1
|
Agbana S, McIlroy M. Extra-nuclear and cytoplasmic steroid receptor signalling in hormone dependent cancers. J Steroid Biochem Mol Biol 2024; 243:106559. [PMID: 38823459 DOI: 10.1016/j.jsbmb.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Steroid hormone receptors are key mediators in the execution of hormone action through a combination of genomic and non-genomic action. Since their isolation and characterisation in the early 20th Century much of our understanding of the biological actions of steroid hormones are underpinned by their activated receptor activity. Over the past two decades there has been an acceleration of more omics-based research which has resulted in a major uptick in our comprehension of genomic steroid action. However, it is well understood that steroid hormones can induce very rapid signalling events in tandem with their genomic actions wherein they exert their influence through alterations in gene expression. Thus the totality of genomic and non-genomic steroid action occurs in a simultaneous and reciprocal manner and a greater appreciation of whole cell action is required to fully evaluate steroid hormone activity in vivo. In this mini-review we outline the most recent developments in non-genomic steroid action and cytoplasmic steroid hormone receptor biology in endocrine-related cancers with a focus on the 3-keto steroid receptors, in particular the androgen receptor.
Collapse
Affiliation(s)
- Stephanie Agbana
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland
| | - Marie McIlroy
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland.
| |
Collapse
|
2
|
Ozyurt R, Ozpolat B. Molecular Mechanisms of Anti-Estrogen Therapy Resistance and Novel Targeted Therapies. Cancers (Basel) 2022; 14:5206. [PMID: 36358625 PMCID: PMC9655708 DOI: 10.3390/cancers14215206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women, constituting one-third of all cancers in women, and it is the second leading cause of cancer-related deaths in the United States. Anti-estrogen therapies, such as selective estrogen receptor modulators, significantly improve survival in estrogen receptor-positive (ER+) BC patients, which represents about 70% of cases. However, about 60% of patients inevitably experience intrinsic or acquired resistance to anti-estrogen therapies, representing a major clinical problem that leads to relapse, metastasis, and patient deaths. The resistance mechanisms involve mutations of the direct targets of anti-estrogen therapies, compensatory survival pathways, as well as alterations in the expression of non-coding RNAs (e.g., microRNA) that regulate the activity of survival and signaling pathways. Although cyclin-dependent kinase 4/6 and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors have significantly improved survival, the efficacy of these therapies alone and in combination with anti-estrogen therapy for advanced ER+ BC, are not curative in advanced and metastatic disease. Therefore, understanding the molecular mechanisms causing treatment resistance is critical for developing highly effective therapies and improving patient survival. This review focuses on the key mechanisms that contribute to anti-estrogen therapy resistance and potential new treatment strategies alone and in combination with anti-estrogen drugs to improve the survival of BC patients.
Collapse
Affiliation(s)
- Rumeysa Ozyurt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
3
|
Effects of Combined Pentadecanoic Acid and Tamoxifen Treatment on Tamoxifen Resistance in MCF−7/SC Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231911340. [PMID: 36232636 PMCID: PMC9570034 DOI: 10.3390/ijms231911340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Estrogen receptors are indicators of breast cancer adaptability to endocrine therapies, such as tamoxifen. Deficiency or absence of estrogen receptor α (ER−α) in breast cancer cells results in reduced efficacy of endocrine therapy. Here, we investigated the effect of combined tamoxifen and pentadecanoic acid therapy on ER−α−under−expressing breast cancer cells. Drug resistance gene expression patterns were determined by RNA sequencing analysis and in vitro experiments. For the first time, we demonstrate that the combined treatment of pentadecanoic acid, an odd−chain fatty acid, and tamoxifen synergistically suppresses the growth of human breast carcinoma MCF−7 stem cells (MCF−7/SCs), which were found to be tamoxifen−resistant and showed reduced ER−α expression compared with the parental MCF−7 cells. In addition, the combined treatment synergistically induced apoptosis and accumulation of sub−G1 cells and suppressed epithelial−to−mesenchymal transition (EMT). Exposure to this combination induces re−expression of ER−α at the transcriptional and protein levels, along with suppression of critical survival signal pathways, such as ERK1/2, MAPK, EGFR, and mTOR. Collectively, decreased ER−α expression was restored by pentadecanoic acid treatment, resulting in reversal of tamoxifen resistance. Overall, pentadecanoic acid exhibits the potential to enhance the efficacy of endocrine therapy in the treatment of ER−α−under−expressing breast cancer cells.
