1
|
Brandeburg ZC, Waheed SA, Derewonko CA, Dunn CE, Pfeiffer EC, Flusche AME, Sheaff RJ, Lamar AA. Synthesis and Biological Evaluation of N-(1H-Indol-6-ylmethyl)benzenesulfonamide Analogs as Metabolic Inhibitors of Mitochondrial ATP Production in Pancreatic Cancer Cells. ChemMedChem 2025; 20:e202400536. [PMID: 39317650 DOI: 10.1002/cmdc.202400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
A library of 26 indolyl sulfonamides and 12 amide and ester analogs based upon the 6-indolyl framework has been synthesized in an effort to target pancreatic cancer. The cytotoxicity of the indolyl sulfonamide compounds has been determined using a traditional (48-h compound exposure) assay against 7 pancreatic cancer cell lines and 1 non-cancerous cell line. The potential role of the compounds as metabolic inhibitors of ATP production was evaluated using a rapid screening (2-h compound exposure) assay developed within our laboratories. The IC50 values of the active compounds were determined using the rapid assay and six compounds displayed an IC50 value <5 μM against one or more pancreatic cancer cell lines. The ester analogs also display activity as potential metabolic inhibitors of ATP production with four of the six compounds displaying an IC50 value <5 μM against one or more pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Zachary C Brandeburg
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Sakariyau A Waheed
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Carina A Derewonko
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Caroline E Dunn
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Ethan C Pfeiffer
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Ann Marie E Flusche
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Robert J Sheaff
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| | - Angus A Lamar
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK, 74104, USA
| |
Collapse
|
2
|
Tang HY, Cao YZ, Zhou YW, Ma YS, Jiang H, Zhang H, Jiang L, Yang QX, Tang XM, Yang C, Liu XY, Liu FX, Liu JB, Fu D, Wang YF, Yu H. The power and the promise of CAR-mediated cell immunotherapy for clinical application in pancreatic cancer. J Adv Res 2025; 67:253-267. [PMID: 38244773 DOI: 10.1016/j.jare.2024.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pancreatic cancer, referred to as the "monarch of malignancies," is a neoplastic growth mostly arising from the epithelial cells of the pancreatic duct and acinar cells. This particular neoplasm has a highly unfavorable prognosis due to its marked malignancy, inconspicuous initial manifestation, challenging early detection, rapid advancement, and limited survival duration. Cellular immunotherapy is the ex vivo culture and expansion of immune effector cells, granting them the capacity to selectively target malignant cells using specialized techniques. Subsequently, these modified cells are reintroduced into the patient's organism with the purpose of eradicating tumor cells and providing therapeutic intervention for cancer. PRESENT SITUATION Presently, the primary cellular therapeutic modalities employed in the treatment of pancreatic cancer encompass CAR T-cell therapy, TCR T-cell therapy, NK-cell therapy, and CAR NK-cell therapy. AIM OF REVIEW This review provides a concise overview of the mechanisms and primary targets associated with various cell therapies. Additionally, we will explore the prospective outlook of cell therapy in the context of treating pancreatic cancer.
Collapse
Affiliation(s)
- Hao-Yu Tang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China; Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yi-Zhi Cao
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yi-Wei Zhou
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yu-Shui Ma
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, Shanghai, China
| | - Hong Jiang
- Department of Thoracic Surgery, The 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, Shanghai, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China
| | - Lin Jiang
- Department of Anesthesiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Xiao-Mei Tang
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Fu-Xing Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China.
| | - Da Fu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China.
| | - Yun-Feng Wang
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai 201299, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
3
|
Huang Y, Zhang R, Fan S, Shi M, Tang X, Wang X, Deng X. OSBPL10-CNBP axis mediates hypoxia-induced pancreatic cancer development. Biofactors 2025; 51:e2124. [PMID: 39329194 DOI: 10.1002/biof.2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of malignancies with worst outcomes among digestive system tumors. Identification of novel biomarkers is of great significance for treatment researches and prognosis prediction of pancreatic cancer patients. Due to OSBPL10 known involvement in oncogenic activity in other tumors, we elucidated the mechanism underlying its contribution to pancreatic cancer progression. We employed data from the Gene Expression Omnibus database to detect the expression of OSBPL10 in normal and pancreatic cancer tissues. A series of assays were conducted to assess the impact of OSBPL10 on the proliferation and metastatic capacities of pancreatic cancer cells and the influence of OSBPL10 on macrophages were evaluated by Flow cytometry. In addition, Co-immunoprecipitation, mass spectrometry, and western blot assays were utilized to investigate the potential mechanisms of OSBPL10 activity. From our study, OSBPL10 is revealed to be upregulated in pancreatic cancer, with poor prognosis. The overexpression promotes malignant behaviors of pancreatic cancer cells and has an impact on tumor immune microenvironment by stimulating the transformation M1 macrophages into M2 macrophages. Mechanistically, hypoxia induces the expression of OSBPL10 through interaction between hypoxia-inducible factor 1-α and the promoter region of OSBPL10. Additionally, OSBPL10 directly bound to CNBP, mediating CNBP expression and ultimately regulating the proliferation and metastasis capacity of pancreatic cancer cells, as well as influencing macrophage polarization. The research emphasized the oncogenic role of OSBPL10 in pancreatic cancer, uncovering key mechanisms involving hypoxia, HIF-1α, and CNBP. The finding suggests that OSBPL10 is a novel biomarker in pancreatic cancer, making it a potential therapeutic target for intervention in this malignancy.
Collapse
Affiliation(s)
- Yishu Huang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Neoplasms Translational Medicine, Shanghai, China
| | - Ronghao Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuyang Fan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinjing Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Lu W, Zeng R, Pan M, Zhou Y, Tang H, Shen W, Tang Y, Lei P. Pharmacokinetics, bioavailability, and tissue distribution of MRTX1133 in rats using UHPLC-MS/MS. Front Pharmacol 2024; 15:1509319. [PMID: 39749200 PMCID: PMC11693508 DOI: 10.3389/fphar.2024.1509319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction MRTX1133 is a selective and reversible small molecule inhibitor of KRAS (G12D), which significantly delays the progression of solid tumors. However, no study on the absorption, distribution, and excretion of MRTX1133. Methods A fast ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry method was developed for the determination of MRTX1133 in rat plasma, tissue homogenate, and urine. The method applied to the pharmacokinetics, bioavailability, tissue distribution, and excretion of MRTX1133 after oral administration (25 mg/kg) and intravenous administration (5 mg/kg). Results The calibration curve for MRTX1133 in plasma and other homogenates was linear, with r 2 > 0.99. The intra- and inter-day accuracies were ranged from 85% to 115% and precision were within ± 10%. The matrix effect and recovery were within ± 15 %. The Cmax of MRTX1133 was 129.90 ± 25.23 ng/mL at 45 min after oral administration. The plasma half-life (t1/2) of MRTX1133 was 1.12 ± 0.46 h after oral administration and 2.88 ± 1.08 after intravenous administration. Its bioavailability was 2.92%. Furthermore, MRTX1133 was widely distributed in all the main organs, including liver, kidney, lung, spleen, heart, pancreas, and intestine. MRTX1133 was still detectable in liver, kidney, lung, spleen, heart, and pancreas after 24 h. The excretion ratio of prototype MRTX1133 through kidney was 22.59% ± 3.22% after 24 h. Conclusions MRTX1133 was quickly absorbed, and widely distributed in the main organs. This study provided a reference for the quantitative determination of MTRX1133 in preclinical or clinical trials.
Collapse
Affiliation(s)
- Wei Lu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Rong Zeng
- Department of Health Management, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meng Pan
- Department of Cardiovascular Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuan Zhou
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Huijuan Tang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wanying Shen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yijun Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Pan Lei
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
5
|
Jhetam Z, Martins-Furness C, Slabber C, Munro OQ, Nel M, Harmse L. Copper complexes induce haem oxygenase-1 (HMOX1) and cause apoptotic cell death in pancreatic cancer cells. J Inorg Biochem 2024; 264:112815. [PMID: 39740375 DOI: 10.1016/j.jinorgbio.2024.112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, has a dismal 5-year survival rate, making palliative chemotherapy the only treatment option. Targeted therapy has limited efficacy in PDAC, underscoring the need for novel therapeutic approaches. The inducible stress-response protein, haem oxygenase-1 (HMOX1), has been implicated in treatment failure in PDAC. Copper coordination complexes have shown promise as anticancer agents against various cancers, and are associated with apoptotic cell death. The different ligands to which copper is complexed, determine the specificity and efficacy of each complex. Three different classes of copper complexes were evaluated for anti-cancer activity against AsPC-1 and MIA PaCa-2 pancreatic cancer cell lines. A copper-phenanthroline-theophylline complex (CuPhTh2), a copper-8-aminoquinoline-naphthyl complex (Cu8AqN), and two copper-aromatic-isoindoline complexes (CuAIsI) were effective inhibitors of cell proliferation with clinically relevant IC50 values below 5 μM. The copper complexes caused reactive oxygen species (ROS) formation, promoted annexin-V binding, disrupted the mitochondrial membrane potential (MMP) and activated caspase-9 and caspase-3/7, confirming apoptotic cell death. Expression of nuclear HMOX1 was increased in both cell lines, with the CuPhTh2 complex being the most active. Inhibition of HMOX1 activity significantly decreased the IC50 values of these copper complexes suggesting that HMOX1 inhibition may alter treatment outcomes in PDAC.
Collapse
Affiliation(s)
- Zakeeya Jhetam
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Carla Martins-Furness
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Cathy Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Marietha Nel
- Dept of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
6
|
Eyuboglu S, Alpsoy S, Uversky VN, Coskuner-Weber O. Key genes and pathways in the molecular landscape of pancreatic ductal adenocarcinoma: A bioinformatics and machine learning study. Comput Biol Chem 2024; 113:108268. [PMID: 39467488 DOI: 10.1016/j.compbiolchem.2024.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is recognized for its aggressive nature, dismal prognosis, and a notably low five-year survival rate, underscoring the critical need for early detection methods and more effective therapeutic approaches. This research rigorously investigates the molecular mechanisms underlying PDAC, with a focus on the identification of pivotal genes and pathways that may hold therapeutic relevance and prognostic value. Through the construction of a protein-protein interaction (PPI) network and the examination of differentially expressed genes (DEGs), the study uncovers key hub genes such as CDK1, KIF11, and BUB1, demonstrating their substantial role in the pathogenesis of PDAC. Notably, the dysregulation of these genes is consistent across a spectrum of cancers, positing them as potential targets for wide-ranging cancer therapeutics. This study also brings to the fore significant genes encoding intrinsically disordered proteins, in particular GPRC5A and KRT7, unveiling promising new pathways for therapeutic intervention. Advanced machine learning techniques were harnessed to classify PDAC patients with high accuracy, utilizing the key genetic markers as a dataset. The Support Vector Machine (SVM) model leveraged the hub genes to achieve a sensitivity of 91 % and a specificity of 85 %, while the RandomForest model notched a sensitivity of 91 % and specificity of 92.5 %. Crucially, when the identified genes were cross-referenced with TCGA-PAAD clinical datasets, a tangible correlation with patient survival rates was discovered, reinforcing the potential of these genes as prognostic biomarkers and their viability as targets for therapeutic intervention. This study's findings serve as a potent testament to the value of molecular analysis in enhancing the understanding of PDAC and in advancing the pursuit for more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Sinan Eyuboglu
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Semih Alpsoy
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
| | - Vladimir N Uversky
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Orkid Coskuner-Weber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey.
