1
|
Moreels P, Bigot S, Defalque C, Correa F, Martinez JP, Lutts S, Quinet M. Intra- and inter-specific reproductive barriers in the tomato clade. FRONTIERS IN PLANT SCIENCE 2023; 14:1326689. [PMID: 38143584 PMCID: PMC10739309 DOI: 10.3389/fpls.2023.1326689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
Tomato (Solanum lycopersicum L.) domestication and later introduction into Europe resulted in a genetic bottleneck that reduced genetic variation. Crosses with other wild tomato species from the Lycopersicon clade can be used to increase genetic diversity and improve important agronomic traits such as stress tolerance. However, many species in the Lycopersicon clade have intraspecific and interspecific incompatibility, such as gametophytic self-incompatibility and unilateral incompatibility. In this review, we provide an overview of the known incompatibility barriers in Lycopersicon. We begin by addressing the general mechanisms self-incompatibility, as well as more specific mechanisms in the Rosaceae, Papaveraceae, and Solanaceae. Incompatibility in the Lycopersicon clade is discussed, including loss of self-incompatibility, species exhibiting only self-incompatibility and species presenting both self-compatibility and self-incompatibility. We summarize unilateral incompatibility in general and specifically in Lycopersicon, with details on the 'self-compatible x self-incompatible' rule, implications of self-incompatibility in unilateral incompatibility and self-incompatibility-independent pathways of unilateral incompatibility. Finally, we discuss advances in the understanding of compatibility barriers and their implications for tomato breeding.
Collapse
Affiliation(s)
- Pauline Moreels
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Corentin Defalque
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Francisco Correa
- Instituto de Investigaciones Agropecuarias (INIA-Rayentué), Rengo, Chile
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Broz AK, Simpson-Van Dam A, Tovar-Méndez A, Hahn MW, McClure B, Bedinger PA. Spread of self-compatibility constrained by an intrapopulation crossing barrier. THE NEW PHYTOLOGIST 2021; 231:878-891. [PMID: 33864700 DOI: 10.1111/nph.17400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Mating system transitions from self-incompatibility (SI) to self-compatibility (SC) are common in plants. In the absence of high levels of inbreeding depression, SC alleles are predicted to spread due to transmission advantage and reproductive assurance. We characterized mating system and pistil-expressed SI factors in 20 populations of the wild tomato species Solanum habrochaites from the southern half of the species range. We found that a single SI to SC transition is fixed in populations south of the Rio Chillon valley in central Peru. In these populations, SC correlated with the presence of the hab-6 S-haplotype that encodes a low activity S-RNase protein. We identified a single population segregating for SI/SC and hab-6. Intrapopulation crosses showed that hab-6 typically acts in the expected codominant fashion to confer SC. However, we found one specific S-haplotype (hab-10) that consistently rejects pollen of the hab-6 haplotype, and results in SI hab-6/hab-10 heterozygotes. We suggest that the hab-10 haplotype could act as a genetic mechanism to stabilize mixed mating in this population by presenting a disadvantage for the hab-6 haplotype. This barrier may represent a mechanism allowing for the persistence of SI when an SC haplotype appears in or invades a population.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | | | | | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| |
Collapse
|
3
|
Landis JB, Miller CM, Broz AK, Bennett AA, Carrasquilla-Garcia N, Cook DR, Last RL, Bedinger PA, Moghe GD. Migration through a Major Andean Ecogeographic Disruption as a Driver of Genetic and Phenotypic Diversity in a Wild Tomato Species. Mol Biol Evol 2021; 38:3202-3219. [PMID: 33822137 PMCID: PMC8321546 DOI: 10.1093/molbev/msab092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites—a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4–6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone—a geographical landmark in the Andes with high endemism and isolated microhabitats—was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.
Collapse
Affiliation(s)
- Jacob B Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.,Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alexandra A Bennett
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Douglas R Cook
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | | | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Joly V, Tebbji F, Nantel A, Matton DP. Pollination Type Recognition from a Distance by the Ovary Is Revealed Through a Global Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E185. [PMID: 31238522 PMCID: PMC6630372 DOI: 10.3390/plants8060185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Sexual reproduction in flowering plants involves intimate contact and continuous interactions between the growing pollen tube and the female reproductive structures. These interactions can trigger responses in distal regions of the flower well ahead of fertilization. While pollination-induced petal senescence has been studied extensively, less is known about how pollination is perceived at a distance in the ovary, and how specific this response is to various pollen genotypes. To address this question, we performed a global transcriptomic analysis in the ovary of a wild potato species, Solanum chacoense, at various time points following compatible, incompatible, and heterospecific pollinations. In all cases, pollen tube penetration in the stigma was initially perceived as a wounding aggression. Then, as the pollen tubes grew in the style, a growing number of genes became specific to each pollen genotype. Functional classification analyses revealed sharp differences in the response to compatible and heterospecific pollinations. For instance, the former induced reactive oxygen species (ROS)-related genes while the latter affected genes associated to ethylene signaling. In contrast, incompatible pollination remained more akin to a wound response. Our analysis reveals that every pollination type produces a specific molecular signature generating diversified and specific responses at a distance in the ovary in preparation for fertilization.
Collapse
Affiliation(s)
- Valentin Joly
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| | - Faïza Tebbji
- CRCHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada.
| | - André Nantel
- National Research Council Canada, Montréal, QC H4P 2R2, Canada.
| | - Daniel P Matton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
5
|
Kanaoka MM. Cell-cell communications and molecular mechanisms in plant sexual reproduction. JOURNAL OF PLANT RESEARCH 2018; 131:37-47. [PMID: 29181649 DOI: 10.1007/s10265-017-0997-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Sexual reproduction is achieved by precise interactions between male and female reproductive organs. In plant fertilization, sperm cells are carried to ovules by pollen tubes. Signals from the pistil are involved in elongation and control of the direction of the pollen tube. Genetic, reverse genetic, and cell biological analyses using model plants have identified various factors related to the regulation of pollen tube growth and guidance. In this review, I summarize the mechanisms and molecules controlling pollen tube growth to the ovule, micropylar guidance, reception of the guidance signal in the pollen tube, rupture of the pollen tube to release sperm cells, and cessation of the tube guidance signal. I also briefly introduce various techniques used to analyze pollen tube guidance in vitro.
Collapse
Affiliation(s)
- Masahiro M Kanaoka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|