1
|
Zhou RY, Qu JY, Niu HP, Lai L, Yuan PG, Wang YT, Yang N, Wang XH, Xi ZM, Wang XF. VvATG18a participates in grape resistance to gray mold induced by BR signaling pathway. Int J Biol Macromol 2025; 297:139877. [PMID: 39814277 DOI: 10.1016/j.ijbiomac.2025.139877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Autophagy plays an important role in responding to necrotrophic pathogens and plant signal hormones. Brassinosteroids (BRs) are a class of natural steroidal phytohormones that effectively regulated the disease resistance responses in grape. However, the molecular mechanism of BR-autophagy networks responsible for activation of host defense against gray mold remained to be elucidated. We reported a novel defense mechanism that BR-regulated autophagy in grape berry against gray mold. Exogenous application of 24-epibrassinolide (eBR) enhanced the grape disease resistance. Meanwhile, the endogenous BR was accumulated and BR signaling pathway was activated in the berries. In addition, transcriptome analysis in eBR-treated grapes infected with gray mold showed that the differentially expressed genes (DEGs) were enriched in the metabolic pathway of BR signaling pathway and autophagy. DNA affinity purification sequencing (Dap-seq), Yeast one-hybrid assay (Y1H) and dual luciferase assays (LUC) verified VvBZR1 bound to the promoter of VvATG18a to induce its gene expression. Overexpressing VvATG18a and VvBZR1 improved the resistance of grapes to gray mold. Overall, this study sheds light on the immune mechanisms underlying the involvement of the autophagy in grape innate immunity, highlighting the pivotal role of VvATG18a in enhancing disease resistance.
Collapse
Affiliation(s)
- Run-Yu Zhou
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Yan Qu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui-Ping Niu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Lai
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei-Guo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Yu-Ting Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ni Yang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xian-Hang Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhu-Mei Xi
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue-Fei Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Akhigbe R, Oyedokun P, Akhigbe T, Hamed M, Fidelis F, Omole A, Adeogun A, Akangbe M, Oladipo A. The consequences of climate change and male reproductive health: A review of the possible impact and mechanisms. Biochem Biophys Rep 2025; 41:101889. [PMID: 39717849 PMCID: PMC11664087 DOI: 10.1016/j.bbrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
A global decline in male fertility has been reported, and climate change is considered a major cause of this. Climate change refers to long-term shifts in temperatures and weather patterns, and results from greenhouse gas emissions like carbon dioxide and methane that act as a blanket wrapped around the earth, trapping heat and elevating temperatures. Sad to say, the consequences of climatic variation are beyond the dramatic elevated temperature, they include cold stress, increased malnutrition, air pollution, cardiovascular diseases respiratory tract infections, cancer, sexually transmitted infections, mental stress, and heat waves. These negative effects of climate change impair male reproductive function through multiple pathways, like ROS-sensitive signaling, suppression of steroidogenic markers, and direct damage to testicular cells. The present study aimed to describe the impact of the consequences of climate change on male reproductive health with details of the various mechanisms involved. This will provide an in-depth understanding of the pathophysiological and molecular basis of the possible climatic variation-induced decline in male fertility, which will aid in the development of preventive measures to abate the negative effects of climate change on male reproductive function.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - P.A. Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State Univeristy (Ejigbo Campus), Osogbo, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - F.B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A.I. Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa, USA
| | - A.E. Adeogun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M.D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A.A. Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
3
|
Zhou W, Li X, Li D, Jiang X, Yang Y, You J, Liu H, Cheng H, Wang H, Zhang M. Comparative transcriptome analysis provides novel insights into the seed germination of Panax japonicus, an endangered species in China. BMC PLANT BIOLOGY 2024; 24:1167. [PMID: 39639201 PMCID: PMC11619102 DOI: 10.1186/s12870-024-05904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Panax japonicus, an endangered species in China, is usually used as a traditional medicine with functions of hemostasis, pain relief, and detoxify. However, the seeds of P. japonicus are hard to germinate in natural conditions, and the molecular events and systematic changes occurring in seed germination are still largely unknown. In this study, we compared the seeds in different germination stages in terms of morphological features, antioxidant enzyme activities, and transcriptomics. The results indicated that sand storage at 25℃ for 120 d effectively released the seed dormancy of P. japonicus and promoted the seed germination. Moreover, sand storage treatment increased the antioxidant capacity of P. japonicus seeds through increasing the activities of SOD, POD, and CAT. The RNA-seq identified 28,908 differentially expressed genes (DEGs) between different germination stages, of which 1697 DEGs significantly changed throughout the whole germination process. Functional annotations showed that the seed germination of P. japonicus was mainly regulated by the DEGs related to pathways of ROS-scavenging metabolism, plant hormonal signal transduction, starch and sucrose metabolism, energy supply (glycolysis, pyruvate metabolism, and oxidative phosphorylation), and phenylpropanoid biosynthesis, as well as the transcription factors such as bHLHs, MYBs, WRKYs, and bZIPs. This study provides a foundation for unveiling molecular mechanisms underlying the seed germination and is beneficial for accelerating the development of P. japonicus industry.
Collapse
Affiliation(s)
- Wuxian Zhou
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Xiaoling Li
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
- Gongshui River Wetland Park Management Bureau of Xuan'en County, Enshi, 445000, China
| | - Darong Li
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Xiaogang Jiang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Yuying Yang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Jinwen You
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Haihua Liu
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Heng Cheng
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China
| | - Hua Wang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China.
| | - Meide Zhang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China.
| |
Collapse
|
4
|
Bijanzadeh E, Boostani HR, Hardie AG, Najafi-Ghiri M. Co-application of silicon and biochar affected anatomical and biochemical properties of corn leaf ( Zea mays L.) under soil nickel toxicity. Heliyon 2024; 10:e39161. [PMID: 39640829 PMCID: PMC11620124 DOI: 10.1016/j.heliyon.2024.e39161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Soil pollution with heavy metals is a threat to crop production. Practically, application of silicon (Si) with biochar can be a cost-effective approach to immobilize metals in contaminated soils. Investigation of the anatomical and biochemical changes of corn leaf is important for describing the mechanisms of Si and biochar soil application in alleviating the negative effects of nickel (Ni) toxicity. A factorial pot experiment was conducted to investigate the effect of Si (0, 250 and 500 mg Si kg-1 soil) in combination with rice husk biochar (RHB) or sheep manure biochar (SMB) prepared at two pyrolysis temperatures (300 and 500 °C) on anatomical and biochemical properties of corn leaves in a Ni-polluted soil. The length, width, area and weight of third-leaf, and metaxylem and protoxylem of midrib improved by application of Si250 with RHB more than SMB. At Si250, RHB300 and RHB500 improved the stomatal area by 31.7 and 27.7 % compared to control (without biochar), respectively. The leaf membrane stability index was increased by increasing Si application level and reached 69 % in RHB300. In contrast to total chlorophyll, the highest carotenoid content, catalase and peroxidase was obtained by control (without Si and biochar) followed by SMB. At Si250, the highest relative water content (RWC) was observed in RHB300 by 34.8 % increase. Also, RHB300 had the highest total dry matter, with increases of 82.2, 120.0 and 83.1 % at Si0, Si250 and Si500, respectively. By increasing the Si level and biochar application, the shoot Ni decreased between 42.1 and 133.3 %. Combined application of Si250 with RHB300 resulted in the highest dry matter through improving the leaf dimensions, metaxylem and protoxylem areas of midrib, membrane stability index, total chlorophyll, and RWC, while Ni uptake was reduced.
Collapse
Affiliation(s)
- Ehsan Bijanzadeh
- Department of Agreoecology, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran
| | - Hamid Reza Boostani
- Department of Soil Science, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran
| | - Ailsa G. Hardie
- Department of Soil Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Mahdi Najafi-Ghiri
- Department of Soil Science, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran
| |
Collapse
|
5
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
6
|
Shen X, Dai S, Chen M, Huang Y. Spermidine augments salt stress resilience in rice roots potentially by enhancing OsbZIP73's RNA binding capacity. BMC PLANT BIOLOGY 2024; 24:786. [PMID: 39160481 PMCID: PMC11334393 DOI: 10.1186/s12870-024-05492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Rice is a staple crop for over half of the global population, but soil salinization poses a significant threat to its production. As a type of polyamine, spermidine (Spd) has been shown to reduce stress-induced damage in plants, but its specific role and mechanism in protecting rice roots under salt stress require further investigation. RESULTS This study suggested spermidine (Spd) mitigates salt stress on rice root growth by enhancing antioxidant enzyme activity and reducing peroxide levels. Transcriptomic analysis showed that salt stress caused 333 genes to be upregulated and 1,765 to be downregulated. However, adding Spd during salt treatment significantly altered this pattern: 2,298 genes were upregulated and 844 were downregulated, which indicated Spd reverses some transcriptional changes caused by salt stress. KEGG pathway analysis suggested that Spd influenced key signaling pathways, including MAPK signaling, plant hormone signal transduction, and phenylalanine metabolism. Additionally, the bZIP transcription factor OsbZIP73 was upregulated after Spd treatment, which is confirmed by Western blot. Further insights into the interaction between OsbZIP73 and Spd were gained through fluorescence polarization experiments, showing that Spd enhances protein OsbZIP73's affinity for RNA. Functional enrichment analyses revealed that OsPYL1, OsSPARK1, and various SAUR family genes involved in Spd-affected pathways. The presence of G/A/C-box elements in these genes suggests they are potential targets for OsbZIP73. CONCLUSIONS Our findings suggest a strategy of using spermidine as a chemical alleviator for salt stress and provide insights into the regulatory function of OsbZIP73 in mitigating salt stress in rice roots.
Collapse
Affiliation(s)
- Xuefeng Shen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China
| | - Shuangfeng Dai
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Mingming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| |
Collapse
|
7
|
Sipahi H, Haiden S, Berkowitz G. Genome-wide analysis of cellulose synthase (CesA) and cellulose synthase-like (Csl) proteins in Cannabis sativa L. PeerJ 2024; 12:e17821. [PMID: 39670088 PMCID: PMC11636989 DOI: 10.7717/peerj.17821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/06/2024] [Indexed: 12/14/2024] Open
Abstract
The cellulose and hemicellulose components of plant cell walls are synthesized by the cellulose synthase (CESA) and cellulose synthase-like (CSL) gene families and regulated in response to growth, development, and environmental stimuli. In this study, a total of 29 CESA/CSL family members were identified in Cannabis sativa and were grouped into seven subfamilies (CESA, CSLA, CSLB, CSLC, CSLD, CSLE and CSLG) according to phylogenetic relationships. The CESA/CESA proteins of C. sativa were closely related phylogenetically to the members of the subfamily of other species. The CESA/CSL subfamily members of C. sativa have unique gene structures. In addition, the expressions of four CESA and 10 CsCSL genes in flower, leaf, root, and stem organs of cannabis were detected using RT-qPCR. The results showed that CESA and CSL genes are expressed at varying levels in several organs. This detailed knowledge of the structural, evolutionary, and functional properties of cannabis CESA/CSL genes will provide a basis for designing advanced experiments for genetic manipulation of cell wall biogenesis to improve bast fibers and biofuel production.