Collapse
|
4
|
Qu C, Wang C, Li H, Li Y, Han C, Tao X, Guan X, Zhang Y, Chen M, Liu J, Zou W. Estrogen receptor variant ER-α36 facilitates estrogen signaling via EGFR in glioblastoma. Cell Biol Int 2022; 46:1759-1774. [PMID: 35930599 DOI: 10.1002/cbin.11877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma (GBM) is a deadly and common primary brain tumor. Poor prognosis is linked to high proliferation and cell heterogeneity. Sex differences may play a role in patient outcome. Previous studies showed that ER-α36, a variant of the estrogen receptor (ER), mediated non-genomic estrogen signaling and is highly expressed in many ER-negative malignant tumors. ER-α36 also associates with epidermal growth factor receptor (EGFR). The primary purpose of this study is to investigate the cross talk between ER-α36 and EGFR in estrogen-mediated GBM cell proliferation. Here, we showed that ER-α36 was highly expressed and confirmed that ER-α36 co-labels with EGFR in human GBM samples using immunohistochemical techniques. We also investigated the mechanisms of estrogen-induced proliferation in ER-α-negative cell lines. We found that GBM cells showed varying responsive to mitogenic estrogen signaling which correlated with ER-α36 expression, and knockdown of ER-α36 diminished the response. Exposure to estrogen also caused upregulation of cyclin protein expression in vitro. We also found that low concentration of estrogen promoted SRC-Y-416 and inhibited SRC-Y-527 phosphorylation, corresponding with activated SRC signaling. Inhibiting SRC or EGFR abolished estrogen-induced mitogenic signaling, including cyclin expression and MAPK phosphorylation. Cumulatively, our results demonstrate that ER-α36 promotes non-genomic estrogen signaling via the EGFR/SRC/MAPK pathway in GBM. This may be important for the treatment of ER-α-negative GBMs that retain high level of ER-α36, since estrogen may be a viable therapeutic target for these patients.
Collapse
Affiliation(s)
- Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Cui Wang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Neurology Ward Three, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Hongyan Li
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chao Han
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaofeng Tao
- Neurology Ward Three, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Xin Guan
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yejun Zhang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China
| | - Meng Chen
- Qingdao Re-store Life Science Co., Ltd., Qingdao, Shandong, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning, China.,Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Qingdao Re-store Life Science Co., Ltd., Qingdao, Shandong, China
| |
Collapse
|
5
|
Sahoo S, Mishra A, Kaur H, Hari K, Muralidharan S, Mandal S, Jolly MK. A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER+ breast cancer cells. NAR Cancer 2021; 3:zcab027. [PMID: 34316714 PMCID: PMC8271219 DOI: 10.1093/narcan/zcab027] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance to anti-estrogen therapy is an unsolved clinical challenge in successfully treating ER+ breast cancer patients. Recent studies have demonstrated the role of non-genetic (i.e. phenotypic) adaptations in tolerating drug treatments; however, the mechanisms and dynamics of such non-genetic adaptation remain elusive. Here, we investigate coupled dynamics of epithelial–mesenchymal transition (EMT) in breast cancer cells and emergence of reversible drug resistance. Our mechanism-based model for underlying regulatory network reveals that these two axes can drive one another, thus enabling non-genetic heterogeneity in a cell population by allowing for six co-existing phenotypes: epithelial-sensitive, mesenchymal-resistant, hybrid E/M-sensitive, hybrid E/M-resistant, mesenchymal-sensitive and epithelial-resistant, with the first two ones being most dominant. Next, in a population dynamics framework, we exemplify the implications of phenotypic plasticity (both drug-induced and intrinsic stochastic switching) and/or non-genetic heterogeneity in promoting population survival in a mixture of sensitive and resistant cells, even in the absence of any cell–cell cooperation. Finally, we propose the potential therapeutic use of mesenchymal–epithelial transition inducers besides canonical anti-estrogen therapy to limit the emergence of reversible drug resistance. Our results offer mechanistic insights into empirical observations on EMT and drug resistance and illustrate how such dynamical insights can be exploited for better therapeutic designs.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ashutosh Mishra
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Harsimran Kaur
