1
|
Ma Y, Liu X, Dai R, Li Q, Cao CY. LL-37 regulates odontogenic differentiation of dental pulp stem cells in an inflammatory microenvironment. Stem Cell Res Ther 2024; 15:469. [PMID: 39696668 DOI: 10.1186/s13287-024-04075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Inflammation often causes irreversible damage to dental pulp tissue. Dental pulp stem cells (DPSCs), which have multidirectional differentiation ability, play critical roles in the repair and regeneration of pulp tissue. However, the presence of proinflammatory factors can affect DPSCs proliferation, differentiation, migration, and other functions. LL-37 is a natural cationic polypeptide that inhibits lipopolysaccharide (LPS) activity, enhances cytokine production, and promotes the migration of stem cells. However, the potential of LL-37 in regenerative endodontics remains unknown. This study aimed to investigate the regulatory role of LL-37 in promoting the migration and odontogenic differentiation of DPSCs within an inflammatory microenvironment. These findings establish an experimental foundation for the regenerative treatment of pulpitis and provide a scientific basis for its clinical application. MATERIALS AND METHODS DPSCs were isolated via enzyme digestion combined with the tissue block adhesion method and identified via flow cytometry. The impact of LL-37 on the proliferation of DPSCs was evaluated via a CCK-8 assay. The recruitment of DPSCs was assessed through a transwell assay. The mRNA expression levels of inflammatory and aging-related genes were assessed via reverse transcription‒polymerase chain reaction (RT‒PCR), western blotting, and enzyme‒linked immunosorbent assay (ELISA). The odontogenic differentiation of DPSCs was assessed through alkaline phosphatase (ALP) staining, alizarin red staining, and RT‒PCR analysis. RESULTS LL-37 has the potential to enhance the migration of DPSCs. In an inflammatory microenvironment, LL-37 can suppress the expression of genes associated with inflammation and aging, such as TNF-α, IL-1β, IL-6, P21, P38 and P53. Moreover, it promotes odontogenic differentiation in DPSCs by increasing ALP activity, increasing calcium nodule formation, and increasing the expression of dentin-related genes such as DMP1, DSPP and BSP. CONCLUSION These findings suggest that the polypeptide LL-37 facilitates the migration of DPSCs and plays a crucial role in resolving inflammation and promoting cell differentiation within an inflammatory microenvironment. Consequently, LL-37 has promising potential as an innovative therapeutic approach for managing inflammatory dental pulp conditions.
Collapse
Affiliation(s)
- Yunfeng Ma
- Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xinyuan Liu
- Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ruoxi Dai
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Quanli Li
- Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Institute of Oral Science, Shenzhen, 518172, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
2
|
Gupta A, Abraham D, Aggarwal V, Mahesh S. Role of Concentrated Growth Factor on the Healing Outcome of Periapical Surgery: A Case Report. Cureus 2024; 16:e70917. [PMID: 39502963 PMCID: PMC11537772 DOI: 10.7759/cureus.70917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024] Open
Abstract
This case report highlights the use of concentrated growth factor (CGF) in enhancing healing outcomes following endodontic periapical surgery. A 57-year-old female came with pain and swelling related to chronic periapical abscesses in her lower front teeth, necessitating surgical intervention. Apicectomy combined with CGF application was considered as a treatment option. CGF, an advanced autologous platelet concentrate, offers superior healing properties due to its natural composition and absence of anticoagulants, making it a favorable option over earlier techniques like platelet-rich plasma (PRP) and platelet-rich fibrin (PRF). The surgical procedure, performed under an operating microscope, included meticulous debridement and the placement of a CGF membrane over the surgical site. Follow-up evaluations at six months and one year demonstrated significant healing, as evident clinically and radiographically. The present case indicated the potential of CGF as an effective adjunct in periapical surgery, promoting better healing and recovery in patients with challenging dental conditions. The findings support the growing interest in autologous biomaterials for regenerative dental procedures.
Collapse
Affiliation(s)
- Alpa Gupta
- Conservative Dentistry and Endodontics, Manav Rachna Dental College, Manav Rachna International Institute of Research and Studies, Faridabad, IND
| | - Dax Abraham
- Conservative Dentistry and Endodontics, Manav Rachna Dental College, Manav Rachna International Institute of Research and Studies, Faridabad, IND
| | - Vivek Aggarwal
- Conservative Dentistry and Endodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, IND
| | - Shakila Mahesh
- Microbiology, Manav Rachna Dental College, Manav Rachna International Institute of Research and Studies, Faridabad, IND
| |
Collapse
|
3
|
Hristov K, Ishkitiev N, Miteva M, Dimitrova V, Gigova R, Gateva N, Angelova L. The effect of citric acid on mineralisation and vascular endothelial growth factor secretion from apical papilla stem cells. Acta Odontol Scand 2024; 83:546-552. [PMID: 39351898 PMCID: PMC11457356 DOI: 10.2340/aos.v83.42026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVE To investigate the influence of citric acid on the osteogenic and angiogenic potential of stem cells from apical papillae (SCAPs). MATERIALS AND METHODS Stem cells from apical papillae were isolated from freshly extracted third permanent molars. These cells were treated with 20 and 100 μM citric acid. Alizarin red staining was used to evaluate mineral deposition. The secreted levels of vascular endothelial growth factor (VEGF) were assessed by ELISA on days 18, 24 and 28. Immunofluorescence analysis was performed to assess the expression of surface markers after exposure to 20 and 100 μM citric acid. RESULTS Different mineralisation patterns were observed. Supplemented with citric acid, media showed more diffuse and less dense crystals. On day 18, most VEGF was secreted from the cells with no added citric acid. On day 24, there was a significant increase (p < 0.05) in the levels of VEGF secreted from cells treated with 20 μM citric acid. On day 28, cells from the control group did not secrete VEGF. There was a reduction in the levels of VEGF secreted by cells treated with 20 μM citric acid and a significant increase in the cells exposed to 100 μM citric acid (p < 0.05). CONCLUSION Citric acid can promote the differentiation of SCAPs and angiogenesis.
Collapse
Affiliation(s)
- Krasimir Hristov
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | - Nikolay Ishkitiev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Marina Miteva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Violeta Dimitrova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Ralitsa Gigova
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Nataliya Gateva
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Liliya Angelova
- Department of Dental Public Health, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
4
|
Shi Z, Yang F, Du T, Pang Q, Liu C, Hu Y, Zhu W, Chen X, Chen Z, Song B, Yu X, Ye Z, Shi L, Zhu Y, Pang Q. Analysis of the CPZ/Wnt4 osteogenic pathway for high-bonding-strength composite-coated magnesium scaffolds through transcriptomics. Mater Today Bio 2024; 28:101234. [PMID: 39309165 PMCID: PMC11414715 DOI: 10.1016/j.mtbio.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Magnesium (Mg)-based scaffolds are garnering increasing attention as bone repair materials owing to their biodegradability and mechanical resemblance to natural bone. Their effectiveness can be augmented by incorporating surface coatings to meet clinical needs. However, the limited bonding strength and unclear mechanisms of these coatings have impeded the clinical utility of scaffolds. To address these issues, this study introduces a composite coating of high-bonding-strength polydopamine-microarc oxidation (PDA-MHA) on Mg-based scaffolds. The results showed that the PDA-MHA coating achieved a bonding strength of 40.56 ± 1.426 MPa with the Mg scaffold surface, effectively enhancing hydrophilicity and controlling degradation rates. Furthermore, the scaffold facilitated bone regeneration by influencing osteogenic markers such as RUNX-2, OPN, OCN, and VEGF. Transcriptomic analyses further demonstrated that the PDA-MHA/Mg scaffold upregulated carboxypeptidase Z expression and activated the Wnt-4/β-catenin signaling pathway, thereby promoting bone regeneration. Overall, this study demonstrated that PDA can synergistically enhance bone repair with Mg scaffold, broadening the application scenarios of Mg and PDA in the field of biomaterials. Moreover, this study provides a theoretical underpinning for the application and clinical translation of Mg-based scaffolds in bone tissue engineering endeavors.
Collapse
Affiliation(s)
- Zewen Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Chen Liu
- Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo, 315100, PR China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Weilai Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Xianjun Chen
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Zeming Chen
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Baiyang Song
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Xueqiang Yu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Zhewei Ye
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Lin Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| | - Qingjiang Pang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, 315010, PR China
- Health Science Center, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
5
|
Zhou Q, Lei Y. ARMCX3 regulates ROS signaling, affects neural differentiation and inflammatory microenvironment in dental pulp stem cells. Heliyon 2024; 10:e37079. [PMID: 39296219 PMCID: PMC11407977 DOI: 10.1016/j.heliyon.2024.e37079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background The neural differentiation of dental pulp stem cells (DPSCs) exhibits great potential in the treatment of dental pulp repair and neurodegenerative diseases. However, the precise molecular mechanisms underlying this process remain unclear. This study was designed to reveal the roles and regulatory mechanisms of the armadillo repeat-containing X-linked 3 (ARMCX3) in neural differentiation and inflammatory microenvironment in human DPSCs (hDPSCs). Methods We treated hDPSCs with porphyromonas gingivalis lipopolysaccharide (Pg-LPS) to simulate the inflammatory microenvironment. Then the lentiviral vectors were introduced to construct stable cell lines with ARMCX3 knockdown or overexpression. The expression of neural-specific markers, ARMCX3 and inflammation factors were estimated by immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) assays. Additionally, we used IF assays and specific kits to investigate the regulatory role of ARMCX3 on reactive oxygen species (ROS) signaling. Moreover, a ROS inhibitor was utilized to verify whether ROS inhibition reversed the effects of ARMCX3 in Pg-LPS-treated hDPSCs. Results This work illustrated that Pg-LPS treatment significantly enhanced ARMCX3 expression and inflammatory response, and inhibited neural differentiation in hDPSCs. ARMCX3 knockdown effectively accelerated neural differentiation and controlled inflammatory cytokines at a lower level in hDPSCs in the presence of Pg-LPS. Additionally, knockdown of ARMCX3 notably reduced ROS production and ROS inhibition effectively eliminated the roles of ARMCX3 overexpression in hDPSCs. Besides, all results were proved to be statistically significant. Conclusion This investigation proved that ARMCX3 affected neural differentiation and inflammation microenvironment in hDPSCs at least partly by mediating ROS signal. These findings provided a new perspective on the mechanism of neural differentiation of hDPSCs and help to better explore the therapeutic schedule of pulpitis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Quanying Zhou
- Department of Stomatology, Wuhan Ninth Hospital, Wuhan, Hubei, 430080, China
| | - Yi Lei
- Department of Stomatology, Wuhan Ninth Hospital, Wuhan, Hubei, 430080, China
| |
Collapse
|
6
|
Bharti R, Anisha, Tikku AP, Verma P, Yadav RK, Pant AB. Effect of platelet-rich fibrin and concentrated growth factor on the regenerative potential of human-induced pluripotent stem cells: A comparative analysis. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:975-982. [PMID: 39450369 PMCID: PMC11498240 DOI: 10.4103/jcde.jcde_362_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 10/26/2024]
Abstract
Background Platelet-rich fibrin (PRF) has been used, while concentrated growth factor (CGF) has recently evolved as a bioscaffold in regenerative endodontics. Aims This study aimed to evaluate the effect of PRF and CGF on the proliferation, migration, and differentiation of human-induced pluripotent stem cells (hiPSCs). Materials and Methods CGF and PRF were fabricated from voluntarily donated human blood, and a conditioned medium was prepared. HiPSCs were isolated and cultivated on a conditioned medium for 12 days. The proliferation rate was analyzed using a trypan blue assay on days 9, 10, and 11. The migratory rate was evaluated using a wound healing assay after 24, 48, and 72 h. For assessing the differentiation of hiPSCs, various markers with quantitative real-time polymerase chain reactions on day 12 were used. Results Mesenchymal phenotypic transition was seen with an increase in proliferation rate in the PRF group more than in the CGF group on day 9, along with the differentiation of cells with an increase in osteoblastic markers on day 12 in both groups. The migratory capacity of cells was significantly increased in the CGF and PRF groups, with a greater increase in the CGF group. Conclusions CGF and PRF extend the duration of growth factor activity and enhance cell proliferation and osteogenic differentiation, with hiPSCs serving as a bioscaffold with high regenerative potential.