| |
Collapse
|
7
|
Hu L, Wang X, Song Z, Chen F, Wu B. Leveraging CAR macrophages targeting c-Met for precision immunotherapy in pancreatic cancer: insights from single-cell multi-omics. Mol Med 2024; 30:231. [PMID: 39592929 PMCID: PMC11590533 DOI: 10.1186/s10020-024-00996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Pancreatic cancer is known for its poor prognosis and resistance to conventional therapies, largely due to the presence of cancer stem cells (CSCs) and aggressive angiogenesis. Effectively targeting these CSCs and associated angiogenic pathways is crucial for effective treatment. This study leverages single-cell multi-omics to explore a novel therapeutic approach involving Chimeric Antigen Receptor (CAR) macrophages engineered to target the c-Met protein on pancreatic CSCs. METHODS We employed single-cell RNA sequencing to analyze pancreatic cancer tissue, identifying c-Met as a key marker of CSCs. CAR macrophages were engineered using a lentiviral system to express a c-Met-specific receptor. The phagocytic efficiency of these CAR macrophages against pancreatic CSCs was assessed in vitro, along with their ability to inhibit angiogenesis. The in vivo efficacy of CAR macrophages was evaluated in a mouse model of pancreatic cancer. RESULTS CAR macrophages demonstrated high specificity for c-Met + CSCs, significantly enhancing phagocytosis and reducing the secretion of angiogenic factors such as VEGFA, FGF2, and ANGPT. In vivo, these macrophages significantly suppressed tumor growth and angiogenesis, prolonging survival in pancreatic cancer-bearing mice. CONCLUSION CAR macrophages targeting c-Met represent a promising therapeutic strategy for pancreatic cancer, offering targeted elimination of CSCs and disruption of tumor angiogenesis. This study highlights the potential of single-cell multi-omics in guiding the development of precision immunotherapies.
Collapse
Affiliation(s)
- Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Bin Wu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China.
| |
Collapse
|
8
|
Graham S, Dmitrieva M, Vendramini-Costa DB, Francescone R, Trujillo MA, Cukierman E, Wood LD. From precursor to cancer: decoding the intrinsic and extrinsic pathways of pancreatic intraepithelial neoplasia progression. Carcinogenesis 2024; 45:801-816. [PMID: 39514554 DOI: 10.1093/carcin/bgae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the progression of pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma through a dual lens of intrinsic molecular alterations and extrinsic microenvironmental influences. PanIN development begins with Kirsten rat sarcoma viral oncogene (KRAS) mutations driving PanIN initiation. Key additional mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein p53 (TP53), and mothers against decapentaplegic homolog 4 (SMAD4) disrupt cell cycle control and genomic stability, crucial for PanIN progression from low-grade to high-grade dysplasia. Additional molecular alterations in neoplastic cells, including epigenetic modifications and chromosomal alterations, can further contribute to neoplastic progression. In parallel with these alterations in neoplastic cells, the microenvironment, including fibroblast activation, extracellular matrix remodeling, and immune modulation, plays a pivotal role in PanIN initiation and progression. Crosstalk between neoplastic and stromal cells influences nutrient support and immune evasion, contributing to tumor development, growth, and survival. This review underscores the intricate interplay between cell-intrinsic molecular drivers and cell-extrinsic microenvironmental factors, shaping PanIN predisposition, initiation, and progression. Future research aims to unravel these interactions to develop targeted therapeutic strategies and early detection techniques, aiming to alleviate the severe impact of pancreatic cancer by addressing both genetic predispositions and environmental influences.
Collapse
Affiliation(s)
- Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mariia Dmitrieva
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Debora Barbosa Vendramini-Costa
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Ralph Francescone
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
9
|
Jiang L, Lu X, Dai Y, Jiang K, Miao Y, Yu J, Yin L, Wei J. Establishment and analysis of a prognostic model of pancreatic ductal adenocarcinomas based on nerve-cancer crosstalk-related genes. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:396-410. [PMID: 39660330 PMCID: PMC11626290 DOI: 10.62347/ghum8504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/26/2024] [Indexed: 12/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a five-year survival rate of 13%, the lowest among all malignant tumors. The work aims to use bioinformatics methods to mine Nerve-cancer crosstalk-related genes (NCCGs) in pancreatic cancer and evaluate their correlation with tumor stage and prognosis, thereby providing a new direction of development and experimental basis for pancreatic cancer treatment. This study included 185 individuals with PDAC from the TCGA database, together with clinical and RNA sequencing data. A review of prior studies revealed the mechanism of neural-cancer crosstalk and identified 42 neural-cancer crosstalk-related genes (NCCGs). Multivariate logistic regression analysis showed that NGFR (OR=39.076, 95% CI; P<0.05), CHRNB2 (OR=41.076, 95% CI; P<0.05), and CHRNA10 (OR=39.038, 95% CI; P<0.05) were identified as independent risk factors for PNI development. Pearson correlation analysis revealed that CHRNA10 was negatively connected with PDAC microsatellite instability, whereas CHRNA10, CHRNB2, and NGFR were negatively correlated with PDAC tumor mutation burden. The GEPIA database revealed that CHRNB2 expression was higher in stage I PDAC. The pancreatic cancer single-cell dataset PAAD_CRA001160 revealed that malignant tumor cells, ductal cells, endothelial cells and fibroblasts accounted for a large proportion in the tumor microenvironment of pancreatic cancer. Furthermore, the NGFR gene was shown to be more significantly expressed in various pancreatic cancer cells. Bioinformatics analysis was used to create a validated prognostic model of pancreatic cancer, which explored the critical mechanisms of neural-tumor interactions and revealed the potential of cancer-neural crosstalk-related genes as prognostic biomarkers and anti-tumor therapy targets.
Collapse
Affiliation(s)
- Lei Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Pancreas Institute of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Xiaozhi Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Pancreas Institute of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Yuran Dai
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Pancreas Institute of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Pancreas Institute of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Pancreas Institute of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Jun Yu
- Department of Surgery, Johns Hopkins University School of MedicineBaltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence, Johns Hopkins University School of MedicineBaltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Lingdi Yin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Pancreas Institute of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Jishu Wei
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Pancreas Institute of Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
10
|
Moretti M, Farina A, Angeloni A, Anastasi E. Emerging horizons on molecular and circulating biomarkers in pancreatic adenocarcinoma. Front Oncol 2024; 14:1483306. [PMID: 39575418 PMCID: PMC11578827 DOI: 10.3389/fonc.2024.1483306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer and is expected to soon become the second leading cause of cancer-associated death. The high mortality rate is due to the clinical features that allow asymptomatic progression to advanced stages, a period when current therapeutic treatments have limited efficacy. To address these challenges, researchers are focused on identifying new molecular and circulating markers for early PDAC detection and precision medicine. In this mini-review, we report the most well-known and recently identified molecular and circulating biomarkers. This study aimed to emphasize the need for continued innovative research to develop diagnostic algorithms and therapies to improve the management of patients with PDAC.
Collapse
Affiliation(s)
| | | | | | - Emanuela Anastasi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Huang Z, Li M, Gu B, Chen J, Liu S, Tan P, Fu W. Ferroptosis-related LINC02535/has-miR-30c-5p/EIF2S1 axis as a novel prognostic biomarker involved in immune infiltration and progression of PDAC. Cell Signal 2024; 123:111338. [PMID: 39117252 DOI: 10.1016/j.cellsig.2024.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND PDAC, also known as pancreatic ductal adenocarcinoma, is often diagnosed at a late stage due to nonspecific symptoms and a distinct lack of reliable biomarkers for timely diagnosis. Ferroptosis, a novel non-apoptotic cell death mode discovered in recent years, is strongly linked to the progression of PDAC and the evasion of the immune system. The objective of this study is to discover a novel ceRNA biomarker associated with ferroptosis and investigate its possible molecular mechanisms and therapeutic potential in PDAC. METHODS Based on the FerrDb and TCGA databases, the R survival package was used to screen for ferroptosis-related mRNAs associated with PDAC prognosis. The ferroptosis-related ceRNA network was identified by miRTarBase, miRNet, and starBase and visualized using Cytoscape. The LASSO regression analysis was used to build a risk model associated with ceRNA. Additionally, we investigated the correlation between the ceRNA axis and the infiltration of immune cells in PDAC by employing the ssGSEA algorithm. Spearman correlation analysis was used to investigate the association between the ceRNA network and the expression levels of immune checkpoint genes in PDAC. The prediction of potential medications for PAAD patients with high risk scores was conducted using the R package oncoPredict and the Genomics of Drug Sensitivity in Cancer (GDSC) repository. Expression levels of LINC02535 in clinical specimens and PDAC cell lines were determined using qRT-PCR. CCK-8, colony formation, EdU, wound healing, and transwell assays were performed to assess the impact of reducing LINC02535 on the growth, migration, and invasion of PDAC cell lines BxPC3 and PANC1. RESULTS We first discovered a new LINC02535/miR-30c-5p/EIF2S1 axis associated with ferroptosis and created a prognostic nomogram for predicting overall survival. Meanwhile, the risk scores of the LINC02535/miR-30c-5p/EIF2S1 axis associated with ferroptosis were linked to immune subtypes in PDAC. The high immune infiltration subtype exhibited elevated ceRNA risk scores and EIF2S1 expression. The correlation analysis revealed a positive correlation between ceRNA risk scores and four immune cells, namely Activated CD4 T cell, Memory B cell, Neutrophil, and Type 2 T helper cell, as well as four immune checkpoint genes, namely CD274, HAVCR2, PDCD1LG2, and TIGIT. The analysis of drug sensitivity indicated that individuals with a high-risk score may exhibit greater sensitivity to inhibitors targeting MEK1/2 compared to those with a low-risk score. In our validation experiments, it was observed that the expression of LINC02535 was increased in both PDAC tissues and cell lines. Additionally, the inhibition of LINC02535 resulted in decreased proliferation, migration, and invasion of PDAC cells. Rescue experiments demonstrated that LINC02535 promoted PDAC cell growth and metastasis by upregulating EIF2S1 expression. CONCLUSION To summarize, a novel ferroptosis-associated LINC02535/miR-30c-5p/EIF2S1 ceRNA network for PDAC patients was established. The analysis of this network's functionality offers potential insights for clinical decision-making and the advancement of precision medicine.