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Srinath Muralidharan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Susmita Mandal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Bastien B, Boukhobza T, Dumond H, Gégout-Petit A, Muller-Gueudin A, Thiébaut C. A statistical methodology to select covariates in high-dimensional data under dependence. Application to the classification of genetic profiles in oncology. J Appl Stat 2020; 49:764-781. [PMID: 35706767 PMCID: PMC9041748 DOI: 10.1080/02664763.2020.1837083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
We propose a new methodology for selecting and ranking covariates associated with a variable of interest in a context of high-dimensional data under dependence but few observations. The methodology successively intertwines the clustering of covariates, decorrelation of covariates using Factor Latent Analysis, selection using aggregation of adapted methods and finally ranking. A simulation study shows the interest of the decorrelation inside the different clusters of covariates. We first apply our method to transcriptomic data of 37 patients with advanced non-small-cell lung cancer who have received chemotherapy, to select the transcriptomic covariates that explain the survival outcome of the treatment. Secondly, we apply our method to 79 breast tumor samples to define patient profiles for a new metastatic biomarker and associated gene network in order to personalize the treatments.
Collapse
Affiliation(s)
- B. Bastien
- Transgene S.A., Illkirch-Graffenstaden Cedex, France
| | - T. Boukhobza
- Université de Lorraine, CNRS, CRAN, Nancy, France
| | - H. Dumond
- Université de Lorraine, CNRS, CRAN, Nancy, France
| | | | | | - C. Thiébaut
- Université de Lorraine, CNRS, CRAN, Nancy, France
| |
Collapse
|
7
|
Thiebaut C, Konan HP, Guerquin MJ, Chesnel A, Livera G, Le Romancer M, Dumond H. The Role of ERα36 in Development and Tumor Malignancy. Int J Mol Sci 2020; 21:E4116. [PMID: 32526980 PMCID: PMC7312586 DOI: 10.3390/ijms21114116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen nuclear receptors, represented by the canonical forms ERα66 and ERβ1, are the main mediators of the estrogen-dependent pathophysiology in mammals. However, numerous isoforms have been identified, stimulating unconventional estrogen response pathways leading to complex cellular and tissue responses. The estrogen receptor variant, ERα36, was cloned in 2005 and is mainly described in the literature to be involved in the progression of mammary tumors and in the acquired resistance to anti-estrogen drugs, such as tamoxifen. In this review, we will first specify the place that ERα36 currently occupies within the diversity of nuclear and membrane estrogen receptors. We will then report recent data on the impact of ERα36 expression and/or activity in normal breast and testicular cells, but also in different types of tumors including mammary tumors, highlighting why ERα36 can now be considered as a marker of malignancy. Finally, we will explain how studying the regulation of ERα36 expression could provide new clues to counteract resistance to cancer treatments in hormone-sensitive tumors.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Henri-Philippe Konan
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Marie-Justine Guerquin
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Amand Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| |
Collapse
|
8
|
Loss of Estrogen Receptors is Associated with Increased Tumor Aggression in Laryngeal Squamous Cell Carcinoma. Sci Rep 2020; 10:4227. [PMID: 32144339 PMCID: PMC7060328 DOI: 10.1038/s41598-020-60675-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/20/2020] [Indexed: 01/27/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) responds to 17β-estradiol via estrogen-receptor (ER, transcribed from ESR1) dependent mechanisms, but is not recognized as a hormonally responsive cancer. 17β-estradiol production by LSCC cell lines UM-SCC-11A and UM-SCC-12 was examined. Wild type (WT) and ESR1-silenced LSCC cultures and xenografts were examined for 17β-estradiol responsiveness in vivo. 14 LSCC and surrounding epithelial samples at various pathological stages were obtained from patients; ERα and ERβ expression were verified using data from the total cancer genome atlas. UM-SCC-11A and UM-SCC-12 both produce 17β-estradiol, but only UM-SCC-12, not UM-SCC-11A, xenograft tumors grow larger in vivo in response to systemic 17β-estradiol treatments. ERα66 and ERα36 expression inversely correlated with clinical cancer stage and tumor burden. LSCC ERα66 expression was higher compared to surrounding epithelia in indolent samples but lower in aggressive LSCC. ERβ expression was highly variable. High ESR1 expression correlated with improved survival in LSCC. Loss of ERα66 expression inversely correlated with prognosis in LSCC. ERα66 may be a histopathological marker of aggression in LSCC.