Collapse
Affiliation(s)
- Ramesh Bharti
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Anisha
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Aseem Prakash Tikku
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Promila Verma
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar Yadav
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Aditya Bhushan Pant
- Department of Toxicology Research, CSIR-Indian Institute of Toxicology and Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Gupta A, Abraham D, Aggarwal V, Mahesh S. Evaluating Autologous Platelet Aggregate as a Scaffold in the Treatment of Human Permanent Molars With Pulpitis: A Case Series. Cureus 2024; 16:e69004. [PMID: 39385870 PMCID: PMC11463260 DOI: 10.7759/cureus.69004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024] Open
Abstract
This case series aims to investigate the radiographic and clinical results of pulpotomy using concentrated growth factor (CGF), a scaffold obtained from the host, on adult human permanent molars. A total of four cases diagnosed with symptomatic reversible pulpitis based on history, clinical examination, and investigation were planned for CGF pulpotomy. Blood required for the procedure was collected in a 10 ml test tube without anticoagulants to produce CGF. Subsequently, the sample was promptly centrifuged using a tabletop centrifuge. The clot-free pulp chamber was then shielded with a small CGF membrane fragment. A layer of mineral trioxide aggregate (MTA), approximately 2 mm thick, was applied over the CGF membrane. Following this, the tooth was temporized with glass ionomer cement. The patients were scheduled for a follow-up visit after a day to assess postoperative discomfort and to proceed with the final composite restoration. All the patients were recalled at 6 and 12 months for follow-up. Three of the patients were clinically and radiographically asymptomatic following the treatment. The tooth demonstrated a normal periodontal ligament space on radiographic inspection, and it passed pulp sensibility tests. One patient, though, complained of excruciating discomfort 24 hours after the procedure. The favorable results of the three instances imply that more investigation is required to validate the application of this biocompatible alternative to the management of pulpitis in permanent human molar teeth. More research with larger sample numbers and longer recollection periods is required. The use of concentrated growth factor (CGF), derived from the patient's own blood, serves as an excellent biological scaffold for the treatment of pulpal diseases.
Collapse
Affiliation(s)
- Alpa Gupta
- Conservative Dentistry and Endodontics, Manav Rachna International Institute of Research and Studies, Faridabad, IND
| | - Dax Abraham
- Conservative Dentistry and Endodontics, Manav Rachna Dental College and Hospital, Faridabad, IND
| | - Vivek Aggarwal
- Conservative Dentistry and Endodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, IND
| | - Shakila Mahesh
- Microbiology, Manav Rachna Dental College and Hospital, Faridabad, IND
| |
Collapse
|
8
|
Kurt A, Çıkman AŞ, Balaban E, Gümrükçü Z, Mercantepe T, Tümkaya L, Karabağ M. The effects of mineral trioxide aggregate and second-generation autologous growth factor on pulpotomy via TNF-α and NF-kβ/p65 pathways. BMC Oral Health 2024; 24:890. [PMID: 39097700 PMCID: PMC11297787 DOI: 10.1186/s12903-024-04577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 08/05/2024] Open
Abstract
This study aims to investigate the effect of Mineral Trioxide Aggregate (MTA), a bioactive endodontic cement, and Concentrated Growth Factor (CGF), a second-generation autologous growth factor, on pulpotomy-induced pulp inflammation. The study utilized the maxillary anterior central teeth of thirty-six young male Sprague Dawley rats. Forty-eight teeth were randomly assigned to two groups (12 rats/group; 24 teeth/group) based on the capping material (MTA or CGF). Subsequently, two subgroups (MTAG and CGFG) were formed per group (12 teeth/group) based on the time following pulpotomy (2-weeks and 4-weeks). The central teeth of the 12 animals assigned to the control group (CG) were not manipulated in any way, both in the 2-week group and in the 4-week group. Tissue samples extracted from rats at the end of the experiment were stained with H&E for histopathological analysis. For immunohistochemical analysis, primary antibodies for TNF-α and NF-kβ/65 were incubated. Data obtained from semi-quantitative analysis were assessed for normal distribution using Skewness-Kurtosis values, Q-Q plot, Levene's test, and the Shapiro-Wilk test on statistical software. A P value < 0.05 was considered significant. When compared with the control group, both MTAG and CGFG showed increased edematous and inflammatory areas. In MTAG, edematous and inflammatory areas decreased significantly from the 2nd week (2(2-2), 2(1-2)) to the 4th week (1(1-1), 1(0-1)), while in CGFG, edematous areas decreased (2(2-3), 1.5(1-2)), and inflammatory areas increased significantly (2(2-3), 3(2-2.5)). When compared with the control group, TNF-α and NF-kβ/p65 positivity were higher in both MTAG and CGFG. In MTAG, TNF-α [2(1.5-2)] and NF-kβ/p65 [1.5(1-2)] positivity decreased significantly from the 2nd week to the 4th week [TNF-α: 1(1-1), NF-kβ/p65: 1(1-2)], while no significant change was observed in CGFG. In conclusion, this study revealed a reduction in cells showing TNF-α and NF-kβ/p65 positivity in the MTA treatment group compared to the CGF group. Although MTA demonstrated more favorable results than CGF in mitigating pulpal inflammation within the scope of this study, further experimental and clinical investigations are warranted to obtain comprehensive data regarding CGF.
Collapse
Affiliation(s)
- Ayça Kurt
- Department of Pediatric Dentistry, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey.
| | - Ahter Şanal Çıkman
- Department of Endodontics, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Emre Balaban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Zeynep Gümrükçü
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Tolga Mercantepe
- Departments of Histology and Embryology, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Levent Tümkaya
- Departments of Histology and Embryology, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Mert Karabağ
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| |
Collapse
|
9
|
Bae KB, Kim HM, Son JW, Ryu JY, Hwang YC, Koh JT, Oh WM, Park C, Lee BN. Effect of 3D-printed polycaprolactone/osteolectin scaffolds on the odontogenic differentiation of human dental pulp cells. Biomed Mater 2024; 19:045027. [PMID: 38740059 DOI: 10.1088/1748-605x/ad4ad9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Cell-based tissue engineering often requires the use of scaffolds to provide a three-dimensional (3D) framework for cell proliferation and tissue formation. Polycaprolactone (PCL), a type of polymer, has good printability, favorable surface modifiability, adaptability, and biodegradability. However, its large-scale applicability is hindered by its hydrophobic nature, which affects biological properties. Composite materials can be created by adding bioactive materials to the polymer to improve the properties of PCL scaffolds. Osteolectin is an odontogenic factor that promotes the maintenance of the adult skeleton by promoting the differentiation of LepR+ cells into osteoblasts. Therefore, the aim of this study was to evaluate whether 3D-printed PCL/osteolectin scaffolds supply a suitable microenvironment for the odontogenic differentiation of human dental pulp cells (hDPCs). The hDPCs were cultured on 3D-printed PCL scaffolds with or without pores. Cell attachment and cell proliferation were evaluated using EZ-Cytox. The odontogenic differentiation of hDPCs was evaluated by alizarin red S staining and alkaline phosphatase assays. Western blot was used to evaluate the expression of the proteins DSPP and DMP-Results: The attachment of hDPCs to PCL scaffolds with pores was significantly higher than to PCL scaffolds without pores. The odontogenic differentiation of hDPCs was induced more in PCL/osteolectin scaffolds than in PCL scaffolds, but there was no statistically significant difference. 3D-printed PCL scaffolds with pores are suitable for the growth of hDPCs, and the PCL/osteolectin scaffolds can provide a more favorable microenvironment for the odontogenic differentiation of hDPCs.
Collapse
Affiliation(s)
- Kkot-Byeol Bae
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hae-Mi Kim
- Private practice, Local Dental Clinic, Seoul, Republic of Korea
| | - Ji-Won Son
- Researcher, Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Young Ryu
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Won-Mann Oh
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chan Park
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Elheeny AAH, Tony GE. Two-Dimensional Radiographs and Cone-beam Computed Tomography Assessment of Concentrated Growth Factor and Platelet-Rich Fibrin Scaffolds in Regenerative Endodontic Treatment of Immature Incisors with Periapical Radiolucency: A Randomized Clinical Trial. J Endod 2024; 50:792-806. [PMID: 38281658 DOI: 10.1016/j.joen.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION The primary aim of this study was to compare the radiographic changes of immature incisors with periapical radiolucency after treatment with platelet-rich fibrin (PRF) and concentrated growth factor (CGF) platelet concentrate scaffolds as well as assessment of the clinical success rate over 12 months. The secondary aim was to monitor the radiographic changes in terms of reduction of periapical lesion diameter (PALD), root dentine thickness (RDT), root length (RL), and apical foramen width (AFW). The tertiary aim was to assess and pulp responses, after 12 months. METHODS Fifty six children with seventy necrotic, single-rooted maxillary incisors with periapical radiolucency were treated with either CGF or PRF scaffolds (35 teeth per group). Two patients with 4 teeth (2 teeth in each group) failed to attain the follow-up recalls. Radiographic changes in terms of reduction of PALD, RDT, RL, and AFW were monitored using a 2-dimensional (2D) radiograph and cone-beam computed tomography (CBCT) scan. The clinical performance of teeth receiving both scaffolds was assessed after 6 and 12 months. Categorical and continuous data were analyzed using the chi-square test and the t test, respectively. The time and group effects on the means of different radiographic dimensions were tested using the general linear model. Bland-Altman plots were used to assess the level of agreement between the 2D radiographs and CBCT. The level of significance was defined at 0.05 and a 95% confidence interval. RESULTS The means of PALD and RL showed significant enhancement in the CGF group compared to the PRF group (P < .05). While the difference between the 2 scaffolds in terms of RDT and AFW was not significant (P > .05). The findings of the 2D radiograph and CBCT were consistent. Clinically, both scaffold success rates were similar (93.9%) over the follow-up intervals. The influence of study independent variables had no significant effect on the success of the regenerative endodontic procedures outcome (P > .05). There was no significant difference in the positive pulp responses to the thermal and electric pulp tests after one year of treatment (P > .05). CONCLUSIONS According to the short-term follow-up, PRF and CGF were successful in treating immature teeth with periapical radiolucency by regenerative endodontics. Both scaffold systems induced periapical healing and root lengthening with significant superiority of CGF.
Collapse
Affiliation(s)
- Ahmad Abdel Hamid Elheeny
- Pediatric and Community Dentistry Department, Faculty of Dentistry, Minia University, El-Minya, Egypt.
| | - Ghada Eslaman Tony
- Pediatric and Community Dentistry Department, Faculty of Dentistry, Minia University, El-Minya, Egypt
| |
Collapse
|
11
|
Liu K, Li W, Yu S, Li G, Ye L, Gao B. An innovative cell-based transplantation therapy for an immature permanent tooth in an adult: a case report. BMC Oral Health 2024; 24:646. [PMID: 38824565 PMCID: PMC11143573 DOI: 10.1186/s12903-024-04410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Immature teeth with necrotic pulps present multiple challenges to clinicians. In such cases, regenerative endodontic procedures (REPs) may be a favorable strategy. Cells, biomaterial scaffolds, and signaling molecules are three key elements of REPs. Autologous human dental pulp cells (hDPCs) play an important role in pulp regeneration. In addition, autologous platelet concentrates (APCs) have recently been demonstrated as effective biomaterial scaffolds in regenerative dentistry, whereas the latest generation of APCs-concentrated growth factor (CGF), especially liquid phase CGF (LPCGF)-has rarely been reported in REPs. CASE PRESENTATION A 31-year-old woman presented to our clinic with the chief complaint of occlusion discomfort in the left mandibular posterior region for the past 5 years. Tooth #35 showed no pulp vitality and had a periodontal lesion, and radiographic examination revealed that the tooth exhibited extensive periapical radiolucency with an immature apex and thin dentin walls. REP was implemented via transplantation of autologous hDPCs with the aid of LPCGF. The periodontal lesion was managed with simultaneous periodontal surgery. After the treatment, the tooth was free of any clinical symptoms and showed positive results in thermal and electric pulp tests at 6- and 12-month follow-ups. At 12-month follow-up, radiographic evidence and three-dimensional models, which were reconstructed using Mimics software based on cone-beam computed tomography, synergistically confirmed bone augmentation and continued root development, indicating complete disappearance of the periapical radiolucency, slight lengthening of the root, evident thickening of the canal walls, and closure of the apex. CONCLUSION hDPCs combined with LPCGF represents an innovative and effective strategy for cell-based regenerative endodontics.
