1
|
Liu L, Liu X, Chen Y, Kong M, Zhang J, Jiang M, Zhou H, Yang J, Chen X, Zhang Z, Wu C, Jiang X, Zhang J. Paxillin/HDAC6 regulates microtubule acetylation to promote directional migration of keratinocytes driven by electric fields. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119628. [PMID: 37949303 DOI: 10.1016/j.bbamcr.2023.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/17/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Endogenous electric fields (EFs) have been demonstrated to facilitate wound healing by directing the migration of epidermal cells. Despite the identification of numerous molecules and signaling pathways that are crucial for the directional migration of keratinocytes under EFs, the underlying molecular mechanisms remain undefined. Previous studies have indicated that microtubule (MT) acetylation is linked to cell migration, while Paxillin exerts a significant influence on cell motility. Therefore, we postulated that Paxillin could enhance EF-induced directional migration of keratinocytes by modulating MT acetylation. In the present study, we observed that EFs (200 mV/mm) induced migration of human immortalized epidermal cells (HaCaT) towards the anode, while upregulating Paxillin, downregulating HDAC6, and increasing the level of microtubule acetylation. Our findings suggested that Paxillin plays a pivotal role in inhibiting HDAC6-mediated microtubule acetylation during directional migration under EF regulation. Conversely, downregulation of Paxillin decreased microtubule acetylation and electrotaxis of epidermal cells by promoting HDAC6 expression, and this effect could be reversed by the addition of tubacin, an HDAC6-specific inhibitor. Furthermore, we observed that EFs also mediated the polarization of Paxillin and acetylated α-tubulin, which is critical for directional migration. In conclusion, our study revealed that MT acetylation in EF-guided keratinocyte migration is regulated by the Paxillin/HDAC6 signaling pathway, providing a novel theoretical foundation for the molecular mechanism of EF-guided directional migration of keratinocytes.
Collapse
Affiliation(s)
- Luojia Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Meng Kong
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Min Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Hongling Zhou
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Jinrui Yang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xu Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China.
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China.
| |
Collapse
|
2
|
Belghasem M, Yin W, Lotfollahzadeh S, Yang X, Meyer RD, Napoleon MA, Sellinger IE, Vazirani A, Metrikova E, Jose A, Zhebrun A, Whelan SA, Lee N, Rahimi N, Chitalia VC. Tryptophan Metabolites Target Transmembrane and Immunoglobulin Domain-Containing 1 Signaling to Augment Renal Tubular Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1501-1516. [PMID: 37676196 PMCID: PMC10548275 DOI: 10.1016/j.ajpath.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 09/08/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the accumulation of uremic toxins and renal tubular damage. Tryptophan-derived uremic toxins [indoxyl sulfate (IS) and kynurenine (Kyn)] are well-characterized tubulotoxins. Emerging evidence suggests that transmembrane and immunoglobulin domain-containing 1 (TMIGD1) protects tubular cells and promotes survival. However, the direct molecular mechanism(s) underlying how these two opposing pathways crosstalk remains unknown. We posited that IS and Kyn mediate tubular toxicity through TMIGD1 and the loss of TMIGD1 augments tubular injury. Results from the current study showed that IS and Kyn suppressed TMIGD1 transcription in tubular cells in a dose-dependent manner. The wild-type CCAAT enhancer-binding protein β (C/EBPβ) enhanced, whereas a dominant-negative C/EBPβ suppressed, TMIGD1 promoter activity. IS down-regulated C/EBPβ in primary human renal tubular cells. The adenine-induced CKD, unilateral ureteric obstruction, and deoxycorticosterone acetate salt unilateral nephrectomy models showed reduced TMIGD1 expression in the renal tubules, which correlated with C/EBPβ expression. C/EBPβ levels negatively correlated with the IS and Kyn levels. Inactivation of TMIGD1 in mice significantly lowered acetylated tubulin, decreased tubular cell proliferation, caused severe tubular damage, and worsened renal function. Thus, the current results demonstrate that TMIGD1 protects renal tubular cells from renal injury in different models of CKD and uncovers a novel mechanism of tubulotoxicity of tryptophan-based uremic toxins.