Collapse
Affiliation(s)
- Hulya Sipahi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Eskişehir Osmangazi, Eskişehir, Türkiye
| | - Samuel Haiden
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States of America
| | - Gerald Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
8
|
Wang Y, Chen L, Yao Y, Chen L, Cui Y, An L, Li X, Bai Y, Yao X, Wu K. Investigating the regulatory role of HvANT2 in anthocyanin biosynthesis through protein-motif interaction in Qingke. PeerJ 2024; 12:e17736. [PMID: 39006012 PMCID: PMC11246018 DOI: 10.7717/peerj.17736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Background Currently, there are no reports on the HvbHLH gene family in the recent barley genome (Morex_V3). Furthermore, the structural genes related to anthocyanin synthesis that interact with HvANT2 have yet to be fully identified. Methods In this study, a bioinformatics approach was used to systematically analyze the HvbHLH gene family. The expression of this gene family was analyzed through RNA sequencing (RNA-seq), and the gene with the most significant expression level, HvANT2, was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in different tissues of two differently colored varieties. Finally, structural genes related to anthocyanin synthesis and their interactions with HvANT2 were verified using a yeast one-hybrid (Y1H) assay. Results The study identified 161 bHLH genes, designated as HvbHLH1 to HvbHLH161, from the most recent barley genome available. Evolutionary tree analysis categorized barley bHLH TFs into 21 subfamilies, demonstrating a pronounced similarity to rice and maize. Through RNA-Seq analysis of purple and white grain Qingke, we discovered a significant transcription factor (TF), HvANT2 (HvbHLH78), associated with anthocyanin biosynthesis. Subsequently, HvANT2 protein-motifs interaction assays revealed 41 interacting motifs, three of which were validated through Y1H experiments. These validated motifs were found in the promoter regions of key structural genes (CHI, F3'H, and GT) integral to the anthocyanin synthesis pathway. These findings provide substantial evidence for the pivotal role of HvANT2 TF in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Yan Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Lin Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Lupeng Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| |
Collapse
|
9
|
Han J, Yang X, Cai Y, Qiao F, Tao J, Zhu X, Mou Q, An J, Hu J, Li Z, Guan Y. MORN motif-containing protein OsMORN1 and OsMORN2 are crucial for rice pollen viability and cold tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:998-1013. [PMID: 38761113 DOI: 10.1111/tpj.16812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
The pollen viability directly affects the pollination process and the ultimate grain yield of rice. Here, we identified that the MORN motif-containing proteins, OsMORN1 and OsMORN2, had a crucial role in maintaining pollen fertility. Compared with the wild type (WT), the pollen viability of the osmorn1 and osmorn2 mutants was reduced, and pollen germination was abnormal, resulting in significantly lower spikelet fertility, seed-setting rate, and grain yield per plant. Further investigation revealed that OsMORN1 was localized to the Golgi apparatus and lipid droplets. Lipids associated with pollen viability underwent alterations in osmorn mutants, such as the diacylglyceride (18:3_18:3) was 5.1-fold higher and digalactosyldiacylglycerol (18:2_18:2) was 5.2-fold lower in osmorn1, while the triacylglycerol (TG) (16:0_18:2_18:3) was 8.3-fold higher and TG (16:0_18:1_18:3) was 8.5-fold lower in osmorn2 than those in WT. Furthermore, the OsMORN1/2 was found to be associated with rice cold tolerance, as osmorn1 and osmorn2 mutants were more sensitive to chilling stress than WT. The mutants displayed increased hydrogen peroxide accumulation, reduced antioxidant enzyme activities, elevated malondialdehyde content, and a significantly decreased seedling survival rate. Lipidomics analysis revealed distinct alterations in lipids under low temperature, highlighting significant changes in TG (18:2_18:3_18:3) and TG (18:4_18:2_18:2) in osmorn1, TG (16:0_18:2_18:2) and PI (17:2_18:3) in osmorn2 compared to the WT. Therefore, it suggested that OsMORN1 and OsMORN2 regulate both pollen viability and cold tolerance through maintaining lipid homeostasis.
Collapse
Affiliation(s)
- Jiajun Han
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoying Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
| | - Yibei Cai
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengpei Qiao
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ji Tao
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobo Zhu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
| | - Qingshan Mou
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
| | - Jianyu An
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin Hu
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
| | - Zhan Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510640, China
| | - Yajing Guan
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
| |
Collapse
|
10
|
Song Y, Li X, Zhang M, Xiong C. Spatial specificity of metabolism regulation of abscisic acid-imposed seed germination inhibition in Korean pine (Pinus koraiensis sieb et zucc). FRONTIERS IN PLANT SCIENCE 2024; 15:1417632. [PMID: 38966139 PMCID: PMC11222580 DOI: 10.3389/fpls.2024.1417632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Introduction Abscisic acid (ABA) can negatively regulate seed germination, but the mechanisms of ABA-mediated metabolism modulation are not well understood. Moreover, it remains unclear whether metabolic pathways vary with the different tissue parts of the embryo, such as the radicle, hypocotyl and cotyledon. Methods In this report, we performed the first comprehensive metabolome analysis of the radicle and hypocotyl + cotyledon in Pinus koraiensis seeds in response to ABA treatment during germination. Results and discussion Metabolome profiling showed that following ABA treatment, 67 significantly differentially accumulated metabolites in the embryo were closely associated with pyrimidine metabolism, phenylalanine metabolism, cysteine and methionine metabolism, galactose metabolism, terpenoid backbone biosynthesis, and glutathione metabolism. Meanwhile, 62 metabolites in the hypocotyl + cotyledon were primarily involved in glycerophospholipid metabolism and glycolysis/gluconeogenesis. We can conclude that ABA may inhibit Korean pine seed germination primarily by disrupting the biosynthesis of certain plant hormones mediated by cysteine and methionine metabolism and terpenoid backbone biosynthesis, as well as reducing the reactive oxygen species scavenging ability regulated by glutathione metabolism and shikimate pathway in radicle. ABA may strongly disrupt the structure and function of cellular membranes due to alterations in glycerophospholipid metabolism, and weaken glycolysis/gluconeogenesis in the hypocotyl + cotyledon, both of which are major contributors to ABA-mediated inhibition of seed germination. These results highlight that the spatial modulation of metabolic pathways in Pinus koraiensis seeds underlies the germination response to ABA.
Collapse
Affiliation(s)
- Yuan Song
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
- The Karst Environmental Geological Hazard Prevention Laboratory of Guizhou Minzu University, Guiyang, China
| | - Xinghuan Li
- Department of Health Management, Guiyang Institute of Information Science and Technology, Guiyang, China
| | - Mingyi Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
| | - Chao Xiong
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
| |
Collapse
|
11
|
Patan SSVK, Vallepu S, Shaik KB, Shaik N, Adi Reddy NRY, Terry RG, Sergeant K, Hausman JF. Drought resistance strategies in minor millets: a review. PLANTA 2024; 260:29. [PMID: 38879859 DOI: 10.1007/s00425-024-04427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/26/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION The review discusses growth and drought-response mechanisms in minor millets under three themes: drought escape, drought avoidance and drought tolerance. Drought is one of the most prominent abiotic stresses impacting plant growth, performance, and productivity. In the context of climate change, the prevalence and severity of drought is expected to increase in many agricultural regions worldwide. Millets (coarse grains) are a group of small-seeded grasses cultivated in arid and semi-arid regions throughout the world and are an important source of food and feed for humans and livestock. Although minor millets, i.e., foxtail millet, finger millet, proso millet, barnyard millet, kodo millet and little millet are generally hardier and more drought-resistant than cereals and major millets (sorghum and pearl millet), understanding their responses, processes and strategies in response to drought is more limited. Here, we review drought resistance strategies in minor millets under three themes: drought escape (e.g., short crop cycle, short vegetative period, developmental plasticity and remobilization of assimilates), drought avoidance (e.g., root traits for better water absorption and leaf traits to control water loss), and drought tolerance (e.g., osmotic adjustment, maintenance of photosynthetic ability and antioxidant potential). Data from 'omics' studies are summarized to provide an overview of the molecular mechanisms important in drought tolerance. In addition, the final section highlights knowledge gaps and challenges to improving minor millets. This review is intended to enhance major cereals and millet per se in light of climate-related increases in aridity.
Collapse
Affiliation(s)
| | - Suneetha Vallepu
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Khader Basha Shaik
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Naseem Shaik
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | | | | | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, (LIST), Avenue Des Hauts Fourneaux 5, Esch-Sur-Alzette, Luxembourg
| | - Jean François Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, (LIST), Avenue Des Hauts Fourneaux 5, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
12
|
Guo X, Yan X, Li Y. Genome-wide identification and expression analysis of the WRKY gene family in Rhododendron henanense subsp. lingbaoense. PeerJ 2024; 12:e17435. [PMID: 38827309 PMCID: PMC11143974 DOI: 10.7717/peerj.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Background This work explored the characteristics of the WRKY transcription factor family in Rhododendron henanense subsp. lingbaoense (Rhl) and the expression patterns of these genes under abiotic stress by conducting bioinformatics and expression analyses. Methods RhlWRKY genes were identified from a gene library of Rhl. Various aspects of these genes were analyzed, including genetic structures, conserved sequences, physicochemical properties, cis-acting elements, and chromosomal location. RNA-seq was employed to analyze gene expression in five different tissues of Rhl: roots, stems, leaves, flowers, and hypocotyls. Additionally, qRT-PCR was used to detect changes in the expression of five RhlWRKY genes under abiotic stress. Result A total of 65 RhlWRKY genes were identified and categorized into three subfamilies based on their structural characteristics: Groups I, II, and III. Group II was further divided into five subtribes, with shared similar genetic structures and conserved motifs among members of the same subtribe. The physicochemical properties of these proteins varied, but the proteins are generally predicted to be hydrophilic. Most proteins are predicted to be in the cell nucleus, and distributed across 12 chromosomes. A total of 84 cis-acting elements were discovered, with many related to responses to biotic stress. Among the identified RhlWRKY genes, there were eight tandem duplicates and 97 segmental duplicates. The majority of duplicate gene pairs exhibited Ka/Ks values <1, indicating purification under environmental pressure. GO annotation analysis indicated that WRKY genes regulate biological processes and participate in a variety of molecular functions. Transcriptome data revealed varying expression levels of 66.15% of WRKY family genes in all five tissue types (roots, stems, leaves, flowers, and hypocotyls). Five RhlWRKY genes were selected for further characterization and there were changes in expression levels for these genes in response to various stresses. Conclusion The analysis identified 65 RhlWRKY genes, among which the expression of WRKY_42 and WRKY_17 were mainly modulated by the drought and MeJA, and WRKY_19 was regulated by the low-temperature and high-salinity conditions. This insight into the potential functions of certain genes contributes to understanding the growth regulatory capabilities of Rhl.
Collapse
Affiliation(s)
- Xiangmeng Guo
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xinyu Yan
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
13
|
Huang Y, Mei G, Zhu K, Ruan X, Wu H, Cao D. Shading treatment during late stage of seed development promotes subsequent seed germination and seedlings establishment in sunflower. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111996. [PMID: 38272070 DOI: 10.1016/j.plantsci.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
During the sunflower seed production process, the role of artificial shading treatment (ST) in seed development and subsequent seed germination remains largely unknown. In the present study, sunflower mother plants were artificially shaded during 1-34 (full period-ST, FST), 1-22 (early period-ST, EST), and 22-34 (late period-ST, LST) days after pollination (DAP), to examine the effects of parental shading on subsequent seed germination. Both FST and EST significantly reduced the photosynthetic efficiency of sunflower, manifested as decreased seed dry weight and unfavorable seed germination. On the contrary, LST remarkably increased seed dry weight and promoted subsequent seed germination and seedling establishment. LST enhanced the activities of several key enzymes involved in triglyceride anabolism and corresponding-genes expression, which in turn increased the total fatty acid contents and altered the fatty acid composition. During early germination, the key enzyme activities involved in triglyceride disintegration and corresponding-gene expressions in LST seeds were apparently higher than those in seeds without the shading treatment (WST). Consistently, LST seeds had significant higher contents of ATP and soluble sugar. Moreover, enzyme activities related to abscisic acid (ABA) biosynthesis and corresponding gene expressions decreased within LST seeds, whereas the enzyme activities and corresponding gene expressions associated with gibberellin (GA) biosynthesis were increased. These results were also evidenced by the reduced ABA content but elevated GA level within LST seeds, giving rise to higher GA/ABA ratio. Our findings suggested that LST could promote sunflower seed development and subsequent seed germination as well as seedling establishment through modulating the dynamic metabolism of triglycerides, fatty acid and GA/ABA balance.