Collapse
Affiliation(s)
- Keyue Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dentistry and Endodontics Department, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dentistry and Endodontics Department, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sijing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dentistry and Endodontics Department, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guimin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dentistry and Endodontics Department, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dentistry and Endodontics Department, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dentistry and Endodontics Department, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Li J, Qin X, Xu W, Zhang H, Huang S, Yang Y, Qin M, Mi Z, Zhong X. Herb pair of Rhubarb-Astragalus mitigates renal interstitial fibrosis through downregulation of autophagy via p38-MAPK/TGF-β1 and p38-MAPK/smad2/3 pathways. Int J Biochem Cell Biol 2024; 169:106549. [PMID: 38340950 DOI: 10.1016/j.biocel.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) has a high incidence and poor prognosis; however, no effective treatment is currently available. Our previous study found that the improvement effect of the herb pair of Rhubarb-Astragalus on CKD is likely related to the inhibition of the TGF-β1/p38-MAPK pathway. In the present study, a p38-MAPK inhibitor was used to further investigate the inhibitory effect of Rhubarb-Astragalus on the TGF-β1/p38-MAPK pathway and its relationship with autophagy. METHODS A rat model of unilateral ureteral obstruction (UUO) was established, and a subgroup of rats was administered Rhubarb-Astragalus. Renal function and renal interstitial fibrosis (RIF) were assessed 21 d after UUO induction. In vitro, HK-2 cells were treated with TGF-β1 and a subset of cells were treated with Rhubarb-Astragalus or p38-MAPK inhibitor. Western blotting, immunohistochemistry, and qRT-PCR analyses were used to detect the relevant protein and mRNA levels. Transmission electron microscopy was used to observe autophagosomes. RESULTS Rhubarb-Astragalus treatment markedly decreased the elevated levels of blood urea nitrogen, serum creatinine, and urinary N-acetyl-β-D-glucosaminidase; attenuated renal damage and RIF induced by UUO; and reduced the number of autophagosomes and lysosomes in UUO-induced renal tissues. Additionally, Rhubarb-Astragalus reduced the protein and mRNA levels of α-SMA, collagen I, LC3, Atg3, TGF-β1, p38-MAPK, smad2/3, and TAK1 in renal tissues of UUO rats. Rhubarb-Astragalus also reduced protein and mRNA levels of these indicators in vitro. Importantly, the effect of the p38-MAPK inhibitor was similar to that of Rhubarb-Astragalus. CONCLUSIONS Rhubarb-Astragalus improves CKD possibly by downregulating autophagy via the p38-MAPK/TGF-β1 and p38-MAPK/smad2/3 pathways.
Collapse
Affiliation(s)
- Jinxiu Li
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiping Qin
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weimin Xu
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongliang Zhang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Songqing Huang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufang Yang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Mengyuan Qin
- Student Affairs Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengcheng Mi
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaobin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Guo X, Li J, Wu Y, Xu L. Recent advancements in hydrogels as novel tissue engineering scaffolds for dental pulp regeneration. Int J Biol Macromol 2024; 264:130708. [PMID: 38460622 DOI: 10.1016/j.ijbiomac.2024.130708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Although conventional root canal treatment offers an effective therapeutic solution, it negatively affects the viability of the affected tooth. In recent years, pulp regeneration technology has emerged as a novel method for treating irreversible pulpitis due to its ability to maintain tooth vitality. The successful implementation of this technique depends on scaffolds and transplantation of exogenous stem cells or recruitment of endogenous stem cells. Accordingly, the three-dimensional structure and viscoelastic characteristics of hydrogel scaffolds, which parallel those of the extracellular matrix, have generated considerable interest. Furthermore, hydrogels support the controlled release of regenerative drugs and to load a wide variety of bioactive molecules. By integrating antibacterial agents into the hydrogel matrix and stimulating an immune response, root canal disinfection can be significantly improved and the rate of pulp regeneration can be accelerated. This review aims to provide an overview of the clinical applications of hydrogels that have been reported in the last 5 years, and offer a comprehensive summary of the different approaches that have been utilized for the optimization of hydrogel scaffolds for pulp regeneration. Advancements and challenges in pulp regeneration using hydrogels treating aged teeth are discussed.
Collapse
Affiliation(s)
- Xiaofei Guo
- Xiangya Shool of Stomatology, Central South University, Changsha, Hunan, China
| | - Jiaxuan Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Yong Wu
- Department of Nephrology, The Second Xiangya Hospital, Key Laboratory of Kidney Disease and Blood Purification, Central South University, Changsha, Hunan, China
| | - Laijun Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China; School of Stomatology, Changsha Medical University, Changsha, Hunan 410219, China.
| |
Collapse
|
14
|
Chen B, Ke C, Zou S, Liu Y, Chen D, Liu Y, Xu S. The therapeutic effect of concentrated growth factor gel on skin wounds with bone or tendon exposure. J Wound Care 2024; 33:x-xiii. [PMID: 38324424 DOI: 10.12968/jowc.2024.33.sup2a.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Treatment of soft tissue wounds with bone or tendon exposure remains a tough clinical challenge for surgeons. The current clinical approaches include various types of flap reconstruction and artificial dermis grafting as well as negative pressure wound therapy (NPWT), which are time-consuming and often result in graft failure or significant scarring. Concentrated growth factor (CGF) is a novel blood extract that contains many growth factors, platelets and fibrin to promote an orderly healing process. However, few reports have focused on wounds with bone or tendon exposure. We present a limited series and two specific cases of skin wound with bone or tendon exposed that received surgical debridement followed by CGF treatment. CGF appeared to facilitate wound closure effectively and also reduced scar formation. Our findings provide a novel therapeutic option for refractory wounds with bone or tendon exposure.
Collapse
Affiliation(s)
- Binxiong Chen
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Songyun Zou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yang Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Dengshan Chen
- Tangwei Community Healthcare Center, Fuyong People's Hospital of Baoan District, Shenzhen, Guangdong, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Alharbi TM, Thabet AM, Alabbadi SH, Alhazmi MY, Khan HF, AlRasheed MA, Al-Twalbeh NA, Alsuhaim AS, Alqahtani NS. Unlocking the Potential of Cellular Guidance in Endodontics: Advancing the Process of Pulp Regeneration and Beyond. Cureus 2024; 16:e51651. [PMID: 38318576 PMCID: PMC10839349 DOI: 10.7759/cureus.51651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Regenerative endodontics represents a paradigm shift in dental therapy, with the potential to not only restore damaged dental tissues but also to preserve the vitality of teeth. At the heart of this innovative approach is cell homing, a technique that harnesses the body's own healing mechanisms by recruiting endogenous stem cells to the site of dental injury for effective tissue regeneration. This review delves into the intricate processes of cell homing in the context of regenerative endodontics, particularly focusing on its application in immature teeth with open apices. It examines the role of bioactive molecules, scaffolds, and growth factors in orchestrating cell migration and differentiation within the root canal space. In addition, the review addresses the current limitations in clinical practice, such as the challenges in completely regenerating the pulp-dentin complex and the unpredictability in long-term outcomes. It also explores future possibilities, including the potential for more refined and effective regenerative strategies. By providing a comprehensive overview of the current state of cell homing in regenerative endodontics, this article aims to contribute to the ongoing development of advanced therapeutic techniques that could revolutionize endodontic treatment and improve patient care.
Collapse
Affiliation(s)
- Tariq M Alharbi
- Endodontics, King Fahad General Hospital, Medina, SAU
- Endodontics, Speciality Dental Center, Medina, SAU
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shamszadeh S, Shirvani A, Torabzadeh H, Asgary S. Effects of Growth Factors on the Differentiation of Dental Stem Cells: A Systematic Review and Meta-analysis (Part I). Curr Stem Cell Res Ther 2024; 19:523-543. [PMID: 35762556 DOI: 10.2174/1574888x17666220628125048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION To evaluate the biological interaction between dental stem cells (DSCs) and different growth factors in the field of regenerative endodontics. METHODS A systematic search was conducted in the electronic databases up to October 2021. This study followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Ex vivo studies evaluating the biological interactions of DSCs and growth factors were included. The meta-analysis was performed according to the type of growth factor. The outcomes were cell viability/ proliferation and mineralization. Standardized mean differences (SMDs) were estimated using the random-effect maximum-likelihood method (P < .05). Additional analysis was performed to find any potential source of heterogeneity. RESULTS Twenty articles were included in the systematic review; meta-analysis was performed for fibroblast growth factor-2 (FGF-2) and Transforming growth factor-ß1 (TGF-β1) (n = 5). Results showed that use of FGF-2 significantly increased cell proliferation on day 1-(SMD = 3.56, P = 0.00), 3-(SMD = 9.04, P = 0.00), 5-(SMD = 8.37, P = 0.01), and 7 (SMD=8.51, P=0.00) than the control group. TGF-ß1 increased alkaline phosphatase (ALP) activity more than control only on day 3 (SMD = 3.68, P = 0.02). TGF-β1 had no significant effect on cell proliferation on days 1 and 3 (P > 0.05) and on ALP activity on days 5 and 7 (P > 0.05). Meta-regression analysis showed that different covariates (i.e., cell type, passage number, and growth factors' concentration) could significantly influence the effect sizes at different follow- ups (P < 0.05). CONCLUSION Specific growth factors might enhance the proliferation and mineralization of DSCs; however, the obtained evidence was weak. Due to the high heterogeneity among the included studies, other growth factors' inhibitory/stimulatory effects on DSCs could not be evaluated.
Collapse
Affiliation(s)
- Sayna Shamszadeh
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Shirvani
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Torabzadeh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Asgary
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Chen B, Liu Y, Ke C, Xu S. A case of concentrated growth factor gel to fill the defect after large jaw cyst enucleation. Clin Case Rep 2023; 11:e8272. [PMID: 38046807 PMCID: PMC10689290 DOI: 10.1002/ccr3.8272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Management of large jaw cyst is challenging since high risks including pathologic fracture, limited opening, and insufficient bone healing occur after enucleation. The current case of concentrated growth factor (CGF) gel to fill defect after enucleation of large jaw cyst is rare. A 12-year-old boy with pain and swelling for 4 months in the left mandible region made a medical consultation at our hospital. Computerized tomography scan indicated that cystic lesion was found in the left mandible region. In this case, we present a patient with large jaw cyst (31 mm × 44 mm × 53 mm) who received enucleation followed by CGF gel filling the defect. The patient was discharged after 13 days without discomfort symptoms. The lesion size was reduced significantly at 1-month re-examination. No abnormality was detected in maxillofacial region at 1-year re-examination. Application of CGF gel is one of the possible options for filling defect after jaw cyst enucleation.