Collapse
|
9
|
Thiebaut C, Chesnel A, Merlin JL, Chesnel M, Leroux A, Harlé A, Dumond H. Dual Epigenetic Regulation of ERα36 Expression in Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20112637. [PMID: 31146345 PMCID: PMC6600239 DOI: 10.3390/ijms20112637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer remains the major cause of cancer-induced morbidity and mortality in women. Among the different molecular subtypes, luminal tumors yet considered of good prognosis often develop acquired resistance to endocrine therapy. Recently, misregulation of ERα36 was reported to play a crucial role in this process. High expression of this ERα isoform was associated to preneoplastic phenotype in mammary epithelial cells, disease progression, and enhanced resistance to therapeutic agents in breast tumors. In this study, we identified two mechanisms that could together contribute to ERα36 expression regulation. We first focused on hsa-miR-136-5p, an ERα36 3’UTR-targeting microRNA, the expression of which inversely correlated to the ERα36 one in breast cancer cells. Transfection of hsa-miR136-5p mimic in MCF-7 cells resulted in downregulation of ERα36. Moreover, the demethylating agent decitabine was able to stimulate hsa-miR-136-5p endogenous expression, thus indirectly decreasing ERα36 expression and counteracting tamoxifen-dependent stimulation. The methylation status of ERα36 promoter also directly modulated its expression level, as demonstrated after decitabine treatment of breast cancer cell and confirmed in a set of tumor samples. Taken together, these results open the way to a direct and an indirect ERα36 epigenetic modulation by decitabine as a promising clinical strategy to counteract acquired resistance to treatment and prevent relapse.
Collapse
Affiliation(s)
| | - Amand Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| | - Jean-Louis Merlin
- Université de Lorraine, CNRS, CRAN, Institut de Cancérologie de Lorraine, F-54000 Nancy, France.
| | - Maelle Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| | - Agnès Leroux
- Institut de Cancérologie de Lorraine, F-54000 Nancy, France.
| | - Alexandre Harlé
- Université de Lorraine, CNRS, CRAN, Institut de Cancérologie de Lorraine, F-54000 Nancy, France.
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| |
Collapse
|
10
|
Nagel A, Szade J, Iliszko M, Elzanowska J, Welnicka-Jaskiewicz M, Skokowski J, Stasilojc G, Bigda J, Sadej R, Zaczek A, Markiewicz A. Clinical and Biological Significance of ESR1 Gene Alteration and Estrogen Receptors Isoforms Expression in Breast Cancer Patients. Int J Mol Sci 2019; 20:ijms20081881. [PMID: 30995757 PMCID: PMC6514554 DOI: 10.3390/ijms20081881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
The amplification of estrogen receptor alpha (ERα) encoded by the ESR1 gene has been described as having a prognostic role in breast cancer patients. However, increased dosage of the ESR1 gene (tested by real-time PCR) is also observed in ER-negative breast cancers, which might suggest the expression of alternative isoforms of ERα (other than classical ERα of 66 kDa). In the current work, we have investigated the ESR1 gene dosage in 402 primary breast cancer patients as well as the expression of ERα isoforms—ERα66 and ERα36—on mRNA and protein levels. The obtained results were correlated with clinicopathological data of the patients. Results showed that increased ESR1 gene dosage is not related to ESR1 gene amplification measured by fluorescent in situ hybridization (FISH), but it correlates with the decreased expression of ERα66 isoform (p = 0.01). Interestingly, the short ER isoform ERα36 was expressed in samples with increased ESR1 gene dosage, suggesting that genomic aberration might influence the expression of that particular isoform. Similarly to ESR1 increased gene dosage, high ERα36 expression was linked with the decreased disease-free survival of the patients (p = 0.05), which was independent of the status of the classical ERα66 level in breast tumors.