Collapse
MESH Headings
- Humans
- Ferroptosis/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Prognosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/immunology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Gene Expression Regulation, Neoplastic
- Disease Progression
- Cell Line, Tumor
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Mo Li
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Boyuan Gu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Peng Tan
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
12
|
Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Zaman S, Saleh MA. Next-Generation Sequencing: An Advanced Diagnostic Tool for Detection of Pancreatic Disease/Disorder. JGH Open 2024; 8:e70061. [PMID: 39605899 PMCID: PMC11599877 DOI: 10.1002/jgh3.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The pancreas is involved in digestion and glucose regulation in the human body. Given the recognized link between chronic pancreatitis and pancreatic cancer, addressing pancreatic disorders and pancreatic cancer is particularly challenging. This review aims to highlight the limitations of traditional methods in diagnosing pancreatic disorders and cancer and explore several next-generation sequencing (NGS) approaches as a promising alternative. There are distinct clinical symptoms that are shared by a number of clinical phenotypes of pancreatic illness induced by particular genetic mutations. Traditional diagnostic methods encompass computed tomography, magnetic resonance imaging, contrast-enhanced Doppler ultrasound, endoscopic ultrasound, endoscopic retrograde cholangiopancreatography, transabdominal ultrasound, laparoscopy, and positron emission tomography have a prognostic ability of only 5% or less and a 5-year survival rate. Genetic sequencing can be employed as an alternative to conventional diagnostic techniques. Sanger sequencing and NGS are currently largely operated genome analysis, with no exception for pancreatic disease diagnosis. The NGS methods can sequence millions to billions of short DNA fragments, enabling enormous sample screening in a short amount of time with low-abundance detection, like in 0.1%-1% mutation prevalence declining approximate cost. Whole-genome sequencing, whole-exome sequencing, RNA sequencing, and single-cell NGS are a few NGS methods utilized to diagnose pancreatic disease. For both research and clinical applications, the NGS techniques can provide a precise diagnosis of pancreatic disorders in a short amount of time at a reasonable expenditure.
Collapse
Affiliation(s)
- Suvro Biswas
- Miocrobiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiBangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | | | - Shahriar Zaman
- Miocrobiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiBangladesh
| | - Md. Abu Saleh
- Miocrobiology Laboratory, Department of Genetic Engineering and BiotechnologyUniversity of RajshahiBangladesh
| |
Collapse
|
13
|
McDonald HG, Kennedy A, Solomon AL, Williams CM, Reagan AM, Cassim E, Harper M, Burke E, Armstrong T, Gosky M, Cavnar M, Pandalai PK, Barry-Hundeyin M, Patel R, Nutalapati S, Moss J, Hull PC, Kolesar J, Pickarski JC, Kim J. Development of a Novel Protocol for Germline Testing in Pancreatic Cancer. Ann Surg Oncol 2024; 31:7705-7712. [PMID: 39133448 DOI: 10.1245/s10434-024-16011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Guidelines now recommend universal germline genetic testing (GGT) for all pancreatic ductal adenocarcinoma (PDAC) patients. Testing provides information on actionable pathogenic variants and guides management of patients and family. Since traditional genetic counseling (GC) models are time-intensive and GC resources are sparse, new approaches are needed to comply with guidelines without overwhelming available resources. METHODS A novel protocol was developed for physician-led GGT. Completed test kits were delivered to the GC team, who maintained a prospective database and mailed all orders. If results revealed pathogenic variants for PDAC, patients were offered comprehensive GC, whereas negative and variant of uncertain significance (VUS) test results were reported to patients via brief calls. RESULTS During protocol implementation between January 2020 and December 2022, 310 (81.5%) patients underwent GGT, with a physician compliance rate of 82.6% and patient compliance rate of 98.7%. Of 310 patients tested, 44 (14.2%) patients had detection of pathogenic variants, while 83 (26.8%) patients had VUS. Pathogenic variants included BRCA1/BRCA2/PALB2 (n = 18, 5.8%), ATM (n = 9, 2.9%), CFTR (n = 4, 1.3%), EPCAM/MLH1/MSH2/MSH6/PMS2 (n = 3, 1.0%), and CDKN2A (n = 2, 0.7%). The GC team successfully contacted all patients with pathogenic variants to discuss results and offer comprehensive GC. CONCLUSION Our novel protocol facilitated GGT with excellent compliance despite limited GC resources. This framework for GGT allocates GC resources to those patients who would benefit most from GC. As we continue to expand the program, we seek to implement methods to ensure compliance with cascade testing of high-risk family members.
Collapse
Affiliation(s)
- Hannah G McDonald
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Andrew Kennedy
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Angelica L Solomon
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Chelsey M Williams
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Anna M Reagan
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Emily Cassim
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Megan Harper
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Erin Burke
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Terra Armstrong
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Michael Gosky
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Michael Cavnar
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Prakash K Pandalai
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Mautin Barry-Hundeyin
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Reema Patel
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Snigdha Nutalapati
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jessica Moss
- Division of Hematology Oncology, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Pamela C Hull
- Department of Behavioral Science, University of Kentucky, Lexington, KY, USA
| | - Jill Kolesar
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | | | - Joseph Kim
- Division of Surgical Oncology, Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
14
|
Moosavi F, Hassani B, Nazari S, Saso L, Firuzi O. Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence. Biochim Biophys Acta Rev Cancer 2024; 1879:189185. [PMID: 39326802 DOI: 10.1016/j.bbcan.2024.189185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with one of the most unfavorable prognoses across all malignancies. In this review, we investigate the role of inhibitors targeting crucial regulators of DNA damage response (DDR) pathways, either as single treatments or in combination with chemotherapeutic agents and targeted therapies in PDAC. The most prominent clinical benefit of PARP inhibitors' monotherapy is related to the principle of synthetic lethality in individuals harboring BRCA1/2 and other DDR gene mutations as predictive biomarkers. Moreover, induction of BRCAness with inhibitors of RTKs, including VEGFR and c-MET and their downstream signaling pathways, RAS/RAF/MEK/ERK and PI3K/AKT/mTOR in order to expand the application of PARP inhibitors in patients without DDR mutations, has also been addressed. Other DDR-targeting agents beyond PARP inhibitors, including inhibitors of ATM, ATR, CHEK1/2, and WEE1 have also demonstrated their potential in preclinical models of PDAC and may hold promise in future studies.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
16
|
Lin Y, Pu S, Wang J, Wan Y, Wu Z, Guo Y, Feng W, Ying Y, Ma S, Meng XJ, Wang W, Liu L, Xia Q, Yang X. Pancreatic STAT5 activation promotes Kras G12D-induced and inflammation-induced acinar-to-ductal metaplasia and pancreatic cancer. Gut 2024; 73:1831-1843. [PMID: 38955401 PMCID: PMC11503187 DOI: 10.1136/gutjnl-2024-332225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy because it is often diagnosed at a late-stage. Signal transducer and activator of transcription 5 (STAT5) is a transcription factor implicated in the progression of various cancer types. However, its role in KRAS-driven pancreatic tumourigenesis remains unclear. DESIGN We performed studies with LSL-Kras G12D; Ptf1a-Cre ERT (KCERT) mice or LSL-KrasG12D; LSL-Trp53R172H ; Pdx1-Cre (KPC) mice crossed with conditional disruption of STAT5 or completed deficiency interleukin (IL)-22. Pancreatitis was induced in mice by administration of cerulein. Pharmacological inhibition of STAT5 on PDAC prevention was studied in the orthotopic transplantation and patient-derived xenografts PDAC model, and KPC mice. RESULTS The expression and phosphorylation of STAT5 were higher in human PDAC samples than control samples and high levels of STAT5 in tumour cells were associated with a poorer prognosis. The loss of STAT5 in pancreatic cells substantially reduces the KRAS mutation and pancreatitis-derived acinar-to-ductal metaplasia (ADM) and PDAC lesions. Mechanistically, we discovered that STAT5 binds directly to the promoters of ADM mediators, hepatocyte nuclear factor (HNF) 1β and HNF4α. Furthermore, STAT5 plays a crucial role in maintaining energy metabolism in tumour cells during PDAC progression. IL-22 signalling induced by chronic inflammation enhances KRAS-mutant-mediated STAT5 phosphorylation. Deficiency of IL-22 signalling slowed the progression of PDAC and ablated STAT5 activation. CONCLUSION Collectively, our findings identified pancreatic STAT5 activation as a key downstream effector of oncogenic KRAS signalling that is critical for ADM initiation and PDAC progression, highlighting its potential therapeutic vulnerability.
Collapse
Affiliation(s)
- Yuli Lin
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital; Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, People's Republic of China
| | - Shaofeng Pu
- Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, Shanghai, China
| | - Jun Wang
- Department of general surgery, Huashan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Yaqi Wan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital; Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, People's Republic of China
| | - Zhihao Wu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
| | - Yangyang Guo
- Center for Medical Research and Innovation, Shanghai Pudong Hospital; Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, People's Republic of China
| | - Wenxue Feng
- Center for Medical Research and Innovation, Shanghai Pudong Hospital; Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, Shanghai, People's Republic of China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Shuai Ma
- Division of Nephrology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Xiang Jun Meng
- Department of Gastroenterology, Center for Digestive Diseases Research and Clinical Translation, Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Qing Xia
- Department of Biliary-Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, Shanghai, China
| | - Xuguang Yang
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
| |
Collapse
|
17
|
Kim SC, Seo HY, Lee JO, Maeng JE, Shin YK, Lee SH, Jang JY, Ku JL. Establishment, characterization, and biobanking of 36 pancreatic cancer organoids: prediction of metastasis in resectable pancreatic cancer. Cell Oncol (Dordr) 2024; 47:1627-1647. [PMID: 38619751 PMCID: PMC11467084 DOI: 10.1007/s13402-024-00939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/16/2024] Open
Abstract
PURPOSE Early dissemination of primary pancreatic ductal adenocarcinoma (PDAC) is the main cause of dismal prognosis as it highly limits possible treatment options. A number of PDAC patients experience distant metastasis even after treatment due to the metastatic clones. We aimed to demonstrate the molecular architecture of borderline resectable PDAC manifests cancer dissemination of PDAC. METHODS Here, 36 organoids isolated from primary tumor masses of PDAC patients with diverse metastatic statues are presented. Whole-exome sequencing and RNA sequencing were performed and drug responses to clinically relevant 18 compounds were assessed. RESULTS Our results revealed that borderline resectable PDAC organoids exhibited distinct patterns according to their metastatic potency highlighted by multiple genetic and transcriptional factors and strong variances in drug responses. CONCLUSIONS These data suggest that the presence of metastatic PDAC can be identified by integrating molecular compositions and drug responses of borderline resectable PDAC.
Collapse
Affiliation(s)
- Soon-Chan Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ha-Young Seo
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ja-Oh Lee
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ju Eun Maeng
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Kyoung Shin
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Liu Y, Tang SC, Li CH, To KF, Li B, Chan SL, Wong CH, Chen Y. The molecular mechanism underlying KRAS regulation on STK31 expression in pancreatic ductal adenocarcinoma. Cancer Sci 2024; 115:3288-3304. [PMID: 39054797 PMCID: PMC11447899 DOI: 10.1111/cas.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
KRAS gene mutations are common in pancreatic ductal adenocarcinoma (PDAC), but targeting mutant KRAS is still challenging. Here, an endoribonuclease-prepared small interfering RNA (esiRNA) library was used to screen new kinases that play critical roles in PDAC driven by KRAS gene mutations, and serine/threonine kinase 31 (STK31) was identified and characterized as a potential therapeutic target for KRAS-mutant PDAC. Our results showed that STK31 was upregulated in KRAS-mutant PDAC patients with poor survival and highly expressed in PDAC cell lines with KRASG12D mutation. Inhibition of STK31 in KRAS-mutant cell lines significantly reduced PDAC cell growth in vitro and hindered tumor growth in vivo. Gain and loss of function experiments revealed that STK31 is a downstream target of KRAS in PDAC. A pharmacological inhibition assay showed MAPK/ERK signaling involved in STK31 regulation. The further mechanistic study validated that c-Jun, regulated by KRAS/MAPK signaling, directly modulates the transcription level of STK31 by binding to its promoter region. Through RNA sequencing, we found that the cell cycle regulators CCNB1 and CDC25C are downstream targets of STK31. Taken together, our results indicate that STK31, which is the downstream target of the KRAS/MAPK/ERK/c-Jun signaling pathway in KRAS-mutant PDAC, promotes PDAC cell growth by modulating the expression of the cell cycle regulators CCNB1 and CDC25C.