Collapse
Affiliation(s)
- Binxiong Chen
- Department of Burn and Plastic SurgeryShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Yueming Liu
- Department of Burn and Plastic SurgeryShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Changneng Ke
- Department of Burn and Plastic SurgeryShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Shi Xu
- Department of Burn and Plastic SurgeryShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| |
Collapse
|
18
|
Qiu M, Bae KB, Liu G, Jang JH, Koh JT, Hwang YC, Lee BN. Osteolectin Promotes Odontoblastic Differentiation in Human Dental Pulp Cells. J Endod 2023; 49:1660-1667. [PMID: 37774945 DOI: 10.1016/j.joen.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
INTRODUCTION Osteolectin is a secreted glycoprotein of the C-type lectin domain superfamily, expressed in bone tissues and is reported as a novel osteogenic factor that promotes bone regeneration. However, the effect of osteolectin on human dental pulp cells (hDPCs) has not been reported. Therefore, we aimed to investigate the odontoblastic differentiation of osteolectin in hDPCs and further attempt to reveal its underlying mechanism. METHODS Cytotoxicity assays were used to detect the cytotoxicity of osteolectin. The odontoblastic differentiation of hDPCs and its underlying mechanisms were measured by the alkaline phosphatase (ALP) activity, mineralized spots formation, and the gene and protein expression of odontoblastic differentiation through ALP staining, Alizarin red S staining, quantitative real-time polymerase chain reaction, and Western blot analysis, respectively. RESULTS WST-1 assay showed osteolectin at concentrations below 300 ng/ml was noncytotoxic and safe for hDPCs. The following experiment demonstrated that osteolectin could increase ALP activity, accelerate the mineralization process, and up-regulate the odontogenic differentiation markers in both gene and protein levels (P < .05). Osteolectin stimulated the phosphorylation of ERK, JNK, and Protein kinase B (AKT) in hDPCs. Extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and AKT inhibitors decreased ALP activity and mineralization capacity and suppressed the expression of dentin sialophosphoprotein and dentin matrix protein-1. CONCLUSION Osteolectin can promote odontoblastic differentiation of hDPCs, and the whole process may stimulate ERK, JNK, and AKT signaling pathways by increasing p-ERK, p-JNK, and p-AKT signals.
Collapse
Affiliation(s)
- Manfei Qiu
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Kkot-Byeol Bae
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Guo Liu
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Ji-Hyun Jang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Dental Science Research, Institute, Chonnam National University, Gwangju, Republic of Korea; Research Center for Biomineralization Disorders, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
19
|
Yahata Y, Handa K, Ohkura N, Okamoto M, Ohshima J, Itoh S, Kawashima N, Tanaka T, Sato N, Noiri Y, Hayashi M, Okiji T, Saito M. Autologous concentrated growth factor mediated accelerated bone healing in root-end microsurgery: A multicenter randomized clinical trial. Regen Ther 2023; 24:377-384. [PMID: 37711762 PMCID: PMC10497983 DOI: 10.1016/j.reth.2023.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Concentrated growth factor (CGF) is a new-generation autologous platelet concentrate that promotes tissue regeneration and has anti-inflammatory properties. This randomized multicenter trial aimed to evaluate the effects of CGF on bone healing in combination with root-end microsurgery. Methods Healthy adult patients indicated for root-end microsurgery were randomly assigned to either the CGF or control (no CGF implantation) groups. CGF was implanted into the bone cavity after root-end filling with mineral trioxide aggregate. Clinical and periapical radiographic evaluations were conducted at 1, 3, 6, and 12 months postoperatively, with follow-up cone-beam computed tomography (CBCT) at 6 months. The lesion volume reduction rate was calculated based on data from the preoperative and follow-up CBCT images. Results A total of 24 patients were enrolled. The treatment success rate was 91.7% and 83.3% on 12-month periapical radiography and 6-month CBCT, respectively, without a significant difference between the two groups. The lesion volume reduction rate in the CGF group (75.6%) was significantly higher than that in the control (61.0%) group. Conclusions Autologous CGF in conjunction with root-end microsurgery accelerated lesion reduction as observed on CBCT. Administering autologous blood products to stimulate healing in addition to removing the source of infection appears to be a promising treatment option for root-end microsurgery.
Collapse
Affiliation(s)
- Yoshio Yahata
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Keisuke Handa
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Division of Molecular Biology and Oral Biochemistry, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Motoki Okamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Jun Ohshima
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Shusaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Toshinori Tanaka
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Nobuya Sato
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Medical and Dental Sciences Track, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masahiro Saito
- Division of Operative Dentistry, Department of Ecological Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
20
|
Chen L, Cheng J, Cai Y, Zhang J, Yin X, Luan Q. Efficacy of concentrated growth factor (CGF) in the surgical treatment of oral diseases: a systematic review and meta-analysis. BMC Oral Health 2023; 23:712. [PMID: 37794381 PMCID: PMC10548564 DOI: 10.1186/s12903-023-03357-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Concentrated growth factor (CGF), a new autologous platelet concentrate, has been widely investigated to the adjunctive treatment of oral diseases. This study aims to evaluate the efficacy of CGF in the surgical treatment of oral diseases. METHODS MEDLINE, Web of Science, Scopus, Cochrane, and EMBASE databases were searched up to July 2023. Only randomized clinical trials were included. The methodologic quality was evaluated by the Cochrane Risk of Bias Tool. RevMan 5.4 software was used for data analysis. RESULTS In the treatment of periodontal intrabony defects, bone graft combined with CGF was significantly superior to bone graft (P < 0.01), with mean intrabony defect depth reduction of 1.41 mm and mean clinical attachment level gain of 0.55 mm. In the regenerative surgery of furcation defects, the effect of CGF group was significantly better than control group (P < 0.0001), with mean probing depth reduction of 0.99 mm, vertical bone gain of 0.25 mm, and horizontal bone gain of 0.34 mm. CGF combined with coronally advanced flap (CAF) was more effective than CAF alone (mean keratinized tissue width increase of 0.41 mm, mean gingival thickness increase of 0.26 mm, P < 0.00001), but less effective than connective tissue graft (CTG) combined with CAF (mean root coverage difference of -15.1%, mean gingival thickness difference of -0.5 mm, P < 0.0001). In the alveolar ridge preservation, additional use of CGF reduced horizontal bone resorption by 1.41 mm and buccal vertical bone resorption by 1.01 mm compared to control group (P < 0.0001). The VAS score of CGF group was significantly lower than that of the control group at the 1st and 7th day after oral surgery (P < 0.0001). CONCLUSIONS CGF can exert a positive adjunctive effect for the regenerative surgery of periodontal intrabony defects, furcation defects, and alveolar ridge preservation procedure. CGF combined with CAF has a better therapeutic effect on gingival recession compared to CAF alone, although it is not as effective as CTG combined with CAF. CGF could promote postoperative healing and pain relief in oral surgery within a week. There is currently not enough evidence to support the clinical benefits of CGF in other oral surgeries.
Collapse
Affiliation(s)
- Liang Chen
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Jing Cheng
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
| | - Yu Cai
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Jingran Zhang
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Xiaohui Yin
- First Clinical Division, Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology & National, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Qingxian Luan
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
21
|
Ding H, Fu Q, Liu B, Xv X, Zhou G, Zheng C, Chen Z, Chen M. Concentrated Growth Factor (CGF): The Newest Platelet Concentrate and Its Application in Nasal Hyaluronic Acid Injection Complications. Aesthetic Plast Surg 2023; 47:1785-1793. [PMID: 36849662 DOI: 10.1007/s00266-023-03289-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Several cases of wounds caused by vascular compromise after facial cosmetic injection have been reported in recent years. How to promote wound healing, restore facial appearance, and avoid secondary injury in such patients have remained a clinical challenge. Our study was designed to assess the effect of concentrated growth factor (CGF) for repairing nasal wounds after nasal hyaluronic acid injection. METHODS Six women with nasal wounds after hyaluronic acid injection were enrolled from June 2019 to June 2022. The average time of the first CGF treatment from admission was 2-4 days. CGF gel was prepared from each patient's blood by using a Medifuge™ system. After debridement of the wound, the prepared CGF gel was applied on the wound surface, and the wound dressing was fixed to stabilize the CGF gel. The CGF treatment interval was 3-4 days. RESULTS The wound began to heal after the first CGF treatment. After 2-3 CGF treatments, the wound was almost completely healed. There was no deflection of the nasal columella, and nasal ventilation function was good. There was no obvious deformity in the appearance of the nose. After follow-up ranging from 2 months to 1 year, the appearance and function of the nose showed satisfactory recovery. CONCLUSIONS CGF has great potential in promoting wound healing and restoring the appearance after complications from nasal hyaluronic acid injection. The preparation of CGF gel is simple, and the clinical application is convenient and safe. In future, more clinical trials are needed to further prove the efficacy and safety of CGF in the treatment of wounds secondary to cosmetic injection. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .
Collapse
Affiliation(s)
- Hongfan Ding
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center, PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China
| | - Qiang Fu
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center, PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China
| | - Bing Liu
- Private Practice, Shahekou district, Dalian, Liaoning, China
| | - Xiao Xv
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center, PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China
| | - Guiwen Zhou
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center, PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China
| | - Can Zheng
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center, PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China
| | - Zhaoyang Chen
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center, PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China
| | - Minliang Chen
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center, PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100038, China.
| |
Collapse
|
22
|
Ma M, Shen W, Li B, Sun M, Lin D, Meng L. Optimization of a concentrated growth factor/mesoporous bioactive glass composite scaffold and its application in rabbit mandible defect regeneration. Biomater Sci 2023; 11:6357-6372. [PMID: 37584200 DOI: 10.1039/d3bm00805c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Maxillofacial bone defect repair and regeneration remains a tremendous challenge in the field of stomatology. However, the limited osteoinductivity of artificial materials and the high cost of bioactive agents restrain their clinical translation. This study aimed to construct an economical and efficient concentrated growth factor/mesoporous bioactive glass (CGF/MBG) composite scaffold for bone regeneration. The biochemical composition and biological effects of different forms of CGFs were systematically compared, and the results showed that CGF-conditioned medium effectively promoted proliferation, migration and osteogenesis of allogenic BMSCs. Gel phase CGF (gpCGF) exhibited superior bioactivity and osteoinductivity to liquid phase CGF (lpCGF) and liquid/gel mixed phase CGF (lgpCGF), and was further applied to construct CGF/MBG scaffolds. In vitro studies demonstrated that co-culture with gpCGF-conditioned medium further enhanced the biocompatibility of MBG, increasing cell adhesion and proliferation on the scaffold. On this basis, two compositing approaches to construct the scaffold by fibrin gel formation (CGF/FG/MBG) and freeze-drying (fdCGF/MBG) were applied, and the biological efficacy of CGFs was compared in vivo. In a rabbit mandibular defect model, higher osteogenic efficiency in in situ bone regeneration of CGF/FG/MBG composite scaffolds was proved, compared with fdCGF/MBG. Taken together, the CGF/FG/MBG composite scaffold is expected to be an efficient bone repairing therapy for clinical translation, and the CGF-composited scaffold using gpCGF and the fibrin gel formation method is a promising way to enhance the bioactivity and osteoinductivity of current clinical bone repairing materials, providing new thoughts on the development of future orthopedic biomaterials.
Collapse
Affiliation(s)
- Mengran Ma
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Wenjing Shen
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Beibei Li
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Mengwen Sun
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Dan Lin
- Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Lingqiang Meng
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
23
|
Mohamed DAA, Abdelwahab SA, Mahmoud RH, Taha RM. Radiographic and immuno-histochemical evaluation of root perforation repair using MTA with or without platelet-rich fibrin or concentrated growth factors as an internal matrix in dog's teeth: in vivo animal study. Clin Oral Investig 2023; 27:5103-5119. [PMID: 37500933 PMCID: PMC10492699 DOI: 10.1007/s00784-023-05131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES To comparatively evaluate the in vivo outcome of MTA repair for contaminated and non-contaminated furcation perforations (FP) with or without PRF and CGF as a matrix in dogs' teeth. METHODS Ninety dog teeth were divided into five groups based on the iatrogenic FP repair approach after doing root canal treatment: negative control (without FP), positive control (FP without repair), MTA, MTA + PRF and MTA + CGF groups, where FP were repaired promptly in subdivision 1 (n = 10; non-contaminated) and after 4 weeks of oral contamination in subdivision 2 (n = 10;contaminated). After 3 months, the perforation site was assessed radiographically (vertical bone density), histologically (inflammatory cell count, epithelial proliferation, cementum and bone deposition) and immunohistochemically (OPN and TRAP antibodies localisation). Data collected were statistically analysed using SPSS software at a 0.05 significance level. RESULTS The MTA + PRF and MTA + CGF groups demonstrated significantly more bone formation, OPN immunolocalisation and fewer inflammatory cell counts than MTA group. MTA, MTA + PRF and MTA + CGF groups showed significantly favourable radiographic, histological and immunohistochemical healing features than the positive control, especially in non-contaminated subdivisions, that significantly showed better features than the contaminated subdivisions (P < 0.001). CONCLUSION The use CGF and PRF as a matrix beneath MTA in FP repair in dog's teeth is promising as it could increase hard and soft tissue regeneration in non-contaminated and contaminated perforations. CLINICAL RELEVANCE The repair of FP is challenging especially when associated with contaminated inter-radicular bone loss. Radiographic, histological and immunohistochemical comprehensive evaluation of the root and surrounding attachment apparatus response to different perforation repair protocols could give a predictable clinical outcome.