Collapse
Affiliation(s)
- Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Gaofu Mei
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Kehua Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Xiaoli Ruan
- Zhejiang Nongke Seed Co.Ltd, 310021 Hangzhou, China
| | - Huaping Wu
- Huzhou Keao Seed Co.Ltd, 313000 Huzhou 313000, China
| | - Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.
| |
Collapse
|
14
|
Font Farre M, Brown D, König M, Killinger BJ, Kaschani F, Kaiser M, Wright AT, Burton J, van der Hoorn RAL. Glutathione Transferase Photoaffinity Labeling Displays GST Induction by Safeners and Pathogen Infection. PLANT & CELL PHYSIOLOGY 2024; 65:128-141. [PMID: 37924215 PMCID: PMC10799724 DOI: 10.1093/pcp/pcad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Glutathione transferases (GSTs) represent a large and diverse enzyme family involved in the detoxification of small molecules by glutathione conjugation in crops, weeds and model plants. In this study, we introduce an easy and quick assay for photoaffinity labeling of GSTs to study GSTs globally in various plant species. The small-molecule probe contains glutathione, a photoreactive group and a minitag for coupling to reporter tags via click chemistry. Under UV irradiation, this probe quickly and robustly labels GSTs in crude protein extracts of different plant species. Purification and mass spectrometry (MS) analysis of labeled proteins from Arabidopsis identified 10 enriched GSTs from the Phi(F) and Tau(U) classes. Photoaffinity labeling of GSTs demonstrated GST induction in wheat seedlings upon treatment with safeners and in Arabidopsis leaves upon infection with avirulent bacteria. Treatment of Arabidopsis with salicylic acid (SA) analog benzothiadiazole (BTH) induces GST labeling independent of NPR1, the master regulator of SA. Six Phi- and Tau-class GSTs that are induced upon BTH treatment were identified, and their labeling was confirmed upon transient overexpression. These data demonstrate that GST photoaffinity labeling is a useful approach to studying GST induction in crude extracts of different plant species upon different types of stress.
Collapse
Affiliation(s)
- Maria Font Farre
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Daniel Brown
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, Oxfordshire OX1 3TA, UK
| | - Maurice König
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Brian J Killinger
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen 45141, Germany
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen 45141, Germany
| | - Aaron T Wright
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Jonathan Burton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, Oxfordshire OX1 3TA, UK
| | | |
Collapse
|
15
|
Wang L, Tanveer M, Wang H, Arnao MB. Melatonin as a key regulator in seed germination under abiotic stress. J Pineal Res 2024; 76:e12937. [PMID: 38241678 DOI: 10.1111/jpi.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hongling Wang
- CAS Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Marino B Arnao
- Phytohormones & Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| |
Collapse
|
16
|
Hehenberger E, Guo J, Wilken S, Hoadley K, Sudek L, Poirier C, Dannebaum R, Susko E, Worden AZ. Phosphate Limitation Responses in Marine Green Algae Are Linked to Reprogramming of the tRNA Epitranscriptome and Codon Usage Bias. Mol Biol Evol 2023; 40:msad251. [PMID: 37987557 PMCID: PMC10735309 DOI: 10.1093/molbev/msad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Marine algae are central to global carbon fixation, and their productivity is dictated largely by resource availability. Reduced nutrient availability is predicted for vast oceanic regions as an outcome of climate change; however, there is much to learn regarding response mechanisms of the tiny picoplankton that thrive in these environments, especially eukaryotic phytoplankton. Here, we investigate responses of the picoeukaryote Micromonas commoda, a green alga found throughout subtropical and tropical oceans. Under shifting phosphate availability scenarios, transcriptomic analyses revealed altered expression of transfer RNA modification enzymes and biased codon usage of transcripts more abundant during phosphate-limiting versus phosphate-replete conditions, consistent with the role of transfer RNA modifications in regulating codon recognition. To associate the observed shift in the expression of the transfer RNA modification enzyme complement with the transfer RNAs encoded by M. commoda, we also determined the transfer RNA repertoire of this alga revealing potential targets of the modification enzymes. Codon usage bias was particularly pronounced in transcripts encoding proteins with direct roles in managing phosphate limitation and photosystem-associated proteins that have ill-characterized putative functions in "light stress." The observed codon usage bias corresponds to a proposed stress response mechanism in which the interplay between stress-induced changes in transfer RNA modifications and skewed codon usage in certain essential response genes drives preferential translation of the encoded proteins. Collectively, we expose a potential underlying mechanism for achieving growth under enhanced nutrient limitation that extends beyond the catalog of up- or downregulated protein-encoding genes to the cell biological controls that underpin acclimation to changing environmental conditions.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, CZ
| | - Jian Guo
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susanne Wilken
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kenneth Hoadley
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
| | - Lisa Sudek
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
| | - Richard Dannebaum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, CA
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Max Planck Institute for Evolutionary Biology, 24306 Plön, DE
| |
Collapse
|
17
|
Cao D, Huang Y, Mei G, Zhang S, Wu H, Zhao T. Spermidine enhances chilling tolerance of kale seeds by modulating ROS and phytohormone metabolism. PLoS One 2023; 18:e0289563. [PMID: 37535595 PMCID: PMC10399780 DOI: 10.1371/journal.pone.0289563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Chilling stress is an important constraint for kale seed germination and seedlings establishment. It is vital to develop an effective approach to enhance kale seed germination ability under chilling stress. The present study reported that spermidine (Spd) could improve seed chilling tolerance in two kale cultivars 'Nagoya' (MGW) and 'Pigeon' (BB) during germination. The results showed that MGW was cold tolerant with a 90.67% germination percentage (GP) under chilling stress, while BB was cold sensitive with a 70.67% GP under chilling stress. Spd content in MGW and BB seeds during seed germination were up-regulated and down-regulated by chilling stress, respectively. Besides, chilling stress apparently decreased the gibberellin (GA) and ethylene (ET) contents, while increased the levels of abscisic acid (ABA) and reactive oxygen species (ROS) in MGW and BB seeds during germination. Exogenous Spd application increased GA, ET contents and decreased ABA content through regulating the gene expressions of metabolic-related enzymes, thus effectively alleviating the low temperature damage on kale seed germination. Besides, Spd significantly increased the activities of superoxide dismutase (SOD) and peroxidase (POD), and reduced the levels of hydrogen peroxide (H2O2) and superoxide anion (O2·-). The present study demonstrated that endogenous Spd metabolism plays an important role in kale seed germination under chilling stress. The effect of exogenous Spd on the metabolism of endogenous Spd, GA, ABA, ET and antioxidant enzymes might be the important reason for promoting the kale seed vigor at low temperature.
Collapse
Affiliation(s)
- Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gaofu Mei
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sheng Zhang
- Taizhou Agricultural Technology Extension Center, Taizhou, China
| | - Huaping Wu
- Huzhou Keao Seed Co., Ltd., Huzhou, China
| | | |
Collapse
|
18
|
Dukamo BH, Gedebo A, Tesfaye B, Degu HD. Genetic diversity of Ethiopian durum wheat ( T. turgidum subsp. durum) landraces under water stressed and non stressed conditions. Heliyon 2023; 9:e18359. [PMID: 37519732 PMCID: PMC10375799 DOI: 10.1016/j.heliyon.2023.e18359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Ethiopia, being a major center of origin and diversity for durum wheat, possesses a highly variable genetic pool with diverse agroecological adaptations. Wheat landraces are an important source of genetic variation for breeding programs. This study was conducted to study the genotypic diversity of Ethiopian durum wheat genetic resources under two contrasting environments namely drought-stressed and non-stressed. It was carried out on 100 landraces and 4 local checks using an augmented design. Data were collected on 13 traits comprising yield and yield components, phenology, and canopy condition. The analysis of variance revealed significant differences between landraces for different traits with different sources of variation. Several landraces were found to outyield the checks at both environmental conditions. Intermediate to high estimates of the phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV), heritability in a broad sense (h2b), and genetic advance in percent of the mean (GAPM) were observed for all the studied traits except for days to flowering at normal, thousands seed weight at stress, and days to maturity, leaf chlorophyll concentration measurement, and canopy temperature measurement at both conditions. The estimation of variability parameters showed that genotypic variation was higher than environmental variation for most traits. The number of tillers, spike length, kernel per spike, and grain yield indicated higher values for h2b and GAPM (74.42% and 20.86; 83.2% and 28.24; 70.79% and 28.0; and 89.54% and 74.71) at normal and (97.87% and 98.22; 71.27% and 28.51; 75.52% and 43.9; and 90.04% and 103.68) at the stressed condition, respectively. Spikelets per spike, kernel per spike, and thousands seed weight were positively correlated with grain yield. Grain yield exhibited a weak negative correlation with days to heading and days to maturity. Principal components analysis revealed that six traits were the major loadings on the first two principal components that describe 37.9% and 41.0% of the total morphological variance at normal and stressed conditions, respectively. Cluster analysis grouped the landraces into six clusters, with each cluster showing variation in performance for different traits under normal and stressed conditions. The intracluster distance was maximum in cluster I (D2 = 7.68) and (D2 = 8.19) at normal and stressed conditions respectively and the intercluster distance was found to be maximum between clusters I and IV (D2 = 11.02) and clusters I and II (D2 = 10.33) at normal and stressed conditions respectively. The presence of significant genetic variability among the evaluated durum wheat landraces suggests an opportunity for improvement of grain yield through the hybridization of genotypes from different clusters and subsequent selection. Genotypes with superior agronomic traits that outperform the best checks are identified as potential parents for yield improvement programs for moisture stress.
Collapse
Affiliation(s)
- Bantewalu Hailekidan Dukamo
- Hawassa University, College of Natural and Computational Sciences, Ethiopia
- Hawassa University, College of Agriculture, Ethiopia
| | | | | | | |
Collapse
|
19
|
Nwogha JS, Wosene AG, Raveendran M, Obidiegwu JE, Oselebe HO, Kambale R, Chilaka CA, Rajagopalan VR. Comparative Metabolomics Profiling Reveals Key Metabolites and Associated Pathways Regulating Tuber Dormancy in White Yam ( Dioscorea rotundata Poir.). Metabolites 2023; 13:metabo13050610. [PMID: 37233651 DOI: 10.3390/metabo13050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Yams are economic and medicinal crops with a long growth cycle, spanning between 9-11 months due to their prolonged tuber dormancy. Tuber dormancy has constituted a major constraint in yam production and genetic improvement. In this study, we performed non-targeted comparative metabolomic profiling of tubers of two white yam genotypes, (Obiaoturugo and TDr1100873), to identify metabolites and associated pathways that regulate yam tuber dormancy using gas chromatography-mass spectrometry (GC-MS). Yam tubers were sampled between 42 days after physiological maturity (DAPM) till tuber sprouting. The sampling points include 42-DAPM, 56-DAPM, 87DAPM, 101-DAPM, 115-DAPM, and 143-DAPM. A total of 949 metabolites were annotated, 559 in TDr1100873 and 390 in Obiaoturugo. A total of 39 differentially accumulated metabolites (DAMs) were identified across the studied tuber dormancy stages in the two genotypes. A total of 27 DAMs were conserved between the two genotypes, whereas 5 DAMs were unique in the tubers of TDr1100873 and 7 DAMs were in the tubers of Obiaoturugo. The differentially accumulated metabolites (DAMs) spread across 14 major functional chemical groups. Amines and biogenic polyamines, amino acids and derivatives, alcohols, flavonoids, alkaloids, phenols, esters, coumarins, and phytohormone positively regulated yam tuber dormancy induction and maintenance, whereas fatty acids, lipids, nucleotides, carboxylic acids, sugars, terpenoids, benzoquinones, and benzene derivatives positively regulated dormancy breaking and sprouting in tubers of both yam genotypes. Metabolite set enrichment analysis (MSEA) revealed that 12 metabolisms were significantly enriched during yam tuber dormancy stages. Metabolic pathway topology analysis further revealed that six metabolic pathways (linoleic acid metabolic pathway, phenylalanine metabolic pathway, galactose metabolic pathway, starch and sucrose metabolic pathway, alanine-aspartate-glutamine metabolic pathways, and purine metabolic pathway) exerted significant impact on yam tuber dormancy regulation. This result provides vital insights into molecular mechanisms regulating yam tuber dormancy.
