1
|
de Vreugd A, Zimmermann FA, Steinbrücker K, de Vries MC, de Boer L, Janssen MC, Huemer M, Wortmann SB. VACCINE SAFETY IN CHILDREN WITH GENETICALLY CONFIRMED MITOCHONDRIAL DISEASE. Immunol Lett 2024:106946. [PMID: 39557131 DOI: 10.1016/j.imlet.2024.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/08/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024]
Abstract
We here explore adverse events following immunization (AEFI) in children with mitochondrial disease (MD) recruited from two expertise centers in Austria (SALK) and The Netherlands (RUMC). Parents completed a questionnaire on the type of immunizations received and AEFI in a post-vaccination exposure period of seven days. 95 individuals were invited to this study, of whom 30 (median age 13.4 years) participated. Together these individuals had received 376 immunizations with a median of 12 vaccinations each. In 316 of 376 (84%) vaccinations no AEFI occurred, 22 patients (73%) never experienced any AEFI. Eight patients experienced 76 AEFI after 60 vaccinations, these were mild (redness (n=9) /pain at injection site (n=21), fever (n=44), gastrointestinal complaints (n= 2)). None had a metabolic deterioration or seizures, no patient was admitted to the hospital. Although our data is limited by the small sample size, this may aid in discussing responsible immunization decisions with parents.
Collapse
Affiliation(s)
- Annemarie de Vreugd
- Amalia Children's Hospital, Radboudumc, Department of Pediatrics, Nijmegen, The Netherlands
| | - Franz A Zimmermann
- University Children's Hospital Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Katja Steinbrücker
- University Children's Hospital Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Maaike C de Vries
- Amalia Children's Hospital, Radboudumc, Department of Pediatrics, Nijmegen, The Netherlands
| | - Lonneke de Boer
- Amalia Children's Hospital, Radboudumc, Department of Pediatrics, Nijmegen, The Netherlands
| | - Mirian Ch Janssen
- Amalia Children's Hospital, Radboudumc, Department of Pediatrics, Nijmegen, The Netherlands; Radboudumc, Department of Internal Medicine, Nijmegen, The Netherlands
| | - Martina Huemer
- Department of Pediatrics, Hospital Bregenz, Bregenz, Austria; Division of Metabolism, Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Saskia B Wortmann
- Amalia Children's Hospital, Radboudumc, Department of Pediatrics, Nijmegen, The Netherlands; University Children's Hospital Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria.
| |
Collapse
|
2
|
Giannoccaro MP, Morelli L, Ricciardiello F, Donadio V, Bartiromo F, Tonon C, Carbonelli M, Amore G, Carelli V, Liguori R, La Morgia C. Co-occurrence of glial fibrillary acidic protein astrocytopathy in a patient with Leber's hereditary optic neuropathy due to DNAJC30 mutations. Eur J Neurol 2024; 31:e16344. [PMID: 38757769 PMCID: PMC11295152 DOI: 10.1111/ene.16344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by visual loss, and rarely associated with extraocular manifestations including multiple sclerosis-like lesions. The association of LHON and neuromyelitis optica spectrum disorders has rarely been reported. Here is reported a case of glial fibrillary acidic protein astrocytopathy presenting with area postrema syndrome in a patient with previously diagnosed recessive LHON due to mutations in the nuclear gene DNAJC30. This case emphasizes the necessity of extensive investigations for other treatable conditions in patients with LHON and otherwise unexplained extraocular involvement and the possibility that also visual symptoms can respond to immune therapy.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Luana Morelli
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | | | - Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | | | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Michele Carbonelli
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Giulia Amore
- Ophthalmology Unit, Dipartimento di Scienze Mediche e ChirurgicheAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| |
Collapse
|
3
|
Aguilar K, Jakubek P, Zorzano A, Wieckowski MR. Primary mitochondrial diseases: The intertwined pathophysiology of bioenergetic dysregulation, oxidative stress and neuroinflammation. Eur J Clin Invest 2024; 54:e14217. [PMID: 38644687 DOI: 10.1111/eci.