural products has become a hot research topic. The antibacterial activity of anthraquinones widely distributed in traditional Chinese medicine has attracted much attention. Herein, the structure and activity relationships (SARs) of anthraquinones as bacteriostatic agents are reviewed and elucidated. The substituents of anthraquinone and its derivatives are closely related to their antibacterial activities. The stronger the polarity of anthraquinone substituents is, the more potent the antibacterial effects appear. The presence of hydroxyl groups is not necessary for the antibacterial activity of hydroxyanthraquinone derivatives. Substitution of di-isopentenyl groups can improve the antibacterial activity of anthraquinone derivatives. The rigid plane structure of anthraquinone lowers its water solubility and results in the reduced activity. Meanwhile, the antibacterial mechanisms of anthraquinone and its analogs are explored, mainly including biofilm formation inhibition, destruction of the cell wall, endotoxin inhibition, inhibition of nucleic acid and protein synthesis, and blockage of energy metabolism and other substances.
Collapse
Affiliation(s)
- Tang Qun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Tiantian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University 440113 Guangzhou China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Jing Xu
- Huanghua Agricultural and Rural Development Bureau Bohai New Area 061100 Hebei China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| |
Collapse
|
5
|
Konwar B, Mullick P, Das G, Ramesh A. Anthraquinone-Based Ligands as MNase Inhibitors: Insights from Inhibition Studies and Generation of a Payload Nanocarrier for Potential Anti-MRSA Therapy. ChemMedChem 2023; 18:e202200711. [PMID: 37062965 DOI: 10.1002/cmdc.202200711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
The present study highlights the prospect of an anthraquinone-based ligand (C1) as an inhibitor of micrococcal nuclease (MNase) enzyme secreted by Staphylococcus aureus. MNase inhibition rendered by 5.0 μM C1 was ∼96 % and the ligand could significantly distort the β-sheet conformation present in MNase. Mechanistic studies revealed that C1 rendered non-competitive inhibition, reduced the turnover (Kcat ) and catalytic efficiency (Km /Kcat ) of MNase with an IC50 value of 323 nM. C1 could also inhibit nuclease present in the cell-free supernatant (CFS) of a methicillin-resistant Staphylococcus aureus (MRSA) strain. A C1-loaded human serum albumin (HSA)-based nanocarrier (C1-HNC) was developed, which was amicable to protease-triggered release of payload in presence of the CFS of an MRSA strain. Eluates from C1-HNC could effectively reduce the rate of MNase-catalyzed DNA cleavage. The non-toxic nature of C1-HNC in conjunction with the non-competitive mode of MNase inhibition rendered by C1 offers interesting therapeutic prospect in alleviation of MRSA infections.
Collapse
Affiliation(s)
- Barlina Konwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781038, Assam, India
| | - Priya Mullick
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781038, Assam, India
- Present address: Department of Biology, Washington University in St Louis S, t Louis, MO 63130, USA
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781038, Assam, India
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781038, Assam, India
| |
Collapse
|
6
|
Lysosomes as a Target of Anticancer Therapy. Int J Mol Sci 2023; 24:ijms24032176. [PMID: 36768500 PMCID: PMC9916765 DOI: 10.3390/ijms24032176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Lysosomes are organelles containing acidic hydrolases that are responsible for lysosomal degradation and the maintenance of cellular homeostasis. They play an important role in autophagy, as well as in various cell death pathways, such as lysosomal and apoptotic death. Various agents, including drugs, can induce lysosomal membrane permeability, resulting in the translocation of acidic hydrolases into the cytoplasm, which promotes lysosomal-mediated death. This type of death may be of great importance in anti-cancer therapy, as both cancer cells with disturbed pathways leading to apoptosis and drug-resistant cells can undergo it. Important compounds that damage the lysosomal membrane include lysosomotropic compounds, antihistamines, immunosuppressants, DNA-damaging drugs, chemotherapeutics, photosensitizers and various plant compounds. An interesting approach in the treatment of cancer and the search for ways to overcome the chemoresistance of cancer cells may also be combining lysosomotropic compounds with targeted modulators of autophagy to induce cell death. These compounds may be an alternative in oncological treatment, and lysosomes may become a promising therapeutic target for many diseases, including cancer. Understanding the functional relationships between autophagy and apoptosis and the possibilities of their regulation, both in relation to normal and cancer cells, can be used to develop new and more effective anticancer therapies.