Collapse
Affiliation(s)
- Yuting Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shing Chun Tang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Han Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Bo Li
- Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
19
|
Ma Y, Yang Y, Zhang H, Mugaanyi J, Hu Y, Wu S, Lu C, Mao S, Wang K. Sarcomatoid carcinoma of the pancreas (Review). Oncol Lett 2024; 28:477. [PMID: 39161336 PMCID: PMC11332573 DOI: 10.3892/ol.2024.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/20/2024] [Indexed: 08/21/2024] Open
Abstract
Sarcomatoid carcinoma of the pancreas (SCP) is a rare and aggressive subtype of undifferentiated pancreatic ductal adenocarcinoma, with a generally poor prognosis and only sporadic cases reported worldwide. Histologically, the most notable feature of SCP is the presence of abundant of mesenchymatoid spindle tumor cells in the tumor, which lack glandular differentiation. Immunohistochemically, SCP is characterized by the expression of both mesenchymal and epithelial markers. With only a few reported cases, there is limited knowledge about its molecular and clinicopathological characteristics. Therefore, the present study performed a literature search to identify all relevant published studies. The present review provides an overview of the histogenesis, diagnosis, genetic features, prognosis and treatment of SCP, specifically focusing on the molecular alterations. Furthermore, a single-center experience is reported, which adds to the limited evidence available in the literature.
Collapse
Affiliation(s)
- Yijie Ma
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Yiwen Yang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Huizhi Zhang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Joseph Mugaanyi
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Yangke Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Shengdong Wu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Caide Lu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Shuqi Mao
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| | - Ke Wang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315048, P.R. China
| |
Collapse
|
20
|
Xing FL, Li BR, Fang YJ, Liang C, Liu J, Wang W, Xu J, Yu XJ, Qin Y, Zhang B. G3BP2 promotes tumor progression and gemcitabine resistance in PDAC via regulating PDIA3-DKC1-hENT in a stress granules-dependent manner. Acta Pharmacol Sin 2024:10.1038/s41401-024-01387-5. [PMID: 39289547 DOI: 10.1038/s41401-024-01387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is distinguished by its aggressive malignancy, limited treatment avenues and a tendency towards chemotherapy resistance, underscoring the critical need for advanced research to uncover new therapeutic approaches. Stress granules (SGs) that is implicated in cellular self-protection mechanism, along with its associated family molecules have shown pro-cancer effects and are closely related to tumor chemotherapy resistance. In this study we investigated the relationship between Ras GTPase-activating protein-binding proteins 2 (G3BP2), a core component of SGs, and the malignancy of PDAC as well as its resistance to the chemotherapy drug gemcitabine. Analyzing TCGA dataset revealed that the expression of G3BP1 and G3BP2 was significantly upregulated in PDAC compared with adjacent normal pancreatic tissues, and the high expression of G3BP2 rather than G3BP1 was significantly associated with poorer overall survival (OS) in PDAC patients. We demonstrated that knockdown of G3BP2 inhibited the proliferation and invasion of PANC-1 and CFPAC-1 cells in vitro and in vivo. By analyzing the differentially expressed genes in G3BP2 knockdown and overexpressed PANC-1 cells, we identified DKC1 that was associated with RNA stability and regulation as the target of G3BP2. We demonstrated that G3BP2 bound to PDIA3 mRNA and recruited them into SGs, increasing the stability of PDIA3 mRNA and attenuating its translation efficiency, thereby promoting DKC1 expression. Furthermore, DKC1 could bind to hENT mRNA and inhibited its expression, which enhanced gemcitabine resistance of PDAC. Therefore, we propose a novel mechanism wherein G3BP2 facilitates PDAC's resistance to chemotherapy by modulating PDIA3-DKC1-hENT in a SGs-dependent way, suggesting G3BP2 SGs a protentional therapeutic target for the treatment in PDAC.
Collapse
Affiliation(s)
- Fa-Liang Xing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo-Rui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ying-Jin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Vázquez-Bellón N, Martínez-Bosch N, García de Frutos P, Navarro P. Hallmarks of pancreatic cancer: spotlight on TAM receptors. EBioMedicine 2024; 107:105278. [PMID: 39137571 PMCID: PMC11367522 DOI: 10.1016/j.ebiom.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most prevalent type of pancreatic cancer and ranks among the most aggressive tumours, with a 5-year survival rate of less than 11%. Projections indicate that by 2030, it will become the second leading cause of cancer-related deaths. PDAC presents distinctive hallmarks contributing to its dismal prognosis: (i) late diagnosis, (ii) heterogenous and complex mutational landscape, (iii) high metastatic potential, (iv) dense fibrotic stroma, (v) immunosuppressive microenvironment, and (vi) high resistance to therapy. Mounting evidence has shown a role for TAM (Tyro3, AXL, MerTK) family of tyrosine kinase receptors in PDAC initiation and progression. This review aims to describe the impact of TAM receptors on the defining hallmarks of PDAC and discuss potential future directions using these proteins as novel biomarkers for early diagnosis and targets for precision therapy in PDAC, an urgent unmet clinical need.
Collapse
Affiliation(s)
- Núria Vázquez-Bellón
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; PhD Program in Biomedicine, Facultat de Medicina (Campus Clínic), Universitat de Barcelona, Barcelona, Spain
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute (HMRI), Unidad Asociada IIBB-CSIC, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, Unidad Asociada IMIM/IIBB-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), and IDIBAPS, Barcelona, Spain.
| | - Pilar Navarro
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Cancer Research Program, Hospital del Mar Research Institute (HMRI), Unidad Asociada IIBB-CSIC, Barcelona, Spain.
| |
Collapse
|
22
|
Yang J, Zhou P, Xu T, Bo K, Zhu C, Wang X, Chang J. Identification of biomarkers related to tryptophan metabolism in osteoarthritis. Biochem Biophys Rep 2024; 39:101763. [PMID: 39040542 PMCID: PMC11261530 DOI: 10.1016/j.bbrep.2024.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Background OA (osteoarthritis) is a common joint disease characterized by damage to the articular cartilage and affects the entire joint tissue, with its main manifestations being joint pain, stiffness, and limited movement.Currently,we know that OA is a complex process composed of inflammatory and metabolic factors.It is reported that the occurrence and development of OA is related to the change of tryptophan metabolism.Therefore, the study of tryptophan metabolism and OA related genes is hopeful to find a new therapeutic target for OA. Methods Differentially expressed genes (DEGs) in GSE55235 were gained via differential expression analysis (OA samples vs normal samples). The tryptophan metabolic related DEGs (TMR-DEGs) were obtained by overlapping tryptophan metabolism related genes (TMRGs) and DEGs. Further, biomarkers were screening via Least absolute shrinkage and selection operator (LASSO), naive bayes (NB) and supportvector machine-recursive feature elimination (SVM-RFE) algorithm to establish a diagnostic model. Afterward, Gene Set Enrichment Analysis (GSEA) and drug prediction were performed based on diagnostic biomarkers by multiple software and databases. Eventually, expression level of biomarker public databases was verified using real-time quantitative polymerase chain reaction (RT-qPCR). Results Three tryptophan metabolism related biomarkers (TDO2, AOX1 and SLC3A2) were identified in OA. GSEA analysis demonstrated that biomarkers were associated with the function of 'FoxO signaling pathway', 'spliceosome' and 'ribosome'. There were seven drugs with therapeutic potential on TDO2 and AOX1. Ultimately, compared with normal group, expression of AOX1 and SLC3A2 in OA group remarkable lower. Conclusion Overall, three tryptophan metabolic related diagnostic biomarkers that associated with OA were obtained, which provided a original direction for the diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Junjun Yang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Ping Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Tangbing Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Kaida Bo
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Chenxin Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Xu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
23
|
Zhao D, Qu Y, Gao N, Wu T. Integrated multi-omics characterization of SMAD4 mutant colorectal cancer. Discov Oncol 2024; 15:386. [PMID: 39210191 PMCID: PMC11362418 DOI: 10.1007/s12672-024-01268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Colorectal cancer is one of the most common cancers around the world, which is a severe threat to people's health. SMAD4 belongs to the dwarfin/SMAD family, which plays a crucial role in TGF-β and BMP signal pathways. As the molecular characterization of colon cancer patients following SMAD4 mutations remains unclear, we integrated multi-omics data of SMAD4 mutant patients to reveal the profile of molecular characterization of SMAD4 mutation. A missense mutation is the most common mutant type of SMAD4. Patients with SMAD4 mutation had worse survival. Tumor tissues from patients carrying the SMAD4 mutation showed a reduction in various immune cells, such as CD4 + memory T cells and memory B cells. Many differential genes were identified compared to the SMAD4 mutation-free group and could be significantly enriched for tumor- and immune-related signaling pathways. In addition, the mutant group had different drug sensitivities than the non-mutant group.
Collapse
Affiliation(s)
- Danyi Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanjun Qu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Tao Wu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
24
|
Mahadiuzzaman ASM, Dain Md Opo FA, Alkarim S. Stem cell-based targeted therapy in pancreatic cancer: Current approaches and future prospects. Tissue Cell 2024; 89:102449. [PMID: 38924893 DOI: 10.1016/j.tice.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Despite recent improvements in oncology, diagnosis, and therapy, pancreatic cancer remains extremely difficult to cure due to its aggressive growth pattern with early invasion and distant metastases, chemoresistance, and a lack of effective screening modalities for early detection. Here, novel therapeutic approaches for treating pancreatic cancer are urgently needed. Recently, stem cells have drawn a lot of interest as a possible treatment for pancreatic cancer due to their ability to locate tumors. Though research over the last few decades has revealed some very exciting and promising new treatment approaches, the clinical success of these stem-cell based anti-cancer medicines has been quite limited. The most effective stem cell-mediated therapeutic options will only be available with a deeper understanding of the intricate molecular biology underlying pancreatic cancer and the subsequent identification of cancer stem cells as a novel target that promotes the growth of the cancer and resistance to chemotherapy. This review will highlight the stem cell based anti-cancer therapy targeting pancreatic cancer stem cells and different molecular signaling pathways. A particular focus will be on the therapeutic potential of naïve Stem cells, anti-cancer drug loaded stem cells, genetically engineered stem cells and exosomal miRNA released by stem cells in pancreatic cancer treatment. Similarly, the role of nanotechnology in stem cell based anticancer therapy will be further discussed to better implementation of these cell-based cancer therapy.