Collapse
Affiliation(s)
- Dalia Abd-Allah Mohamed
- Endodontic Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
| | - Safinaz AbdelFatah Abdelwahab
- Dental Material Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
- Restorative Department, Faculty of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Rania Hanafi Mahmoud
- Oral Pathology Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
- Oral Pathology Department, Faculty of Dentistry, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Rasha Mohamed Taha
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, 4.5 Ring Road, Ismailia, 41522 Egypt
| |
Collapse
|
24
|
Meng Y, Huang F, Wang S, Huang X, Lu Y, Li Y, Dong Y, Pei D. Evaluation of dentinal tubule occlusion and pulp tissue response after using 980-nm diode laser for dentin hypersensitivity treatment. Clin Oral Investig 2023; 27:4843-4854. [PMID: 37382717 DOI: 10.1007/s00784-023-05114-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES To evaluate the effectiveness of the 980-nm diode laser for dentinal tubule occlusion, measure the intrapulpal temperature, and investigate the dental pulp response. MATERIALS AND METHODS The dentinal samples were randomly divided into G1-G7 groups: control; 980-nm laser irradiation (0.5 W, 10 s; 0.5 W, 10 s × 2; 0.8 W, 10 s; 0.8 W, 10 s × 2; 1.0 W, 10 s; 1.0 W, 10 s × 2). The dentin discs were applied for laser irradiation and analyzed by scanning electron microscopy (SEM). The intrapulpal temperature was measured on the 1.0-mm and 2.0-mm thickness samples, and then divided into G2-G7 groups according to laser irradiation. Moreover, forty Sprague Dawley rats were randomly divided into the laser-irradiated group (euthanized at 1, 7, and 14 days after irradiation) and the control group (non-irradiated). qRT-PCR, histomorphology, and immunohistochemistry analysis were employed to evaluate the response of dental pulp. RESULTS SEM indicated the occluding ratio of dentinal tubules in the G5 (0.8 W, 10 s × 2) and G7 (1.0 W, 10 s × 2) were significantly higher than the other groups (p < 0.05). The maximum intrapulpal temperature rises in the G5 were lower than the standard line (5.5 ℃). qRT-PCR showed that the mRNA expression level of TNF-α and HSP-70 upregulated significantly at 1 day (p < 0.05). Histomorphology and immunohistochemistry analysis showed that, compared with the control group, the inflammatory reaction was slightly higher at the 1 and 7 days (p < 0.05) and decreased to the normal levels at 14 days (p > 0.05). CONCLUSIONS A 980-nm laser at a power of 0.8 W with 10 s × 2 defines the best treatment for dentin hypersensitivity in terms of compromise between the efficacy of the treatment and the safety of the pulp. CLINICAL RELEVANCE The 980-nm laser is an effective option for treating dentin sensitivity. However, we need to ensure the safety of the pulp during laser irradiation.
Collapse
Affiliation(s)
- Yuchen Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Fan Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Silin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xin Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yuncong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yulin Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
25
|
Yang F, Yu L, Li J, Cheng J, Zhang Y, Zhao X, Song G. Evaluation of concentrated growth factor and blood clot as scaffolds in regenerative endodontic procedures: A retrospective study. AUST ENDOD J 2023; 49:332-343. [PMID: 35877114 DOI: 10.1111/aej.12666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
The study aims to investigate and compare the success rate of concentrated growth factor (CGF) and blood clot (BC) as scaffolds in regenerative endodontic procedures (REPs). Immature permanent necrotic teeth treated by REPs with at least a 6-month follow-up were included. These teeth were divided into the CGF (53 teeth) and BC (68 teeth) groups. Treatment outcomes were assessed using a combined clinical and radiographic scoring system. The total success rate was 91.74% over a mean follow-up period of 23.15 months. There was no significant difference between the CGF group (86.79%) and BC group (95.59%). The success rate of traumatic teeth (84.31%) was significantly lower than that of teeth with developmental dental anomalies (98.39%) (p < 0.05). CGF may be a suitable alternative scaffold in REPs when adequate bleeding cannot be achieved. Moreover, compared to developmental dental anomalies, traumatic teeth treated by REPs may be more vulnerable to failure.
Collapse
Affiliation(s)
- Fengjiao Yang
- Department of Paediatric Dentistry, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lintong Yu
- Department of Paediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiahui Li
- Department of Paediatric Dentistry, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Cheng
- Department of Paediatric Dentistry, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yishan Zhang
- Department of Orthodontics, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoe Zhao
- Department of Special Diagnosis, School & Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Guangtai Song
- Department of Paediatric Dentistry, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Li J, Zheng L, Daraqel B, Liu J, Hu Y. The efficacy of concentrated growth factor and platelet-rich fibrin as scaffolds in regenerative endodontic treatment applied to immature permanent teeth: a retrospective study. BMC Oral Health 2023; 23:482. [PMID: 37452298 PMCID: PMC10347868 DOI: 10.1186/s12903-023-03164-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND The aim of this retrospective study was to compare the efficacy of concentrated growth factor (CGF) and platelet-rich fibrin (PRF) as scaffolds in regenerative endodontic therapy (RET). METHODS Necrotic immature permanent teeth treated with regenerative endodontic therapy during January 2018 to August 2022 were divided into the CGF and PRF groups according to the scaffold. The CGF and PRF groups included 7 and 6 teeth, respectively. The efficacy of regenerative endodontic therapy was analyzed based on the clinical and radiological outcomes at three different follow up periods: T1 (3-6 months), T2 (6-12 months) and T3 (12-24 months). Statistical analysis was performed using the independent T test, Mann-Whitney test and Fisher's exact test at a significance level of 0.05. RESULTS The success rate of each stage in both groups was 100%. Through quantitative comparison of radiographic outcomes, there was no statistically significant difference between the two groups in terms of root development and periapical lesion healing at each stage, except that the increase rate of radiographic root area in PRF group in the T3 stage was above one in CGF group with statistically significance. CONCLUSIONS Both CGF and PRF had a similar clinical performance regarding resolution of clinical signs and symptoms, periapical lesion healing, and continued root development as scaffolds in RET. Further prospective studies with large samples for longer follow-up periods are needed.
Collapse
Affiliation(s)
- Jiahua Li
- Stomatological Hospital of Chongqing Medical University, No.426 Songshibei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Leilei Zheng
- Stomatological Hospital of Chongqing Medical University, No.426 Songshibei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Baraa Daraqel
- Stomatological Hospital of Chongqing Medical University, No.426 Songshibei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jing Liu
- Stomatological Hospital of Chongqing Medical University, No.426 Songshibei Road, Yubei District, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yun Hu
- Stomatological Hospital of Chongqing Medical University, No.426 Songshibei Road, Yubei District, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
27
|
Ruan Q, Tan S, Guo L, Ma D, Wen J. Prevascularization techniques for dental pulp regeneration: potential cell sources, intercellular communication and construction strategies. Front Bioeng Biotechnol 2023; 11:1186030. [PMID: 37274160 PMCID: PMC10232868 DOI: 10.3389/fbioe.2023.1186030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
One of the difficulties of pulp regeneration is the rapid vascularization of transplanted engineered tissue, which is crucial for the initial survival of the graft and subsequent pulp regeneration. At present, prevascularization techniques, as emerging techniques in the field of pulp regeneration, has been proposed to solve this challenge and have broad application prospects. In these techniques, endothelial cells and pericytes are cocultured to induce intercellular communication, and the cell coculture is then introduced into the customized artificial vascular bed or induced to self-assembly to simulate the interaction between cells and extracellular matrix, which would result in construction of a prevascularization system, preformation of a functional capillary network, and rapid reconstruction of a sufficient blood supply in engineered tissue after transplantation. However, prevascularization techniques for pulp regeneration remain in their infancy, and there remain unresolved problems regarding cell sources, intercellular communication and the construction of prevascularization systems. This review focuses on the recent advances in the application of prevascularization techniques for pulp regeneration, considers dental stem cells as a potential cell source of endothelial cells and pericytes, discusses strategies for their directional differentiation, sketches the mechanism of intercellular communication and the potential application of communication mediators, and summarizes construction strategies for prevascularized systems. We also provide novel ideas for the extensive application and follow-up development of prevascularization techniques for dental pulp regeneration.
Collapse
Affiliation(s)
| | | | | | - Dandan Ma
- *Correspondence: Dandan Ma, ; Jun Wen,
| | - Jun Wen
- *Correspondence: Dandan Ma, ; Jun Wen,
| |
Collapse
|
28
|
Yu S, Zheng Y, Guo Q, Li W, Ye L, Gao B. Mechanism of Pulp Regeneration Based on Concentrated Growth Factors Regulating Cell Differentiation. Bioengineering (Basel) 2023; 10:bioengineering10050513. [PMID: 37237583 DOI: 10.3390/bioengineering10050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Concentrated growth factors (CGF) is the newest generation platelet concentrate product, which has been reported to promote the proliferation and differentiation of human dental pulp cells (hDPCs). However, the effect of liquid phase of CGF (LPCGF) has not been reported. This study was aimed to evaluate the influence of LPCGF on the biological properties of hDPCs, and to explore the in vivo mechanism of dental pulp regeneration based on the hDPCs-LPCGF complex transplantation. It was found that LPCGF could promote the proliferation, migration and odontogenic differentiation of hDPCs, and 25% LPCGF induced the most mineralization nodule formation and the highest DSPP gene expression. The heterotopic transplantation of the hDPCs-LPCGF complex resulted in the formation of regenerative pulp tissue with newly formed dentin, neovascularization and nerve-like tissue. Together, these findings provide key data on the effect of LPCGF on the proliferation, migration, odontogenic/osteogenic differentiation of hDPCs, and the in vivo mechanism of hDPCs-LPCGF complex autologous transplantation in pulp regeneration therapy.
Collapse
Affiliation(s)
- Sijing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenxu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Zeng Q, Zhou C, Li M, Qiu Y, Wei X, Liu H. Concentrated growth factor combined with iRoot BP Plus promotes inflamed pulp repair: an in vitro and in vivo study. BMC Oral Health 2023; 23:225. [PMID: 37076830 PMCID: PMC10114309 DOI: 10.1186/s12903-023-02903-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Platelet concentrates combined with calcium silicate cements may promote reparative dentin formation. However, few studies have reported their effect on dental pulp inflammation. This study aimed to evaluate the effects of concentrated growth factor (CGF) combined with iRoot BP Plus on inflammatory human dental pulp stem cells (hDPSCs) in vitro and inflamed pulp in rats in vivo. METHODS The proliferation of LPS-stimulated hDPSCs treated with 50% CGF with/without 25% iRoot BP Plus was evaluated using Cell Counting Kit-8 on days 1, 4 and 7. The expression of genes associated with inflammation on day 1 and differentiation on day 14 was analysed by real-time polymerase chain reaction. The exposed pulp of rat maxillary molars was injected with 10 mg/mL LPS and directly capped with CGF membrane with/without iRoot BP Plus extract for 1, 7 and 28 days. The teeth were subjected to histologic analyses and immunohistochemistry. RESULTS The proliferation rates of the inflammatory hDPSCs after the combination treatment were significantly higher than those after the other treatments on days 4 and 7 (P < 0.05). IL-1β, IL-6, and TNF-α levels were increased in inflammatory hDPSCs but decreased after treatment with CGF combined with iRoot BP Plus extract, whereas IL-4 and IL-10 showed the opposite expression patterns. Expression of the odontogenesis-related genes OCN, Runx2, and ALP was dramatically enhanced by combined treatment with CGF and iRoot BP Plus extract. In rat pulp, the average inflammation scores of the CGF and CGF-iRoot BP Plus groups significantly decreased in comparison with those of the LPS group (P < 0.05), and the CGF-iRoot BP Plus group had more reparative dentin than the CGF and BP groups. Immunohistochemical staining showed fewer M1 macrophages on day 1 and more M2 macrophages on day 7 in the CGF-iRoot BP Plus group than in the other groups. CONCLUSIONS The combination of CGF and iRoot BP Plus showed a synergistic effect on anti-inflammatory potential and promoted greater pulp healing than CGF or iRoot BP Plus alone.