Collapse
Affiliation(s)
- Anna Nagel
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Jolanta Szade
- Department of Pathology, Medical University of Gdansk, 80-210 Gdansk, Poland.
| | - Mariola Iliszko
- Department of Biology and Genetics, Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Julia Elzanowska
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | | | - Jaroslaw Skokowski
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland.
- Department of Medical Laboratory Diagnostics -Biobank, Medical University of Gdansk, Gdansk, 80-210 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.PL), 80-210 Gdansk, Poland.
| | - Grzegorz Stasilojc
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Jacek Bigda
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Rafal Sadej
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Anna Zaczek
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| | - Aleksandra Markiewicz
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland.
| |
Collapse
|
11
|
Ishii T, Warabi E. Mechanism of Rapid Nuclear Factor-E2-Related Factor 2 (Nrf2) Activation via Membrane-Associated Estrogen Receptors: Roles of NADPH Oxidase 1, Neutral Sphingomyelinase 2 and Epidermal Growth Factor Receptor (EGFR). Antioxidants (Basel) 2019; 8:antiox8030069. [PMID: 30889865 PMCID: PMC6466580 DOI: 10.3390/antiox8030069] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Membrane-associated estrogen receptors (ER)-α36 and G protein-coupled estrogen receptor (GPER) play important roles in the estrogen’s rapid non-genomic actions including stimulation of cell proliferation. Estrogen via these receptors induces rapid activation of transcription factor nuclear factor-E2-related factor 2 (Nrf2), a master regulator of detoxification and antioxidant systems, playing a key role in the metabolic reprogramming to support cell proliferation. This review highlights the possible mechanism underlying rapid Nrf2 activation via membrane-associated estrogen receptors by estrogen and phytoestrogens. Stimulation of ER-α36-GPER signaling complex rapidly induces Src-mediated transactivation of epidermal growth factor receptor (EGFR) leading to a kinase-mediated signaling cascade. We propose a novel hypothesis that ER-α36-GPER signaling initially induces rapid and temporal activation of NADPH oxidase 1 to generate superoxide, which subsequently activates redox-sensitive neutral sphingomyelinase 2 generating the lipid signaling mediator ceramide. Generation of ceramide is required for Ras activation and ceramide-protein kinase C ζ-casein kinase 2 (CK2) signaling. Notably, CK2 enhances chaperone activity of the Cdc37-Hsp90 complex supporting activation of various signaling kinases including Src, Raf and Akt (protein kinase B). Activation of Nrf2 may be induced by cooperation of two signaling pathways, (i) Nrf2 stabilization by direct phosphorylation by CK2 and (ii) EGFR-Ras-PI 3 kinase (PI3K)-Akt axis which inhibits glycogen synthase kinase 3β leading to enhanced nuclear transport and stability of Nrf2.