Collapse
Affiliation(s)
- Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Wenqing Yin
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Saran Lotfollahzadeh
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Xiaosheng Yang
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Rosana D Meyer
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Marc A Napoleon
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Isaac E Sellinger
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Aniket Vazirani
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts; Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Elena Metrikova
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Asha Jose
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Anna Zhebrun
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Stephen A Whelan
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts; Chemistry Instrumentation Core, School of Chemistry, Boston University, Boston, Massachusetts
| | - Norman Lee
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts; Chemistry Instrumentation Core, School of Chemistry, Boston University, Boston, Massachusetts
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts; Veterans Affairs Boston Healthcare System, Boston, Massachusetts; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center of Cross-Organ Vascular Pathology, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
3
|
Zhou L, Zhu L, Wu X, Hu S, Zhang S, Ning M, Yu J, Chen M. Decreased TMIGD1 aggravates colitis and intestinal barrier dysfunction via the BANF1-NF-κB pathway in Crohn's disease. BMC Med 2023; 21:287. [PMID: 37542259 PMCID: PMC10403950 DOI: 10.1186/s12916-023-02989-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/16/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Disrupted intestinal epithelial barrier is one of the major causes of Crohn's disease (CD). Novel molecular targets for intestinal epithelial barrier are essential to treatment of CD. Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is an adhesion molecule that regulates cell adhesion, migration, and enterocyte differentiation. However, the function and mechanism of TMIGD1 in CD and intestinal epithelial barrier has rarely been studied. Furthermore, the association between TMIGD1 and the clinical features of CD remains unclear. METHODS Transcriptome analysis on colonic mucosa from CD patients and healthy individuals were performed to identify dysregulated genes. Multi-omics integration of the 1000IBD cohort including genomics, transcriptomics of intestinal biopsies, and serum proteomics identified the association between genes and characteristics of CD. Inflammation was assessed by cytokine production in cell lines, organoids and intestinal-specific Tmigd1 knockout (Tmigd1INT-KO) mice. Epithelial barrier integrity was evaluated by trans-epithelium electrical resistance (TEER), paracellular permeability, and apical junction complex (AJC) expression. Co-immunoprecipitation, GST pull-down assays, mass spectrometry, proteomics, and transcriptome analysis were used to explore downstream mechanisms. RESULTS Multi-omics integration suggested that TMIGD1 was negatively associated with inflammatory characteristics of CD. TMIGD1 was downregulated in inflamed intestinal mucosa of patients with CD and mice colitis models. Tmigd1INT-KO mice were more susceptible to chemically induced colitis. In epithelial cell lines and colonic organoids, TMIGD1 knockdown caused impaired intestinal barrier integrity evidenced by increased paracellular permeability and reduced TEER and AJC expression. TMIGD1 knockdown in intestinal epithelial cells also induced pro-inflammatory cytokine production. Mechanistically, TMIGD1 directly interacted with cytoplasmic BAF nuclear assembly factor 1 (BANF1) to inhibit NF-κB activation. Exogenous expression of TMIGD1 and BANF1 restored intestinal barrier function and inhibited inflammation in vitro and in vivo. TMIGD1 expression predicted response to anti-TNF treatment in patients with CD. CONCLUSIONS Our study demonstrated that TMIGD1 maintained intestinal barrier integrity and inactivated inflammation, and was therefore a potential therapeutic target for CD.
Collapse
Affiliation(s)
- Longyuan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Liguo Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaomin Wu
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Min Ning
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Thüring EM, Hartmann C, Schwietzer YA, Ebnet K. TMIGD1: Emerging functions of a tumor supressor and adhesion receptor. Oncogene 2023:10.1038/s41388-023-02696-5. [PMID: 37087524 DOI: 10.1038/s41388-023-02696-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The development of multicellular organisms depends on cell adhesion molecules (CAMs) that connect cells to build tissues. The immunoglobulin superfamily (IgSF) constitutes one of the largest families of CAMs. Members of this family regulate such diverse processes like synapse formation, spermatogenesis, leukocyte-endothelial interactions, or epithelial cell-cell adhesion. Through their extracellular domains, they undergo homophilic and heterophilic interactions in cis and trans. Their cytoplasmic domains frequently bind scaffolding proteins to assemble signaling complexes. Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is a IgSF member with two Ig-like domains and a short cytoplasmic tail that contains a PDZ domain-binding motif. Recent observations indicate that TMIGD1 has pleiotropic functions in epithelial cells and has a critical role in suppressing malignant cell behavior. Here, we review the molecular characteristics of TMIGD1, its interaction with cytoplasmic scaffolding proteins, the regulation of its expression, and its downregulation in colorectal and renal cancers.