Collapse
Affiliation(s)
- Qian Zeng
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Can Zhou
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Mengjie Li
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Yu Qiu
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Xi Wei
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| | - Hongyan Liu
- Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| |
Collapse
|
30
|
Zhang Y, Qin X, Yang Y, Li J, Li X, Zou X, Huang Z, Huang S. Ginkgo biloba extract attenuates cisplatin-induced renal interstitial fibrosis by inhibiting the activation of renal fibroblasts through down-regulating the HIF-1α/STAT3/IL-6 pathway in renal tubular epithelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154809. [PMID: 37087791 DOI: 10.1016/j.phymed.2023.154809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Activation of renal fibroblasts into myofibroblasts plays an important role in promoting renal interstitial fibrosis (RIF). Ginkgo biloba extract (EGb) can alleviate RIF induced by cisplatin (CDDP). PURPOSE To elucidate the effect of EGb treatment on cisplatin-induced RIF and reveal its potential mechanism. METHODS The two main active components in EGb were determined by high-performance liquid chromatography (HPLC) analysis. Rats were induced by CDDP and then treated with EGb, 2ME2 (HIF-1α inhibitor) or amifostine. After HK-2 cells and HIF-1α siRNA HK-2 cells were treated with CDDP, EGb or amifostine, the conditioned medium from each group was cultured with NRK-49F cells. The renal function of rats was detected. The renal damage and fibrosis were evaluated by H&E and Masson trichrome staining. The IL-6 content in the cell medium was detected by ELISA. The expression levels of indicators related to renal fibrosis and signaling pathway were examined by western blotting and qRT-PCR. RESULTS HPLC analysis showed that the contents of quercetin and kaempferol in EGb were 36.0 μg/ml and 45.7 μg/ml, respectively. In vivo, EGb and 2ME2 alleviated renal damage and fibrosis, as well as significantly decreased the levels of α-SMA, HIF-1α, STAT3 and IL-6 in rat tissues induced by CDDP. In vitro, the levels of HIF-1α, STAT3 and IL-6 were significantly increased in HK-2 cells and HIF-1α siRNA HK-2 cells induced by CDDP. Notably, HIF-1α siRNA significantly decreased the levels of HIF-1α, STAT3 and IL-6 in HK-2 cells, as well as the IL-6 level in medium from HK-2 cells. Additionally, the α-SMA level in NRK-49F cells was significantly increased after being cultured with conditioned medium from HK-2 cells or HIF-1α siRNA HK-2 cells exposed to CDDP. Furthermore, exogenous IL-6 increased the α-SMA level in NRK-49F cells. Importantly, the expression levels of the above-mentioned indicators were significantly decreased after the HK-2 cells and HIF-1α siRNA HK-2 cells were treated with EGb. CONCLUSION This study revealed that EGb improves CDDP-induced RIF, and the mechanism may be related to its inhibition of the renal fibroblast activation by down-regulating the HIF-1α/STAT3/IL-6 pathway in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiping Qin
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yufang Yang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Jinxiu Li
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaolian Li
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoqin Zou
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhenguang Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Songqing Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
31
|
Piglionico SS, Pons C, Romieu O, Cuisinier F, Levallois B, Panayotov IV. In vitro, ex vivo, and in vivo models for dental pulp regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:15. [PMID: 37004591 PMCID: PMC10067643 DOI: 10.1007/s10856-023-06718-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Based on the concept of tissue engineering (Cells-Scaffold-Bioactive molecules), regenerative endodontics appeared as a new notion for dental endodontic treatment. Its approaches aim to preserve dental pulp vitality (pulp capping) or to regenerate a vascularized pulp-like tissue inside necrotic root canals by cell homing. To improve the methods of tissue engineering for pulp regeneration, numerous studies using in vitro, ex vivo, and in vivo models have been performed. This review explores the evolution of laboratory models used in such studies and classifies them according to different criteria. It starts from the initial two-dimensional in vitro models that allowed characterization of stem cell behavior, through 3D culture matrices combined with dental tissue and finally arrives at the more challenging ex vivo and in vivo models. The travel which follows the elaboration of such models reveals the difficulty in establishing reproducible laboratory models for dental pulp regeneration. The development of well-established protocols and new laboratory ex vivo and in vivo models in the field of pulp regeneration would lead to consistent results, reduction of animal experimentation, and facilitation of the translation to clinical practice.
Collapse
Affiliation(s)
- Sofia Silvia Piglionico
- LBN, Univ. Montpellier, Montpellier, France.
- Centro de Investigaciones Odontológicas, National University of Cuyo, Mendoza, Argentina.
| | | | | | | | | | | |
Collapse
|
32
|
Bai Y, Cheng X, Liu X, Guo Q, Wang Z, Fu Y, He W, Yu Q. Transforming growth factor-β1 promotes early odontoblastic differentiation of dental pulp stem cells via activating AKT, Erk1/2 and p38 MAPK pathways. J Dent Sci 2023; 18:87-94. [PMID: 36643229 PMCID: PMC9831829 DOI: 10.1016/j.jds.2022.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 06/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose TGF-β1 (Transforming growth factor-β1) plays an important role in the regeneration and repair of pulp-dentin complex. However, the biological function of TGF-β1 on odontoblastic differentiation remains unclear, mainly due to the processes of differentiation were controlled by complex signaling pathways. This study aimed to investigate the signaling pathways involved in regulating the early differentiation of dental pulp stem cells (DPSCs) by TGF-β1 and their functional role. Materials and methods DPSCs were treated with 1 ng/mL TGF-β1 and Western blotting was conducted to examine the activation of protein kinase B (AKT), small mothers against decapentaplegic 3 (Smad3), p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (Erk1/2). DPSCs were exposed to mineralization medium contained TGF-β1 with/without the specific signaling pathway inhibitors, and early odontogenic differentiation was evaluated by assessing the expression of alkaline phosphatase (ALP), collagen type 1 alpha 1 (COL1A), dentin matrix protein 1 (DMP-1) and runt-related transcription factor 2 (Runx2). Results TGF-β1 stimulated AKT, Smad3, p38 MAPK, Erk1/2 and JNK phosphorylation in DPSCs within 120 min. TGF-β1 enhanced ALP activity and elevated levels of COL1A, DMP-1 and Runx2. LY294002, U0126 and SB203580 attenuated the effect of TGF-β1 on DPSCs, however, the SIS3 and SP600125 treated groups had no significant effect. Conclusion TGF-β1 promotes the early stage of odontoblastic differentiation in DPSCs by activating AKT, Erk1/2 and p38 MAPK signaling pathways, but not by Smad3 and JNK.
Collapse
Affiliation(s)
- Yu Bai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, Xi'an, PR China
| | - Xiaogang Cheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, Xi'an, PR China
| | - Xin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, Xi'an, PR China
| | - Qian Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, Xi'an, PR China
| | - Zhihua Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, Xi'an, PR China
| | - Yi Fu
- Hospital of Stomatology, Zunyi Medical University, Zunyi, PR China
| | - Wenxi He
- Department of Stomatology, Air Force Medical Center, Air Force Medical University, Beijing, PR China,Corresponding author. Department of Stomatology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing, 100142, PR China.
| | - Qing Yu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, Xi'an, PR China,Corresponding author. Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 Changle Xi Road, Xi'an, 710032, PR China.
| |
Collapse
|
33
|
Concentrated Growth Factors Combined with Lipopolysaccharide Stimulate the In Vitro Regenerative and Osteogenic Activities of Human Dental Pulp Stem Cells by Balancing Inflammation. Int J Dent 2022; 2022:2316666. [PMID: 36571070 PMCID: PMC9780000 DOI: 10.1155/2022/2316666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Aim We investigated the long-term effects of exposure to concentrated growth factors (CGFs) on the regenerative properties of dental pulp stem cells (DPSCs) in the presence and absence of lipopolysaccharide (LPS) as a proinflammatory agent. Methods DPSCs were cultured with CGF at different concentrations of LPS (0.1, 1, and 10 µg/ml) for 21 days. Then, using MTT and scratch assays, the cell viability and migration were examined. Osteogenic stimulation was evaluated by alkaline phosphatase (ALP) staining and Sirius Red staining, which determined the ALP activity and collagen levels, respectively. The expression levels of osteogenic markers were quantified using the qRT-PCR method. One-way analysis of variance (ANOVA) and Tukey's HSD test were used to analyze differences between groups. Results Long-term treatment of DPSCs with CGFs reduced LPS-induced cell death. Moreover, CGF and LPS (1 µg/ml), either in combination or alone, improved the DPSC migratory ability and caused a significant increase in osteogenic stimulation through the upregulation of collagen levels and ALP activity. Additionally, CGFs significantly upregulated RUNX2, DSPP, OCN, and OPN mRNA levels (as osteogenic markers), while LPS (1 µg/ml) only significantly increased OCN overexpression. Conclusion Our findings are evidence that CGF could be a promising agent to induce dentin-pulp complex healing in long-term chronic inflammation.
Collapse
|
34
|
Expert consensus on regenerative endodontic procedures. Int J Oral Sci 2022; 14:55. [PMID: 36450715 PMCID: PMC9712432 DOI: 10.1038/s41368-022-00206-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Regenerative endodontic procedures (REPs) is a biologic-based treatment modality for immature permanent teeth diagnosed with pulp necrosis. The ultimate objective of REPs is to regenerate the pulp-dentin complex, extend the tooth longevity and restore the normal function. Scientific evidence has demonstrated the efficacy of REPs in promotion of root development through case reports, case series, cohort studies, and randomized controlled studies. However, variations in clinical protocols for REPs exist due to the empirical nature of the original protocols and rapid advancements in the research field of regenerative endodontics. The heterogeneity in protocols may cause confusion among dental practitioners, thus guidelines and considerations of REPs should be explicated. This expert consensus mainly discusses the biological foundation, the available clinical protocols and current status of REPs in treating immature teeth with pulp necrosis, as well as the main complications of this treatment, aiming at refining the clinical management of REPs in accordance with the progress of basic researches and clinical studies, suggesting REPs may become a more consistently evidence-based option in dental treatment.
Collapse
|
35
|
Kavitha M, Shakthipriya S, Arunaraj D, Hemamalini R, Velayudham S, Bakthavatchalam B. Comparative Evaluation of Platelet-rich Fibrin and Concentrated Growth Factor as Scaffolds in Regenerative Endodontic Procedure: A Randomized Controlled Clinical Trial. J Contemp Dent Pract 2022; 23:1211-1217. [PMID: 37125518 DOI: 10.5005/jp-journals-10024-3443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
AIM This randomized controlled trial evaluated the efficacy of platelet-rich fibrin (PRF) and concentrated growth factor (CGF) as scaffolds in the regenerative endodontic procedure (REP) using clinical and radiographic parameters along with cone-beam computed tomographic (CBCT) analysis. MATERIALS AND METHODS The apexogenesis procedure was performed in 16 teeth. They were randomly divided into two groups of eight teeth each: group I and group II. In group I PRF was used as the scaffold and in group II CGF was used as the scaffold. They were evaluated for pain, pulpal vitality, tenderness on percussion, and mobility, and also evaluated using digital radiographs at 3, 6, 12, and 18 months interval. The response of the teeth was graded using Chen and Chen criteria. Increase in root length, reduction in the apical foramen dimension, and reduction in periapical lesion volume were evaluated using CBCT scans taken preoperatively and at 18 months. RESULTS At the end of 3 months, 50% of teeth without periapical pathology were found to be vital in both groups. At the end of 18 months, 60% of the teeth in both groups showed increase in root length, all teeth showed closure of apical foramen, and reduction in the volume of periapical lesion. However, there was no statistically significant difference between the groups (p < 0.05). CONCLUSION The clinical and radiographic features reported in this study revealed that both PRF and CGF act as effective scaffolds in REP for regeneration of pulp-dentin complex with promising results. CLINICAL SIGNIFICANCE Apexogenesis by revascularization has not been used regularly for the treatment of nonvital teeth with open apex because the results are not reliable. Since platelet concentrates like PRF and CGF are rich in growth factors; when apexogenesis is performed by REP using these platelet concentrates, desirable results can be achieved in a short duration of time. They also accelerate the healing of periapical lesions present in such cases. With the increased success rate of apexogenesis with REP, many clinicians would prefer to use REPs as a treatment option for teeth with open apex.