Collapse
Affiliation(s)
- A S M Mahadiuzzaman
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - F A Dain Md Opo
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh Alkarim
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Yao Y, Lv H, Zhang M, Li Y, Herman JG, Brock MV, Gao A, Wang Q, Fuks F, Zhang L, Guo M. Epigenetic silencing of BEND4, a novel DNA damage repair gene, is a synthetic lethal marker for ATM inhibitor in pancreatic cancer. Front Med 2024; 18:721-734. [PMID: 38926248 DOI: 10.1007/s11684-023-1053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/04/2023] [Indexed: 06/28/2024]
Abstract
Synthetic lethality is a novel model for cancer therapy. To understand the function and mechanism of BEN domain-containing protein 4 (BEND4) in pancreatic cancer, eight cell lines and a total of 492 cases of pancreatic neoplasia samples were included in this study. Methylation-specific polymerase chain reaction, CRISPR/Cas9, immunoprecipitation assay, comet assay, and xenograft mouse model were used. BEND4 is a new member of the BEN domain family. The expression of BEND4 is regulated by promoter region methylation. It is methylated in 58.1% (176/303) of pancreatic ductal adenocarcinoma (PDAC), 33.3% (14/42) of intraductal papillary mucinous neoplasm, 31.0% (13/42) of pancreatic neuroendocrine tumor, 14.3% (3/21) of mucinous cystic neoplasm, 4.3% (2/47) of solid pseudopapillary neoplasm, and 2.7% (1/37) of serous cystic neoplasm. BEND4 methylation is significantly associated with late-onset PDAC (> 50 years, P < 0.01) and tumor differentiation (P < 0.0001), and methylation of BEND4 is an independent poor prognostic marker (P < 0.01) in PDAC. Furthermore, BEND4 plays tumor-suppressive roles in vitro and in vivo. Mechanistically, BEND4 involves non-homologous end joining signaling by interacting with Ku80 and promotes DNA damage repair. Loss of BEND4 increased the sensitivity of PDAC cells to ATM inhibitor. Collectively, the present study revealed an uncharacterized tumor suppressor BEND4 and indicated that methylation of BEND4 may serve as a potential synthetic lethal marker for ATM inhibitor in PDAC treatment.
Collapse
Affiliation(s)
- Yuanxin Yao
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Honghui Lv
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuan Li
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - James G Herman
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Malcolm V Brock
- Department of surgery, School of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Aiai Gao
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Wang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Francois Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, 1070, Belgium
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
26
|
Burke CE, Eng NL, Yee NS, Peng JS. Complete response to chemotherapy in a 6-year survivor of metastatic pancreatic cancer. BMJ Case Rep 2024; 17:e261008. [PMID: 39038872 DOI: 10.1136/bcr-2024-261008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
A woman in her 40s underwent evaluation for abdominal pain, jaundice and acholic stools and was diagnosed with metastatic pancreatic head adenocarcinoma. She was enrolled in a clinical trial investigating the benefits of ibrutinib with nab-paclitaxel and gemcitabine, and subsequently received modified FOLFIRINOX. Over the course of 6 years on chemotherapy, she experienced complete regression of the pancreatic and liver lesions, as well as normalisation of her tumour markers. She has been off chemotherapy for 6 months with no evidence of disease and normal tumour markers. Despite advances in chemotherapy and surgical options, metastatic pancreatic adenocarcinoma continues to carry a grim prognosis. This case report demonstrates a rare case of a long-term survivor of unresectable metastatic pancreatic adenocarcinoma treated with chemotherapy alone.
Collapse
Affiliation(s)
| | - Nina L Eng
- Department of Surgery, Penn State College of Medicine, Hershey, PA, USA
| | - Nelson S Yee
- Division of Hematology and Oncology, Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - June S Peng
- Divsion of Surgical Oncology, Department of Surgery, Penn State College of Medicine, Hershey, PA, USA
- Division of Surgical Oncology, Department of Surgery, UCSF, San Francisco, CA, USA
| |
Collapse
|
27
|
Buchholz M, Majchrzak-Stiller B, Peters I, Hahn S, Skrzypczyk L, Beule L, Uhl W, Braumann C, Strotmann J, Höhn P. Maintenance Therapy for Pancreatic Cancer, a New Approach Based on the Synergy between the Novel Agent GP-2250 (Misetionamide) and Gemcitabine. Cancers (Basel) 2024; 16:2612. [PMID: 39061250 PMCID: PMC11275110 DOI: 10.3390/cancers16142612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The novel Oxathiazinane derivative GP-2250 (Misetionamide) displays antineoplastic activity in vitro and in vivo, as previously shown in pancreatic cancer cells and in patient-derived mouse xenografts (PDX). Currently, GP 2250 is under phase I clinical trial in pancreatic ductal adenocarcinoma (PDAC). GP-2250 in combination with Gemcitabine displays a high synergistic capacity in various primary and established pancreatic cancer cell lines. Additionally, in the eight PDX models tested, the drug combination was superior in reducing tumor volume with an aggregate tumor regression (ATR) of 74% compared to Gemcitabine alone (ATR: 10%). Similarly, in a PDX maintenance setting following two weeks of treatment with nab-Paclitaxel plus Gemcitabine, the combination of GP-2250 plus Gemcitabine resulted in outstanding tumor control (ATR: 79%) compared to treatment with Gemcitabine alone (ATR: 60%). Furthermore, GP-2250 reduced the ratio of tumor-initiating CD133+ markers on the surface of PDAC cells in spheroid cultures, indicating a possible mechanism for the synergistic effect of both substances. Considering the high tolerability of GP 2250, these results may open up a new approach to maintenance therapy with GP-2250/Gemcitabine combination following nab-Paclitaxel plus Gemcitabine as first-line treatment.
Collapse
Affiliation(s)
- Marie Buchholz
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Britta Majchrzak-Stiller
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Ilka Peters
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Stephan Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, 44780 Bochum, Germany;
| | - Lea Skrzypczyk
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Lena Beule
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Waldemar Uhl
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Chris Braumann
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
- Department of General, Visceral and Vascular Surgery, Evangelische Kliniken Gelsenkirchen, Akademisches Lehrkrankenhaus der Universität Duisburg-Essen, 45878 Gelsenkirchen, Germany
| | - Johanna Strotmann
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| | - Philipp Höhn
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (B.M.-S.); (I.P.); (L.S.); (L.B.); (W.U.); (C.B.); (J.S.); (P.H.)
| |
Collapse
|
28
|
Zhao Q, Shao H, Zhang T. Single-cell RNA sequencing in ovarian cancer: revealing new perspectives in the tumor microenvironment. Am J Transl Res 2024; 16:3338-3354. [PMID: 39114691 PMCID: PMC11301471 DOI: 10.62347/smsg9047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024]
Abstract
Single-cell sequencing technology has emerged as a pivotal tool for unraveling the complexities of the ovarian tumor microenvironment (TME), which is characterized by its cellular heterogeneity and intricate cell-to-cell interactions. Ovarian cancer (OC), known for its high lethality among gynecologic malignancies, presents significant challenges in treatment and diagnosis, partly due to the complexity of its TME. The application of single-cell sequencing in ovarian cancer research has enabled the detailed characterization of gene expression profiles at the single-cell level, shedding light on the diverse cell populations within the TME, including cancer cells, stromal cells, and immune cells. This high-resolution mapping has been instrumental in understanding the roles of these cells in tumor progression, invasion, metastasis, and drug resistance. By providing insight into the signaling pathways and cell-to-cell communication mechanisms, single-cell sequencing facilitates the identification of novel therapeutic targets and the development of personalized medicine approaches. This review summarizes the advancement and application of single-cell sequencing in studying the stromal components and the broader TME in OC, highlighting its implications for improving diagnosis, treatment strategies, and understanding of the disease's underlying biology.
Collapse
Affiliation(s)
- Qiannan Zhao
- Department of Clinical Laboratory, Yantaishan HospitalYantai 264003, Shandong, P. R. China
| | - Huaming Shao
- Department of Medical Laboratory, Qingdao West Coast Second HospitalQingdao 266500, Shandong, P. R. China
| | - Tianmei Zhang
- Department of Gynecology, Yantaishan HospitalYantai 264003, Shandong, P. R. China
| |
Collapse
|
29
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
30
|
Argentiero A, Andriano A, Caradonna IC, de Martino G, Desantis V. Decoding the Intricate Landscape of Pancreatic Cancer: Insights into Tumor Biology, Microenvironment, and Therapeutic Interventions. Cancers (Basel) 2024; 16:2438. [PMID: 39001498 PMCID: PMC11240778 DOI: 10.3390/cancers16132438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant oncological challenges due to its aggressive nature and poor prognosis. The tumor microenvironment (TME) plays a critical role in progression and treatment resistance. Non-neoplastic cells, such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), contribute to tumor growth, angiogenesis, and immune evasion. Although immune cells infiltrate TME, tumor cells evade immune responses by secreting chemokines and expressing immune checkpoint inhibitors (ICIs). Vascular components, like endothelial cells and pericytes, stimulate angiogenesis to support tumor growth, while adipocytes secrete factors that promote cell growth, invasion, and treatment resistance. Additionally, perineural invasion, a characteristic feature of PDAC, contributes to local recurrence and poor prognosis. Moreover, key signaling pathways including Kirsten rat sarcoma viral oncogene (KRAS), transforming growth factor beta (TGF-β), Notch, hypoxia-inducible factor (HIF), and Wnt/β-catenin drive tumor progression and resistance. Targeting the TME is crucial for developing effective therapies, including strategies like inhibiting CAFs, modulating immune response, disrupting angiogenesis, and blocking neural cell interactions. A recent multi-omic approach has identified signature genes associated with anoikis resistance, which could serve as prognostic biomarkers and targets for personalized therapy.
Collapse
Affiliation(s)
| | - Alessandro Andriano
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, Medical School, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ingrid Catalina Caradonna
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, Medical School, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giulia de Martino
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, Medical School, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
31
|
Papa B, Dorwal P, Htain P, Robin J, Tan CP, Singhal N. Acquired EGFR Resistance Mutation C797S in Pancreatic Adenocarcinoma Following Partial Response to Third-Generation EGFR Inhibitor Therapy. JCO Precis Oncol 2024; 8:e2400132. [PMID: 39074344 DOI: 10.1200/po.24.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Brigitte Papa
- Department of Anatomical Pathology, Monash Health, Melbourne, Australia
| | - Pranav Dorwal
- Department of Anatomical Pathology, Monash Health, Melbourne, Australia
- Diagnostic Genomics, Monash Health, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Pamela Htain
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | - Julie Robin
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | - C P Tan
- Cancer Centre, Royal Adelaide Hospital and School of Medicine, University of Adelaide, South Australia, Australia
| | - Nimit Singhal
- Cancer Centre, Royal Adelaide Hospital and School of Medicine, University of Adelaide, South Australia, Australia
| |
Collapse
|
32
|
Chang X, Zheng Y, Xu K. Single-Cell RNA Sequencing: Technological Progress and Biomedical Application in Cancer Research. Mol Biotechnol 2024; 66:1497-1519. [PMID: 37322261 PMCID: PMC11217094 DOI: 10.1007/s12033-023-00777-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Single-cell RNA-seq (scRNA-seq) is a revolutionary technology that allows for the genomic investigation of individual cells in a population, allowing for the discovery of unusual cells associated with cancer and metastasis. ScRNA-seq has been used to discover different types of cancers with poor prognosis and medication resistance such as lung cancer, breast cancer, ovarian cancer, and gastric cancer. Besides, scRNA-seq is a promising method that helps us comprehend the biological features and dynamics of cell development, as well as other disorders. This review gives a concise summary of current scRNA-seq technology. We also explain the main technological steps involved in implementing the technology. We highlight the present applications of scRNA-seq in cancer research, including tumor heterogeneity analysis in lung cancer, breast cancer, and ovarian cancer. In addition, this review elucidates potential applications of scRNA-seq in lineage tracing, personalized medicine, illness prediction, and disease diagnosis, which reveals that scRNA-seq facilitates these events by producing genetic variations on the single-cell level.