Collapse
|
7
|
Villanueva X, Zhen L, Ares JN, Vackier T, Lange H, Crestini C, Steenackers HP. Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Front Microbiol 2023; 13:987164. [PMID: 36687646 PMCID: PMC9853077 DOI: 10.3389/fmicb.2022.987164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/18/2022] [Indexed: 01/08/2023] Open
Abstract
Background Tannins have demonstrated antibacterial and antibiofilm activity, but there are still unknown aspects on how the chemical properties of tannins affect their biological properties. We are interested in understanding how to modulate the antibiofilm activity of tannins and in delineating the relationship between chemical determinants and antibiofilm activity. Materials and methods The effect of five different naturally acquired tannins and their chemical derivatives on biofilm formation and planktonic growth of Salmonella Typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was determined in the Calgary biofilm device. Results Most of the unmodified tannins exhibited specific antibiofilm activity against the assayed bacteria. The chemical modifications were found to alter the antibiofilm activity level and spectrum of the tannins. A positive charge introduced by derivatization with higher amounts of ammonium groups shifted the anti-biofilm spectrum toward Gram-negative bacteria, and derivatization with lower amounts of ammonium groups and acidifying derivatization shifted the spectrum toward Gram-positive bacteria. Furthermore, the quantity of phenolic OH-groups per molecule was found to have a weak impact on the anti-biofilm activity of the tannins. Conclusion We were able to modulate the antibiofilm activity of several tannins by specific chemical modifications, providing a first approach for fine tuning of their activity and antibacterial spectrum.
Collapse
Affiliation(s)
- Xabier Villanueva
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Lili Zhen
- Department of Chemical Science and Technologies, University of Rome ‘Tor Vergata’, Rome, Italy,CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy
| | - José Nunez Ares
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Heverlee, Belgium
| | - Thijs Vackier
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium
| | - Heiko Lange
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Claudia Crestini
- CSGI – Center for Colloid and Surface Science, Sesto Fiorentino, Italy,Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
| | - Hans P. Steenackers
- Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Heverlee, Belgium,*Correspondence: Hans P. Steenackers,
| |
Collapse
|
8
|
An In-Silico Evaluation of Anthraquinones as Potential Inhibitors of DNA Gyrase B of Mycobacterium tuberculosis. Microorganisms 2022; 10:microorganisms10122434. [PMID: 36557686 PMCID: PMC9783175 DOI: 10.3390/microorganisms10122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization reported that tuberculosis remains on the list of the top ten threats to public health worldwide. Among the main causes is the limited effectiveness of treatments due to the emergence of resistant strains of Mycobacterium tuberculosis. One of the main drug targets studied to combat M. tuberculosis is DNA gyrase, the only enzyme responsible for regulating DNA topology in this specie and considered essential in all bacteria. In this context, the present work tested the ability of 2824 anthraquinones retrieved from the PubChem database to act as competitive inhibitors through interaction with the ATP-binding pocket of DNA gyrase B of M. tuberculosis. Virtual screening results based on molecular docking identified 7122772 (N-(2-hydroxyethyl)-9,10-dioxoanthracene-2-sulfonamide) as the best-scored ligand. From this anthraquinone, a new derivative was designed harbouring an aminotriazole moiety, which exhibited higher binding energy calculated by molecular docking scoring and free energy calculation from molecular dynamics simulations. In addition, in these last analyses, this ligand showed to be stable in complex with the enzyme and further predictions indicated a low probability of cytotoxic and off-target effects, as well as an acceptable pharmacokinetic profile. Taken together, the presented results show a new synthetically accessible anthraquinone with promising potential to inhibit the GyrB of M. tuberculosis.
Collapse
|
9
|
Quinones as an Efficient Molecular Scaffold in the Antibacterial/Antifungal or Antitumoral Arsenal. Int J Mol Sci 2022; 23:ijms232214108. [PMID: 36430585 PMCID: PMC9697455 DOI: 10.3390/ijms232214108] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Quinone-based compounds constitute several general classes of antibiotics that have long shown unwavering efficiency against both Gram-positive and Gram-negative microbial infections. These quinone-based antibiotics are increasingly popular due to their natural origins and are used in natural beverages from herbs or plants in African, Chinese and Indian traditional medicines to treat and prevent various diseases. Quinone-based antibiotics display different bioactive profiles depending on their structures and exert specific biocidal and anti-biofilm properties, and based on recent literature, will be discussed herein.