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVES AND SCOPE Primary mitochondrial diseases (PMDs) are rare genetic disorders resulting from mutations in genes crucial for effective oxidative phosphorylation (OXPHOS) that can affect mitochondrial function. In this review, we examine the bioenergetic alterations and oxidative stress observed in cellular models of primary mitochondrial diseases (PMDs), shedding light on the intricate complexity between mitochondrial dysfunction and cellular pathology. We explore the diverse cellular models utilized to study PMDs, including patient-derived fibroblasts, induced pluripotent stem cells (iPSCs) and cybrids. Moreover, we also emphasize the connection between oxidative stress and neuroinflammation. INSIGHTS The central nervous system (CNS) is particularly vulnerable to mitochondrial dysfunction due to its dependence on aerobic metabolism and the correct functioning of OXPHOS. Similar to other neurodegenerative diseases affecting the CNS, individuals with PMDs exhibit several neuroinflammatory hallmarks alongside neurodegeneration, a pattern also extensively observed in mouse models of mitochondrial diseases. Based on histopathological analysis of postmortem human brain tissue and findings in mouse models of PMDs, we posit that neuroinflammation is not merely a consequence of neurodegeneration but a potential pathogenic mechanism for disease progression that deserves further investigation. This recognition may pave the way for novel therapeutic strategies for this group of devastating diseases that currently lack effective treatments. SUMMARY In summary, this review provides a comprehensive overview of bioenergetic alterations and redox imbalance in cellular models of PMDs while underscoring the significance of neuroinflammation as a potential driver in disease progression.
Collapse
Affiliation(s)
- Kevin Aguilar
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| |
Collapse
|
4
|
Walker MA, Li S, Livak KJ, Karaa A, Wu CJ, Mootha VK. T cell activation contributes to purifying selection against the MELAS-associated m.3243A>G pathogenic variant in blood. J Inherit Metab Dis 2024; 47:757-765. [PMID: 38499449 PMCID: PMC11251844 DOI: 10.1002/jimd.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
T cells have been shown to maintain a lower percentage (heteroplasmy) of the pathogenic m.3243A>G variant (MT-TL1, associated with maternally inherited diabetes and deafness [MIDD] and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes [MELAS]). The mechanism(s) underlying this purifying selection, however, remain unknown. Here we report that purified patient memory CD4+ T cells have lower bulk m.3243A>G heteroplasmy compared to naïve CD4+ T cells. In vitro activation of naïve CD4+ m.3243A>G patient T cells results in lower bulk m.3243A>G heteroplasmy after proliferation. Finally, m.3243A>G patient T cell receptor repertoire sequencing reveals relative oligoclonality compared to controls. These data support a role for T cell activation in peripheral, purifying selection against high m.3243A>G heteroplasmy T cells at the level of the cell, in a likely cell-autonomous fashion.
Collapse
Affiliation(s)
- Melissa A Walker
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Howard Hughes Medical Institute and the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amel Karaa
- Department of Pediatrics, Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kayser EB, Chen Y, Mulholland M, Truong V, James K, Hanaford A, Johnson S. Evaluating the efficacy of vatiquinone in preclinical models of mitochondrial disease. RESEARCH SQUARE 2024:rs.3.rs-4202689. [PMID: 38883711 PMCID: PMC11177993 DOI: 10.21203/rs.3.rs-4202689/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Genetic mitochondrial diseases are a major challenge in modern medicine, impacting around 1:4,000 individuals. Leigh syndrome is the most common pediatric presentation of mitochondrial disease. There are currently no effective clinical treatments for mitochondrial disease. In humans, patients are often treated with antioxidants, vitamins, and strategies targeting energetics. The vitamin-E related compound vatiquinone (EPI-743, α-tocotrienol quinone) has been the subject of at least 19 clinical trials in the US since 2012, but the effects of vatiquinone on an animal model of mitochondrial disease have not yet been reported. Here, assessed the impact of vatiquinone on disease progression and in two animal models of mitochondrial disease. Methods The efficacy of vatiquinone in vitro was assessed using human fibroblasts treated with the general mitochondrial oxidative stress inducer paraquat, the GPX4 inhibitor RSL3, or the glutathione synthase inhibitor BSO in combination with excess iron. The therapeutic potential of vatiquinone in vivo was assessed using tamoxifen-induced mouse model for GPX4 deficiency and the Ndufs4 knockout mouse model of Leigh syndrome. In both models, animals were treated daily with vatiquinone or vehicle and relevant disease endpoints were assessed. Results Vatiquinone robustly prevented death in cultured cells induced by RSL3 or BSO/iron, but had no effect on paraquat induced cell death. Vatiquinone had no impact on disease onset, progression, or survival in either the tamoxifen-inducible GPX4 deficient model or the Ndufs4(-/-) mouse model, though the drug may have reduced seizure risk. Conclusions Vatiquinone provided no benefit to survival in two mouse models of disease, but may prevent seizures in the Ndufs4(-/-) model. Our findings are consistent with recent press statements regarding clinical trial results and have implications for drug trial design and reporting in patients with rare diseases.