Collapse
Affiliation(s)
- Xu Chang
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yunxi Zheng
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
33
|
Kazemi-Harikandei SZ, Karimi A, Tavangar SM. Clinical Perspectives on the Histomolecular Features of the Pancreatic Precursor Lesions: A Narrative Review. Middle East J Dig Dis 2024; 16:136-146. [PMID: 39386334 PMCID: PMC11459284 DOI: 10.34172/mejdd.2024.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/07/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer (PC) is a lethal cancer with poor prognoses. Identifying and characterizing pancreatic cystic lesions (PCLs) in the early detection and follow-up plans is thought to help detect pancreatic malignancy. Besides, the molecular features of PCLs are thought to unravel potentials for targeted therapies. We present a narrative review of the existing literature on the role of PCLs in the early detection, risk stratification, and medical management of PC. High-grade intraductal papillary mucinous neoplasms (IPMN) and pancreatic intraepithelial neoplasia (PanIN) stage III are high-risk lesions for developing PC. These lesions often require thorough histomolecular characterization using endoscopic ultrasound (EUS), before a surgical decision is made. EUS is also useful in the risk assessment of PCLs with tentative plans-for instance, in branch-duct IPMNs (BD-IPMN)- where the final decision might change. Besides the operative decisions, recent improvements in the application of targeted therapies are expected to improve survival measures. Knowledge of molecular features has helped develop targeted therapies. In summary, the histomolecular characterization of PCLs is helpful in optimizing management plans in PC. Further improvements are still needed for the broad application of this knowledge in the clinical setting.
Collapse
Affiliation(s)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Mukund A, Afridi MA, Karolak A, Park MA, Permuth JB, Rasool G. Pancreatic Ductal Adenocarcinoma (PDAC): A Review of Recent Advancements Enabled by Artificial Intelligence. Cancers (Basel) 2024; 16:2240. [PMID: 38927945 PMCID: PMC11201559 DOI: 10.3390/cancers16122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most formidable challenges in oncology, characterized by its late detection and poor prognosis. Artificial intelligence (AI) and machine learning (ML) are emerging as pivotal tools in revolutionizing PDAC care across various dimensions. Consequently, many studies have focused on using AI to improve the standard of PDAC care. This review article attempts to consolidate the literature from the past five years to identify high-impact, novel, and meaningful studies focusing on their transformative potential in PDAC management. Our analysis spans a broad spectrum of applications, including but not limited to patient risk stratification, early detection, and prediction of treatment outcomes, thereby highlighting AI's potential role in enhancing the quality and precision of PDAC care. By categorizing the literature into discrete sections reflective of a patient's journey from screening and diagnosis through treatment and survivorship, this review offers a comprehensive examination of AI-driven methodologies in addressing the multifaceted challenges of PDAC. Each study is summarized by explaining the dataset, ML model, evaluation metrics, and impact the study has on improving PDAC-related outcomes. We also discuss prevailing obstacles and limitations inherent in the application of AI within the PDAC context, offering insightful perspectives on potential future directions and innovations.
Collapse
Affiliation(s)
- Ashwin Mukund
- Department of Machine Learning, Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; (A.M.); (A.K.)
| | - Muhammad Ali Afridi
- School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Aleksandra Karolak
- Department of Machine Learning, Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; (A.M.); (A.K.)
| | - Margaret A. Park
- Departments of Cancer Epidemiology and Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; (M.A.P.); (J.B.P.)
| | - Jennifer B. Permuth
- Departments of Cancer Epidemiology and Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; (M.A.P.); (J.B.P.)
| | - Ghulam Rasool
- Department of Machine Learning, Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; (A.M.); (A.K.)
| |
Collapse
|
35
|
Zhu J, Zhang K, Chen Y, Ge X, Wu J, Xu P, Yao J. Progress of single-cell RNA sequencing combined with spatial transcriptomics in tumour microenvironment and treatment of pancreatic cancer. J Transl Med 2024; 22:563. [PMID: 38867230 PMCID: PMC11167806 DOI: 10.1186/s12967-024-05307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
In recent years, single-cell analyses have revealed the heterogeneity of the tumour microenvironment (TME) at the genomic, transcriptomic, and proteomic levels, further improving our understanding of the mechanisms of tumour development. Single-cell RNA sequencing (scRNA-seq) technology allow analysis of the transcriptome at the single-cell level and have unprecedented potential for exploration of the characteristics involved in tumour development and progression. These techniques allow analysis of transcript sequences at higher resolution, thereby increasing our understanding of the diversity of cells found in the tumour microenvironment and how these cells interact in complex tumour tissue. Although scRNA-seq has emerged as an important tool for studying the tumour microenvironment in recent years, it cannot be used to analyse spatial information for cells. In this regard, spatial transcriptomics (ST) approaches allow researchers to understand the functions of individual cells in complex multicellular organisms by understanding their physical location in tissue sections. In particular, in related research on tumour heterogeneity, ST is an excellent complementary approach to scRNA-seq, constituting a new method for further exploration of tumour heterogeneity, and this approach can also provide unprecedented insight into the development of treatments for pancreatic cancer (PC). In this review, based on the methods of scRNA-seq and ST analyses, research progress on the tumour microenvironment and treatment of pancreatic cancer is further explained.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated Yangzhou University, Jiangsu Province, China
| | - Ke Zhang
- Dalian Medical University, Dalian, China
| | - Yuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated Yangzhou University, Jiangsu Province, China
| | - Xinyu Ge
- Dalian Medical University, Dalian, China
| | - Junqing Wu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated Yangzhou University, Jiangsu Province, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated Yangzhou University, Jiangsu Province, China.
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated Yangzhou University, Jiangsu Province, China.
| |
Collapse
|
36
|
Zhao FY, Chen X, Wang JM, Yuan Y, Li C, Sun J, Wang HQ. O-GlcNAcylation of TRIM29 and OGT translation forms a feedback loop to promote adaptive response of PDAC cells to glucose deficiency. Cell Oncol (Dordr) 2024; 47:1025-1041. [PMID: 38345749 DOI: 10.1007/s13402-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Glucose not only provides energy for tumor cells, but also provides various biomolecules that are essential for their survival, proliferation and invasion. Therefore, it is of great clinical significance to understand the mechanism of how tumor cells adapt to metabolic stress and maintain their survival. The aim of this research was to study the critical role of OGT and TRIM29 O-GlcNAc modification driven adaptability of PDAC cells to low glucose stress, which might have important medical implications for PDAC therapy. METHODS Western blotting, mass spectrometry and WGA-immunoprecipitation were used to examined the levels of OGT and O-GlcNAc glycosylated proteins in BxPC3 and SW1990 cells in normal culture and under glucose deprivation conditions. Crystal violet assay, flow cytometry, RIP, RT-qPCR, protein stability assay, biotin pull down were used to investigate the mechanism of OGT and TRIM29-mediated adaptive response to glucose deficiency in PDAC cells. RESULTS The current study found that under the condition of low glucose culture, the levels of OGT and O-GlcNAc glycosylation in PDAC cells were significantly higher than those in normal culture. Moreover, the high expression of OGT has a protective effect on PDAC cells under low glucose stress. This study confirmed that there was no significant change in mRNA level and protein degradation of OGT under low glucose stress, which was mainly reflected in the increase of protein synthesis. In addition, O-GlcNAc modification at T120 site plays a critical role in the metabolic adaptive responses mediated by TRIM29. CONCLUSIONS Taken together, our study indicated that O-GlcNAcylation of TRIM29 at T120 site and OGT translation forms a loop feedback to facilitate survival of PDAC under glucose deficiency.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Xue Chen
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, The 1st Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Ye Yuan
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Jia Sun
- Department of Biochemistry and Molecular Biology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Hua-Qin Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
37
|
Chen C, Demirkhanyan L, Gondi CS. The Multifaceted Role of miR-21 in Pancreatic Cancers. Cells 2024; 13:948. [PMID: 38891080 PMCID: PMC11172074 DOI: 10.3390/cells13110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
With the lack of specific signs and symptoms, pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at late metastatic stages, resulting in poor survival outcomes. Among various biomarkers, microRNA-21 (miR-21), a small non-coding RNA, is highly expressed in PDAC. By inhibiting regulatory proteins at the 3' untranslated regions (UTR), miR-21 holds significant roles in PDAC cell proliferation, epithelial-mesenchymal transition, angiogenesis, as well as cancer invasion, metastasis, and resistance therapy. We conducted a systematic search across major databases for articles on miR-21 and pancreatic cancer mainly published within the last decade, focusing on their diagnostic, prognostic, therapeutic, and biological roles. This rigorous approach ensured a comprehensive review of miR-21's multifaceted role in pancreatic cancers. In this review, we explore the current understandings and future directions regarding the regulation, diagnostic, prognostic, and therapeutic potential of targeting miR-21 in PDAC. This exhaustive review discusses the involvement of miR-21 in proliferation, epithelial-mesenchymal transition (EMT), apoptosis modulation, angiogenesis, and its role in therapy resistance. Also discussed in the review is the interplay between various molecular pathways that contribute to tumor progression, with specific reference to pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Clare Chen
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Lusine Demirkhanyan
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine and Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Christopher S. Gondi
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine and Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine, Surgery, and Health Science Education and Pathology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Health Care Engineering Systems Center, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Zheng D, Grandgenett PM, Zhang Q, Baine M, Shi Y, Du Q, Liang X, Wong J, Iqbal S, Preuss K, Kamal A, Yu H, Du H, Hollingsworth MA, Zhang C. radioGWAS links radiome to genome to discover driver genes with somatic mutations for heterogeneous tumor image phenotype in pancreatic cancer. Sci Rep 2024; 14:12316. [PMID: 38811597 PMCID: PMC11137018 DOI: 10.1038/s41598-024-62741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Addressing the significant level of variability exhibited by pancreatic cancer necessitates the adoption of a systems biology approach that integrates molecular data, biological properties of the tumors, medical images, and clinical features of the patients. In this study, a comprehensive multi-omics methodology was employed to examine a distinctive collection of patient dataset containing rapid autopsy tumor and normal tissue samples as well as longitudinal imaging with a focus on pancreatic cancer. By performing a whole exome sequencing analysis on tumor and normal tissues to identify somatic gene variants and a radiomic feature analysis to tumor CT images, the genome-wide association approach established a connection between pancreatic cancer driver genes and relevant radiomic features, enabling a thorough and quantitative assessment of the heterogeneity of pancreatic tumors. The significant association between sets of genes and radiomic features revealed the involvement of genes in shaping tumor morphological heterogeneity. Some results of the association established a connection between the molecular level mechanism and their outcomes at the level of tumor structural heterogeneity. Because tumor structure and tumor structural heterogeneity are related to the patients' overall survival, patients who had pancreatic cancer driver gene mutations with an association to a certain radiomic feature have been observed to experience worse survival rates than cases without these somatic mutations. Furthermore, the association analysis has revealed potential gene mutations and radiomic feature candidates that warrant further investigation in future research endeavors.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qi Zhang
- Department of Mathematics and Statistics, University of New Hampshire, Durham, NH, USA
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu Shi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Qian Du
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Jeffrey Wong
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subhan Iqbal
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Kiersten Preuss
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, USA
| | - Ahsan Kamal
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hongfeng Yu
- School of Computing, University of Nebraska, Lincoln, NE, USA
| | - Huijing Du
- Department of Mathematics, University of Nebraska, Lincoln, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
39
|
Ji M, Sun L, Zhang M, Liu Y, Zhang Z, Wang P. RN0D, a galactoglucan from Panax notoginseng flower induces cancer cell death via PINK1/Parkin mitophagy. Carbohydr Polym 2024; 332:121889. [PMID: 38431406 DOI: 10.1016/j.carbpol.2024.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
Metabolic alterations within mitochondria, encompassing processes such as autophagy and energy metabolism, play a pivotal role in facilitating the swift proliferation, invasion, and metastasis of cancer cells. Despite this, there is a scarcity of currently available medications with proven anticancer efficacy through the modulation of mitochondrial dysfunction in a clinical setting. Here, we introduce the structural characteristics of RN0D, a galactoglucan isolated and purified from Panax notoginseng flowers, mainly composed of β-1,4-galactan and β-1,3/1,6-glucan. RN0D demonstrates the capacity to induce mitochondrial impairment in cancer cells, leading to the accumulation of reactive oxygen species, initiation of mitophagy, and reduction in both mitochondrial number and size. This sequence of events ultimately results in the inhibition of mitochondrial and glycolytic bioenergetics, culminating in the demise of cancer cells due to adenosine triphosphate (ATP) deprivation. Notably, the observed bioactivity is attributed to RN0D's direct targeting of Galectin-3, as affirmed by surface plasmon resonance studies. Furthermore, RN0D is identified as an activator of the PTEN-induced kinase 1 (PINK1)/Parkin pathway, ultimately instigating cytotoxic mitophagy in tumor cells. This comprehensive study substantiates the rationale for advancing RN0D as a potentially efficacious anticancer therapeutic.