Collapse
Affiliation(s)
- Jeremiah S Nwogha
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, Jimma P.O. Box 307, Ethiopia
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Yam Research Programme, National Root Crops Research Institute, Umudike 440001, Nigeria
| | - Abtew G Wosene
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, Jimma P.O. Box 307, Ethiopia
| | - Muthurajan Raveendran
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Jude E Obidiegwu
- Yam Research Programme, National Root Crops Research Institute, Umudike 440001, Nigeria
| | - Happiness O Oselebe
- Department of Crop Production and Landscape Management, Ebonyi State University, Abakaliki 480282, Nigeria
| | - Rohit Kambale
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Cynthia A Chilaka
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Veera Ranjani Rajagopalan
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
20
|
Fuchs H, Plitta-Michalak BP, Małecka A, Ciszewska L, Sikorski Ł, Staszak AM, Michalak M, Ratajczak E. The chances in the redox priming of nondormant recalcitrant seeds by spermidine. TREE PHYSIOLOGY 2023:tpad036. [PMID: 36943301 DOI: 10.1093/treephys/tpad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The problems posed by seed sensitivity to desiccation and aging have motivated the development of various techniques for mitigating their detrimental effects. The redox priming of seeds in antioxidant solution to improve their postharvest performance is one of the approaches. Spermidine (Spd) was tested as an invigorating solution on nondormant recalcitrant (desiccation sensitive) seeds of the silver maple (Acer saccharinum L.). The treatment resulted in an 8-10% increase in germination capacity in seeds subjected to mild and severe desiccation, while in aged seeds stored for six months, no significant change was observed. The cellular redox milieu, genetic stability, mitochondrial structure and function were investigated to provide information about the cellular targets of Spd activity. Spd improved the antioxidative capacity, especially the activity of catalase, and cellular membrane stability, protected genome integrity from oxidative damage and increased the efficiency of mitochondria. However, it also elicited a hydrogen peroxide burst. Therefore, it seems that redox priming in nondormant seeds that are highly sensitive to desiccation, although positively affected desiccated seed performance, may not be a simple solution to reinvigorate stored seeds with a low-efficiency antioxidant system.
Collapse
Affiliation(s)
- Hanna Fuchs
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Beata P Plitta-Michalak
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-719 Olsztyn, Poland
| | - Arleta Małecka
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
- Department of Epidemiology and Cancer Prevention, Greater Poland Cancer Centre, Garbary 15 street, 61-866 Poznan, Poland
| | - Liliana Ciszewska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Łukasz Sikorski
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Aleksandra M Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology,University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
21
|
Mycoviral gene integration converts a plant pathogenic fungus into a biocontrol agent. Proc Natl Acad Sci U S A 2022; 119:e2214096119. [PMID: 36469771 PMCID: PMC9897477 DOI: 10.1073/pnas.2214096119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Mycovirus-infected fungi can suffer from poor growth, attenuated pigmentation, and virulence. However, the molecular mechanisms of how mycoviruses confer these symptoms remain poorly understood. Here, we report a mycovirus Stemphylium lycopersici alternavirus 1 (SlAV1) isolated from a necrotrophic plant pathogen Stemphylium lycopersici that causes altered colony pigmentation and hypovirulence by specifically interfering host biosynthesis of Altersolanol A, a polyketide phytotoxin. SlAV1 significantly down-regulates a fungal polyketide synthase (PKS1), the core enzyme of Altersolanol A biosynthesis. PKS1 deletion mutants do not accumulate Altersolanol A and lose pathogenicity to tomato and lettuce. Transgenic expression of SlAV1 open-reading frame 3 (ORF3) in S. lycopersici inhibits fungal PKS1 expression and Altersolanol A accumulation, leading to symptoms like SlAV1-infected fungal strains. Multiple plant species sprayed with mycelial suspension of S. lycopersici or S. vesicarium strains integrating and expressing ORF3 display enhanced resistance against virulent strains, converting the pathogenic fungi into biocontrol agents. Hence, our study not only proves inhibiting a key enzyme of host phytotoxin biosynthesis as a molecular mechanism underlying SlAV1-mediated hypovirulence of Stemphylium spp., but also demonstrates the potential of mycovirus-gene integrated fungi as a potential biocontrol agent to protect plants from fungal diseases.
Collapse
|
22
|
Amalova A, Yermekbayev K, Griffiths S, Abugalieva S, Babkenov A, Fedorenko E, Abugalieva A, Turuspekov Y. Identification of quantitative trait loci of agronomic traits in bread wheat using a Pamyati Azieva × Paragon mapping population harvested in three regions of Kazakhstan. PeerJ 2022; 10:e14324. [PMID: 36389412 PMCID: PMC9653069 DOI: 10.7717/peerj.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Background Although genome-wide association studies (GWAS) are an increasingly informative tool in the mining of new quantitative trait loci (QTLs), a classical biparental mapping approach is still a powerful, widely used method to search the unique genetic factors associated with important agronomic traits in bread wheat. Methods In this study, a newly constructed mapping population of Pamyati Azieva (Russian Federation) × Paragon (UK), consisting of 94 recombinant inbred lines (RILs), was tested in three different regions of Kazakhstan with the purpose of QTL identification for key agronomic traits. The RILs were tested in 11 environments of two northern breeding stations (Petropavlovsk, North Kazakhstan region, and Shortandy, Aqmola region) and one southeastern station (Almalybak, Almaty region). The following eight agronomic traits were studied: heading days, seed maturation days, plant height, spike length, number of productive spikes, number of kernels per spike, thousand kernel weight, and yield per square meter. The 94 RILs of the PAxP cross were genotyped using Illumina's iSelect 20K single nucleotide polymorphism (SNP) array and resulted in the identification of 4595 polymorphic SNP markers. Results The application of the QTL Cartographer statistical package allowed the identification of 53 stable QTLs for the studied traits. A survey of published studies related to common wheat QTL identification suggested that 28 of those 53 QTLs were presumably novel genetic factors. The SNP markers for the identified QTLs of the analyzed agronomic traits of common wheat can be efficiently applied in ongoing breeding activities in the wheat breeding community using a marker-assisted selection approach.
Collapse
Affiliation(s)
- Akerke Amalova
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Kanat Yermekbayev
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- The John Innes Centre, Norwich, United Kingdom
| | | | - Saule Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Adylkhan Babkenov
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Elena Fedorenko
- North Kazakhstan Agricultural Experimental Station, Petropavlovsk, Kazakhstan
| | - Aigul Abugalieva
- Kazakh Research Institute of Agriculture and Plant Industry, Almalybak, Kazakhstan
| | - Yerlan Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
23
|
Guo J, Wang Z, Qu L, Hu Y, Lu D. Transcriptomic and alternative splicing analyses provide insights into the roles of exogenous salicylic acid ameliorating waxy maize seedling growth under heat stress. BMC PLANT BIOLOGY 2022; 22:432. [PMID: 36076169 PMCID: PMC9461148 DOI: 10.1186/s12870-022-03822-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Salicylic acid (SA) is a phytohormone which works to regulate the abiotic stress response of plants. However, the molecular mechanism by which SA mediates heat tolerance in waxy maize (Zea mays L. sinsensis Kulesh) remains unknown. RESULTS Two varieties of waxy maize seedlings, heat-tolerant 'Yunuo7' (Y7) and heat-sensitive 'Suyunuo5' (S5), were pretreated with SA prior to heat stress (HTS). After treatment, physiological and transcriptomic changes were analyzed. Compared with HTS, the exogenous application of SA enhanced the shoot dry weight, the activities of antioxidant enzymes (e.g., SOD, POD, CAT and APX), and the concentration of endogenous phytohormones (e.g., SA, ABA, IAA, GA3), while decreased the MDA content. Transcriptome analysis showed that the number of differentially expressed genes (DEGs) identified in the control (CK) vs HTS and HTS vs HTS + SA comparisons were more in S5 than in Y7. HTS induced the downregulation of genes involved in photosynthesis and the upregulation of genes encoding heat shock transcription factors (HSFs) and heat shock proteins (HSPs). Compared with HTS, SA pretreatment reversed the expression of 5 photosynthesis-related genes, 26 phytohormone-related genes, and all genes encoding HSFs and HSPs in S5. Furthermore, the number of alternative splicing (AS) events increased under HTS treatment for both varieties, while decreased under SA pretreatment of S5. Differentially spliced genes (DSGs) showed little overlap with DEGs, and DEGs and DSGs differed significantly in functional enrichment. CONCLUSIONS Physiological and transcriptional together indicated that HTS and SA pretreatment had a greater effect on S5 than Y7. Additionally, it appears that transcriptional regulation and AS work synergistically to enhance thermotolerance in heat-sensitive waxy maize. Our study revealed the regulatory effects and underlying molecular mechanisms of SA on waxy maize seedling under HTS.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yifan Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
24
|
Gao J, Qian Z, Zhang Y, Zhuang S. Exogenous spermidine regulates the anaerobic enzyme system through hormone concentrations and related-gene expression in Phyllostachys praecox roots under flooding stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:182-196. [PMID: 35868108 DOI: 10.1016/j.plaphy.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Acclimation to hypoxia and anoxia is important in various ecological systems, especially flooded soil. Phyllostachys pracecox is sensitive to flooding, and therefore, it is important to explore ways of alleviating hypoxia stress in the roots. In this study, we investigated the regulatory effect of spermidine (Spd) on flooded P. praecox seedlings. METHODS A batch experiment was carried out in roots treated with Spd under flooding for eight days. The following factors were subsequently measured: growth, survival rate, root respiratory activity, soluble protein and anaerobic respiration enzyme contents (pyruvate decarboxylase, PDC; alcohol dehydrogenase, ADH; lactate dehydrogenase, LDH; alanine aminotransferase, AlaAT), S-adenosylmethionine decarboxylase (SAMDC), nitrate reductase (NR), ACC oxidase (ACO) and ACC synthetase (ACS) activities, free Spd, spermine (Spm) and the diamine precursor putrescine (Put) content, indole-3-acetic acid (IAA) and abscisic acid (ABA) content, ethylene emissions and expression of hormone-related genes. RESULTS Application of Spd promoted root growth (root length, volume, surface and dry weight) and root respiratory inhibition, improved the soluble protein content, and reduced the O2·- production rate, H2O2 and MDA content to alleviate the damage of roots under flooding. A significant increase in SAMDC activity, and ABA and IAA contents were also observed, along with a reduction in ethylene emissions, NR, ACO and ACS activities (p < 0.05). Exogenous Spd increased the free Spd and Spm contents in the P. praecox roots, but decreased the free Put content. Taken together, these findings suggest that hypoxia stress was alleviated. Moreover, exogenous Spd up-regulated the expression of auxin-related genes ARF1, AUX1, AUX2, AUX3 and AUX4, and down-regulated the expression of ethylene-related ACO and ACS genes during flooding. In addition, correlation and RDA analysis showed that ARF1, ACO and ACS significantly promoted the expression of auxin, ACO and ACS enzyme activities, respectively (p < 0.05), while ADH, NR, AlaAT, ethylene emissions, Put, Spd, ACS and ACO were significantly correlated with ACS, ACO, and auxin-related gene expression (p < 0.05). Overall, ethylene emissions, ACS and ACO were identified as the main drivers of ethylene and auxin-related gene structure. CONCLUSIONS These results suggest that Spd regulated hormone concentrations, the content of Spd, Spm and Put, and related gene expression, in turn regulating physiological changes such as anaerobic enzyme activity, mitigating flooding stress in the roots and improving overall growth. Spd therefore has the potential to improve the adaptability of P. praecox to flooding stress.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuangzhuang Qian
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuhe Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
25
|
Hussain A, Liu J, Mohan B, Burhan A, Nasim Z, Bano R, Ameen A, Zaynab M, Mukhtar MS, Pajerowska-Mukhtar KM. A genome-wide comparative evolutionary analysis of zinc finger-BED transcription factor genes in land plants. Sci Rep 2022; 12:12328. [PMID: 35853967 PMCID: PMC9296551 DOI: 10.1038/s41598-022-16602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Zinc finger (Zf)-BED proteins are a novel superfamily of transcription factors that controls numerous activities in plants including growth, development, and cellular responses to biotic and abiotic stresses. Despite their important roles in gene regulation, little is known about the specific functions of Zf-BEDs in land plants. The current study identified a total of 750 Zf-BED-encoding genes in 35 land plant species including mosses, bryophytes, lycophytes, gymnosperms, and angiosperms. The gene family size was somewhat proportional to genome size. All identified genes were categorized into 22 classes based on their specific domain architectures. Of these, class I (Zf-BED_DUF-domain_Dimer_Tnp_hAT) was the most common in the majority of the land plants. However, some classes were family-specific, while the others were species-specific, demonstrating diversity at different classification levels. In addition, several novel functional domains were also predicated including WRKY and nucleotide-binding site (NBS). Comparative genomics, transcriptomics, and proteomics provided insights into the evolutionary history, duplication, divergence, gene gain and loss, species relationship, expression profiling, and structural diversity of Zf-BEDs in land plants. The comprehensive study of Zf-BEDs in Gossypium sp., (cotton) also demonstrated a clear footprint of polyploidization. Overall, this comprehensive evolutionary study of Zf-BEDs in land plants highlighted significant diversity among plant species.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Binoop Mohan
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Akif Burhan
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Zunaira Nasim
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Raveena Bano
- Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology, Lahore, 54770, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, Guangdong, China
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA.
| | | |
Collapse
|
26
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
27
|
Guan J, Yin S, Yue Y, Liu L, Guo Y, Zhang H, Fan X, Teng K. Single-molecule long-read sequencing analysis improves genome annotation and sheds new light on the transcripts and splice isoforms of Zoysia japonica. BMC PLANT BIOLOGY 2022; 22:263. [PMID: 35614434 PMCID: PMC9134579 DOI: 10.1186/s12870-022-03640-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Zoysia japonica is an important warm-season turfgrass used worldwide. Although the draft genome sequence and a vast amount of next-generation sequencing data have been published, the current genome annotation and complete mRNA structure remain incomplete. Therefore, to analyze the full-length transcriptome of Z. japonica, we used the PacBio single-molecule long-read sequencing method in this study. RESULTS First, we generated 37,056 high-confidence non-redundant transcripts from 16,005 gene loci. Next, 32,948 novel transcripts, 913 novel gene loci, 8035 transcription factors, 89 long non-coding RNAs, and 254 fusion transcripts were identified. Furthermore, 15,675 alternative splicing events and 5325 alternative polyadenylation sites were detected. In addition, using bioinformatics analysis, the underlying transcriptional mechanism of senescence was explored based on the revised reference transcriptome. CONCLUSION This study provides a full-length reference transcriptome of Z. japonica using PacBio single-molecule long-read sequencing for the first time. These results contribute to our knowledge of the transcriptome and improve the knowledge of the reference genome of Z. japonica. This will also facilitate genetic engineering projects using Z. japonica.