Collapse
Affiliation(s)
- Mahendran Kavitha
- Department of Conservative Dentistry and Endodontics, Tamil Nadu Government Dental College and Hospital (Affiliated to Tamil Nadu Dr MGR Medical University), Chennai, Tamil Nadu, India
| | - Sivaprakasam Shakthipriya
- Department of Conservative Dentistry and Endodontics, Tamil Nadu Government Dental College and Hospital (Affiliated to Tamil Nadu Dr MGR Medical University), Chennai, Tamil Nadu, India, Phone: +91 9677247520, e-mail:
| | - Dorai Arunaraj
- Department of Conservative Dentistry and Endodontics, Government Royapettah Hospital, (Affiliated to Tamil Nadu Dr MGR Medical University), Chennai, Tamil Nadu, India
| | - Rangarajan Hemamalini
- Department of Conservative Dentistry and Endodontics, Dhanalakshmi Srinivasan Dental College (Affiliated to Tamil Nadu Dr MGR Medical University), Chennai, Tamil Nadu, India
| | - Sekar Velayudham
- Department of Conservative Dentistry and Endodontics, Tamil Nadu Government Dental College and Hospital (Affiliated to Tamil Nadu Dr MGR Medical University), Chennai, Tamil Nadu, India
| | - Balakrishnan Bakthavatchalam
- Department of Conservative Dentistry and Endodontics, Tamil Nadu Government Dental College and Hospital (Affiliated to Tamil Nadu Dr MGR Medical University), Chennai, Tamil Nadu, India
| |
Collapse
|
36
|
Xie Y, Zheng Y, Chen L, Lan Z. Promotion effect of apical tooth germ cell-conditioned medium on osteoblastic differentiation of periodontal ligament stem cells through regulating miR-146a-5p. BMC Oral Health 2022; 22:541. [PMID: 36434576 PMCID: PMC9700872 DOI: 10.1186/s12903-022-02485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play an important role in gene regulation that controls stem cells differentiation. Periodontal ligament stem cells (PDLSCs) could differentiate into osteo-/cementoblast-like cells that secretes cementum-like matrix both in vitro and in vivo. Whether miRNAs play key roles in osteoblastic differentiation of PDLSCs triggered by a special microenviroment remains elusive. In this study, we aimed to investigate potential miRNA expression changes in osteoblastic differentiation of PDLSCs by the induction of apical tooth germ cell-conditioned medium (APTG-CM). METHODS AND RESULTS First, we analyzed the ability of APTG-CM to osteogenically differentiate PDLSCs. The results exhibited an enhanced mineralization ability, higher ALP activity and increased expression of osteogenic genes in APTG-CM-induced PDLSCs. Second, we used miRNA sequencing to analyze the miRNA expression profile of PDLSCs derived from three donors under 21-day induction or non-induction of APTG-CM. MiR-146a-5p was found to be up-regulated miRNA in induced PDLSCs and validated by RT-qPCR. Third, we used lentivirus-up/down system to verify the role of miR-146a-5p in the regulation of osteoblastic differentiation of PDLSCs. CONCLUSIONS In conclusion, our results demonstrated that miR-146a-5p was involved in the promotion effect of APTG-CM on osteoblastic differentiation of PDLSCs, and suggested that miR-146a-5p might be a novel way in deciding the direction of PDLSCs differentiation.
Collapse
Affiliation(s)
- Yueqiang Xie
- grid.284723.80000 0000 8877 7471Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, 510140 Guangdong China
| | - Yaxin Zheng
- Department of Orthodontics Division I, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, Fujian China
| | - Liangjiao Chen
- grid.410737.60000 0000 8653 1072Department of Orthodontics, Stomatological Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zedong Lan
- grid.284723.80000 0000 8877 7471Department of Orthodontics, Shenzhen Stomatological Hospital of Southern Medical University, Shenzhen, 518000 Guangdong China
| |
Collapse
|
37
|
Regenerative Endodontics by Cell Homing: A Review of Recent Clinical trials. J Endod 2022; 49:4-17. [DOI: 10.1016/j.joen.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/05/2022] [Accepted: 09/25/2022] [Indexed: 12/03/2022]
|
38
|
Liang C, Li W, Huang Q, Wen Q. CircFKBP5 Suppresses Apoptosis and Inflammation and Promotes Osteogenic Differentiation. Int Dent J 2022; 73:377-386. [DOI: 10.1016/j.identj.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
|
39
|
Yan Y, Guan Y, Luo L, Lu B, Chen F, Jiang B. Effects of immunoglobulin Y-loaded amorphous calcium phosphate on dentinal tubules occlusion and antibacterial activity. Front Bioeng Biotechnol 2022; 10:921336. [PMID: 36246386 PMCID: PMC9554463 DOI: 10.3389/fbioe.2022.921336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: This study aimed to evaluate the effects of immunoglobulin Y (IgY)-loaded amorphous calcium phosphate (ACP) (IgY@ACP) on dentinal tubule occlusion and antibacterial activity.Methodology: IgY@ACP was synthesized based on a biomimetic mineralization strategy. The structure was examined by transmission electron microscopy and Fourier transform infrared spectroscopy. The IgY release property was assessed in vitro. The cell biocompatibility of IgY@ACP was evaluated by CCK-8. The dentin disks were prepared using healthy human molars, and their dentinal tubules were exposed to EDTA. Subsequently, they were randomly selected and treated with or without IgY@ACP for 7 days. The tubule occlusion morphologies and newly formed layers were observed by scanning electron microscopy (SEM) and x-ray diffraction, respectively. To evaluate the acid resistance and abrasion resistance of IgY@ACP, dentin disks that were treated for 1 day were immersed in acid solution or subjected to a toothbrush. The antibacterial effects against Streptococcus mutans (S. mutans) were evaluated by colony-forming unit (CFU) counting, adhesion property assessment, and crystal violet and live/dead bacterial staining. Finally, the occlusion effect was evaluated in rat incisors in vivo. One-way analysis of variance (ANOVA) was performed for statistical analysis. The level of significance was set at 0.05.Results: IgY@ACP presented an amorphous phase with a nanosize (60–80 nm) and sustained release of protein within 48 h. The CCK-8 results showed that IgY@ACP had good biocompatibility. After treatment with IgY@ACP for 1 day, the majority of dentinal tubules were occluded by a 0.3-μm-thick mineralized layer. Seven days later, all dentinal tubules were occluded by mineralization with a thickness of 1.4 μm and a depth of 16 μm. The newly mineralized layer showed hydroxyapatite-like diffraction peaks. In addition, IgY@ACP had good acid and abrasion resistance. After treatment with IgY@ACP, the CFU counting and adhesion rate of S. mutans were significantly reduced, the crystal violet staining was lighter, and the S. mutans staining revealed more dead cells. Most importantly, IgY@ACP had a certain occluding property in rat incisors in vivo.Conclusion: IgY@ACP can effectively occlude dentinal tubules with acid-resistant stability and has prominent anti-S. mutans effects, rendering it a potentially suitable desensitization material in the clinic.
Collapse
Affiliation(s)
- Yanhong Yan
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yun Guan
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Linjuan Luo
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Bingqiang Lu
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng Chen
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Beizhan Jiang
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
- *Correspondence: Beizhan Jiang,
| |
Collapse
|
40
|
Noohi P, Abdekhodaie MJ, Nekoofar MH, Galler KM, Dummer PMH. Advances in Scaffolds Used for Pulp-Dentine Complex Tissue Engineering - A Narrative Review. Int Endod J 2022; 55:1277-1316. [PMID: 36039729 DOI: 10.1111/iej.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
Pulp necrosis in immature teeth disrupts root development and predisposes roots to fracture as a consequence of their thin walls and open apices. Regenerative endodontics is a developing treatment modality whereby necrotic pulps are replaced with newly formed healthy tissue inside the root canal. Many clinical studies have demonstrated the potential of this strategy to stimulate root maturation and apical root-end closure. However, clinical outcomes are patient-dependent and unpredictable. The development of predictable clinical protocols is achieved through the interplay of the three classical elements of tissue engineering, namely, stem cells, signaling molecules, and scaffolds. Scaffolds provide structural support for cells to adhere and proliferate and also regulate cell differentiation and metabolism. Hence, designing and fabricating an appropriate scaffold is a crucial step in tissue engineering. In this review, four main classes of scaffolds used to engineer pulp-dentine complexes, including bioceramic-based scaffolds, synthetic polymer-based scaffolds, natural polymer-based scaffolds, and composite scaffolds, are covered. Additionally, recent advances in the design, fabrication, and application of such scaffolds are analysed along with their advantages and limitations. Finally, the importance of vascular network establishment in the success of pulp-dentine complex regeneration and strategies used to create scaffolds to address this challenge are discussed.
Collapse
Affiliation(s)
- Parisa Noohi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad H Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endodontic, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Kerstin M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
41
|
Agrawal P, Nikhade P, Chandak M, Ikhar A, Bhonde R. Dentin Matrix Metalloproteinases: A Futuristic Approach Toward Dentin Repair and Regeneration. Cureus 2022; 14:e27946. [PMID: 36120221 PMCID: PMC9464706 DOI: 10.7759/cureus.27946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been linked to modulating healing during the production of tertiary dentin, as well as the liberation of physiologically active molecules and the control of developmental processes. Although efforts to protect dentin have mostly centered on preventing these proteases from doing their jobs, their role is actually much more intricate and crucial for dentin healing than anticipated. The role of MMPs as bioactive dentin matrix components involved in dentin production, repair, and regeneration is examined in the current review. The mechanical characteristics of dentin, especially those of reparative and reactionary dentin, and the established functions of MMPs in dentin production are given particular attention. Because they are essential parts of the dentin matrix, MMPs should be regarded as leading applicants for dentin regeneration.
Collapse
|
42
|
Luo X, Wan Q, Cheng L, Xu R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol 2022; 12:908859. [PMID: 35937695 PMCID: PMC9353524 DOI: 10.3389/fcimb.2022.908859] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic periapical periodontitis (CAP) is a typical oral disease in which periodontal inflammation caused by an odontogenic infection eventually leads to bone loss. Uncontrolled infections often lead to extensive bone loss around the root tip, which ultimately leads to tooth loss. The main clinical issue in the treatment of periapical periodontitis is the repair of jawbone defects, and infection control is the first priority. However, the oral cavity is an open environment, and the distribution of microorganisms through the mouth in jawbone defects is inevitable. The subversion of host cell metabolism by oral microorganisms initiates disease. The presence of microorganisms stimulates a series of immune responses, which in turn stimulates bone healing. Given the above background, we intended to examine the paradoxes and connections between microorganisms and jaw defect repair in anticipation of new ideas for jaw defect repair. To this end, we reviewed the microbial factors, human signaling pathways, immune cells, and cytokines involved in the development of CAP, as well as concentrated growth factor (CGF) and stem cells in bone defect repair, with the aim of understanding the impact of microbial factors on host cell metabolism to inform the etiology and clinical management of CAP.