Collapse
Affiliation(s)
- Meng Ji
- Department of Pancreatic-biliary Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200011, China
| | - Long Sun
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Minghui Zhang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulin Liu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Peipei Wang
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China.
| |
Collapse
|
40
|
George B, Kudryashova O, Kravets A, Thalji S, Malarkannan S, Kurzrock R, Chernyavskaya E, Gusakova M, Kravchenko D, Tychinin D, Savin E, Alekseeva L, Butusova A, Bagaev A, Shin N, Brown JH, Sethi I, Wang D, Taylor B, McFall T, Kamgar M, Hall WA, Erickson B, Christians KK, Evans DB, Tsai S. Transcriptomic-Based Microenvironment Classification Reveals Precision Medicine Strategies for Pancreatic Ductal Adenocarcinoma. Gastroenterology 2024; 166:859-871.e3. [PMID: 38280684 DOI: 10.1053/j.gastro.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/11/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND & AIMS The complex tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) has hindered the development of reliable predictive biomarkers for targeted therapy and immunomodulatory strategies. A comprehensive characterization of the TME is necessary to advance precision therapeutics in PDAC. METHODS A transcriptomic profiling platform for TME classification based on functional gene signatures was applied to 14 publicly available PDAC datasets (n = 1657) and validated in a clinically annotated independent cohort of patients with PDAC (n = 79). Four distinct subtypes were identified using unsupervised clustering and assessed to evaluate predictive and prognostic utility. RESULTS TME classification using transcriptomic profiling identified 4 biologically distinct subtypes based on their TME immune composition: immune enriched (IE); immune enriched, fibrotic (IE/F); fibrotic (F); and immune depleted (D). The IE and IE/F subtypes demonstrated a more favorable prognosis and potential for response to immunotherapy compared with the F and D subtypes. Most lung metastases and liver metastases were subtypes IE and D, respectively, indicating the role of clonal phenotype and immune milieu in developing personalized therapeutic strategies. In addition, distinct TMEs with potential therapeutic implications were identified in treatment-naive primary tumors compared with tumors that underwent neoadjuvant therapy. CONCLUSIONS This novel approach defines a distinct subgroup of PADC patients that may benefit from immunotherapeutic strategies based on their TME subtype and provides a framework to select patients for prospective clinical trials investigating precision immunotherapy in PDAC. Further, the predictive utility and real-world clinical applicability espoused by this transcriptomic-based TME classification approach will accelerate the advancement of precision medicine in PDAC.
Collapse
Affiliation(s)
- Ben George
- LaBahn Pancreatic Cancer Program, Division of Hematology and Oncology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin.
| | | | | | - Samih Thalji
- LaBahn Pancreatic Cancer Program, Department of Surgery, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Subramaniam Malarkannan
- Versiti Blood Research Institute, Department of Medicine, Microbiology & Molecular Genetics, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Razelle Kurzrock
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Division of Hematology and Oncology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | | | | | | | | | - Egor Savin
- BostonGene Corporation, Waltham, Massachusetts
| | | | | | | | - Nara Shin
- BostonGene Corporation, Waltham, Massachusetts
| | | | - Isha Sethi
- BostonGene Corporation, Waltham, Massachusetts
| | - Dandan Wang
- Versiti Blood Research Institute, Department of Medicine, Microbiology & Molecular Genetics, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Bradley Taylor
- Clinical and Translational Science Institute, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Thomas McFall
- LaBahn Pancreatic Cancer Program, Department of Biochemistry, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Mandana Kamgar
- LaBahn Pancreatic Cancer Program, Division of Hematology and Oncology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - William A Hall
- LaBahn Pancreatic Cancer Program, Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Beth Erickson
- LaBahn Pancreatic Cancer Program, Department of Radiation Oncology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Kathleen K Christians
- LaBahn Pancreatic Cancer Program, Department of Surgery, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Douglas B Evans
- LaBahn Pancreatic Cancer Program, Department of Surgery, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| | - Susan Tsai
- LaBahn Pancreatic Cancer Program, Department of Surgery, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin
| |
Collapse
|
41
|
Buchberg J, de Stricker K, Pfeiffer P, Mortensen MB, Detlefsen S. Mutational profiling of 103 unresectable pancreatic ductal adenocarcinomas using EUS-guided fine-needle biopsy. Endosc Ultrasound 2024; 13:154-164. [PMID: 39318643 PMCID: PMC11419524 DOI: 10.1097/eus.0000000000000072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/27/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Objective Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers, with a 5-year survival rate of around 9%. Only 20% are candidates for surgery. Most unresectable patients undergo EUS-guided fine-needle biopsy (EUS-FNB) for diagnosis. Identification of targetable mutations using next-generation sequencing (NGS) is increasingly requested. Data on feasibility of EUS-FNB for NGS and knowledge regarding mutational profile of unresectable PDAC are scarce. We evaluated the "technical yield" of EUS-FNB for NGS in unresectable PDAC: relative fraction of diagnostic EUS-FNBs meeting technical criteria. We also investigated the "molecular yield": relative fraction of EUS-FNBs included in NGS containing sufficient DNA for detection of at least one mutation. Furthermore, we determined the relative frequency of cancer-associated mutations in unresectable PDAC. Patients and Methods Formalin-fixed and paraffin-embedded EUS-FNBs diagnostic of unresectable PDAC and fulfilling these criteria were included (n = 105): minimum 3-mm2 tissue, minimum of 2-mm2 tumor area, and minimum 20% relative tumor area. NGS was performed using Ion GeneStudio S5 Prime System and Oncomine™ Comprehensive Assay v.3 including 161 cancer-related genes. Results Technical yield was 48% (105/219) and molecular yield was 98% (103/105). Most frequently mutated genes were KRAS (89.3%) and TP53 (69.9%), followed by CDKN2A (24.3%), ARID1A (9.7%), SMAD4 (7.8%), TSC2 (7.8%), and CCND3 (6.8%). Conclusion EUS-FNB for NGS of unresectable PDAC is feasible. Our technical criteria for NGS, using leftovers in formalin-fixed and paraffin-embedded blocks after routine pathology diagnosis, were met by around half of EUS-FNBs. Almost all EUS-FNBs fulfilling the technical criteria yielded a successful NGS analysis.
Collapse
Affiliation(s)
- Julie Buchberg
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Karin de Stricker
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Per Pfeiffer
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Michael Bau Mortensen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Department of Surgery, Upper GI and HPB Section, Odense University Hospital, Odense, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| |
Collapse
|
42
|
Zhao G, Wang Y, Zhou J, Ma P, Wang S, Li N. Pan-cancer analysis of polo-like kinase family genes reveals polo-like kinase 1 as a novel oncogene in kidney renal papillary cell carcinoma. Heliyon 2024; 10:e29373. [PMID: 38644836 PMCID: PMC11033160 DOI: 10.1016/j.heliyon.2024.e29373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Background Polo-like kinases (PLKs) are a kinase class of serine/threonine with five members that play crucial roles in cell cycle regulation. However, their biological functions, regulation, and expression remain unclear. This study revealed the molecular properties, oncogenic role, and clinical significance of PLK genes in pan-cancers, particularly in kidney renal papillary cell carcinoma (KIRP). Methods We evaluated the mutation landscape, expression level, and prognostic values of PLK genes using bioinformatics analyses and explored the association between the expression level of PLK genes and tumor microenvironment (TME), immune subtype, cancer immunotherapy, tumor stemness, and drug sensitivity. Finally, we verified the prognostic value in patients with KIRP through univariate and multivariate analyses and nomogram construction. Results PLK genes are extensively altered in pan-cancer, which may contribute to tumorigenesis. These genes are aberrantly expressed in some types of cancer, with PLK1 being overexpressed in 31 cancers. PLK expression is closely associated with the prognosis of various cancers. The expression level of PLK genes is related with sensitivity to diverse drugs and cancer immunity as well as cancer immunotherapy. Importantly, we verified that PLK1 was overexpressed in KIRP tissues and could be an unfavorable prognostic biomarker in patients with KIRP. Hence, PLK1 may serve as an oncogenic gene in KIRP and should be explored in future studies. Conclusions Our study comprehensively reports the molecular characteristics and biological functions of PLK family gens across human cancers and recommends further investigation of these genes as potential biomarkers and therapeutic targets, especially in KIRP.
Collapse
Affiliation(s)
| | | | - Jiawei Zhou
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
43
|
STICKLER SANDRA, RATH BARBARA, HAMILTON GERHARD. Targeting KRAS in pancreatic cancer. Oncol Res 2024; 32:799-805. [PMID: 38686056 PMCID: PMC11055996 DOI: 10.32604/or.2024.045356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 05/02/2024] Open
Abstract
Pancreatic cancer has a dismal prognosis due to late detection and lack of efficient therapies. The Kirsten rat sarcoma virus (KRAS) oncogene is mutated in up to 90% of all pancreatic ductal adenocarcinomas (PDACs) and constitutes an attractive target for therapy. However, the most common KRAS mutations in PDAC are G12D (44%), G12V (34%) and G12R (20%) that are not amenable to treatment by KRAS G12C-directed cysteine-reactive KRAS inhibitors such as Sotorasib and Adagrasib that exhibit clinical efficacy in lung cancer. KRAS G12C mutant pancreatic cancer has been treated with Sotorasib but this mutation is detected only in 2%-3% of PDAC. Recently, the KRAS G12D-directed MRTX1133 inhibitor has entered clinical trials and more of such inhibitors are in development. The other KRAS mutations may be targeted indirectly via inhibition of the cognate guanosine exchange factor (GEF) Son of Sevenless 1 that drives KRAS. These agents seem to provide the means to target the most frequent KRAS mutations in PDAC and to improve patient outcomes.