Collapse
Affiliation(s)
- Jin Guan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Shuxia Yin
- School of Grassland Science, Beijing Forestry University, Beijing, 100083 China
| | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Lingyun Liu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Yidi Guo
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Hui Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Ke Teng
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| |
Collapse
|
28
|
Liu K, Kabir N, Wei Z, Sun Z, Wang J, Qi J, Liu M, Liu J, Zhou K. Genome-wide identification and expression profile of GhGRF gene family in Gossypium hirsutum L.. PeerJ 2022; 10:e13372. [PMID: 35586135 PMCID: PMC9109687 DOI: 10.7717/peerj.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/12/2022] [Indexed: 01/13/2023] Open
Abstract
Background Cotton is the primary source of renewable natural fiber in the textile industry and an important biodiesel crop. Growth regulating factors (GRFs) are involved in regulating plant growth and development. Methods Using genome-wide analysis, we identified 35 GRF genes in Gossypium hirsutum. Results Chromosomal location information revealed an uneven distribution of GhGRF genes, with maximum genes on chromosomes A02, A05, and A12 from the At sub-genome and their corresponding D05 and D12 from the Dt sub-genome. In the phylogenetic tree, 35 GRF genes were divided into five groups, including G1, G2, G3, G4, and G5. The majority of GhGRF genes have two to three introns and three to four exons, and their deduced proteins contained conserved QLQ and WRC domains in the N-terminal end of GRFs in Arabidopsis and rice. Sequence logos revealed that GRF genes were highly conserved during the long-term evolutionary process. The CDS of the GhGRF gene can complement MiRNA396a. Moreover, most GhGRF genes transcripts developed high levels of ovules and fibers. Analyses of promoter cis-elements and expression patterns indicated that GhGRF genes play an essential role in regulating plant growth and development by coordinating the internal and external environment and multiple hormone signaling pathways. Our analysis indicated that GhGRFs are ideal target genes with significant potential for improving the molecular structure of cotton.
Collapse
Affiliation(s)
- Kun Liu
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan, China
| | - Nosheen Kabir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhenzhen Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhuojing Sun
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jian Wang
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jing Qi
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan, China
| | - Miaoyang Liu
- Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, Henan, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Kehai Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
29
|
Gu H, Ding W, Shi T, Ouyang Q, Yang X, Yue Y, Wang L. Integrated transcriptome and endogenous hormone analysis provides new insights into callus proliferation in Osmanthus fragrans. Sci Rep 2022; 12:7609. [PMID: 35534621 PMCID: PMC9085794 DOI: 10.1038/s41598-022-11801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Osmanthus fragrans is an important evergreen species with both medicinal and ornamental value in China. Given the low efficiency of callus proliferation and the difficulty of adventitious bud differentiation, tissue culture and regeneration systems have not been successfully established for this species. To understand the mechanism of callus proliferation, transcriptome sequencing and endogenous hormone content determination were performed from the initial growth stages to the early stages of senescence on O. fragrans calli. In total, 47,340 genes were identified by transcriptome sequencing, including 1798 previously unidentified genes specifically involved in callus development. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes (DEGs) was significantly enriched in plant hormone signal transduction pathways. Furthermore, our results from the orthogonal projections to latent structures discrimination analysis (OPLS-DA) of six typical hormones in five development stages of O. fragrans calli showed jasmonic acid (JA) could play important role in the initial stages of calli growth, whereas JA and auxin (IAA) were dominant in the early stages of calli senescence. Based on the weighted gene co-expression network analysis, OfSRC2, OfPP2CD5 and OfARR1, OfPYL3, OfEIL3b were selected as hub genes from the modules with the significant relevance to JA and IAA respectively. The gene regulation network and quantitative real-time PCR implied that during the initial stages of callus growth, the transcription factors (TFs) OfERF4 and OfMYC2a could down-regulate the expression of hub genes OfSRC2 and OfPP2CD5, resulting in decreased JA content and rapid callus growth; during the late stage of callus growth, the TFs OfERF4, OfMYC2a and OfTGA21c, OfHSFA1 could positively regulate the expression of hub genes OfSRC2, OfPP2CD5 and OfARR1, OfPYL3, OfEIL3b, respectively, leading to increased JA and IAA contents and inducing the senescence of O. fragrans calli. Hopefully, our results could provide new insights into the molecular mechanism of the proliferation of O. fragrans calli.
Collapse
|
30
|
Singh A, Jain D, Pandey J, Yadav M, Bansal KC, Singh IK. Deciphering the role of miRNA in reprogramming plant responses to drought stress. Crit Rev Biotechnol 2022; 43:613-627. [PMID: 35469523 DOI: 10.1080/07388551.2022.2047880] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drought is the most prevalent environmental stress that affects plants' growth, development, and crop productivity. However, plants have evolved adaptive mechanisms to respond to the harmful effects of drought. They reprogram their: transcriptome, proteome, and metabolome that alter their cellular and physiological processes and establish cellular homeostasis. One of the crucial regulatory processes that govern this reprogramming is post-transcriptional regulation by microRNAs (miRNAs). miRNAs are small non-coding RNAs, involved in the downregulation of the target mRNA via translation inhibition/mRNA degradation/miRNA-mediated mRNA decay/ribosome drop off/DNA methylation. Many drought-inducible miRNAs have been identified and characterized in plants. Their main targets are regulatory genes that influence growth, development, osmotic stress tolerance, antioxidant defense, phytohormone-mediated signaling, and delayed senescence during drought stress. Overexpression of drought-responsive miRNAs (Osa-miR535, miR160, miR408, Osa-miR393, Osa-miR319, and Gma-miR394) in certain plants has led to tolerance against drought stress indicating their vital role in stress mitigation. Similarly, knock down (miR166/miR398c) or deletion (miR169 and miR827) of miRNAs has also resulted in tolerance to drought stress. Likewise, engineered Arabidopsis plants with miR165, miR166 using short tandem target mimic strategy, exhibited drought tolerance. Since miRNAs regulate the expression of an array of drought-responsive genes, they can act as prospective targets for genetic manipulations to enhance drought tolerance in crops and achieve sustainable agriculture. Further investigations toward functional characterization of diverse miRNAs, and understanding stress-responses regulated by these miRNAs and their utilization in biotechnological applications is highly recommended.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Deepti Jain
- Department of Plant Molecular Biology, Interdisciplinary Centre for Plant Genomics, Delhi University South Campus, New Delhi, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Manisha Yadav
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Kailash C Bansal
- The Alliance of Bioversity International and CIAT (CGIAR), New Delhi, India
| | - Indrakant K Singh
- Department of Zoology, Molecular Biology Research Lab, Deshbandhu College, University of Delhi, New Delhi, India.,DBC i4 Center, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
31
|
Ding C, Shen T, Ran N, Zhang H, Pan H, Su X, Xu M. Integrated Degradome and Srna Sequencing Revealed miRNA-mRNA Regulatory Networks between the Phloem and Developing Xylem of Poplar. Int J Mol Sci 2022; 23:ijms23094537. [PMID: 35562928 PMCID: PMC9100975 DOI: 10.3390/ijms23094537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Lignin and cellulose are the most abundant natural organic polymers in nature. MiRNAs are a class of regulatory RNAs discovered in mammals, plants, viruses, and bacteria. Studies have shown that miRNAs play a role in lignin and cellulose biosynthesis by targeting key enzymes. However, the specific miRNAs functioning in the phloem and developing xylem of Populus deltoides are still unknown. In this study, a total of 134 miRNAs were identified via high-throughput small RNA sequencing, including 132 known and two novel miRNAs, six of which were only expressed in the phloem. A total of 58 differentially expressed miRNAs (DEmiRNAs) were identified between the developing xylem and the phloem. Among these miRNAs, 21 were significantly upregulated in the developing xylem in contrast to the phloem and 37 were significantly downregulated. A total of 2431 target genes of 134 miRNAs were obtained via high-throughput degradome sequencing. Most target genes of these miRNAs were transcription factors, including AP2, ARF, bHLH, bZIP, GRAS, GRF, MYB, NAC, TCP, and WRKY genes. Furthermore, 13 and nine miRNAs were involved in lignin and cellulose biosynthesis, respectively, and we validated the miRNAs via qRT-PCR. Our study explores these miRNAs and their regulatory networks in the phloem and developing xylem of P.deltoides and provides new insight into wood formation.
Collapse
Affiliation(s)
- Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Tengfei Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Na Ran
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Heng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Huixin Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (X.S.); (M.X.); Tel.: +86-136-4130-7199 (X.S.); +86-150-9430-7586 (M.X.)
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (N.R.); (H.Z.); (H.P.)
- Correspondence: (X.S.); (M.X.); Tel.: +86-136-4130-7199 (X.S.); +86-150-9430-7586 (M.X.)
| |
Collapse
|
32
|
Bio-Synthesized Nanoparticles in Developing Plant Abiotic Stress Resilience: A New Boon for Sustainable Approach. Int J Mol Sci 2022; 23:ijms23084452. [PMID: 35457269 PMCID: PMC9025213 DOI: 10.3390/ijms23084452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Agriculture crop development and production may be hampered in the modern era because of the increasing prevalence of ecological problems around the world. In the last few centuries, plant and agrarian scientific experts have shown significant progress in promoting efficient and eco-friendly approaches for the green synthesis of nanoparticles (NPs), which are noteworthy due to their unique physio-biochemical features as well as their possible role and applications. They are thought to be powerful sensing molecules that regulate a wide range of significant physiological and biochemical processes in plants, from germination to senescence, as well as unique strategies for coping with changing environmental circumstances. This review highlights current knowledge on the plant extract-mediated synthesis of NPs, as well as their significance in reprogramming plant traits and ameliorating abiotic stresses. Nano particles-mediated modulation of phytohormone content in response to abiotic stress is also displayed. Additionally, the applications and limitations of green synthesized NPs in various scientific regimes have also been highlighted.