Collapse
Affiliation(s)
- Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Ysabel A Schwietzer
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
| |
Collapse
|
5
|
Xu WT, Shi LL, Xu J, Qian H, Zhou H, Wang LH. Ezrin expression in female reproductive tissues: A review of regulation and pathophysiological implications. Front Cell Dev Biol 2023; 11:1125881. [PMID: 36968198 PMCID: PMC10030596 DOI: 10.3389/fcell.2023.1125881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Ezrin, a plasma membrane-microfilament linker, is a cytoskeletal organizer involved in many cellular activities by binding to the membrane protein-ezrin-cytoskeletal protein complex and regulating downstream signal transduction. Increasing evidence demonstrates that ezrin plays an important role in regulating cell polarity, proliferation and invasion. In this study, we analyzed the effects of ezrin on oocytes, follicle development, embryo development and embryo implantation. We reviewed the recent studies on the modalities of ezrin regulation and its involvement in the biological processes of female reproductive physiology and summarized the current research advances in ezrin inhibitors. These studies will provide new strategies and insights for the treatment of diseases.
Collapse
Affiliation(s)
- Wen-Ting Xu
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Ling-Li Shi
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Jie Xu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Haiqing Qian
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
| | - Huifang Zhou
- Department of Gynaecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Huifang Zhou, ; Li-Hong Wang,
| | - Li-Hong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu, China
- *Correspondence: Huifang Zhou, ; Li-Hong Wang,
| |
Collapse
|
6
|
Li Y, Wang D, Ge H, Güngör C, Gong X, Chen Y. Cytoskeletal and Cytoskeleton-Associated Proteins: Key Regulators of Cancer Stem Cell Properties. Pharmaceuticals (Basel) 2022; 15:1369. [PMID: 36355541 PMCID: PMC9698833 DOI: 10.3390/ph15111369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 08/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells possessing stemness characteristics that are closely associated with tumor proliferation, recurrence and resistance to therapy. Recent studies have shown that different cytoskeletal components and remodeling processes have a profound impact on the behavior of CSCs. In this review, we outline the different cytoskeletal components regulating the properties of CSCs and discuss current and ongoing therapeutic strategies targeting the cytoskeleton. Given the many challenges currently faced in targeted cancer therapy, a deeper comprehension of the molecular events involved in the interaction of the cytoskeleton and CSCs will help us identify more effective therapeutic strategies to eliminate CSCs and ultimately improve patient survival.
Collapse
Affiliation(s)
- Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cenap Güngör
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Xuejun Gong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
PRMT4-mediated arginine methylation promotes tyrosine phosphorylation of VEGFR-2 and regulates filopodia protrusions. iScience 2022; 25:104736. [PMID: 35942094 PMCID: PMC9356023 DOI: 10.1016/j.isci.2022.104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2022] [Revised: 06/09/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Through tightly controlled multilayer mechanisms, vascular endothelial growth factor receptor-2 (VEGFR-2) activation and its downstream signal transduction govern vasculogenesis and pathological angiogenesis, such as tumor angiogenesis. Therefore, it is critical to understand the molecular mechanisms governing VEGFR-2 signal transduction. We report that protein arginine methyltransferase 4 (PRMT4) via its highly conserved EVH1 and PH domain-like N-terminal domain binds to VEGFR-2 and mediates methylation of the juxtamembrane arginine 817 (R817) on VEGFR-2. Methylation of R817 selectively increases phosphorylation of tyrosine 820 (Y820). Phosphorylation of Y820 facilitates the c-Src binding with VEGFR-2 via Src homology domain 2 (SH2). Interfering with the methylation of R817 or phosphorylation of Y820 inhibits VEGFR-2-induced filopodia protrusions, a process that is critical for the core angiogenic responses of VEGFR-2. Methylation of R817 is an important previously unrecognized mechanism of the angiogenic signaling of VEGFR-2, with implications for the development of novel-targeted VEGFR-2 inhibitors. Arginine 817 methylation regulates phosphorylation of Y820 on VEGFR-2 Phosphorylation of Y820 recruits c-Src kinase to VEGFR-2, leading to its activation VEGFR-2/c-Src axis mediates filopodia protrusions in endothelial cells