Collapse
|
6
|
Marques E, Kramer R, Ryan DG. Multifaceted mitochondria in innate immunity. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:6. [PMID: 38812744 PMCID: PMC11129950 DOI: 10.1038/s44324-024-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
The ability of mitochondria to transform the energy we obtain from food into cell phosphorylation potential has long been appreciated. However, recent decades have seen an evolution in our understanding of mitochondria, highlighting their significance as key signal-transducing organelles with essential roles in immunity that extend beyond their bioenergetic function. Importantly, mitochondria retain bacterial motifs as a remnant of their endosymbiotic origin that are recognised by innate immune cells to trigger inflammation and participate in anti-microbial defence. This review aims to explore how mitochondrial physiology, spanning from oxidative phosphorylation (OxPhos) to signalling of mitochondrial nucleic acids, metabolites, and lipids, influences the effector functions of phagocytes. These myriad effector functions include macrophage polarisation, efferocytosis, anti-bactericidal activity, antigen presentation, immune signalling, and cytokine regulation. Strict regulation of these processes is critical for organismal homeostasis that when disrupted may cause injury or contribute to disease. Thus, the expanding body of literature, which continues to highlight the central role of mitochondria in the innate immune system, may provide insights for the development of the next generation of therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Eloïse Marques
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Robbin Kramer
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dylan G. Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
VanPortfliet JJ, Lei Y, Martinez CG, Wong J, Pflug K, Sitcheran R, Kneeland SC, Murray SA, McGuire PJ, Cannon CL, West AP. Caspase-11 drives macrophage hyperinflammation in models of Polg-related mitochondrial disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593693. [PMID: 38798587 PMCID: PMC11118447 DOI: 10.1101/2024.05.11.593693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and the lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. Infections in MtD patients more frequently progress to sepsis, pneumonia, and other detrimental inflammatory endpoints. However, the underlying immune alterations that enhance immunopathology in MtD remain unclear, constituting a key gap in knowledge that complicates treatment and increases mortality in this population. Here we employ in vitro and in vivo approaches to clarify the molecular and cellular basis for innate immune hyperactivity in models of polymerase gamma (Polg)-related MtD. We reveal that type I interferon (IFN-I)-mediated upregulation of caspase-11 and guanylate-binding proteins (GBPs) increase macrophage sensing of the opportunistic microbe Pseudomonas aeruginosa (PA) in Polg mutant mice. Furthermore, we show that excessive macrophage cytokine secretion and pyroptotic cell death contribute to lung inflammation and morbidity after infection with PA. Our work sheds new light on innate immune dysregulation in MtD and reveals potential targets for limiting infection- and inflammation-related complications in Polg-related MtD.
Collapse
Affiliation(s)
- Jordyn J. VanPortfliet
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Jessica Wong
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Kathryn Pflug
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | | | | | - Peter. J. McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Carolyn L. Cannon
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - A. Phillip West
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| |
Collapse
|
8
|
VanPortfliet JJ, Chute C, Lei Y, Shutt TE, West AP. Mitochondrial DNA release and sensing in innate immune responses. Hum Mol Genet 2024; 33:R80-R91. [PMID: 38779772 PMCID: PMC11112387 DOI: 10.1093/hmg/ddae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.