Collapse
|
33
|
Rui C, Peng F, Fan Y, Zhang Y, Zhang Z, Xu N, Zhang H, Wang J, Li S, Yang T, Malik WA, Lu X, Chen X, Wang D, Chen C, Gao W, Ye W. Genome-wide expression analysis of carboxylesterase (CXE) gene family implies GBCXE49 functional responding to alkaline stress in cotton. BMC PLANT BIOLOGY 2022; 22:194. [PMID: 35413814 PMCID: PMC9004025 DOI: 10.1186/s12870-022-03579-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Carboxylesterase (CXE) is a type of hydrolase with α/β sheet hydrolase activity widely found in animals, plants and microorganisms, which plays an important role in plant growth, development and resistance to stress. RESULTS A total of 72, 74, 39, 38 CXE genes were identified in Gossypium barbadense, Gossypium hirsutum, Gossypium raimondii and Gossypium arboreum, respectively. The gene structure and expression pattern were analyzed. The GBCXE genes were divided into 6 subgroups, and the chromosome distribution of members of the family were mapped. Analysis of promoter cis-acting elements showed that most GBCXE genes contain cis-elements related to plant hormones (GA, IAA) or abiotic stress. These 6 genes we screened out were expressed in the root, stem and leaf tissues. Combined with the heat map, GBCXE49 gene was selected for subcellular locate and confirmed that the protein was expressed in the cytoplasm. CONCLUSIONS The collinearity analysis of the CXE genes of the four cotton species in this family indicated that tandem replication played an indispensable role in the evolution of the CXE gene family. The expression patterns of GBCXE gene under different stress treatments indicated that GBCXE gene may significantly participate in the response to salt and alkaline stress through different mechanisms. Through the virus-induced gene silencing technology (VIGS), it was speculated that GBCXE49 gene was involved in the response to alkaline stress in G. barbadense.
Collapse
Affiliation(s)
- Cun Rui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, 3036 Shanjuan Road, Changde, 415101, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Zhigang Zhang
- Hunan Institute of Cotton Science, 3036 Shanjuan Road, Changde, 415101, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Hong Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Shengmei Li
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China
| | - Tao Yang
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China
| | - Wenwei Gao
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 455000, Anyang, China.
| |
Collapse
|
34
|
Zafar MM, Rehman A, Razzaq A, Parvaiz A, Mustafa G, Sharif F, Mo H, Youlu Y, Shakeel A, Ren M. Genome-wide characterization and expression analysis of Erf gene family in cotton. BMC PLANT BIOLOGY 2022; 22:134. [PMID: 35317739 PMCID: PMC8939120 DOI: 10.1186/s12870-022-03521-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/04/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AP2/ERF transcription factors are important in a variety of biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, little study has been done on cotton's AP2/ERF genes, although cotton is an essential fibre crop. We were able to examine the tissue and expression patterns of AP2/ERF genes in cotton on a genome-wide basis because of the recently published whole genome sequence of cotton. Genome-wide analysis of ERF gene family within two diploid species (G. arboreum & G. raimondii) and two tetraploid species (G. barbadense, G. hirsutum) was performed. RESULTS A total of 118, 120, 213, 220 genes containing the sequence of single AP2 domain were identified in G. arboreum, G. raimondii, G. barbadense and G. hirsutum respectively. The identified genes were unevenly distributed across 13/26 chromosomes of A and D genomes of cotton. Synteny and collinearity analysis revealed that segmental duplications may have played crucial roles in the expansion of the cotton ERF gene family, as well as tandem duplications played a minor role. Cis-acting elements of the promoter sites of Ghi-ERFs genes predict the involvement in multiple hormone responses and abiotic stresses. Transcriptome and qRT-PCR analysis revealed that Ghi-ERF-2D.6, Ghi-ERF-12D.13, Ghi-ERF-6D.1, Ghi-ERF-7A.6 and Ghi-ERF-11D.5 are candidate genes against salinity tolerance in upland cotton. CONCLUSION Overwhelmingly, the present study paves the way to better understand the evolution of cotton ERF genes and lays a foundation for future investigation of ERF genes in improving salinity stress tolerance in cotton.
Collapse
Affiliation(s)
- Muhammad Mubashar Zafar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Abdul Razzaq
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- The Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Faiza Sharif
- University Institute of Physical Therapy, The University of Lahore, Lahore, Pakistan
| | - Huijuan Mo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Yuan Youlu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Amir Shakeel
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| |
Collapse
|
35
|
Hussain A, Asif N, Pirzada AR, Noureen A, Shaukat J, Burhan A, Zaynab M, Ali E, Imran K, Ameen A, Mahmood MA, Nazar A, Mukhtar MS. Genome wide study of cysteine rich receptor like proteins in Gossypium sp. Sci Rep 2022; 12:4885. [PMID: 35318409 PMCID: PMC8941122 DOI: 10.1038/s41598-022-08943-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 02/08/2023] Open
Abstract
Cysteine-rich receptor-like-kinases (CRKs), a transmembrane subfamily of receptor-like kinase, play crucial roles in plant adaptation. As such cotton is the major source of fiber for the textile industry, but environmental stresses are limiting its growth and production. Here, we have performed a deep computational analysis of CRKs in five Gossypium species, including G. arboreum (60 genes), G. raimondii (74 genes), G. herbaceum (65 genes), G. hirsutum (118 genes), and G. barbadense (120 genes). All identified CRKs were classified into 11 major classes and 43 subclasses with the finding of several novel CRK-associated domains including ALMT, FUSC_2, Cript, FYVE, and Pkinase. Of these, DUF26_DUF26_Pkinase_Tyr was common and had elevated expression under different biotic and abiotic stresses. Moreover, the 35 land plants comparison identified several new CRKs domain-architectures. Likewise, several SNPs and InDels were observed in CLCuD resistant G. hirsutum. The miRNA target side prediction and their expression profiling in different tissues predicted miR172 as a major CRK regulating miR. The expression profiling of CRKs identified multiple clusters with co-expression under certain stress conditions. The expression analysis under CLCuD highlighted the role of GhCRK057, GhCRK059, GhCRK058, and GhCRK081 in resistant accession. Overall, these results provided primary data for future potential functional analysis as well as a reference study for other agronomically important crops.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54000, Pakistan.
| | - Naila Asif
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Abdul Rafay Pirzada
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Azka Noureen
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan.,PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Javeria Shaukat
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Akif Burhan
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, China
| | - Ejaz Ali
- Center of Excellence in Molecular Biology, University of Punjab, Lahore, 54000, Pakistan
| | - Koukab Imran
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Muhammad Arslan Mahmood
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Aquib Nazar
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - M Shahid Mukhtar
- Department of Biology, the University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
36
|
Iqbal A, Huiping G, Xiangru W, Hengheng Z, Xiling Z, Meizhen S. Genome-wide expression analysis reveals involvement of asparagine synthetase family in cotton development and nitrogen metabolism. BMC PLANT BIOLOGY 2022; 22:122. [PMID: 35296248 PMCID: PMC8925137 DOI: 10.1186/s12870-022-03454-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 05/09/2023]
Abstract
Asparagine synthetase (ASN) is one of the key enzymes of nitrogen (N) metabolism in plants. The product of ASN is asparagine, which is one of the key compounds involved in N transport and storage in plants. Complete genome-wide analysis and classifications of the ASN gene family have recently been reported in different plants. However, little is known about the systematic analysis and expression profiling of ASN proteins in cotton development and N metabolism. Here, various bioinformatics analysis was performed to identify ASN gene family in cotton. In the cotton genome, forty-three proteins were found that determined ASN genes, comprising of 20 genes in Gossypium hirsutum (Gh), 13 genes in Gossypium arboreum, and 10 genes in Gossypium raimondii. The ASN encoded genes unequally distributed on various chromosomes with conserved glutamine amidotransferases and ASN domains. Expression analysis indicated that the majority of GhASNs were upregulated in vegetative and reproductive organs, fiber development, and N metabolism. Overall, the results provide proof of the possible role of the ASN genes in improving cotton growth, fiber development, and especially N metabolism in cotton. The identified hub genes will help to functionally elucidate the ASN genes in cotton development and N metabolism.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| |
Collapse
|
37
|
Haider S, Iqbal J, Naseer S, Shaukat M, Abbasi BA, Yaseen T, Zahra SA, Mahmood T. Unfolding molecular switches in plant heat stress resistance: A comprehensive review. PLANT CELL REPORTS 2022; 41:775-798. [PMID: 34401950 DOI: 10.1007/s00299-021-02754-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant heat stress response is a multi-factorial trait that is precisely regulated by the complex web of transcription factors from various families that modulate heat stress responsive gene expression. Global warming due to climate change affects plant growth and development throughout its life cycle. Adds to this, the frequent occurrence of heat waves is drastically reducing the global crop yield. Molecular plant scientists can help crop breeders by providing genetic markers associated with stress resistance. Plant heat stress response (HSR), however, is a multi-factorial trait and using a single stress resistance trait might not be ideal to develop thermotolerant crops. Transcription factors participate in regulation of plant biological processes and environmental stress responses. Recent studies have revealed that plant HSR is precisely regulated by the complex web of transcription factors from various families. These transcription factors enhance plant heat stress tolerance by regulating the expression level of several stress-responsive genes independently or in cross talk with different other transcription factors. This review explores how signaling pathways triggered by heat stress are regulated by multiple transcription factor families. To our knowledge, we for the first time analyze the role of major transcription factor families in plant HSR along with their regulatory mechanisms. In the end, we will also discuss the potential of emerging technologies to improve thermotolerance in plants.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muzzafar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Banzeer Ahsan Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Syeda Anber Zahra
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Pakistan Academy of Sciences, Islamabad, Pakistan.
| |
Collapse
|
38
|
Sharma DL, Bhoite R, Reeves K, Forrest K, Smith R, Dowla MANNU. Genome-wide superior alleles, haplotypes and candidate genes associated with tolerance on sodic-dispersive soils in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1113-1128. [PMID: 34985536 PMCID: PMC8942925 DOI: 10.1007/s00122-021-04021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The pleiotropic SNPs/haplotypes, overlapping genes (metal ion binding, photosynthesis), and homozygous/biallelic SNPs and transcription factors (HTH myb-type and BHLH) hold great potential for improving wheat yield potential on sodic-dispersive soils. Sodic-dispersive soils have multiple subsoil constraints including poor soil structure, alkaline pH and subsoil toxic elemental ion concentration, affecting growth and development in wheat. Tolerance is required at all developmental stages to enhance wheat yield potential on such soils. An in-depth investigation of genome-wide associations was conducted using a field phenotypic data of 206 diverse Focused Identification of Germplasm Strategy (FIGS) wheat lines for two consecutive years from different sodic and non-sodic plots and the exome targeted genotyping by sequencing (tGBS) assay. A total of 39 quantitative trait SNPs (QTSs), including 18 haplotypes were identified on chromosome 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 5A, 5D, 6B, 7A, 7B, 7D for yield and yield-components tolerance. Among these, three QTSs had common associations for multiple traits, indicating pleiotropism and four QTSs had close associations for multiple traits, within 32.38 Mb. The overlapping metal ion binding (Mn, Ca, Zn and Al) and photosynthesis genes and transcription factors (PHD-, Dof-, HTH myb-, BHLH-, PDZ_6-domain) identified are known to be highly regulated during germination, maximum stem elongation, anthesis, and grain development stages. The homozygous/biallelic SNPs having allele frequency above 30% were identified for yield and crop establishment/plants m-2. These SNPs correspond to HTH myb-type and BHLH transcription factors, brassinosteroid signalling pathway, kinase activity, ATP and chitin binding activity. These resources are valuable in haplotype-based breeding and genome editing to improve yield potential on sodic-dispersive soils.