Collapse
|
8
|
A biophysical perspective of the regulatory mechanisms of ezrin/radixin/moesin proteins. Biophys Rev 2022; 14:199-208. [PMID: 35340609 PMCID: PMC8921360 DOI: 10.1007/s12551-021-00928-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Many signal transductions resulting from ligand-receptor interactions occur at the cell surface. These signaling pathways play essential roles in cell polarization, membrane morphogenesis, and the modulation of membrane tension at the cell surface. However, due to the large number of membrane-binding proteins, including actin-membrane linkers, and transmembrane proteins present at the cell surface, the molecular mechanisms underlying the regulation at the cell surface are yet unclear. Here, we describe the molecular functions of one of the key players at the cell surface, ezrin/radixin/moesin (ERM) proteins from a biophysical point of view. We focus our discussion on biophysical properties of ERM proteins revealed by using biophysical tools in live cells and in vitro reconstitution systems. We first describe the structural properties of ERM proteins and then discuss the interactions of ERM proteins with PI(4,5)P2 and the actin cytoskeleton. These properties of ERM proteins revealed by using biophysical approaches have led to a better understanding of their physiological functions in cells and tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00928-0.
Collapse
|
9
|
Fan X, Wei H, Du J, Lu X, Wang L. Hypoxic preconditioning neural stem cell transplantation promotes spinal cord injury in rats by affecting transmembrane immunoglobulin domain-containing. Hum Exp Toxicol 2022; 41:9603271211066587. [PMID: 35243930 DOI: 10.1177/09603271211066587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To explore the effects of hypoxic preconditioning neural stem cell (P-NSC) transplantation on rats with spinal cord injury (SCI). METHODS After identification, the NSCs were treated with hypoxic preconditioning. The NSCs migration was detected by Transwell method. RT-qPCR was used to detect the mRNA levels of HIF-1α, CXCR4 in NSC. The secretion of representative neurotrophic factors (VEGF, HGF, and BDNF) was checked by Western blot. Forty-six SCI rats were randomly divided into three experimental groups: SCI group (PBS injection, n = 10); N-NSC group (NSC atmospheric normoxic pretreatment injection, n = 18); and P-NSC group (NSC 's hypoxic preconditioning injection, n = 18). The sham operation group was also included (rats underwent laminectomy but not SCI, n = 10). The recovery of hindlimb motor function was evaluated by BBB score. The level of spinal cord inflammation (IL-1β, TNF-α, and IL-6) was determined by ELISA. Western blot was used to detect the content of TMIGD1 and TMIGD3 in spinal cord. RESULTS Compared with the N-NSC group, the number of NSC-passing membranes in the P-NSC group increased with the increase of the culture time (p < 0.05). Compared with N-NSC, P-NSC had higher levels of VEGF, HGF, and BDNF after 1 week of culture (p < 0.05). The BBB score of the P-NSC group was significantly higher than that of the N-NSC group at 7 and 28 days (p < 0.05). Compared with the SCI group, the levels of TNF-α, IL-1β, and IL-6 were significantly reduced after NSC treatment, and the P-NSC group was lower than the N-NSC group (p < 0.05). Compared with the SCI group, the levels of TMIGD1 and TMIGD3 increased. Compared with the N-NSC group, and the levels of TMIGD1 and TMIGD3 increased in the P-NSC group (p < 0.05). CONCLUSION P-NSC administration could improve SCI injury, and the levels of TMIGD1 and TMIGD3.
Collapse
Affiliation(s)
- Xiaoguang Fan
- The Second Department of Spine Surgery, 519688Yantaishan Hospital, Yantai, China
| | - Hongchun Wei
- Department of Neurology, 117747the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Juan Du
- Department of Neurology, 519688Yantaishan Hospital, Yantai, China
| | - Xiuguo Lu
- Department of spine surgery, Yantai Yeda Hospital, Yantai, China
| | - Leisheng Wang
- The Second Department of Spine Surgery, 519688Yantaishan Hospital, Yantai, China
| |
Collapse
|