Collapse
Affiliation(s)
- Tetsuro Ishii
- Faculty of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-8575, Japan.
| | - Eiji Warabi
- Faculty of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-8575, Japan.
| |
Collapse
|
12
|
Schwartz N, Verma A, Muktipaty C, Bivens C, Schwartz Z, Boyan BD. Estradiol receptor profile and estrogen responsiveness in laryngeal cancer and clinical outcomes. Steroids 2019; 142:34-42. [PMID: 29274403 DOI: 10.1016/j.steroids.2017.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022]
Abstract
There is growing evidence that laryngeal cancers are responsive to sex hormones, specifically 17β-estradiol (E2), despite controversy regarding the presence and characterization of E2 receptors (ER). Determination of sex hormone responsiveness impacts the prognosis of laryngeal cancer patients and the treatment modalities implemented by their clinicians. Discovery of membrane-associated steroid hormone receptors and rapid membrane signaling opened the possibility that cancers previously labeled 'non-hormone dependent' and 'ER negative' might in fact be susceptible to the effects of E2 via these membrane receptors. ERα66 and ERβ, the classical nuclear receptors, are present in the membranes of different cancer cells via a mechanism referred to as trafficking. Novel splice variants of these traditional receptors, a key example being ERα36, have also been found in the caveolae of cancer cells. Previous work demonstrated that ERα36 has a role in the tumorigenesis of laryngeal cancer, enhancing both proliferation and the anti-apoptotic effect of E2 against chemotherapeutics. The present study showed that expression of different membrane ERs in laryngeal cancer is not uniform, which may result in differential and even antagonistic responses to E2. E2 had protective or deleterious effects in different cancer cell lines, stimulating proliferation and conferring anti-apoptotic potential to the cancer cells according to their receptor profile. These findings stress the importance of establishing the molecular and clinical characterization of the specific laryngeal tumor in order to tailor treatment accordingly, thus optimizing care while reducing adverse effects for individual patients.
Collapse
Affiliation(s)
- Nofrat Schwartz
- Department of Otolaryngology Head and Neck Surgery, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Chandana Muktipaty
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Caroline Bivens
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
13
|
Maczis MA, Maceyka M, Waters MR, Newton J, Singh M, Rigsby MF, Turner TH, Alzubi MA, Harrell JC, Milstien S, Spiegel S. Sphingosine kinase 1 activation by estrogen receptor α36 contributes to tamoxifen resistance in breast cancer. J Lipid Res 2018; 59:2297-2307. [PMID: 30315000 DOI: 10.1194/jlr.m085191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
In breast cancer, 17β-estradiol (E2) plays critical roles mainly by binding to its canonical receptor, estrogen receptor (ER) α66, and eliciting genomic effects. E2 also triggers rapid, nongenomic responses. E2 activates sphingosine kinase 1 (SphK1), increasing sphingosine-1-phosphate (S1P) that binds to its receptors, leading to important breast cancer signaling. However, the E2 receptor responsible for SphK1 activation has not yet been identified. Here, we demonstrate in triple-negative breast cancer cells, which lack the canonical ERα66 but express the novel splice variant ERα36, that ERα36 is the receptor responsible for E2-induced activation of SphK1 and formation and secretion of S1P and dihydro-S1P, the ligands for S1PRs. Tamoxifen, the first-line endocrine therapy for breast cancer, is an antagonist of ERα66, but an agonist of ERα36, and, like E2, activates SphK1 and markedly increases secretion of S1P. A major problem with tamoxifen therapy is development of acquired resistance. We found that tamoxifen resistance correlated with increased SphK1 and ERα36 expression in tamoxifen-resistant breast cancer cells, in patient-derived xenografts, and in endocrine-resistant breast cancer patients. Our data also indicate that targeting this ERα36 and SphK1 axis may be a therapeutic option to circumvent endocrine resistance and improve patient outcome.