Collapse
Affiliation(s)
- Darshan Lal Sharma
- Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.
| | - Roopali Bhoite
- Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.
| | - Karyn Reeves
- Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| | - Kerrie Forrest
- Centre for AgriBioscience, Agriculture Victoria, Bundoora, AgriBioVIC, Australia
| | - Rosemary Smith
- Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| | - Mirza A N N U Dowla
- Department of Primary Industries and Regional Development, 3 Baron-Hay Ct, South Perth, WA, 6151, Australia
| |
Collapse
|
39
|
Hajibarat Z, Saidi A, Zeinalabedini M, Gorji AM, Ghaffari MR, Shariati V, Ahmadvand R. Genome-wide identification of StU-box gene family and assessment of their expression in developmental stages of Solanum tuberosum. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:25. [PMID: 35147812 PMCID: PMC8837765 DOI: 10.1186/s43141-022-00306-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Background The Plant U-box (PUB), ubiquitin ligase gene, has a highly conserved domain in potato. However, little information is available about U-box genes in potato (Solanum tuberosum). In this study, 62 U-box genes were detected in the potato genome using bioinformatics methods. Further, motif analysis, gene structure, gene expression, TFBS, and synteny analysis were performed on the U-box genes. Results Based on in silico analysis, most of StU-boxs included a U-box domain; however, some of them lacked harbored domain the ARM, Pkinase_Tyr, and other domains. Based on their phylogenetic relationships, the StU-box family members were categorized into four classes. Analysis of transcription factor binding sites (TFBS) in the promoter region of StU-box genes revealed that StU-box genes had the highest and the lowest number of TFBS in MYB and CSD, respectively. Moreover, based on in silico and gene expression data, variable frequencies of TFBS in StU-box genes could indicate that these genes control different developmental stages and are involved in complex regulatory mechanisms. The number of exons in U-box genes ranged from one to sixteen. For most U-box genes, the exon–intron compositions and conserved motifs composition in most proteins in each group were similar. The intron–exon patterns and the composition of conserved motifs validated the U-box genes phylogenetic classification. Based on the results of genome distribution, StU-box genes were distributed unevenly on the 12 S. tuberosum chromosomes. The results showed that gene duplication may possess a significant role in genome expansion of S. tuberosum. Furthermore, genome evolution of S. tuberosum was surveyed using identification of orthologous and paralogous. We identified 40 orthologous gene pairs between S. tuberosum with Solanum lycopersicum, Oryza sativa, Triticum aestivum, Gossypium hirsutum, Zea maize, Coriaria mytifolia, and Arabidopsis thaliana as well as eight duplicated genes (paralogous) in S. tuberosum. StU-box 51 gene is one of the important gene among other StU-boxes in S. tuberosum under drought stress which was expressed in tuber and leaf under drought stress. Furthermore, StU-box 51 gene has the highest expression levels in four tissue-specific (stem, root, leaf, and tuber) in potato as well as it had the highest number of TFBS in promoter region. Based on our results, StU-box 51 can introduce to researcher to utilize in breeding program and genetic engineering in potato. Conclusions The results of this survey will be useful for further investigation of the probable role and molecular mechanisms of U-box genes in response to different stresses. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00306-7.
Collapse
Affiliation(s)
- Zahra Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.,Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ahmad Mosuapour Gorji
- Department of Vegetable Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.,Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Rahim Ahmadvand
- Department of Vegetable Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
40
|
Lai C, Zhou X, Zhang S, Zhang X, Liu M, Zhang C, Xu X, Xu X, Chen X, Chen Y, Lin W, Lai Z, Lin Y. PAs Regulate Early Somatic Embryo Development by Changing the Gene Expression Level and the Hormonal Balance in Dimocarpus longan Lour. Genes (Basel) 2022; 13:genes13020317. [PMID: 35205362 PMCID: PMC8872317 DOI: 10.3390/genes13020317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Polyamines (PAs) play an important regulatory role in many basic cellular processes and physiological and biochemical processes. However, there are few studies on the identification of PA biosynthesis and metabolism family members and the role of PAs in the transition of plant embryogenic calli (EC) into globular embryos (GE), especially in perennial woody plants. We identified 20 genes involved in PA biosynthesis and metabolism from the third-generation genome of longan (Dimocarpus longan Lour.). There were no significant differences between longan and other species regarding the number of members, and they had high similarity with Citrus sinensis. Light, plant hormones and a variety of stress cis-acting elements were found in these family members. The biosynthesis and metabolism of PAs in longan were mainly completed by DlADC2, DlSAMDC2, DlSAMDC3, DlSPDS1A, DlSPMS, DlCuAOB, DlCuAO3A, DlPAO2 and DlPAO4B. In addition, 0.01 mmol∙L−1 1-aminocyclopropane-1-carboxylic acid (ACC), putrescine (Put) and spermine (Spm), could promote the transformation of EC into GE, and Spm treatment had the best effect, while 0.01 mmol∙L−1 D-arginine (D-arg) treatment inhibited the process. The period between the 9th and 11th days was key for the transformation of EC into GE in longan. There were higher levels of gibberellin (GA), salicylic acid (SA) and abscisic acid (ABA) and lower levels of indole-3-acetic acid (IAA), ethylene and hydrogen peroxide (H2O2) in this key period. The expression levels in this period of DlADC2, DlODC, DlSPDS1A, DlCuAOB and DlPAO4B were upregulated, while those of DlSAMDC2 and DlSPMS were downregulated. These results showed that the exogenous ACC, D-arg and PAs could regulate the transformation of EC into GE in longan by changing the content of endogenous hormones and the expression levels of PA biosynthesis and metabolism genes. This study provided a foundation for further determining the physicochemical properties and molecular evolution characteristics of the PA biosynthesis and metabolism gene families, and explored the mechanism of PAs and ethylene for regulating the transformation of plant EC into GE.
Collapse
Affiliation(s)
- Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaojuan Zhou
- Ganzhou Agricultural and Rural Bureau, Ganzhou 341000, China;
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Mengyu Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Wenzhong Lin
- Quanzhou Agricultural Science Research Institute, Quanzhou 362212, China;
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.L.); (S.Z.); (X.Z.); (M.L.); (C.Z.); (X.X.); (X.X.); (X.C.); (Y.C.); (Z.L.)
- Correspondence:
| |
Collapse
|
41
|
Shuai Y, Feng G, Yang Z, Liu Q, Han J, Xu X, Nie G, Huang L, Zhang X. Genome-wide identification of C2H2-type zinc finger gene family members and their expression during abiotic stress responses in orchardgrass ( Dactylis glomerata). Genome 2022; 65:189-203. [PMID: 35104149 DOI: 10.1139/gen-2020-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C2H2-type zinc finger protein (ZFP) family is one of the largest transcription factor families in the plant kingdom and its members are involved in plant growth, development, and stress responses. As an economically valuable perennial graminaceous forage crop, orchardgrass (Dactylis glomerata) is an important feedstuff resource owing to its high yield and quality. In this study, 125 C2H2-type ZFPs in orchardgrass (Dg-ZFPs) were identified and further classified by phylogenetic analysis. The members with similar gene structures were generally clustered into the same groups, with proteins containing the conserved QALGGH motif being concentrated in groups VIII and IX. Gene ontology and miRNA target analyses indicated that Dg-ZFPs likely perform diverse biological functions through their gene interactions. The RNA-seq data revealed differentially expressed genes across tissues and development phases, suggesting that some Dg-ZFPs might participate in growth and development regulation. Abiotic stress responses of Dg-ZFP genes were verified by qPCR and Saccharomyces cerevisiae transformation, revealing that Dg-ZFP125 could enhance the tolerance of yeasts to osmotic and salt stresses. Our study performed a novel systematic analysis of Dg-ZFPs in orchardgrass, providing a reference for this gene family in other grasses and revealing new insights for enhancing gene utilization.
Collapse
Affiliation(s)
- Yang Shuai
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiuxu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiating Han
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
42
|
Fan Y, Zhang Y, Rui C, Zhang H, Xu N, Wang J, Han M, Lu X, Chen X, Wang D, Wang S, Guo L, Zhao L, Huang H, Wang J, Sun L, Chen C, Ye W. Molecular structures and functional exploration of NDA family genes respond tolerant to alkaline stress in Gossypium hirsutum L. Biol Res 2022; 55:4. [PMID: 35063045 PMCID: PMC8781182 DOI: 10.1186/s40659-022-00372-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background The internal NAD(P)H dehydrogenase (NDA) gene family was a member of the NAD(P)H dehydrogenase (ND) gene family, mainly involved in the non-phosphorylated respiratory pathways in mitochondria and played crucial roles in response to abiotic stress. Methods The whole genome identification, structure analysis and expression pattern of NDA gene family were conducted to analyze the NDA gene family. Results There were 51, 52, 26, and 24 NDA genes identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. According to the structural characteristics of genes and traits of phylogenetic tree, we divided the NDA gene family into 8 clades. Gene structure analysis showed that the NDA gene family was relatively conservative. The four Gossypium species had good collinearity, and segmental duplication played an important role in the evolution of the NDA gene family. Analysis of cis-elements showed that most GhNDA genes contained cis-elements related to light response and plant hormones (ABA, MeJA and GA). The analysis of the expression patterns of GhNDA genes under different alkaline stress showed that GhNDA genes were actively involved in the response to alkaline stress, possibly through different molecular mechanisms. By analyzing the existing RNA-Seq data after alkaline stress, it was found that an NDA family gene GhNDA32 was expressed, and then theGhNDA32 was silenced by virus-induced gene silencing (VIGS). By observing the phenotype, we found that the wilting degree of silenced plants was much higher than that of the control plant after alkaline treatment, suggesting that GhNDA32 gene was involved in the response to alkaline stress. Conclusions In this study, GhNDAs participated in response to alkaline stress, especially NaHCO3 stress. It was of great significance for the future research on the molecular mechanism of NDA gene family in responding to abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00372-8.
Collapse
|
43
|
Kabir N, Zhang X, Liu L, Qanmber G, Zhang L, Wang YX, Sun Z, Zhao N, Wang G. RAD gene family analysis in cotton provides some key genes for flowering and stress tolerance in upland cotton G. hirsutum. BMC Genomics 2022; 23:40. [PMID: 35012446 PMCID: PMC8744286 DOI: 10.1186/s12864-021-08248-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background RADIALIS (RAD), belongs to the MYB gene family and regulates a variety of functions including floral dorsoventral asymmetry in Antirrhinum majus and development of fruit proteins in Solanum lycopersicum. RAD genes contain an SNF2_N superfamily domain. Here, we comprehensively identified 68 RAD genes from six different species including Arabidopsis and five species of cotton. Results Phylogenetic analysis classified RAD genes into five groups. Gene structure, protein motifs and conserved amino acid residues indicated that GhRAD genes were highly conserved during the evolutionary process. Chromosomal location information showed that GhRAD genes were distributed unevenly on different chromosomes. Collinearity and selection pressure analysis indicated RAD gene family expansion in G. hirsutum and G. barbadense with purifying selection pressure. Further, various growth and stress related promotor cis-acting elements were observed. Tissue specific expression level indicated that most GhRAD genes were highly expressed in roots and flowers (GhRAD2, GhRAD3, GhRAD4 and GhRAD11). Next, GhRAD genes were regulated by phytohormonal stresses (JA, BL and IAA). Moreover, Ghi-miRN1496, Ghi-miR1440, Ghi-miR2111b, Ghi-miR2950a, Ghi-miR390a, Ghi-miR390b and Ghi-miR7495 were the miRNAs targeting most of GhRAD genes. Conclusions Our study revealed that RAD genes are evolutionary conserved and might be involved in different developmental processes and hormonal stress response. Data presented in our study could be used as the basis for future studies of RAD genes in cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08248-z.
Collapse
Affiliation(s)
- Nosheen Kabir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Le Liu
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Yu Xuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhuojing Sun
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100122, China
| | - Na Zhao
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute of Xinjiang Academy of Agricultural and Reclamation Science, Shehezi, 832000, Xinjiang, China.
| | - Gang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Henan, 450001, Zhengzhou, China.
| |
Collapse
|
44
|
Endogenous Polyamines and Ethylene Biosynthesis in Relation to Germination of Osmoprimed Brassica napus Seeds under Salt Stress. Int J Mol Sci 2021; 23:ijms23010349. [PMID: 35008776 PMCID: PMC8745725 DOI: 10.3390/ijms23010349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Currently, seed priming is reported as an efficient and low-cost approach to increase crop yield, which could not only promote seed germination and improve plant growth state but also increase abiotic stress tolerance. Salinity represents one of the most significant abiotic stresses that alters multiple processes in plants. The accumulation of polyamines (PAs) in response to salt stress is one of the most remarkable plant metabolic responses. This paper examined the effect of osmopriming on endogenous polyamine metabolism at the germination and early seedling development of Brassica napus in relation to salinity tolerance. Free, conjugated and bound polyamines were analyzed, and changes in their accumulation were discussed with literature data. The most remarkable differences between the corresponding osmoprimed and unprimed seeds were visible in the free (spermine) and conjugated (putrescine, spermidine) fractions. The arginine decarboxylase pathway seems to be responsible for the accumulation of PAs in primed seeds. The obvious impact of seed priming on tyramine accumulation was also demonstrated. Moreover, the level of ethylene increased considerably in seedlings issued from primed seeds exposed to salt stress. It can be concluded that the polyamines are involved in creating the beneficial effect of osmopriming on germination and early growth of Brassica napus seedlings under saline conditions through moderate changes in their biosynthesis and accumulation.