Collapse
Affiliation(s)
- Jordyn J VanPortfliet
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| | - Cole Chute
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Phillip West
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| |
Collapse
|
9
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
10
|
Bai D, Ziadlou R, Vaijayanthi T, Karthikeyan S, Chinnathambi S, Parthasarathy A, Cai L, Brüggen MC, Sugiyama H, Pandian GN. Nucleic acid-based small molecules as targeted transcription therapeutics for immunoregulation. Allergy 2024; 79:843-860. [PMID: 38055191 DOI: 10.1111/all.15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Transcription therapy is an emerging approach that centers on identifying the factors associated with the malfunctioning gene transcription machinery that causes diseases and controlling them with designer agents. Until now, the primary research focus in therapeutic gene modulation has been on small-molecule drugs that target epigenetic enzymes and critical signaling pathways. However, nucleic acid-based small molecules have gained popularity in recent years for their amenability to be pre-designed and realize operative control over the dynamic transcription machinery that governs how the immune system responds to diseases. Pyrrole-imidazole polyamides (PIPs) are well-established DNA-based small-molecule gene regulators that overcome the limitations of their conventional counterparts owing to their sequence-targeted specificity, versatile regulatory efficiency, and biocompatibility. Here, we emphasize the rational design of PIPs, their functional mechanisms, and their potential as targeted transcription therapeutics for disease treatment by regulating the immune response. Furthermore, we also discuss the challenges and foresight of this approach in personalized immunotherapy in precision medicine.
Collapse
Affiliation(s)
- Dan Bai
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Xi'an Key Laboratory of Special Medicine and Health Engineering, Xi'an, China
| | - Reihane Ziadlou
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Thangavel Vaijayanthi
- Chief Executive Officer, Regugene Co. Ltd., Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | | | | | - Li Cai
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Marie-Charlotte Brüggen
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Hiroshi Sugiyama
- Chief Executive Officer, Regugene Co. Ltd., Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Ganesh N Pandian
- Chief Executive Officer, Regugene Co. Ltd., Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Aguilar K, Canal C, Comes G, Díaz-Clavero S, Llanos MA, Quintana A, Sanz E, Hidalgo J. Interleukin-6-elicited chronic neuroinflammation may decrease survival but is not sufficient to drive disease progression in a mouse model of Leigh syndrome. J Inflamm (Lond) 2024; 21:1. [PMID: 38212783 PMCID: PMC10782699 DOI: 10.1186/s12950-023-00369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Mitochondrial diseases (MDs) are genetic disorders characterized by dysfunctions in mitochondria. Clinical data suggest that additional factors, beyond genetics, contribute to the onset and progression of this group of diseases, but these influencing factors remain largely unknown. Mounting evidence indicates that immune dysregulation or distress could play a role. Clinical observations have described the co-incidence of infection and the onset of the disease as well as the worsening of symptoms following infection. These findings highlight the complex interactions between MDs and immunity and underscore the need to better understand their underlying relationships. RESULTS We used Ndufs4 KO mice, a well-established mouse model of Leigh syndrome (one of the most relevant MDs), to test whether chronic induction of a neuroinflammatory state in the central nervous system before the development of neurological symptoms would affect both the onset and progression of the disease in Ndufs4 KO mice. To this aim, we took advantage of the GFAP-IL6 mouse, which overexpresses interleukin-6 (IL-6) in astrocytes and produces chronic glial reactivity, by generating a mouse line with IL-6 overexpression and NDUFS4 deficiency. IL-6 overexpression aggravated the mortality of female Ndufs4 KO mice but did not alter the main motor and respiratory phenotypes measured in any sex. Interestingly, an abnormal region-dependent microglial response to IL-6 overexpression was observed in Ndufs4 KO mice compared to controls. CONCLUSION Overall, our data indicate that chronic neuroinflammation may worsen the disease in Ndufs4 KO female mice, but not in males, and uncovers an abnormal microglial response due to OXPHOS dysfunction, which may have implications for our understanding of the effect of OXPHOS dysfunction in microglia.