Collapse
|
10
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
11
|
Emodin Sensitizes Cervical Cancer Cells to Vinblastine by Inducing Apoptosis and Mitotic Death. Int J Mol Sci 2022; 23:ijms23158510. [PMID: 35955645 PMCID: PMC9369386 DOI: 10.3390/ijms23158510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
In recent years, studies on the effects of combining novel plant compounds with cytostatics used in cancer therapy have received considerable attention. Since emodin sensitizes tumor cells to chemotherapeutics, we evaluated changes in cervical cancer cells after its combination with the antimitotic drug vinblastine. Cellular changes were demonstrated using optical, fluorescence, confocal and electron microscopy. Cell viability was assessed by MTT assay. The level of apoptosis, caspase 3/7, Bcl-2 protein, ROS, mitochondrial membrane depolarization, cell cycle and degree of DNA damage were analyzed by flow cytometry. The microscopic image showed indicators characteristic for emodin- and vinblastine-induced mitotic catastrophe, i.e., multinucleated cells, giant cells, cells with micronuclei, and abnormal mitotic figures. These compounds also increased blocking of cells in the G2/M phase, and the generated ROS induced swelling and mitochondrial damage. This translated into the growth of apoptotic cells with active caspase 3/7 and inactivation of Bcl-2 protein and active ATM kinase. Emodin potentiated the cytotoxic effect of vinblastine, increasing oxidative stress, mitotic catastrophe and apoptosis. Preliminary studies show that the combined action of both compounds, may constitute an interesting form of anticancer therapy.
Collapse
|
12
|
Sirichoat A, Kham-Ngam I, Kaewprasert O, Ananta P, Wisetsai A, Lekphrom R, Faksri K. Assessment of antimycobacterial activities of pure compounds extracted from Thai medicinal plants against clarithromycin-resistant Mycobacterium abscessus. PeerJ 2021; 9:e12391. [PMID: 34760385 PMCID: PMC8555507 DOI: 10.7717/peerj.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background Infection with Mycobacterium abscessus is usually chronic and is associated with clarithromycin resistance. Increasing drug resistance is a major public-health problem and has led to the search for new antimycobacterial agents. We evaluated the antimycobacterial activity, toxicity, and synergistic effects of several plant secondary metabolites against M. abscessus. Methods Twenty-three compounds were evaluated for antimycobacterial activity against thirty M. abscessus clinical isolates by broth microdilution to determine their minimum inhibitory concentration (MIC) values. Toxicity was evaluated using red and white blood cells (RBCs and WBCs). The compounds were used in combination with clarithromycin to investigate the possibility of synergistic activity. Results Five out of twenty-three compounds (RL008, RL009, RL011, RL012 and RL013) exhibited interesting antimycobacterial activity against M. abscessus, with MIC values ranging from <1 to >128 μg/mL. These extracts did not induce hemolytic effect on RBCs and displayed low toxicity against WBCs. The five least-toxic compounds were tested for synergism with clarithromycin against seven isolates with inducible clarithromycin resistance and seven with acquired clarithromycin resistance. The best synergistic results against these isolates were observed for RL008 and RL009 (8/14 isolates; 57%). Conclusions This study demonstrated antimycobacterial and synergistic activities of pure compounds extracted from medicinal plants against clarithromycin-resistant M. abscessus. This synergistic action, together with clarithromycin, may be effective for treating infections and should be further studied for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Auttawit Sirichoat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| | - Irin Kham-Ngam
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| | - Orawee Kaewprasert
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| | - Pimjai Ananta
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Clinical Laboratory Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Awat Wisetsai
- Natural Products Research Unit, Department of Chemistry, and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Ratsami Lekphrom
- Natural Products Research Unit, Department of Chemistry, and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Natural Methoxyphenol Compounds: Antimicrobial Activity against Foodborne Pathogens and Food Spoilage Bacteria, and Role in Antioxidant Processes. Foods 2021; 10:foods10081807. [PMID: 34441583 PMCID: PMC8392586 DOI: 10.3390/foods10081807] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The antibacterial and antioxidant activities of three methoxyphenol phytometabolites, eugenol, capsaicin, and vanillin, were determined. The in vitro antimicrobial potential was tested on three common foodborne pathogens (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus) and three food spoilage bacteria (Shewanella putrefaciens, Brochothrix thermosphacta, and Lactobacillus plantarum). The antioxidant assays were carried out for studying the free radical scavenging capacity and the anti-lipoperoxidant activity. The results showed that eugenol and capsaicin were the most active against both pathogens and spoilage bacteria. S. aureus was one of the most affected strains (median concentration of growth inhibition: IC50 eugenol = 0.75 mM; IC50 capsaicin = 0.68 mM; IC50 vanillin = 1.38 mM). All phytochemicals slightly inhibited the growth of L. plantarum. Eugenol was the most active molecule in the antioxidant assays. Only in the oxygen radical absorbing capacity (ORAC) test did vanillin show an antioxidant activity comparable to eugenol (eugenol ORAC value = 2.12 ± 0.08; vanillin ORAC value = 1.81 ± 0.19). This study, comparing the antimicrobial and antioxidant activities of three guaiacol derivatives, enhances their use in future applications as food additives for contrasting both common pathogens and spoilage bacteria and for improving the shelf life of preserved food.