Collapse
Affiliation(s)
- Melissa A Maczis
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael R Waters
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jason Newton
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Manjulata Singh
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Madisyn F Rigsby
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tia H Turner
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Mohammad A Alzubi
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - J Chuck Harrell
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
14
|
Thiebaut C, Chamard-Jovenin C, Chesnel A, Morel C, Djermoune EH, Boukhobza T, Dumond H. Mammary epithelial cell phenotype disruption in vitro and in vivo through ERalpha36 overexpression. PLoS One 2017; 12:e0173931. [PMID: 28301550 PMCID: PMC5354400 DOI: 10.1371/journal.pone.0173931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022] Open
Abstract
Estrogen receptor alpha 36 (ERα36) is a variant of the canonical estrogen receptor alpha (ERα66), widely expressed in hormone sensitive cancer cells and whose high expression level correlates with a poor survival prognosis for breast cancer patients. While ERα36 activity have been related to breast cancer progression or acquired resistance to treatment, expression level and location of ERα36 are poorly documented in the normal mammary gland. Therefore, we explored the consequences of a ERα36 overexpression in vitro in MCF-10A normal mammary epithelial cells and in vivo in a unique model of MMTV-ERα36 transgenic mouse strain wherein ERα36 mRNA was specifically expressed in the mammary gland. By a combination of bioinformatics and computational analyses of microarray data, we identified hierarchical gene networks, downstream of ERα36 and modulated by the JAK2/STAT3 signaling pathway. Concomitantly, ERα36 overexpression lowered proliferation rate but enhanced migration potential and resistance to staurosporin-induced apoptosis of the MCF-10A cell line. In vivo, ERα36 expression led to duct epithelium thinning and disruption in adult but not in prepubescent mouse mammary gland. These phenotypes correlated with a loss of E-cadherin expression. Here, we show that an enhanced expression of ERα36 is sufficient, by itself, to disrupt normal breast epithelial phenotype in vivo and in vitro through a dominant-positive effect on nongenomic estrogen signaling pathways. These results also suggest that, in the presence of adult endogenous steroid levels, ERα36 overexpression in vivo contributes to alter mammary gland architecture which may support pre-neoplastic lesion and augment breast cancer risk.
Collapse
Affiliation(s)
- Charlène Thiebaut
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Clémence Chamard-Jovenin
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Amand Chesnel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Chloé Morel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - El-Hadi Djermoune
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Taha Boukhobza
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Hélène Dumond
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
15
|
Chamard-Jovenin C, Thiebaut C, Chesnel A, Bresso E, Morel C, Smail-Tabbone M, Devignes MD, Boukhobza T, Dumond H. Low-Dose Alkylphenol Exposure Promotes Mammary Epithelium Alterations and Transgenerational Developmental Defects, But Does Not Enhance Tumorigenic Behavior of Breast Cancer Cells. Front Endocrinol (Lausanne) 2017; 8:272. [PMID: 29109696 PMCID: PMC5660105 DOI: 10.3389/fendo.2017.00272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/27/2017] [Indexed: 11/22/2022] Open
Abstract
Fetal and neonatal exposure to long-chain alkylphenols has been suspected to promote breast developmental disorders and consequently to increase breast cancer risk. However, disease predisposition from developmental exposures remains unclear. In this work, human MCF-10A mammary epithelial cells were exposed in vitro to a low dose of a realistic (4-nonylphenol + 4-tert-octylphenol) mixture. Transcriptome and cell-phenotype analyses combined to functional and signaling network modeling indicated that long-chain alkylphenols triggered enhanced proliferation, migration ability, and apoptosis resistance and shed light on the underlying molecular mechanisms which involved the human estrogen receptor alpha 36 (ERα36) variant. A male mouse-inherited transgenerational model of exposure to three environmentally relevant doses of the alkylphenol mix was set up in order to determine whether and how it would impact on mammary gland architecture. Mammary glands from F3 progeny obtained after intrabuccal chronic exposure of C57BL/6J P0 pregnant mice followed by F1-F3 male inheritance displayed an altered histology which correlated with the phenotypes observed in vitro in human mammary epithelial cells. Since cellular phenotypes are similar in vivo and in vitro and involve the unique ERα36 human variant, such consequences of alkylphenol exposure could be extrapolated from mouse model to human. However, transient alkylphenol treatments combined to ERα36 overexpression in mammary epithelial cells were not sufficient to trigger tumorigenesis in xenografted Nude mice. Therefore, it remains to be determined if low-dose alkylphenol transgenerational exposure and subsequent abnormal mammary gland development could account for an increased breast cancer susceptibility.