Collapse
Affiliation(s)
| | | | - Lei Cheng
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| | - Ruoshi Xu
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| |
Collapse
|
43
|
Liang C, Liang Q, Xu X, Liu X, Gao X, Li M, Yang J, Xing X, Huang H, Tang Q, Liao L, Tian W. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration. Int J Oral Sci 2022; 14:38. [PMID: 35858911 PMCID: PMC9300630 DOI: 10.1038/s41368-022-00188-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/05/2023] Open
Abstract
Pulp loss is accompanied by the functional impairment of defense, sensory, and nutrition supply. The approach based on endogenous stem cells is a potential strategy for pulp regeneration. However, endogenous stem cell sources, exogenous regenerative signals, and neovascularization are major difficulties for pulp regeneration based on endogenous stem cells. Therefore, the purpose of our research is to seek an effective cytokines delivery strategy and bioactive materials to reestablish an ideal regenerative microenvironment for pulp regeneration. In in vitro study, we investigated the effects of Wnt3a, transforming growth factor-beta 1, and bone morphogenetic protein 7 (BMP7) on human dental pulp stem cells (h-DPSCs) and human umbilical vein endothelial cells. 2D and 3D culture systems based on collagen gel, matrigel, and gelatin methacryloyl were fabricated to evaluate the morphology and viability of h-DPSCs. In in vivo study, an ectopic nude mouse model and an in situ beagle dog model were established to investigate the possibility of pulp regeneration by implanting collagen gel loading BMP7. We concluded that BMP7 promoted the migration and odontogenic differentiation of h-DPSCs and vessel formation. Collagen gel maintained the cell adhesion, cell spreading, and cell viability of h-DPSCs in 2D or 3D culture. The transplantation of collagen gel loading BMP7 induced vascularized pulp-like tissue regeneration in vivo. The injectable approach based on collagen gel loading BMP7 might exert promising therapeutic application in endogenous pulp regeneration. BMP7 as a regenerative signaling molecule mediates stem cell migration and odontoblastic differentiation (a) and as a pro-angiogenic factor promotes revascularization of endothelial cells (b). Collagen gel supports cell adhesion, spreading, and viability (c). ![]()
Collapse
Affiliation(s)
- Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingqing Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
Khalid M, Hodjat M, Baeeri M, Rahimifard M, Bayrami Z, Abdollahi M. Lead inhibits the odontogenic differentiation potential of dental pulp stem cells by affecting WNT1/β-catenin signaling and related miRNAs expression. Toxicol In Vitro 2022; 83:105422. [PMID: 35738543 DOI: 10.1016/j.tiv.2022.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
Abstract
Lead (Pb) is ubiquitous in environment that accumulates in teeth and calcified tissues from where it releases gradually with aging and adversely affects dental health. This study aimed to determine the effect of Pb exposure on odontogenic differentiation potential of isolated human dental pulp stem cells and investigate the possible underlying epigenetic factors. In the absence of Pb exposure, stem cells displayed significant odontogenic markers including elevated Alkaline Phosphatase (ALP) activity, Alizarin red staining intensity, and increased expression of odontogenic DMP1 and DSPP genes. Exposure to 60 μM Pb resulted in reduced ALP activity and calcium deposition. Also, diminished expression of RUNX2, DMP1, and DSPP, as well as Wnt signaling mediators including WNT1, and β-catenin were detected. The expression of Wnt signaling related microRNAs, miRNA-139-5p and miRNA-142-3p, on the other hand, were shown to have a significant increase. We concluded that Pb could adversely affect the odontogenic differentiation potential of dental pulp stem cell. The underlying mechanism might related to Pb-induced epigenetic dysregulation of WNT1/β-catenin pathway-related miRNAs leading to down-regulation of Wnt/β-catenin related odontogenic genes and eventually impaired odontogenic differentiation process.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
45
|
Liu H, Lu J, Jiang Q, Haapasalo M, Qian J, Tay FR, Shen Y. Biomaterial scaffolds for clinical procedures in endodontic regeneration. Bioact Mater 2022; 12:257-277. [PMID: 35310382 PMCID: PMC8897058 DOI: 10.1016/j.bioactmat.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Regenerative endodontic procedures have been rapidly evolving over the past two decades and are employed extensively in clinical endodontics. These procedures have been perceived as valuable adjuvants to conventional strategies in the treatment of necrotic immature permanent teeth that were deemed to have poor prognosis. As a component biological triad of tissue engineering (i.e., stem cells, growth factors and scaffolds), biomaterial scaffolds have demonstrated clinical potential as an armamentarium in regenerative endodontic procedures and achieved remarkable advancements. The aim of the present review is to provide a broad overview of biomaterials employed for scaffolding in regenerative endodontics. The favorable properties and limitations of biomaterials organized in naturally derived, host-derived and synthetic material categories were discussed. Preclinical and clinical studies published over the past five years on the performance of biomaterial scaffolds, as well as current challenges and future perspectives for the application of biomaterials for scaffolding and clinical evaluation of biomaterial scaffolds in regenerative endodontic procedures were addressed in depth. Overview of biomaterials for scaffolding in regenerative endodontics are presented. Findings of preclinical and clinical studies on the performance of biomaterial scaffolds are summarized. Challenges and future prospects in biomaterial scaffolds are discussed.
Collapse
|
46
|
Comparative effects of concentrated growth factors on the biological characteristics of periodontal ligament cells and stem cells from apical papilla. J Endod 2022; 48:1029-1037. [DOI: 10.1016/j.joen.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/30/2022] [Accepted: 05/01/2022] [Indexed: 12/14/2022]
|
47
|
Biomolecule-Mediated Therapeutics of the Dentin–Pulp Complex: A Systematic Review. Biomolecules 2022; 12:biom12020285. [PMID: 35204786 PMCID: PMC8961586 DOI: 10.3390/biom12020285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/09/2022] Open
Abstract
The aim of this systematic review was to evaluate the application of potential therapeutic signaling molecules on complete dentin-pulp complex and pulp tissue regeneration in orthotopic and ectopic animal studies. A search strategy was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement in the MEDLINE/PubMed database. Animal studies evaluating the application of signaling molecules to pulpectomized teeth for pulp tissue or dentin-pulp complex regeneration were included. From 2530 identified records, 18 fulfilled the eligibility criteria and were subjected to detailed qualitative analysis. Among the applied molecules, basic fibroblast growth factor, vascular endothelial growth factor, bone morphogenetic factor-7, nerve growth factor, and platelet-derived growth factor were the most frequently studied. The clinical, radiographical and histological outcome measures included healing of periapical lesions, root development, and apical closure, cellular recolonization of the pulp space, ingrowth of pulp-like connective tissue (vascularization and innervation), mineralized dentin-like tissue formation along the internal dentin walls, and odontoblast-like cells in contact with the internal dentin walls. The results indicate that signaling molecules play an important role in dentin/pulp regeneration. However, further studies are needed to determine a more specific subset combination of molecules to achieve greater efficiency towards the desired tissue engineering applications.
Collapse
|
48
|
Therapeutic Potential of Synthetic Human β-Defensin 1 Short Motif Pep-B on Lipopolysaccharide-Stimulated Human Dental Pulp Stem Cells. Mediators Inflamm 2022; 2022:6141967. [PMID: 35110972 PMCID: PMC8803462 DOI: 10.1155/2022/6141967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Dental pulp inflammation is a widespread public problem usually caused by caries or trauma. Alleviating inflammation is critical to inflamed pulp repair. Human β-defensin 1 short motif Pep-B is a cationic peptide that has anti-inflammatory, antibacterial, and immunoregulation properties, but its repair effect on human dental pulp stem cells (hDPSCs) under inflammation remains unclear. In this study, we aimed to investigate anti-inflammatory function of Pep-B and explore its therapeutic potential in lipopolysaccharide-(LPS-) induced hDPSCs. CCK-8 assay and transwell assay evaluated effects of Pep-B on hDPSC proliferation and chemotaxis. Inflammatory response in hDPSCs was induced by LPS; after Pep-B application, lactate dehydrogenase release, intracellular ROS, inflammatory factor genes expression and possible signaling pathway were measured. Then, osteo-/odontoblast differentiation effect of Pep-B on LPS-induced hDPSCs was detected. The results showed that Pep-B promoted hDPSC proliferation and reduced LPS-induced proinflammatory marker expression, and western blot result indicated that Pep-B inhibited inflammatory activation mediated by NF-κB and MAPK pathways. Pep-B also enhanced the expression of the osteo-/odontogenic genes and proteins, alkaline phosphatase activity, and nodule mineralization in LPS-stimulated hDPSCs. These findings indicate that Pep-B has anti-inflammatory activity and promote osteo-/odontoblastic differentiation in LPS-induced inflammatory environment and may have a potential role of hDPSCs for repair and regeneration.
Collapse
|
49
|
Liu P, Zhang Y, Ma Y, Tan S, Ren B, Liu S, Dai H, Xu Z. Application of dental pulp stem cells in oral maxillofacial tissue engineering. Int J Med Sci 2022; 19:310-320. [PMID: 35165516 PMCID: PMC8795794 DOI: 10.7150/ijms.68494] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
In the maxillofacial area, soft and hard tissue abnormalities are caused by trauma, tumors, infection, and other causes that expose the maxillofacial region to the surface of the human body. Patients' normal physiological function and appearance are interfered with, and their mental health is adversely impacted, reducing their overall life quality. The pursuit of appropriate medical treatments to correct these abnormalities is thus vital. Autologous stem cell regeneration technology mainly focused on tissues has lately emerged as a significant problem in the medical community. Because of the capacity of dental pulp stem cells (DPSCs) to self-renew, the use of DPSCs from the human pulp tissues of deciduous teeth or permanent teeth has gained popularity among scientists as a stem cell-based therapy option. Aside from that, they are simple to extract and have minimal immunogenicity. As a result, bone tissue engineering may be a critical component in treating maxillofacial and periodontal bone abnormalities. DPSCs activity in maxillofacial and periodontal tissue-engineered bone tissue was investigated in this research.
Collapse
Affiliation(s)
- Peng Liu
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yingxin Zhang
- Department of Oral Emergency, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yujie Ma
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Shuang Tan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Bingyi Ren
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Shitao Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - HuanYan Dai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhimin Xu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
50
|
Zhang Q, Yang T, Zhang R, Liang X, Wang G, Tian Y, Xie L, Tian W. Platelet lysate functionalized gelatin methacrylate microspheres for improving angiogenesis in endodontic regeneration. Acta Biomater 2021; 136:441-455. [PMID: 34551330 DOI: 10.1016/j.actbio.2021.09.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Rapid angiogenesis is one of the challenges in endodontic regeneration. Recently, tailored polymeric microsphere system that loaded pro-angiogenic growth factors (GFs) is promising in facilitating vascularization in dental pulp regeneration. In addition, the synergistic effect of multiple GFs is considered more beneficial, but combination usage of them is rather complex and costly. Herein, we aimed to incorporate human platelet lysate (PL), a natural-derived pool of multiple GFs, into gelatin methacrylate (GelMA) microsphere system (GP), which was further modified by Laponite (GPL), a nanoclay with efficient drug delivery ability. These hybrid microspheres were successfully fabricated by electrostatic microdroplet technique with suitable size range (180∼380 µm). After incorporation of the PL and Laponite with GelMA, the Young's modulus of the hybrid hydrogel increased up to about 3-fold and the swelling and degradation rate decreased simultaneously. The PL-derived GFs continued to release up to 28 days from both the GP and GPL microspheres, while the latter released relatively more slowly. What's more, the released GFs could effectively induce tubule formation of human umbilical endothelial cells (HUVECs) and also promote human dental pulp stem cells (hDPSCs) migration. Additionally, the PL component in the GelMA microspheres significantly improved the proliferation, spreading, and odontogenic differentiation of the encapsulated hDPSCs. As further verified by the subcutaneous implantation results, both of the GP and GPL groups enhanced microvascular formation and pulp-like tissue regeneration. This work demonstrated that PL-incorporating GelMA microsphere system was a promising functional vehicle for promoting vascularized endodontic regeneration. STATEMENT OF SIGNIFICANCE: Polymeric microsphere system loaded with pro-angiogenic growth factors (GFs) shows great promise for regeneration of vascularized dental pulp. Herein, we prepared a functional GelMA microsphere system incorporated with human platelet lysates (PL) and nanoclay Laponite by the electrostatic microdroplet method. The results demonstrated that the GelMA/PL/Laponite microspheres significantly improved the spreading, proliferation, and odontogenic differentiation of the encapsulated hDPSCs compared with pure GelMA microspheres. Moreover, they also enhanced microvascular formation and pulp-like tissue regeneration in vivo. This hybrid microsphere system has great potential to accelerate microvessel formation in regenerated dental pulp and other tissues.
Collapse
|