Collapse
Affiliation(s)
- Kevin Aguilar
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Present address: Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Carla Canal
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Comes
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Díaz-Clavero
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Present address: Dementia Research Institute, Imperial College London, London, UK
| | - Maria Angeles Llanos
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Albert Quintana
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Elisenda Sanz
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193.
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 08193.
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
12
|
Hanaford AR, Khanna A, Truong V, James K, Chen Y, Mulholland M, Kayser B, Liao RW, Sedensky M, Morgan P, Andrew Baertsch N, Kalia V, Sarkar S, Johnson SC. Peripheral macrophages drive CNS disease in the Ndufs4(-/-) model of Leigh syndrome. Brain Pathol 2023; 33:e13192. [PMID: 37552802 PMCID: PMC10580015 DOI: 10.1111/bpa.13192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Subacute necrotizing encephalopathy, or Leigh syndrome (LS), is the most common pediatric presentation of genetic mitochondrial disease. LS is a multi-system disorder with severe neurologic, metabolic, and musculoskeletal symptoms. The presence of progressive, symmetric, and necrotizing lesions in the brainstem are a defining feature of the disease, and the major cause of morbidity and mortality, but the mechanisms underlying their pathogenesis have been elusive. Recently, we demonstrated that high-dose pexidartinib, a CSF1R inhibitor, prevents LS CNS lesions and systemic disease in the Ndufs4(-/-) mouse model of LS. While the dose-response in this study implicated peripheral immune cells, the immune populations involved have not yet been elucidated. Here, we used a targeted genetic tool, deletion of the colony-stimulating Factor 1 receptor (CSF1R) macrophage super-enhancer FIRE (Csf1rΔFIRE), to specifically deplete microglia and define the role of microglia in the pathogenesis of LS. Homozygosity for the Csf1rΔFIRE allele ablates microglia in both control and Ndufs4(-/-) animals, but onset of CNS lesions and sequalae in the Ndufs4(-/-), including mortality, are only marginally impacted by microglia depletion. The overall development of necrotizing CNS lesions is not altered, though microglia remain absent. Finally, histologic analysis of brainstem lesions provides direct evidence of a causal role for peripheral macrophages in the characteristic CNS lesions. These data demonstrate that peripheral macrophages play a key role in the pathogenesis of disease in the Ndufs4(-/-) model.
Collapse
Affiliation(s)
- Allison R. Hanaford
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Asheema Khanna
- Ben Towne Center for Childhood Cancer ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Vivian Truong
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Katerina James
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Yihan Chen
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Michael Mulholland
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Bernhard Kayser
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Ryan W. Liao
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Margaret Sedensky
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Phil Morgan
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Nathan Andrew Baertsch
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Vandana Kalia
- Ben Towne Center for Childhood Cancer ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Surojit Sarkar
- Ben Towne Center for Childhood Cancer ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of PediatricsUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Simon C. Johnson
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
- Department of Applied Sciences, Translational BioscienceNorthumbria UniversityNewcastle Upon TyneUK
| |
Collapse
|
13
|
Tummolo A, Melpignano L. The Reciprocal Interplay between Infections and Inherited Metabolic Disorders. Microorganisms 2023; 11:2545. [PMID: 37894204 PMCID: PMC10608884 DOI: 10.3390/microorganisms11102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Infections represent the main cause of acute metabolic derangements and/or the worsening of the clinical course of many inherited metabolic disorders (IMDs). The basic molecular mechanisms behind the role of infections in these conditions have not been completely clarified. This review points out the different mechanisms behind the relationship between IMDs and infections, providing an overview of this still-under-investigated area. Classically, infections have been considered as the consequence of a compromised immune system due to a biochemical defect of energy production. An adjunctive pathogenetic mechanism is related to a genetically altered protein-attached glycans composition, due to congenital glycosilation defects. In addition, a dietary regimen with a reduced intake of both micro- and macronutrients can potentially compromise the ability of the immune system to deal with an infection. There is recent pre-clinical evidence showing that during infections there may be a disruption of substrates of various metabolic pathways, leading to further cellular metabolic alteration. Therefore, infective agents may affect cellular metabolic pathways, by mediation or not of an altered immune system. The data reviewed here strongly suggest that the role of infections in many types of IMDs deserves greater attention for a better management of these disorders and a more focused therapeutic approach.