Collapse
Affiliation(s)
- SANDRA STICKLER
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| | - BARBARA RATH
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| | - GERHARD HAMILTON
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| |
Collapse
|
44
|
Xu M, Tang J, Sun Q, Meng J, Chen G, Chang Y, Yao Y, Ji J, Luo H, Chen L, Lu M, Shi W. CENPN contributes to pancreatic carcinoma progression through the MDM2-mediated p53 signaling pathway. Arch Med Sci 2024; 20:1655-1671. [PMID: 39649279 PMCID: PMC11623148 DOI: 10.5114/aoms/171956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/06/2023] [Indexed: 12/10/2024] Open
Abstract
Introduction We undertook an in-depth investigation of the data pertaining to pancreatic adenocarcinoma (PAAD) to identify potential targets for the development of precision therapies. Material and methods The construction of a protein-protein interaction (PPI) network was based on overlapping differentially expressed genes (DEGs) identified in the GSE16515, GSE32676, and GSE125158 datasets. A subsequent bioinformatic analysis was performed on the interconnected genes within the PPI network, leading to the identification of the central gene, CENPN. In vitro experimentation such as CCK8 and Transwell experiments was employed to elucidate the impact of CENPN expression patterns on PAAD cell proliferation, migration, and invasion. Furthermore, the investigation revealed through comprehensive enrichment analysis that the pivotal signaling pathway associated with CENPN is the p53 signaling pathway. Results Following a comprehensive bioinformatic analysis of 161 concordant differentially expressed genes (DEGs) across three microarray datasets, CENPN emerged as the central gene under investigation. Overexpression of CENPN in pancreatic adenocarcinoma (PAAD) was associated with unfavorable patient outcomes and heightened sensitivity to four PAAD therapies: gemcitabine, docetaxel, paclitaxel, and sunitinib. Reduced CENPN expression impeded PAAD cell proliferation, migration, and invasion; however, these effects were counteracted upon upregulation of CENPN expression. Additionally, CENPN interacted with MDM2, promoting PAAD progression by targeting the p53 signaling pathway. Conclusions The findings of our study substantiate that CENPN is associated with the pathogenesis of PAAD. Consequently, CENPN appears to be a promising candidate for targeted precision therapy in clinical applications.
Collapse
Affiliation(s)
- Ming Xu
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jie Tang
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Qiong Sun
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Meng
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guoyu Chen
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yunli Chang
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yao Yao
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jieru Ji
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Hao Luo
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Lingling Chen
- Department of Gastroenterology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Minxue Lu
- Department of Gastroenterology, Huzhou College Affiliated Nantaihu Hospital, Huzhou, Zhejiang, China
| | - Weiwei Shi
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Peng J, Lv M, Peng Y, Tang X. Trends and hotspots of prognostic factors for pancreatic ductal adenocarcinoma from 2013 to 2022. Hepatobiliary Surg Nutr 2024; 13:370-373. [PMID: 38617492 PMCID: PMC11007332 DOI: 10.21037/hbsn-23-667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Jieyu Peng
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Muhan Lv
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Peng
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Bhandari K, Ding WQ. Protein Arginine Methyltransferases in Pancreatic Ductal Adenocarcinoma: New Molecular Targets for Therapy. Int J Mol Sci 2024; 25:3958. [PMID: 38612768 PMCID: PMC11011826 DOI: 10.3390/ijms25073958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.
Collapse
Affiliation(s)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, BMSB401A, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA;
| |
Collapse
|
47
|
Kulkarni T, Robinson OM, Dutta A, Mukhopadhyay D, Bhattacharya S. Machine learning-based approach for automated classification of cell and extracellular matrix using nanomechanical properties. Mater Today Bio 2024; 25:100970. [PMID: 38312803 PMCID: PMC10835007 DOI: 10.1016/j.mtbio.2024.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Fibrosis characterized by excess accumulation of extracellular matrix (ECM) due to complex cell-ECM interactions plays a pivotal role in pathogenesis. Herein, we employ the pancreatic ductal adenocarcinoma (PDAC) model to investigate dynamic alterations in nanomechanical attributes arising from the cell-ECM interactions to study the fibrosis paradigm. Several segregated studies performed on cellular and ECM components fail to recapitulate their complex collaboration. We utilized collagen and fibronectin, the two most abundant PDAC ECM components, and studied their nanomechanical attributes. We demonstrate alteration in morphology and nanomechanical attributes of collagen with varying thicknesses of collagen gel. Furthermore, by mixing collagen and fibronectin in various stoichiometry, their nanomechanical attributes were observed to vary. To demonstrate the dynamicity and complexity of cell-ECM, we utilized Panc-1 and AsPC-1 cells with or without collagen. We observed that Panc-1 and AsPC-1 cells interact differently with collagen and vice versa, evident from their alteration in nanomechanical properties. Further, using nanomechanics data, we demonstrate that ML-based techniques were able to classify between ECM as well as cell, and cell subtypes in the presence/absence of collagen with higher accuracy. This work demonstrates a promising avenue to explore other ECM components facilitating deeper insights into tumor microenvironment and fibrosis paradigm.
Collapse
Affiliation(s)
- Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Olivia-Marie Robinson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ayan Dutta
- School of Computing, University of North Florida, Jacksonville, FL, 32224 USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| |
Collapse
|
48
|
Liu S, Liu F, Hou X, Zhang Q, Ren Y, Zhu H, Yang Z, Xu X. KRAS Mutation Detection with (2 S,4 R)-4-[ 18F]FGln for Noninvasive PDAC Diagnosis. Mol Pharm 2024; 21:2034-2042. [PMID: 38456403 PMCID: PMC10989612 DOI: 10.1021/acs.molpharmaceut.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which has a poor prognosis and nonspecific symptoms and progresses rapidly, is the most common pancreatic cancer type. Inhibitors targeting KRAS G12D and G12C mutations have been pivotal in PDAC treatment. Cancer cells with different KRAS mutations exhibit various degrees of glutamine dependency; in particular, cells with KRAS G12D mutations exhibit increased glutamine uptake. (2S,4R)-4-[18F]FGln has recently been developed for clinical cancer diagnosis and tumor cell metabolism analysis. Thus, we verified the heterogeneity of glutamine dependency in PDAC models with different KRAS mutations by a visual and noninvasive method with (2S,4R)-4-[18F]FGln. Two tumor-bearing mouse models (bearing the KRAS G12D or G12C mutation) were injected with (2S,4R)-4-[18F]FGln, and positron emission tomography (PET) imaging features and biodistribution were observed and analyzed. The SUVmax in the regions of interest (ROI) was significantly higher in PANC-1 (G12D) tumors than in MIA PaCa-2 (G12C) tumors. Biodistribution analysis revealed higher tumor accumulation of (2S,4R)-4-[18F]FGln and other metrics, such as T/M and T/B, in the PANC-1 mouse models compared to those in the MIAPaCa-2 mouse models. In conclusion, PDAC cells with the KRAS G12D and G12C mutations exhibit various degrees of (2S,4R)-4-[18F]FGln uptake, indicating that (2S,4R)-4-[18F]FGln might be applied to detect KRAS G12C and G12D mutations and provide treatment guidance.
Collapse
Affiliation(s)
| | | | - Xingguo Hou
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Zhang
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ya’nan Ren
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoxia Xu
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
49
|
Toledo B, Deiana C, Scianò F, Brandi G, Marchal JA, Perán M, Giovannetti E. Treatment resistance in pancreatic and biliary tract cancer: molecular and clinical pharmacology perspectives. Expert Rev Clin Pharmacol 2024; 17:323-347. [PMID: 38413373 DOI: 10.1080/17512433.2024.2319340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Treatment resistance poses a significant obstacle in oncology, especially in biliary tract cancer (BTC) and pancreatic cancer (PC). Current therapeutic options include chemotherapy, targeted therapy, and immunotherapy. Resistance to these treatments may arise due to diverse molecular mechanisms, such as genetic and epigenetic modifications, altered drug metabolism and efflux, and changes in the tumor microenvironment. Identifying and overcoming these mechanisms is a major focus of research: strategies being explored include combination therapies, modulation of the tumor microenvironment, and personalized approaches. AREAS COVERED We provide a current overview and discussion of the most relevant mechanisms of resistance to chemotherapy, target therapy, and immunotherapy in both BTC and PC. Furthermore, we compare the different strategies that are being implemented to overcome these obstacles. EXPERT OPINION So far there is no unified theory on drug resistance and progress is limited. To overcome this issue, individualized patient approaches, possibly through liquid biopsies or single-cell transcriptome studies, are suggested, along with the potential use of artificial intelligence, to guide effective treatment strategies. Furthermore, we provide insights into what we consider the most promising areas of research, and we speculate on the future of managing treatment resistance to improve patient outcomes.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fabio Scianò
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Lumobiotics GmbH, Karlsruhe, Germany
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, University of Pisa, Pisa, Italy
| |
Collapse
|
50
|
Brozos-Vázquez E, Toledano-Fonseca M, Costa-Fraga N, García-Ortiz MV, Díaz-Lagares Á, Rodríguez-Ariza A, Aranda E, López-López R. Pancreatic cancer biomarkers: A pathway to advance in personalized treatment selection. Cancer Treat Rev 2024; 125:102719. [PMID: 38490088 DOI: 10.1016/j.ctrv.2024.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Pancreatic cancer is one of the tumors with the worst prognosis, and unlike other cancers, few advances have been made in recent years. The only curative option is surgery, but only 15-20% of patients are candidates, with a high risk of relapse. In advanced pancreatic cancer there are few first-line treatment options and no validated biomarkers for better treatment selection. The development of targeted therapies in pancreatic cancer is increasingly feasible due to tumor-agnostic treatments, such as PARP inhibitors in patients with BRCA1, BRCA2 or PALB2 alterations or immunotherapies in patients with high microsatellite instability/tumor mutational burden. In addition, other therapeutic molecules have been developed for patients with KRAS G12C mutation or fusions in NTRK or NRG1. Consequently, there has been a growing interest in biomarkers that may help guide targeted therapy in pancreatic cancer. Therefore, this review aims to offer an updated perspective on biomarkers with therapeutic potential in pancreatic cancer.
Collapse
Affiliation(s)
- Elena Brozos-Vázquez
- Medical Oncology Department, University Hospital of A Coruña (CHUAC), A Coruña, Spain
| | - Marta Toledano-Fonseca
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET); Clinical University Hospital & Health Research Institute of Santiago de Compostela. CIBERONC; University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Victoria García-Ortiz
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Ángel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET); Clinical University Hospital & Health Research Institute of Santiago de Compostela. CIBERONC; Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Antonio Rodríguez-Ariza
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| | - Enrique Aranda
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain; Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Rafael López-López
- Clinical University Hospital & Health Research Institute of Santiago de Compostela. CIBERONC; Medical Oncology Department & Translational Medical Oncology Group-ONCOMET, Spain; Oncology at Santiago de Compostela School of Medicine, Spain
| |
Collapse
|