Collapse
|
14
|
Yazgan B, Mesci S, Bayık N, Akşahin M, Çiftçi GY, Yıldırım T. Explorations of ATP-Binding Cassette Transporters and Apoptosis Signal Pathways of 2-Hydroxyanthraquinone Substituted Cyclotriphosphazenes in MCF-7 and DLD-1 Cell Lines. Anticancer Agents Med Chem 2021; 22:1124-1138. [PMID: 34353271 DOI: 10.2174/1871520621666210805144252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND As a class with biological properties, such as anti-cancer, anti-bacterial, anti-HIV, and various physical effects, phosphazene derivatives constitute the most striking part of inorganic compounds. Anthraquinones, on the other hand, are a broad family of compounds with a wide variety of biological properties; the biologically active anthraquinones have been used as valuable tool compounds for biochemical and pharmacological research. OBJECTIVE In this study, we aimed to investigate the effect of the anthraquinone substituted cyclotriphosphazene compounds on apoptosis and drug resistance in MCF-7 and DLD-1 cells. METHODS In breast and colon cells, mRNA levels of multi-drug resistance genes (ABCB1, ABCC3, ABCC10, ABCC11, and ABCG2), apoptotic genes (BAX, BCL-2, p53, and PARP), heat shock (HSP27, HSP40, HSP60, HSP90α) and endoplasmic reticulum chaperone genes (GRP78, and GRP94) were determined by the qPCR method. The amount of proteins of the cell cycle, HSPs, apoptosis, and related signaling pathways were measured by the membrane array kits. RESULTS Compounds 2, 3, 4, and 7 showed the most potent results on the ATP-binding cassette genes in both breast and colon cancer cells. These compounds have a remarkable effect on apoptotic, heat shock, and ER chaperone genes in cancer cells. Besides, these compounds induced protein levels of pro-apoptotic pathways, leading to apoptosis by inhibiting anti-apoptotic pathways. Also, these compounds decreased HSPs. CONCLUSION These compounds have potential properties that eliminate drug resistance, suppress heat shock and ER chaperone genes, and drag cells to apoptotic cell death and are notable for drug studies.
Collapse
Affiliation(s)
- Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoğlu Serefeddin Health Services Vocational School, Amasya University, 05100, Amasya. Turkey
| | - Seda Mesci
- Scientific Technical Application and Research Center, Hitit University, 19030, Çorum. Turkey
| | - Nagihan Bayık
- Department of Chemistry, Faculty of Sciences, Gebze Technical University, 41400, Gebze, Kocaeli. Turkey
| | - Maşuk Akşahin
- University of Amasya, Institute of Science, Department of Biotechnology, Amasya. Turkey
| | - Gönül Yenilmez Çiftçi
- Department of Chemistry, Faculty of Sciences, Gebze Technical University, 41400, Gebze, Kocaeli. Turkey
| | - Tuba Yıldırım
- Department of Biology, Faculty of Arts and Sciences, Amasya University, 05100, Amasya. Turkey
| |
Collapse
|
15
|
Zeouk I, Ouedrhiri W, Sifaoui I, Bazzocchi IL, Piñero JE, Jiménez IA, Lorenzo-Morales J, Bekhti K. Bioguided Isolation of Active Compounds from Rhamnus alaternus against Methicillin-Resistant Staphylococcus aureus (MRSA) and Panton-Valentine Leucocidin Positive Strains (MSSA-PVL). Molecules 2021; 26:molecules26144352. [PMID: 34299627 PMCID: PMC8306708 DOI: 10.3390/molecules26144352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/24/2023] Open
Abstract
Despite intensified efforts to develop an effective antibiotic, S. aureus is still a major cause of mortality and morbidity worldwide. The multidrug resistance of bacteria has considerably increased the difficulties of scientific research and the concomitant emergence of resistance is to be expected. In this study we have investigated the in vitro activity of 15 ethanol extracts prepared from Moroccan medicinal plants traditionally used for treatment of skin infections. Among the tested species I. viscosa, C. oxyacantha, R. tinctorum, A. herba alba, and B. hispanica showed moderate anti-staphylococcal activity. However, R. alaternus showed promising growth-inhibitory effects against specific pathogenic bacteria especially methicillin-susceptible Staphylococcus aureus Panton-Valentine leucocidin positive (MSSA-PVL) and methicillin-resistant S. aureus (MRSA). The bioguided fractionation of this plant using successive chromatographic separations followed by nuclear magnetic resonance (NMR) and mass spectrometry (MS) including EIMS and HREIMS analysis yielded the emodin (1) and kaempferol (2). Emodin being the most active with MICs ranging between 15.62 and 1.95 µg/mL and showing higher activity against the tested strains in comparison with the crude extract, its mechanism of action and the structure-activity relationship were interestingly discussed. The active compound has not displayed toxicity toward murine macrophage cells. The results obtained in the current study support the traditional uses of R. alaternus and suggest that this species could be a good source for the development of new anti-staphylococcal agents.