Collapse
|
45
|
Guo H, Lyv Y, Zheng W, Yang C, Li Y, Wang X, Chen R, Wang C, Luo J, Qu L. Comparative Metabolomics Reveals Two Metabolic Modules Affecting Seed Germination in Rice ( Oryza sativa). Metabolites 2021; 11:metabo11120880. [PMID: 34940638 PMCID: PMC8707830 DOI: 10.3390/metabo11120880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
The process of seed germination is crucial not only for the completion of the plant life cycle but also for agricultural production and food chemistry; however, the underlying metabolic regulation mechanism involved in this process is still far from being clearly revealed. In this study, one indica variety (Zhenshan 97, with rapid germination) and one japonica variety (Nipponbare, with slow germination) in rice were used for in-depth analysis of the metabolome at different germination stages (0, 3, 6, 9, 12, 24, 36, and 48 h after imbibition, HAI) and exploration of key metabolites/metabolic pathways. In total, 380 annotated metabolites were analyzed by using a high-performance liquid chromatography (HPLC)-based targeted method combined with a nontargeted metabolic profiling method. By using bioinformatics and statistical methods, the dynamic changes in metabolites during germination in the two varieties were compared. Through correlation analysis, coefficient of variation analysis and differential accumulation analysis, 74 candidate metabolites that may be closely related to seed germination were finally screened. Among these candidates, 29 members belong to the ornithine–asparagine–polyamine module and the shikimic acid–tyrosine–tryptamine–phenylalanine–flavonoid module. As the core member of the second module, shikimic acid’s function in the promotion of seed germination was confirmed by exogenous treatment. These results told that nitrogen flow and antioxidation/defense responses are potentially crucial for germinating seeds and seedlings. It deepens our understanding of the metabolic regulation mechanism of seed germination and points out the direction for our future research.
Collapse
Affiliation(s)
- Hao Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Tropical Crops, Hainan University, Haikou 570228, China; (R.C.); (C.W.)
| | - Yuanyuan Lyv
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Tropical Crops, Hainan University, Haikou 570228, China; (R.C.); (C.W.)
| | - Weikang Zheng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
| | - Xuyang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ridong Chen
- College of Tropical Crops, Hainan University, Haikou 570228, China; (R.C.); (C.W.)
| | - Chao Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (R.C.); (C.W.)
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Tropical Crops, Hainan University, Haikou 570228, China; (R.C.); (C.W.)
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Y.L.); (W.Z.); (C.Y.); (Y.L.); (X.W.); (J.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
46
|
Zhao J, Wang X, Pan X, Jiang Q, Xi Z. Exogenous Putrescine Alleviates Drought Stress by Altering Reactive Oxygen Species Scavenging and Biosynthesis of Polyamines in the Seedlings of Cabernet Sauvignon. FRONTIERS IN PLANT SCIENCE 2021; 12:767992. [PMID: 34970285 PMCID: PMC8712750 DOI: 10.3389/fpls.2021.767992] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 06/09/2023]
Abstract
Climate change imposes intensive dry conditions in most grape-growing regions. Drought stress is one of the most devastating abiotic factors threatening grape growth, yield, and fruit quality. In this study, the alleviation effect of exogenous putrescine (Put) was evaluated using the seedlings of Cabernet Sauvignon (Vitis vinifera L.) subjected to drought stress. The phenotype, photosynthesis index, membrane injury index (MII), and antioxidant system, as well as the dynamic changes of endogenous polyamines (PAs) of grape seedlings, were monitored. Results showed that drought stress increased the MII, lipid peroxidation, and the contents of reactive oxygen species (ROS) (H2O2 and O2 -), while it decreased the antioxidant enzyme activity and the net photosynthesis rate (Pn). However, the application of Put alleviated the effects of drought stress by altering ROS scavenging, enhancing the antioxidant system, and increasing the net Pn. Put distinctly increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as the contents of ascorbic acid (AsA) and glutathione (GSH). Meanwhile, exogenous Put also promoted the metabolism of endogenous PAs by upregulating their synthetic genes. Our results confirmed that the exogenous application of Put can enhance the antioxidant capacity as well as alter the PA pool, which provides better drought tolerance for Cabernet Sauvignon seedlings.
Collapse
Affiliation(s)
- Jiaqi Zhao
- College of Enology, Northwest A&F University, Xianyang, China
| | - Xuefei Wang
- College of Enology, Northwest A&F University, Xianyang, China
| | - Xingbo Pan
- College of Enology, Northwest A&F University, Xianyang, China
| | - Qianqian Jiang
- College of Enology, Northwest A&F University, Xianyang, China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Xianyang, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China
| |
Collapse
|
47
|
Salazar-Díaz K, Dong Y, Papdi C, Ferruzca-Rubio EM, Olea-Badillo G, Ryabova LA, Dinkova TD. TOR senses and regulates spermidine metabolism during seedling establishment and growth in maize and Arabidopsis. iScience 2021; 24:103260. [PMID: 34765910 PMCID: PMC8571727 DOI: 10.1016/j.isci.2021.103260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/23/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Spermidine (Spd) is a nitrogen sink and signaling molecule that plays pivotal roles in eukaryotic cell growth and must be finetuned to meet various energy demands. In eukaryotes, target of rapamycin (TOR) is a central nutrient sensor, especially N, and a master-regulator of growth and development. Here, we discovered that Spd stimulates the growth of maize and Arabidopsis seedlings through TOR signaling. Inhibition of Spd biosynthesis led to TOR inactivation and growth defects. Furthermore, disruption of a TOR complex partner RAPTOR1B abolished seedling growth stimulation by Spd. Strikingly, TOR activated by Spd promotes translation of key metabolic enzyme upstream open reading frame (uORF)-containing mRNAs, PAO and CuAO, by facilitating translation reinitiation and providing feedback to polyamine metabolism and TOR activation. The Spd-TOR relay protected young-age seedlings of maize from expeditious stress heat shock. Our results demonstrate Spd is an upstream effector of TOR kinase in planta and provide its potential application for crop protection. Spermidine (Spd) stimulates growth of maize and Arabidopsis by activating TOR signaling TOR stimulates translation efficiency of uORF-containing mRNAs involved in Spd catabolism TOR provides feedback to polyamine homeostasis in response to excess of Spd The Spd-TOR signaling axis protects maize seedlings from expeditious heat stress
Collapse
Affiliation(s)
- Kenia Salazar-Díaz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Yihan Dong
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Csaba Papdi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Ernesto Miguel Ferruzca-Rubio
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Grecia Olea-Badillo
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Tzvetanka D Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
48
|
Hayes SMS, Sachs JR, Cho CR. From complex data to biological insight: 'DEKER' feature selection and network inference. J Pharmacokinet Pharmacodyn 2021; 49:81-99. [PMID: 34791577 PMCID: PMC8837529 DOI: 10.1007/s10928-021-09792-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 11/12/2022]
Abstract
Network inference is a valuable approach for gaining mechanistic insight from high-dimensional biological data. Existing methods for network inference focus on ranking all possible relations (edges) among all measured quantities such as genes, proteins, metabolites (features) observed, which yields a dense network that is challenging to interpret. Identifying a sparse, interpretable network using these methods thus requires an error-prone thresholding step which compromises their performance. In this article we propose a new method, DEKER-NET, that addresses this limitation by directly identifying a sparse, interpretable network without thresholding, improving real-world performance. DEKER-NET uses a novel machine learning method for feature selection in an iterative framework for network inference. DEKER-NET is extremely flexible, handling linear and nonlinear relations while making no assumptions about the underlying distribution of data, and is suitable for categorical or continuous variables. We test our method on the Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge data, demonstrating that it can directly identify sparse, interpretable networks without thresholding while maintaining performance comparable to the hypothetical best-case thresholded network of other methods.
Collapse
Affiliation(s)
- Sean M S Hayes
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ, USA.
| | - Jeffrey R Sachs
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Carolyn R Cho
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
49
|
Identification and profiling of conserved microRNAs in different developmental stages of crown imperial (Fritillaria imperialis L.) using high-throughput sequencing. Mol Biol Rep 2021; 49:1121-1132. [PMID: 34779986 DOI: 10.1007/s11033-021-06938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Novel strategies for improvement of ornamental plants and their properties relay on miRNA control of differential plant gene expression modulation. Still, in response to the same abiotic stresses, some conserved miRNA families show different expression patterns in different plant species. In parallel, the use of deep sequencing technologies reveals new levels of complexity of regulatory networks in plants through identification of new miRNAs. METHODS AND RESULTS Fritillaria imperialis plants were collected from their natural habitats in Koohrang, Chaharmahal va Bakhtiari, Iran. Several tissues including stamen, pistil, petal, sepal, leaf, stem, bulb and fruit were collected during three developmental stages (stem elongation, flower development and seed head stages). Using RNAseq and qRT-PCR approach, this research revealed 21 conserved miRNAs, matching 15 miRNA families, in Fritilaria imperialis. CONCLUSIONS The expression of seven conserved miRNAs (Fim-miR156b, Fim-miR159, Fim-miR166a-5p, Fim-miR169d-5p, Fim-miR171c, Fim-miR393 and Fim-miR396e-3p) was further investigated in different tissues and three developmental stages, suggesting different roles for these miRNAs during growth and development of crown imperial. Gained knowledge from this research can open the door to find efficient ways to secure crown imperial survival, preservation and utilization and if proven useful may be applied in other plant species as well.
Collapse
|
50
|
Gao C, Sheteiwy MS, Lin C, Guan Y, Ulhassan Z, Hu J. Spermidine Suppressed the Inhibitory Effects of Polyamines Inhibitors Combination in Maize ( Zea mays L.) Seedlings under Chilling Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112421. [PMID: 34834784 PMCID: PMC8620270 DOI: 10.3390/plants10112421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 05/07/2023]
Abstract
Chilling stress greatly inhibited the seed germination, plant growth, development and productivity in this study. The current research aimed to study the effects of different polyamine (PA) inhibitor combinations (Co), e.g., D-arginine (D-Arg), difluoromethylormithine (DFMO), aminoguanidine (Ag) and methylglyoxyl-bis-(guanyhydrazone) (MGBG) at different doses, i.e., 10 µM Co, 100 µM Co, 500 µM Co, 1000 µM Co and 1000 µM Co + 1 mM Spd (Spermidine) in two inbred lines of maize (Zea mays L.), i.e., Mo17 and Huang C, a sensitive and tolerant chilling stress, respectively. The combination treatments of PA inhibitors reduced the biosynthesis of putrescine (Put) in the tissues of both studied inbred lines. Application with 500 µM Co and 1000 µM Co did not result in a significant difference in Put concentrations, except in the coleoptile of Mo17. However, combining Spd to 1000 μM of PA inhibitors enhanced the Put, Spd, spermine (Spm) and total PAs in the roots, coleoptile and mesocotyls. Put and total PAs were increased by 39.7% and 30.54%, respectively, when Spd + 1000 µM Co were applied relative to their controls. Chilling stress and PA inhibitors treatments affected both inbred lines and resulted in differences in the PA contents. Results showed that enzymes involved in the biosynthesis of PAs (ornithine decarboxylase as ODC and S-adenosylmethionine decarboxylase as SAMDC) were significantly downregulated by 1000 µM Co in the tissues of both inbred lines. In contrast, the activity of PAO, a Pas degradation enzyme, was significantly improved by 1000 µM Co under chilling stress. However, Spd + 1000 µM Co significantly improved the activities of ODC and SAMDC and their transcript levels (ODC and SAMDC2). While it significantly downregulated the PAO activity and their relative genes (PAO1, PAO2 and PAO3) under chilling stress. Overall, this study elucidates the specific roles of Spd on the pathway of PA inhibitors and PA biosynthesis metabolism in maize seed development in response to chilling stress. Moreover, the Huang C inbred line was more tolerant than Mo17, which was reflected by higher activities of PA biosynthesis-related enzymes and lower activities of PAs' degradative-related enzymes in Huang C.
Collapse
Affiliation(s)
- Canhong Gao
- College of Agriculture, Anhui Agricultural University, Hefei 230036, China;
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Mohamed S. Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Chen Lin
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yajing Guan
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (Y.G.); (J.H.)
| | - Zaid Ulhassan
- Laboratory of Spectroscopy Sensing, Institute of Crop Science, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China;
| | - Jin Hu
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (Y.G.); (J.H.)
| |
Collapse
|