Collapse
Affiliation(s)
- Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy
| | - Livio Melpignano
- Medical Direction, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy;
| |
Collapse
|
14
|
Zhang J, Koolmeister C, Han J, Filograna R, Hanke L, Àdori M, Sheward DJ, Teifel S, Gopalakrishna S, Shao Q, Liu Y, Zhu K, Harris RA, McInerney G, Murrell B, Aoun M, Bäckdahl L, Holmdahl R, Pekalski M, Wedell A, Engvall M, Wredenberg A, Karlsson Hedestam GB, Castro Dopico X, Rorbach J. Antigen receptor stimulation induces purifying selection against pathogenic mitochondrial tRNA mutations. JCI Insight 2023; 8:e167656. [PMID: 37681412 PMCID: PMC10544217 DOI: 10.1172/jci.insight.167656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/27/2023] [Indexed: 09/09/2023] Open
Abstract
Pathogenic mutations in mitochondrial (mt) tRNA genes that compromise oxidative phosphorylation (OXPHOS) exhibit heteroplasmy and cause a range of multisyndromic conditions. Although mitochondrial disease patients are known to suffer from abnormal immune responses, how heteroplasmic mtDNA mutations affect the immune system at the molecular level is largely unknown. Here, in mice carrying pathogenic C5024T in mt-tRNAAla and in patients with mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes (MELAS) syndrome carrying A3243G in mt-tRNALeu, we found memory T and B cells to have lower pathogenic mtDNA mutation burdens than their antigen-inexperienced naive counterparts, including after vaccination. Pathogenic burden reduction was less pronounced in myeloid compared with lymphoid lineages, despite C5024T compromising macrophage OXPHOS capacity. Rapid dilution of the C5024T mutation in T and B cell cultures could be induced by antigen receptor-triggered proliferation and was accelerated by metabolic stress conditions. Furthermore, we found C5024T to dysregulate CD8+ T cell metabolic remodeling and IFN-γ production after activation. Together, our data illustrate that the generation of memory lymphocytes shapes the mtDNA landscape, wherein pathogenic variants dysregulate the immune response.
Collapse
Affiliation(s)
- Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Roberta Filograna
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sina Teifel
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Qiuya Shao
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Yong Liu
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Keying Zhu
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mike Aoun
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Liselotte Bäckdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Marcin Pekalski
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Wedell
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Engvall
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, and
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Bornstein R, Mulholland MT, Sedensky M, Morgan P, Johnson SC. Glutamine metabolism in diseases associated with mitochondrial dysfunction. Mol Cell Neurosci 2023; 126:103887. [PMID: 37586651 PMCID: PMC10773532 DOI: 10.1016/j.mcn.2023.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023] Open
Abstract
Mitochondrial dysfunction can arise from genetic defects or environmental exposures and impact a wide range of biological processes. Among these are metabolic pathways involved in glutamine catabolism, anabolism, and glutamine-glutamate cycling. In recent years, altered glutamine metabolism has been found to play important roles in the pathologic consequences of mitochondrial dysfunction. Glutamine is a pleiotropic molecule, not only providing an alternate carbon source to glucose in certain conditions, but also playing unique roles in cellular communication in neurons and astrocytes. Glutamine consumption and catabolic flux can be significantly altered in settings of genetic mitochondrial defects or exposure to mitochondrial toxins, and alterations to glutamine metabolism appears to play a particularly significant role in neurodegenerative diseases. These include primary mitochondrial diseases like Leigh syndrome (subacute necrotizing encephalopathy) and MELAS (mitochondrial myopathy with encephalopathy, lactic acidosis, and stroke-like episodes), as well as complex age-related neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Pharmacologic interventions targeting glutamine metabolizing and catabolizing pathways appear to provide some benefits in cell and animal models of these diseases, indicating glutamine metabolism may be a clinically relevant target. In this review, we discuss glutamine metabolism, mitochondrial disease, the impact of mitochondrial dysfunction on glutamine metabolic processes, glutamine in neurodegeneration, and candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca Bornstein
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Michael T Mulholland
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Phil Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA; Department of Neurology, University of Washington, Seattle, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK.