Collapse
Affiliation(s)
- Ikrame Zeouk
- Instituto Universitario De Enfermedades Tropicales y Salud Pública de Canarias, Universidad de la Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Department of Biology, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez 2202, Morocco;
- Correspondence: (I.Z.); (J.E.P.); (J.L.-M.); Tel.: +212-621-290-377 (I.Z.); +349-22-316-502 (J.E.P.); +349-22-318-402 (J.L.-M.)
| | - Wessal Ouedrhiri
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Department of Chemistry, Faculty of Science, Sidi Mohamed Ben Abdellah University, Fez 2202, Morocco;
| | - Ines Sifaoui
- Instituto Universitario De Enfermedades Tropicales y Salud Pública de Canarias, Universidad de la Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de la Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel L. Bazzocchi
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (I.L.B.); (I.A.J.)
| | - José E. Piñero
- Instituto Universitario De Enfermedades Tropicales y Salud Pública de Canarias, Universidad de la Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de la Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (I.Z.); (J.E.P.); (J.L.-M.); Tel.: +212-621-290-377 (I.Z.); +349-22-316-502 (J.E.P.); +349-22-318-402 (J.L.-M.)
| | - Ignacio A. Jiménez
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (I.L.B.); (I.A.J.)
| | - Jacob Lorenzo-Morales
- Instituto Universitario De Enfermedades Tropicales y Salud Pública de Canarias, Universidad de la Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de la Laguna, 38203 La Laguna, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (I.Z.); (J.E.P.); (J.L.-M.); Tel.: +212-621-290-377 (I.Z.); +349-22-316-502 (J.E.P.); +349-22-318-402 (J.L.-M.)
| | - Khadija Bekhti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Department of Biology, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez 2202, Morocco;
| |
Collapse
|
16
|
Lagarde A, Mambu L, Mai PY, Champavier Y, Stigliani JL, Beniddir MA, Millot M. Chlorinated bianthrones from the cyanolichen Nephroma laevigatum. Fitoterapia 2021; 149:104811. [PMID: 33359429 DOI: 10.1016/j.fitote.2020.104811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022]
Abstract
While depsidones, depsides or dibenzofuran-like compounds dominate the chemical composition of lichens, the cyanolichen Nephroma laevigatum affords a diversity of quinoid pigments represented by chlorinated anthraquinones derived from emodin and new bianthrones resulting from the homo- or heterodimerization of monomers. Bianthrones were pointed out from the dichloromethane extract by MS/MS-based molecular networking, then isolated and characterized on the basis of extensive spectroscopic analyzes and GIAO NMR shift calculation followed by CP3 analyzes.
Collapse
Affiliation(s)
- Aurélie Lagarde
- Departement de Pharmacognosie, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Lengo Mambu
- Departement de Pharmacognosie, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France.
| | - Phuong-Y Mai
- Departement de Pharmacognosie, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Yves Champavier
- Plateforme BISCEm, Université de Limoges, 2 Rue du Pr Descottes, 87025 Limoges Cedex, France.
| | - Jean-Luc Stigliani
- Laboratoire de Chimie de Coordination, UPR CNRS 8241, Université de Toulouse UPS, France.
| | - Mehdi A Beniddir
- Équipe "Chimie des Substances Naturelles", Université Paris-Saclay, CNRS, BioCIS, 5, rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Marion Millot
- Departement de Pharmacognosie, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France.