Collapse
Affiliation(s)
- Clémence Chamard-Jovenin
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
| | - Charlène Thiebaut
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
| | - Amand Chesnel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
| | - Emmanuel Bresso
- Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
- Inria, Villers-lès-Nancy, France
- CNRS, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
| | - Chloé Morel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
| | - Malika Smail-Tabbone
- Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
- Inria, Villers-lès-Nancy, France
- CNRS, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
| | - Marie-Dominique Devignes
- Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
- Inria, Villers-lès-Nancy, France
- CNRS, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, France
| | - Taha Boukhobza
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
| | - Hélène Dumond
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandoeuvre-lès-Nancy, France
- *Correspondence: Hélène Dumond,
| |
Collapse
|
16
|
Schwartz N, Verma A, Bivens CB, Schwartz Z, Boyan BD. Rapid steroid hormone actions via membrane receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2289-98. [PMID: 27288742 DOI: 10.1016/j.bbamcr.2016.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Steroid hormones regulate a wide variety of physiological and developmental functions. Traditional steroid hormone signaling acts through nuclear and cytosolic receptors, altering gene transcription and subsequently regulating cellular activity. This is particularly important in hormonally-responsive cancers, where therapies that target classical steroid hormone receptors have become clinical staples in the treatment and management of disease. Much progress has been made in the last decade in detecting novel receptors and elucidating their mechanisms, particularly their rapid signaling effects and subsequent impact on tumorigenesis. Many of these receptors are membrane-bound and lack DNA-binding sites, functionally separating them from their classical cytosolic receptor counterparts. Membrane-bound receptors have been implicated in a number of pathways that disrupt the cell cycle and impact tumorigenesis. Among these are pathways that involve phospholipase D, phospholipase C, and phosphoinositide-3 kinase. The crosstalk between these pathways has been shown to affect apoptosis and proliferation in cardiac cells, osteoblasts, and chondrocytes as well as cancer cells. This review focuses on rapid signaling by 17β-estradiol and 1α,25-dihydroxy vitamin D3 to examine the integrated actions of classical and rapid steroid signaling pathways both in contrast to each other and in concert with other rapid signaling pathways. This new approach lends insight into rapid signaling by steroid hormones and its potential for use in targeted drug therapies that maximize the benefits of traditional steroid hormone-directed therapies while mitigating their less desirable effects.
Collapse
Affiliation(s)
- Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Kfar Saba, Israel
| | - Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Caroline B Bivens
- School of Art, Virginia Commonwealth University, Richmond, VA, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States; University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
17
|
Sołtysik K, Czekaj P. ERα36--Another piece of the estrogen puzzle. Eur J Cell Biol 2015; 94:611-25. [PMID: 26522827 DOI: 10.1016/j.ejcb.2015.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/03/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Although the nuclear action of estrogen receptors (ER) is a well-known fact, evidence supporting membrane estrogen receptors is steadily accumulating. New ER variants of unrecognized function have been discovered. ERα is a product of the ESR1 gene. It serves not only as a template for the full-length 66kDa protein, but also for smaller isoforms which exist as independent receptors. The recently discovered ERα36 (36kDa), consisting of 310 amino acids of total 595 ERα66 protein residues, is an example of that group. The transcription initiation site is identified in the first intron of the ESR1 gene. C-Terminal 27 amino acids are encoded by previously unknown exon 9. The presence of this unique C-terminal sequence creates an opportunity for the production of selective antibodies. ERα36 has been shown to have a high affinity to the cell membrane and as much as 90% of the protein can be bound with it. Post-translational palmitoylation is suspected to play a crucial role in ERα36 anchoring to the cell membrane. In silico analysis suggests the existence of a potential transmembrane domain in ERα36. ERα36 was found in most cells of animals at various ages, but its exact physiological function remains to be fully elucidated. It seems that cells traditionally considered as being deprived of ER are able to respond to hormonal stimulation via the ERα36 receptor. Moreover, ERα36 displays unique pharmacological properties and its action may be behind antiestrogen resistance. The use of ERα36 in cancer diagnosis gives rise to great expectations.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Students Scientific Society, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|