| |
Collapse
|
16
|
de Boer L, Cambi A, Verhagen LM, de Haas P, van Karnebeek CDM, Blau N, Ferreira CR. Clinical and biochemical footprints of inherited metabolic diseases. XII. Immunological defects. Mol Genet Metab 2023; 139:107582. [PMID: 37087816 PMCID: PMC10182388 DOI: 10.1016/j.ymgme.2023.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Immunological problems are increasingly acknowledged manifestations in many inherited metabolic diseases (IMDs), ranging from exaggerated inflammation, autoimmunity and abnormal cell counts to recurrent microbial infections. A subgroup of IMDs, the congenital disorders of glycosylation (CDG), includes CDG types that are even classified as primary immunodeficiencies. Here, we reviewed the list of metabolic disorders reported to be associated with various immunological defects and identified 171 IMDs accompanied by immunological manifestations. Most IMDs are accompanied by immune dysfunctions of which immunodeficiency and infections, innate immune defects, and autoimmunity are the most common abnormalities reported in 144/171 (84%), 44/171 (26%) and 33/171 (19%) of IMDs with immune system involvement, respectively, followed by autoinflammation 17/171 (10%). This article belongs to a series aiming at creating and maintaining a comprehensive list of clinical and metabolic differential diagnoses according to organ system involvement.
Collapse
Affiliation(s)
- Lonneke de Boer
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands.
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lilly M Verhagen
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands; Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paola de Haas
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zurich, Switzerland.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
17
|
Chen J, Wang J, Gan J, Luo R, Yang Z, Liang M, Chen X. Anti-AQP4-IgG-positive Leigh syndrome: A case report and review of the literature. Front Pediatr 2023; 11:1046731. [PMID: 36814591 PMCID: PMC9939766 DOI: 10.3389/fped.2023.1046731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Leigh syndrome (LS; OMIM: 256000) is a progressive neurodegenerative disease caused by genetic mutations resulting in mitochondrial oxidative phosphorylation defects. The prognosis is poor, with most children dying before the age of 2 years. MT-ATP6 variants are the most common mitochondrial DNA mutations in LS. MT-ATP6 variant-induced LS may trigger autoimmunity, and immunotherapy might be effective. Here, we present the first pediatric case of anti-aquaporin 4 (AQP4)-IgG-positive LS caused by an MT-ATP6 variant. CASE A 1-year-old boy was hospitalized due to recurrent fever, cough, and developmental regression. Two months previously, he had developed reduced responses to stimulation and psychomotor retardation. After admission, his condition deteriorated and respiratory failure ensued. Magnetic resonance imaging of the brain showed symmetrical small patchy abnormal signals around the third ventricle, pons, and dorsal periaqueductal gray matter in the dorsal medulla. Laboratory tests revealed anti-AQP4-IgG antibodies. Anti-infection, immunoglobulin, and glucocorticoid therapy were administered for symptomatic treatment. Genetic testing revealed a de novo homogeneous pathogenic variant of MT-ATP6 (m.9176T > C, mutation ratio: 99.97%). The patient was diagnosed with anti-AQP4-IgG-positive LS, treated with "cocktail therapy" (vitamins B1, B2, C, and E, l-carnitine, and coenzyme Q10), and discharged after his condition improved. A literature review revealed that LS-induced mitochondrial defects can impact the immune system; hence, immunotherapy and early mitochondrial cocktail therapy may improve outcomes. CONCLUSION Anti-AQP4-IgG-positive LS is very rare. Patients with LS with the m.9176T > C variant of MT-ATP6 may be susceptible to autoimmune damage of the central nervous system. Early cocktail therapy combined with immunotherapy may improve their prognosis.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, China
| | - Jianjun Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, China
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, China
| | - Zuozhen Yang
- Medical Department, Cipher Gene LLC, Beijing, China
| | | | - Xiaolu Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|