| |
Collapse
|
17
|
Are antibacterial effects of non-antibiotic drugs random or purposeful because of a common evolutionary origin of bacterial and mammalian targets? Infection 2020; 49:569-589. [PMID: 33325009 PMCID: PMC7737717 DOI: 10.1007/s15010-020-01547-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
Purpose Advances in structural biology, genetics, bioinformatics, etc. resulted in the availability of an enormous pool of information enabling the analysis of the ancestry of pro- and eukaryotic genes and proteins. Methods This review summarizes findings of structural and/or functional homologies of pro- and eukaryotic enzymes catalysing analogous biological reactions because of their highly conserved active centres so that non-antibiotics interacted with bacterial targets. Results Protease inhibitors such as staurosporine or camostat inhibited bacterial serine/threonine or serine/tyrosine protein kinases, serine/threonine phosphatases, and serine/threonine kinases, to which penicillin-binding-proteins are linked, so that these drugs synergized with β-lactams, reverted aminoglycoside-resistance and attenuated bacterial virulence. Calcium antagonists such as nitrendipine or verapamil blocked not only prokaryotic ion channels but interacted with negatively charged bacterial cell membranes thus disrupting membrane energetics and inducing membrane stress response resulting in inhibition of P-glycoprotein such as bacterial pumps thus improving anti-mycobacterial activities of rifampicin, tetracycline, fluoroquinolones, bedaquilin and imipenem-activity against Acinetobacter spp. Ciclosporine and tacrolimus attenuated bacterial virulence. ACE-inhibitors like captopril interacted with metallo-β-lactamases thus reverting carbapenem-resistance; prokaryotic carbonic anhydrases were inhibited as well resulting in growth impairment. In general, non-antibiotics exerted weak antibacterial activities on their own but synergized with antibiotics, and/or reverted resistance and/or attenuated virulence. Conclusions Data summarized in this review support the theory that prokaryotic proteins represent targets for non-antibiotics because of a common evolutionary origin of bacterial- and mammalian targets resulting in highly conserved active centres of both, pro- and eukaryotic proteins with which the non-antibiotics interact and exert antibacterial actions.
Collapse
|
18
|
Reddy PRK, Elghandour M, Salem A, Yasaswini D, Reddy PPR, Reddy AN, Hyder I. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114469] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Nguyen TTH, Shin HJ, Pandey RP, Jung HJ, Liou K, Sohng JK. Biosynthesis of Rhamnosylated Anthraquinones in Escherichia coli. J Microbiol Biotechnol 2020; 30:398-403. [PMID: 31893599 PMCID: PMC9728250 DOI: 10.4014/jmb.1911.11047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhamnose is a naturally occurring deoxysugar present as a glycogenic component of plant and microbial natural products. A recombinant mutant Escherichia coli strain was developed by overexpressing genes involved in the TDP-L-rhamnose biosynthesis pathway of different bacterial strains and Saccharothrix espanaensis rhamnosyl transferase to conjugate intrinsic cytosolic TDP-L-rhamnose with anthraquinones supplemented exogenously. Among the five anthraquinones (alizarin, emodin, chrysazin, anthrarufin, and quinizarin) tested, quinizarin was biotransformed into a rhamoside derivative with the highest conversion ratio by whole cells of engineered E. coli. The quinizarin glycoside was identified by various chromatographic and spectroscopic analyses. The anti-proliferative property of the newly synthesized rhamnoside, quinizarin-4-O-α-L-rhamnoside, was assayed in various cancer cells.
Collapse
Affiliation(s)
- Trang Thi Huyen Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea
| | - Hee Jeong Shin
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| | - Kwangkyoung Liou
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea,Corresponding author Phone: +82-41-530-2246 Fax: +82-41-544-2919 E-mail:
| |
Collapse
|
20
|
Sass G, Tsamo AT, Chounda GAM, Nangmo PK, Sayed N, Bozzi A, Wu JC, Nkengfack AE, Stevens DA. Vismione B Interferes with Trypanosoma cruzi Infection of Vero Cells and Human Stem Cell-Derived Cardiomyocytes. Am J Trop Med Hyg 2020; 101:1359-1368. [PMID: 31571568 DOI: 10.4269/ajtmh.19-0350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditional African medicine is a source of new molecules that might be useful in modern therapeutics. We tested ten limonoids, six quinones, one xanthone, one alkaloid, and one cycloartane, isolated from four Cameroonian medicinal plants, and one plant-associated endophytic fungus, against Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Vero cells, or human-induced pluripotent stem cells (hiPSC)-derived cardiomyocytes (hiPSC-CM) were infected with T. cruzi trypomastigotes (discrete typing unit types I or II). Infection took place in the presence of drugs, or 24 hours before drug treatment. Forty-eight hours after infection, infection rates and parasite multiplication were evaluated by Giemsa stain. Cell metabolism was measured to determine functional integrity. In Vero cells, several individual molecules significantly affected T. cruzi infection and multiplication with no, or minor, effects on cell viability. Reduced infection rates and multiplication by the quinone vismione B was superior to the commonly used therapeutic benznidazole (BNZ). The vismione B concentration inhibiting 50% of T. cruzi infection (IC50) was 1.3 µM. When drug was applied after infection, anti-Trypanosoma effects of vismione B [10 µM) were significantly stronger than effects of BNZ (23 µM). Furthermore, in hiPSC-CM cultures, infection and multiplication rates in the presence of vismione B (10 µM) were significantly lower than in BNZ (11.5 µM), without showing signs of cytotoxicity. Our data indicate that vismione B is more potent against T. cruzi infection and multiplication than BNZ, with stronger effects on established infection. Vismione B, therefore, might become a promising lead molecule for treatment development for CD.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, California
| | - Armelle T Tsamo
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Gwladys A M Chounda
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Pamela K Nangmo
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Nazish Sayed
- Department of Radiology, School of Medicine, Stanford University, Stanford, California.,Division of Cardiology, Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Institute of Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Adriana Bozzi
- California Institute for Medical Research, San Jose, California.,Division of Cardiology, Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Institute of Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California.,Institute of Research René Rachou, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil.,Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Radiology, School of Medicine, Stanford University, Stanford, California
| | - Joseph C Wu
- Division of Cardiology, Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Radiology, School of Medicine, Stanford University, Stanford, California.,Institute of Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Augustin E Nkengfack
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - David A Stevens
- Institute of Research René Rachou, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil.,California Institute for Medical Research, San Jose, California
| |
Collapse
|
21
|
Limban C, Diţu LM, Măruțescu L, Missir AV, Chifiriuc MC, Căproiu MT, Morusciag L, Chiriţă C, Udrea AM, Nuţă DC, Avram S. Design, Synthesis and Biopharmacological Profile Evaluation of New 2-((4- Chlorophenoxy)Methyl)-N-(Arylcarbamothioyl)Benzamides with Broad Spectrum Antifungal Activity. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190621162950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The emerging antifungal resistance represents a major challenge for the treatment
of severe fungal infections, highlighting the need to develop novel and efficient antifungal
compounds. This study aimed to synthesize new title compounds and screen them
for their antifungal activity in order to generate highly accurate structure - activity relationships
of 2-((4-chlorophenoxy)methyl)-N-(arylcarbamothioyl)benzamides and their de novo
derivatives and to unveil some of their mechanisms of action by flow cytometry and fluorescence
microscopy. The presence of functional groups was confirmed for nine new 2-((4-
chlorophenoxy) methyl)-N-(arylcarbamothioyl)benzamides, using experimental and in silico
methods. The antifungal activity was assessed against a broad spectrum of 26 yeast and
filamentous fungal strains, using qualitative and quantitative assays. The results showed
that Candida kefyr has been the most susceptible to all tested compounds, while 1b and 1f induced a strong inhibitory
effect on the filamentous fungi Alternaria rubi, Aspergillus ochraceus and A. niger strains growth. The
derivative 1c in subinhibitory concentrations alsoincreased the susceptibility of Candida albicans clinical
strains to azoles. Predicted drug likeness and pharmacokinetics profiles of most active compounds were compared
with the standard antifungal ketoconazole. Furthermore, the potentially more potent 1c and 1f derivatives
were designed and studied regarding the chemical structure-biological activity relationship and pharmacokinetics
profiles versus ketoconazole. The study confirms that the new benzamide derivatives exhibited an improved
pharmacokinetics profile and a good antifungal activity, acting at least by increasing membrane permeability of
fungal cells. Our results are recommending them as promising candidates for the development of novel therapeutic
alternatives.
Collapse
Affiliation(s)
- Carmen Limban
- Department of Pharmaceutical Chemistry, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia No. 6, Bucharest, 020956, Romania
| | - Lia M. Diţu
- Department of Botanic- Microbiology, Faculty of Biology, University of Bucharest, Research Institute of University of Bucharest- ICUB, Spl. Independentei no. 91-95, Bucharest, Romania
| | - Luminița Măruțescu
- Department of Botanic- Microbiology, Faculty of Biology, University of Bucharest, Research Institute of University of Bucharest- ICUB, Spl. Independentei no. 91-95, Bucharest, Romania
| | - Alexandru V. Missir
- Department of Pharmaceutical Chemistry, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia No. 6, Bucharest, 020956, Romania
| | - Mariana C. Chifiriuc
- Department of Botanic- Microbiology, Faculty of Biology, University of Bucharest, Research Institute of University of Bucharest- ICUB, Spl. Independentei no. 91-95, Bucharest, Romania
| | - Miron T. Căproiu
- The Organic Chemistry Center, Romanian Academy “Costin D. Nenitescu, Splaiul Independentei, 202B, Bucharest, Romania
| | - Laurenţiu Morusciag
- Department of Pharmaceutical Chemistry, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia No. 6, Bucharest, 020956, Romania
| | - Cornel Chiriţă
- Department of Pharmacology and Clinical Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Udrea
- National Institute for Laser, Plasma and Radiation Physics, Magurele, Ilfov, Romania
| | - Diana C. Nuţă
- Department of Pharmaceutical Chemistry, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia No. 6, Bucharest, 020956, Romania
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Spl. Independentei no. 91-95, Bucharest, Romania
| |
Collapse
|
22
|
Vlaicu ID, Olar R, Maxim C, Chifiriuc MC, Bleotu C, Stănică N, Vasile Scăeţeanu G, Dulea C, Avram S, Badea M. Evaluating the biological potential of some new cobalt (II) complexes with acrylate and benzimidazole derivatives. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ioana Dorina Vlaicu
- National Institute of Materials Physics Atomistilor Str. 405A Măgurele‐Ilfov 077125 Romania
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of Bucharest 90‐92 Panduri Str 050663 Bucharest Romania
| | - Cătălin Maxim
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of Bucharest 90‐92 Panduri Str 050663 Bucharest Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of BiologyUniversity of Bucharest 1‐3 Aleea Portocalelor Str 60101 Bucharest Romania
| | - Coralia Bleotu
- Stefan S Nicolau Institute of Virology 285 Mihai Bravu Ave Bucharest Romania
| | - Nicolae Stănică
- Romanian Academy‘Ilie Murgulescu’ Physical Chemistry Institute 202 Splaiul Independentei 77208 Bucharest Romania
| | - Gina Vasile Scăeţeanu
- Department of Soil SciencesUniversity of Agronomical Sciences and Veterinary Medicine 59 Mărăşti Str., Sector 1 011464 Bucharest Romania
| | - Constanţa Dulea
- Pharma Serv. International SRL 52 Sabinelor Str., Sector 5 050853 Bucharest Romania
| | - Speranța Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of BiologyUniversity of Bucharest 91‐95 Splaiul Independentei Bucharest Romania
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of Bucharest 90‐92 Panduri Str 050663 Bucharest Romania
| |
Collapse
|
23
|
Li Y, Jiang JG. Health functions and structure-activity relationships of natural anthraquinones from plants. Food Funct 2019; 9:6063-6080. [PMID: 30484455 DOI: 10.1039/c8fo01569d] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anthraquinone compounds with the anthraquinone ring structure are widely found in traditional Chinese medicines and they are attracting a lot of attention due to their good pharmacological activity. Diversities of anthraquinones depend on their chemical structures, such as the number of anthraquinone rings and the substituents; what's more, the difference in chemical structure determines the difference in physiological activity. Based on results of previous studies, this review summarizes several natural anthraquinones identified from Chinese herbal medicines and their physiological activities including anti-cancer, anti-pathogenic microorganisms, anti-inflammatory, anti-oxidation, anti-osteoporosis, anti-depression, and anti-constipation. The source, effect, model, and action mechanism of the active anthraquinones are described in detail, from which their structure-activity relationship is summarized. By analyzing the relationship between anthraquinone structure and function, we found that, on the whole structure, the anthraquinone ring and anthraquinone glycosides have significant anticancer activity and anti-constipation activity, while for their substituents, anthraquinones substituted by alizarin have significant antioxidant activity and the polarity of the substituents is closely related to their antibacterial activities.
Collapse
Affiliation(s)
- Yu Li
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | | |
Collapse
|
24
|
Yordanova S, Vasileva-Tonkova E, Staneva D, Stoyanov S, Grabchev I. Synthesis and characterization of new water soluble 9,10-anthraquinonе and evaluation of its antimicrobial activity. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Tan J, Li L, Shi W, Sun D, Xu C, Miao Y, Fan H, Liu J, Cheng H, Wu M, Shen W. Protective Effect of 2-Hydroxymethyl Anthraquinone from Hedyotis diffusa Willd in Lipopolysaccharide-Induced Acute Lung Injury Mediated by TLR4-NF-κB Pathway. Inflammation 2018; 41:2136-2148. [DOI: 10.1007/s10753-018-0857-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|